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ON BEST m-TERM APPROXIMATIONS AND
THE ENTROPY OF SETS IN THE SPACE L*®

B. S. Kashin and V. N. Temlyakov

In this paper, using results on the geometric properties of finite-dimensional convex bodies, we investigate
approximate characteristics of sets of the spaces L!(R?), LP(R?), p > 1. The paper contains two sections.
In Sec. 1, for a wide class of systems ® = {®n(z)} we establish lower bounds for best approximations of
functions of Sobolev classes by polynomials of the form

m
Zans‘on 1<n; <npg < <

=1

here the coefficients a,, and indices n; depend, in general, on the function approximated.

In Sec. 2, we establish lower bounds for the ¢-entropy, widths, and best m-term triconometric approxi-
mations in classes of functions of many variables with bounded mixed derivative or difference. In particular,
the method developed gives the possibility of obtaining order-precise lower bound for entropy numbers of
the class Wy in the space L7 for p = oo, q = 1, and even r. As is known, for the problems considered,
obtaining exact results in “extreme cases,” i.e., where the parameters p and g take the extreme values 1
and oo, is usually the most complicated.

1. On best m-term approximations

Let D be a bounded domain in RY, d =1,2,...,let 1 < p < oo, and let ® = {p.(z)}52, be a system of
functions of the space LP(D). Given a function f € LP(D), we put

onlf®)y= it ‘f(x il , W
P {ni}= {AC}ZgI;R'Al—m ; L#{D)

where |A| is the number of elements of the finite set A. Next, if K C LP(D) is some class of functions, then
we put

om (K, ®)p = sup om(f, ®). (2)
feK

Quantity (1) is called the best m-term approximation of the function f, relative to the system @, in L?(D).
The difference between this quantity and the quantity of the usual best approximation, given by

Em v¢ = 1 f - P )
(f, @) welg(N)”f elle (D)

where ®(N) = {}::":1 c,-goi(:v)} is the space of polynomials of order < m relative to the system @, consists in

the possibility of choosing the spectrum of the approximating polynomial, i.e., the set A (see (1)), depending
on the approximated function f. It is clear that o(f, ®), < En(f,®),. Yet, in the seventiees (see [1, 2]),

Steklov Mathematical Institute. Department of Mathematics. University of South Carolina, Columbia, South
Carolina 29208. Translated from Matematicheskie Zametki, Vol. 56, No. 5, pp. 57-86, November, 1994. Original
article submitted April 28, 1994.

0001-4346/94/5656-1137$12.50 ©1995 Plenum Publishing Corporation 1137



it had been established that for many natural functional compacta K and svstems ® the quantities (2)
decrease as m — oo much more rapidly than

En(K,®) = sup En(f,®).
fEK

In recent years, interest in the study of m-term approximations has been renewed, in particular, in con-
nection with their applications to “image processing” problems. Moreover, in the opinion of some authors
(see [3, 4]), the case p = 1 is particularly interesting for applications. It is this case that we consider below.
Under certain assumptions on the properties of the system @, we establish, in particular, the lower bound
of quantity (2) in the case where p = 1 and

K=Lipa={f:|flle <1, [f(z) - f(YI<|z—y|®, 0<z,y <1}, O0<ac<]

this bound shows that in the case considered the use of m-term approximations has no essential advantages
in comparison with the usual approximations. We mention at once that the study of quantities (1) and (2)
makes sense only in the case where the system ® has some “minimality property” (otherwise, the functions
{pn} form a dense set on a sphere in LP(D) and then o;(f,®) = 0 for any f € LP(D)). A usual property of
such a type is the orthogonality of the system ®. As shown in [5], in considering approximations in L?(D)
the assumption of the orthogonality of the system @ is sufficient for obtaining nontrivial lower bounds of
om (K, ®), depending on the geometric properties of the functional class K. For instance, we established [5]
that
om(Lipa,®)y > em™°, c>0, m=12,...

for any orthonormalized system ®. In passing to approximations in L'(D) the situation is changed. This
is illustrated clearly by the following statement (the proof is given at the end of the section).

Proposition 1. There ezists a complete orthonormal system & = {p, € L?(0,1)} such that the set
A(®) = {Mpn, A >0, n=1,2,...} is dense in L'(0,1) and, consequently, o1(f,®); = 0 for any function
feLo,1).

Thus, to obtain nontrivial lower bounds for o, (A, ®) we need to restrict the class of the systems &
under consideration. We assume that the system ® = {¢,} satisfies the following two conditions:

(I) There exist positive constants R, K3, K3, such that for each N = 1,2,... there exists a finite set
Qn C D such that {Qn| < K- N, and for any function ¢ € ®(N) and 1 < p < oo the following inequalities
hold:

1 1/p 1 1/p
K (e 5 Wl ) <lely< (g 3 o) 3)
ol 25, <o 2, ‘
(IT) There exist constants K4, K5, such that for N =1,2,..., m=1,2,..., 1 < p < oo, and for any

function ¢ € ®(N), the following inequality holds:

Om ((197 {QQR}TI:;IIV) < KSUm (907 Q)

Note that conditions (I) and (II) are valid for the known classical orthonormal systems, the trigonometric,
Haar, Walsh, and Francklin systems, as well as for systems of the “wavelet” type.

Systems possessing property (3) for p = co (when the norms ||¢||, and sup,¢q,, |¢(z)| are considered to
be equivalent) are called [6] quasi-matrix systems. Conditions of type (I) arise naturally in many problems
of function theory. For a triconometric system, condition (I) was established by Martsinkevich (see [7]). For
a system @ of linearly independent functions, condition (II) is satisfiled whenever the following condition
holds:

(II') For any n = 1,2,... there exists a multiplier Ay = {Ay .} (i.e., a linear operator defined by
AN(®wn) = Anpn, n = 1,2,..., on polynomials relative to ®) such that Ay , = 1 for n < N, An,n = 0 for
n > K4 N, and

AN, < Ksllell,, 1< p<oo,
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for any polynomial relative to @.
Forp € [1,00], N =1,2,..., we put

®(N)p = {f € 2(N) : [ flle»(py < 1}

The following lemma holds.

Lemma 1. Let a system & of linearly independent functions satisfy conditions (1) and (IT). Then there
ezist constants v > 0, ¢ > 0, such that

T (@(n)oo, @)1 2 ¢ (4)

forn=1,2... and m < yn.

Proof. Using conditions (I), (II), and the linear independence of functions of ®, we reduce the problem
of estimating the left-hand side of (4) to the corresponding problem in the finite-dimensional space RM.
Below we denote by B”,” the unit ball in 8}1,", and by B:,‘:’r(:c) the set z +r - B{,"”. We introduce a discrete

analog of quantitites (1), (2). Let U = {u;}2, be a set of vectors of RM. For m < n we put

m
T — E Cillk,
=1

om(z,U)1 = inf

) 5
{ei} {ki} (5)

i
om(G,U); = sup om(z,U)1, (6)
zeCG
where the lower bound in (5) is taken over all m-element subsets {k;}™, of the set {1,...,n}, and over all

the coefficients {c;}.
According to condition (II), to prove Lemma 1 it is sufficient to establish the inequality

om(®(n)oo, {pi fgln)l > >0 (7)

under assumption that m < yn.

Given a number n, we denote by P the operator of restriction of ¢ to the finite set Qx,, = {z;} (see
condition (I)),

P(‘P) = {‘P(mi)}igl € RM7 M = IQK4T!| S I{l ) K4 + .

Using now condition (I), we see that inequality (7) is valid in turn, if for any set U = {u;}¥, € RM and
for m < n/2 the following inequality holds:

Om(P(n),U)1 > cM >0, (8)

where P(n) = {P(y), ¢ € ®(n)w}, and the constant ¢ depends only on K;, 1 <1 < 5.

Since the functions of ® are linearly independent and condition (I) holds for p = oo, we see that
{P(¢), ¢ € ®(n)} is an n-dimensional subspace of RM, and P(n) contains the n-dimensional cross section
of the cube K;'BY. Thus, to prove Lemma 1 it is sufficient to prove the following statement.

Lemma 2. Let n and M be positive integers connected by the inequalities aM < n < M. Also let
m < n/2, let G be an arbitrary n-dimensional cross section of the cube BM, and let U = {u;} be any
system of vectors of RM. Then the following inequality is valid:

om(Gn,U)1 > cM, c=c(a) > 0.

Taking into account the known estimates of the volume of the cube cross sections (see [8] and also [9, 10]),
we see that Lemma 2 follows in turn from a more general statement.
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Theorem 1. Let n and M be positive integers connected by the inequalitice aM < n < M, and let Q be
a family of systems U’ = {u]}M, C RM, j=1,....,s, s <KM. Alsolet L, CRM be an n-dimensional
subspace, G C L, N BM, and
Vol,, G > g™ Vol, B}, B> 0.

Then for m < n/2 we have

pm = supinf o (z,U7); > cM?/?, ¢=c(e,8,K) > 0.
z€G J

Remark 1. We have denoted by Vol, G the n-dimensional Lebesgue measure (the volume) of the set
G C LCRM, dimL = n. If G is an n-dimensional cross section of the cube BM | then, applying Theorem 1
and using the inclusion G C M'/? . (B N L) and the estimate Vol, G > 1 > ¢*M™/2 Vol B} (see [8]), we
arrive at the conclusion of Lemma 2.

Remark 2. Theorem 1 shows that under its hypotheses, even if we fix a wide class of systems and
choose in this class a system with respect to which the m-term approximation is taken, depending on the
approximated element, we do not obtain an essential improvement of the approximation in comparison with
the trivial method of approximation of any element of G by the zero element.

Remark 3. Under the hypotheses of Theorem 1, instead of systems U’ of vectors consisting of M
elements one can consider systems of vectors consisting of b+ M elements (b is a fixed constant). This case

is reduced to the previous one if instead of U7 = {u?}*™ we consider all M-term sets of u’ as separate
1% 1 Ji1=1 1 P

systems of vectors. Then their number increases < [c(b)]M times, which influences only the value of the
constant K.

Proof Theorem 1. Evidently, it is sufficient to consider the case m = [n/2]. Put p = pn/). Given a
number j, we denote by U}, the set of all subspaces X C R™ generated by m elements of the system U7,

Ul = {(X:X = span({u{k}le)}.
By the definition of p (see the formulation of Theorem 1), the following inclusion holds:
Gely U x+BM)
j=1 XCU;,;-‘
moreover, by the assumption, G C L, N BM. Thus,
Gecl U {x+BM)nL.nB}}. (9)

7=1Xxcui,
For fixed 7 and X, we estimate the n-dimensional volume of the set

H=(X+BM)nL,nBM.

It is clear that
HCcF=P, {(X+B)}nBY, (10)

where Py, is the operator of orthogonal projection onto L C RM. Further,

where Q = Py, (X), B, = Py, (BM)). Moreover, | = dimQ < dim X < m and each element z € F can be
represented in the form

z=q+y, q€Q, yeB, |z|2<1 (11)
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Let Q* be the ortLogonal complement of @ to L,. (Note that dim @ > n — m.) Let us represent the
element y 1 (11) in the form y = y — Poiy + Pgry. Then we have

z=(q+y~ Pys(y)) + Por(y)

and
g+y—Pgi(y) €QNBM, Py (y) € Pqi(B)).

Therefore, the n-dimensional volume of F is estimated as
Vol F < Vol; By - Vol,_; P+ (B)). (12)
Since QL C L,, by the definition B, we have
Poi(B,) = Pgq. P, (B = Pou(BM).
We now use the following known estimate:
Vol, Py(BY)<cl-r™", Y CRM, dimY =r>M. (13)

Taking into account that Py (BM) is a convex polyhedron of < 2M vertices, inscribed in an r-dimensional
Euclidean ball (see (11, 12}), inequality (13) follows from the known estimates for volumes of polyhedrons.
We also note that (13) follows directly from the simplest estimate of cardinality of the covering of the
octahedron BM by Euclidean balls, and that there exist an absolute constant K and points z1,...,zx € RM,
k < KM, such that

KM

BIM C U B;’M_,/z(:l:,')

i=1

(see, e.g., [13, p. 56]).
By inequalities (12) and (13), we obtain

Vol, F < ™™ 2pn = (n — 1)=(»—D), (14)
The conditions of Theorem 1, inclusion (9), and estimate (14) imply that
(n _ l)—n/2 < 2n/2n—n/2 < (cl)nl—-l/Z(n _ l)—(n—l)pn—l (15)

(we also used the condition ! < n/2). Comparing the left-hand and right-hand sides of v(15) and taking into
account that the function y¥ is bounded below by a positive constant for y > 0, we obtain

p> C/rnl/z > CM1/2.

Theorem 1 has been proved.

Remark 4. It is easy to see that in the formulation and in the proof of Theorem 1 the norm ¢M can
be changed to any norm defined on RM such that an analog of inequality (13) holds,

Vol (Py(B)) < M Vol (BY - M~'/2nY), dimY =r>~M, (%)
where B is the unit ball in R™. In turn, the last estimate is valid if, for example, the Euclidean ball
M~1/2. BM is an ellipsoid of maximal volume, inscribed in B, and Vol(B) < CM . M~M/2 . yol(BM).

Now we give consequences of Theorem 1 and Lemma 1 for approximations of functional classes. We
begin with the one-dimensional case.
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Theorem 2. Let a system ® of linearly independent functions on D = (0,1) satisfy conditions (I)
and (II). Suppose that for some r > 0 the functions of ® satisfy the “Bernstein inequality,” 1.e., there exists
a constant ¢ = c(r) such that for any N =1,2,... and ¢ € ®(N),

e leo < ¢ N0 (16)

(for fractional r the derivative is considered as the Weyl derivative). Then for the class

Woo = {f : Iflleo + 1 lleo < 1)
the following lower bound holds:
Om(Wi, @)1 2 ¢c1-m™", m=1,2,.... (17)
Proof. By inequality (16), we have
®(N)oo Ceon” - W (18)

Let « be the constant defined in Lemma 1. Given a number m, we put n = [m/v] + 1 and apply Lemma 1.
Then, by (4) and (18), we arrive at estimate (17).

As a consequence of Theorem 2, we get the lower bound for best m-term triconometric approximations,
established in [14]
om (Wi, T) > c(r)m™7, m=12,....

In the multidimensional (d-dimensional) case, the following analog of Theorem 2 is valid.

Theorem 3. Let a system ® of linearly independent functions on a domain D C R? satisfy condi-
tions (I) and (II). Suppose that for some positive integer r > 0 and for a vector I = (Iy,...,l4), such that
i+ -+ 14 <1 and l; > 0 are integers, the following inequalities hold:

ot -+l

FI <eNollee, @ ERN), N=1,2,....
L 8k

o]

1Dl = H

Then for the isotropic Sobolev class

SWy, = {f Y D < 1}

1 <r

the following lower bound holds:
om(SWI, &), > cym ™4,

The proof of this theorem repeats the proof of Theorem 2.
We now give an application of Theorem 1. As above, we assume that D is a bounded domain in R¢, M
is a positive integer, { D¢}, is a partition of D (up to a set of measure zero) into subdomains such that

a— < |Di| < B——
M _l kl_ M’

where |E| is the Lebesgue measure of E. Further, we denote the space of functions constant on subdomains
Di, k = 1,...,M, by S™ = S({D}},), and the unit L>-ball in this space by S¥ = {f € SM .
I flleo < 1}
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Theorem 4. Let U7 = {u}M ., 7 =1,... s, s < K", be a family of systems of functions of SM. Then
for allm < M/2 we have
sup info(f,U7); > ¢, c=c(a,B,K)>0. (19)
fesg J

Proof. Let ¢ € SM and p(z) = ¢4 for £ € Dy, k=1,2,..., M. Then for 1 < p < 0o we have

M 1/p 1 M 1/p
== PD = —_— p .
Iell = (Lotenkonl) < (57 o teuk) (20)

Associating with each function ¢ € SM the vector (pi1,...,o4) € RM, we reduce the problem to the
“finite-dimensional case.” Then, by Theorem 1 (with n = M and G = BY) and relation (20), we obtain
estimate (19).

We conclude this section with the proof of Proposition 1.

Proof Proposition 1. Obviously, the completeness of the system ® should not be given consideration;
an incomplete system ® with dense A(®) can always be completed. It is also easy to see that it is sufficient
to construct an orthonormal system @ for which A(®) is dense on the unit sphere of L?(0,1) in the norm
of L.

In fact, for any € > 0 and for any function f € L'(0,1) there exists g € L*(0, 1) such that ||g]|2 > 0 and
Ilf —gllL, < €/2. If, in turn, for a given g there exist n and A > 0 such that

g €
T — An| < o
“ llgllz o 2llgllz

then “f - ’\||g||2‘PnI|Lx <eEe.
Let ga(z), |lgnllz = 1, n = 1,2,..., be a sequence of functions, dense on the unit sphere of L?(0,1) in
the norm of L2(0, 1), such that

gn{z) =0 for :I:G(O,ﬁ;), n=12,..., (21)
(the existence of such a sequence can easily be established). We put
fa(z) = ga(z)- 1077, n=12,.... (22)

It is easy to see that

”{f" ?lo=1”(o,1) < '126’

where for the sequence {fn}%%, C L%(Q2), we have

oo
D> anfn
n=1

We begin by constructing an auxiliary system {¢,} such that v, differ from ¢, only by a multiplier,

S _—
”{fn n=1”n = Est:;.pﬁl L2(9)-

Yn(z) = patn(z), pn=const, n=12....
In the interval (an’ 1) the function v, is defined by

Ya(z) = fa(z), n=12..., € (L 1).
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To complete the definition of the functions 1y, it is sufficient to define the s~t {1, }N_ for N =1,2,... in
the interval (N+2 , N+1) In this case we also control the validity of the relations

1 _
1—05||{¢n 1||( )_10+210 s=1,2.... (23)

We fix N > 1 and (considering the functions ¥,, n =1,2,... to be already defined in the interval (ﬁ, 1)

in such a way that (23) holds for s = N — 1) we define the set {¢n(z)}N_,, 2z € (N1+2’ N1+1)

By the Schur theorem (see [15, p. 256]), we can realize this procedure so that the functions {3, (z)}

n=]
be pairwise orthogonal on (ﬁ, 1) and (see (22), (23))
N-—
-n N
”’/’n||L2(N+2,1) = |H#n} i 1H(F_ ) < ||{1/)n} H y Hllonlizaen < 10 Z 107" 4+ 10
forn =1,2,..., N Hence, inequality (23) is also valid for s = N. Moreover, by means of the corresponding

contraction and multiplication by a constant (without change of the norm in L? ( N3 N+1 )) one can ensure

the smallness of the norms ||t¢n|| 11 Wt W= L2 N (see also the remark on p. 258 in [15]). More
exactly, one can assume that
|| fnll 2
||¢n||1;1(7v_1+—2,~1_“) < AN n=12....

Carrying out the mentioned constructions for all N, we obtain the system {¥»(z)}32,, z € (0,1) of
functions such that

(1) {z/)n} is an orthogonal system;

(2) 10 = I|¢nl|L2(0 1) = 10’ n=12,.

) I — nlls < [l - 2,47 < ML n=12,...

By the last inequality, we also have

llgnllz:
3n

1
”gﬂ - 10"1/1"“[41 < < _3_;1 n= 1,27' .-

hence, for any function f € L2, | fliz2(0,1y = 1, and for any € > 0,

If = 10" - e

(24)
if n*

Finally, we put ¢,(z) = % =1,2,.... By (24) (see also (23)), ® = {¢,} is an orthonormal
system, and on the unit sphere in L?(0,1) the set A(®) is dense in the norm of L'(0,1). Proposition 1 has

been proved.

2. Lower bounds for approximate characteristics of classes
of functions with bounded mixed derivative or difference

Iu this section, we establish order-precis lower bounds for best m-term triconometric approximations
in the metric of L? of classes of functions with bounded mixed difference HZ or derivative Wy, for
1 < p £ ¢ < oo (the definition of the classes is given below). In this case, the study of the propertles of
the functional class is reduced to a discrete problem (i.e., to the study of properties of a set in a finite-
dimensional space) by using the * ‘quasi-matrix property” of the space of triconometric polynomials with
parallelepiped harmonics. The corresponding upper bounds for m-term approximations are known and
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are attained when approximating by polynomials with hyperbolic cross harmonics (see [16-18], where the
history of the problem considered in this section is also discussed).

The second part of the section is devoted to estimates of the e-entropy and of the Kolmogorov widths for
the class W7, .. In this case, it is difficult to apply directly results of the finite-dimensional geometry, because
we do not know if a space of polynomials with hyperbolic cross harmonics is “quasi-matrix.” However, in
a number of cases one can avoid this difficulty and obtain new order-precise results. In addition to modern
results of the geometry of convex sets, our approach is based essentially on the uniqueness of the maximal .
volume ellipsoid inscribed in a centrally symmetric convex body.

.Let us introduce the notations and definitions we use below. We denote by f * g the convolution of

functions f and g. In this section, we assume that functions considered are 27-periodic with respect to each
variable and such that

S -v)ev)dy.

0,27

(f + g)(z) = (@)~ /[

For our purposes it is more convenient to use the following definition of the L?-norm:

: 1/p
= (Cm~ [ ras) ", 1sp<c

For r > 0 we define Bernoulli kernels

F',(:c,a)=1+2ik—'cos(kx—g2£), z€R, a€eR;
k=1

d .
F.(z,a) = [[ Fi(zj,ej), z=(r1,...,24) €R%, @ =(an,...,a4) € RL
i=1 '

We denote by I the convolution operator with the kernel F,(z,a), I¢ = F.(z,a) *¢(z). For r = 0 this
operator can be well defined on the set of triconometric polynomials. It is convenient for us to use the
notation I, = I2. The class W{ o is defined as follows:

qu,a = {f 1 f= I;Lp, ”99”9 < 1}7

where r >0, 1 < q < 00, a € R9.

We now define classes H) . We denote by Aﬁj the operator of the /-multiple difference with step t;
in variable z;, 7 = 1,...,d. For a set of positive integers a of [1,d] we denote Al(a) = [Iea Aij. Put
I = {r] + 1, where [r] is the integer part of r. The class HL, is defined as follows:

H = {f for all a C [1,d] we have||Al(a)f|loo < H Itjlr}.

J€a
We need the following well-known triconometric polynomials:
(a) the one-dimensional Fejer kernel,
—_ |k| ikr,
Ka(z)= Y (1— —n—)e ,
lkj<n
(b) the multidimensional Fejer kernel,
d
Kn(z) = H Kn,(x;), N=(N.....,Ng), z=(a1,...,24);
1=1
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(c) the one-dimensional de la Vallee-Poussin kernel,
V() = 2Kom(z) — Kim(z);

(d) the multidimensional de la Vallee-Poussin kernel,

d
= HVNJ.(:tj).

We also need the following kernels:

Am(z) = Vom-1(z) — Vom-2(z), m> 2,
Ai(z) =W(z) -1, Alz)=1, =€k,

:HA"j(mj)v 3:(31"--75d)7 5520, 7=1,....,4, zeRd~

We denote by A, the convolution operator with the kernel A,(z).
In addition to the L?-norm, we consider the norm By g, analogous to the norm of the Besov space, defined
for triconometric polynomials by

1/6
|t||qu—(Z||A ||9) . 1<q<oo, 1<8<oo

this definition is naturally modified for § =

By analogy, we define the norm ||f||s,, for functlons f € L' such that the series > 1AS( )||g is
convergent. Below, the norms By ¢ play an auxiliary role.

Let us define spaces of triconometric polynomials with harmonics of sets related to hyperbolic crosses.
For s = (s1,...,54) € Z% we put

(5) = {k:(kl,,,.,kd) EZi : [28j—1] Sk] <23j) ]: 17-"1d}7
_5): {kEZi:2aj_l <k] <23j, j=1,~--1d}7
Do= |J pls),  |Dalx2" 0,

lIsfli=n
6n = {s:|s|i =2[n/2], sj is even, s; >0, j = 1,...,d},

and, finally,

Y. = als).

Foraset A C Zi we denote
T(A) = {t (t(z) = Z ckei(k’r)}.
|k|€A

Given a normed function space X, we denote by 7(A)x the unit X-ball in 7 (A).

We now prove a statement on the approximation of polynomials of 7(Y) Bs,oo; below we use this
statement to establish lower bounds for approximations of the classes H7, and W, o by m-term triconometric
polynomials.
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Theorem 2.1. There ezists a constant c(d) > 0 such that for any set @ = {p;}3_; C B11, s < |Ya,
of functions the estimate

Um(T(Y")Boo,oo’Q)Bl,l Z clnd—17 C] = Cl(di C') > 07

holds for all m < ¢(d)|Ya|.

Proof. Instead of T(Y,) it is convenient for us to consider a subspace T'(Y,) C T(Y,) of dimension
> c(d)|Yy|. Let us describe this subspace. For N = (Ny,..., Ny) we denote by RT(N) the space of real

triconometric polynomials of d variables of degree < Nj in variable zj, j = 1,...,d. We define the subspace
T'(Ya) by

T'(Y,) = {t (H(x) = E e * =)l (), ¢! € RT(2°? - ][)},
s€h,

where k* = (k},...,k3), k] =2%"142%72 5;>2,272 = (2072, 2972 [=(1,...,1). Itis clear
that 7'(Ya)B., .. CT(Y2)Be -

In this space, the discretization is carried out in the following way. Put

Q(N)Z‘{.'Ek:( 2k, 2nkq ), kj:O’l,...,zNj, j:l,...,d}.

2N1+17 772N+ 1
With a polynomial t € T'(Y,,) we associate the vector J(t) € RM,
J(t) = {ti(xk)}1:"69(2"‘2—11),.960:-

where M = 37, ., v(2°7% — ), v(N) = []i_, (2N, + 1).
Conversely, with a vector y = {y(z*)} .« €24 ~2-1),s€0,, € RM we associate the polynomial

Ty = ) eF @ -D}t Y y(a*)Dae-za(z — i),

€8, cken(2e-2-T)
where

d
Dn(z) = [] D, (=;)
1=1

is a multidimensional Dirichlet kernel normalized by Dn(0) = v(N).
In the space RM let us consider the set

H=H Sw(2?-D,

s€0,

where the symbolH means the direct product, and

58 = {u = (Wt Nrenn € RO (o)l 1 tx) =0 3 V() DGz - )},
z* eQ(N)

It is known (see Lemma 1.1 of [18]) that
Vol(Seo(N)) > ¢(d) ™",
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and therefore s )
VolH > [] e(d)™®" =0 > ¢(a)~PI. (2.1)
9€8,

We need a special operator K™ that maps L! into 7 (Y,). Introducing the polynomial

Kh(z) =Y e*DKpa(z),

s€l,

we define the operator K™ as the convolution operator with the kernel KX*(z). It is clear that the range
of K™ lies in T (Yy,). Moreover, this operator is bounded as an operator from B ; to By ;. In fact, we have

HALK™ Al = 1K Al = || D €F P02 v Au(f)

n—I<s<p

< () Au(Hll1-

1

Therefore,
IE™(H)lBy, < c(d)fllBy,-

The operator JK™J~! maps the set H to a set H' which is convex, centrally symmetric, and such that
Vol H' > c(d)~*~1. (2.2)

Let us clarify relation (2.2). Consider the image of the set So,(2°~2 —I) under the action of JK™J 1. We
first note that the action K™ can be easily described in terms of Fourier coefficients of the polynomials t2.

Namely, if
t(z) = ) &*Dti(a),
s€8,
then . R i
Knt(k) = Kga—2(k — k’)tl(k - k?%), k € p(s).

Let us consider the operator which associates the vector

{U(N)_1/2t($k)}z*en(N)

with the set of Fourier coefficients in the expansion (by sines and cosines) of a polynomial t € RT(N). This
operator is orthogonal in R*™ . Moreover,

[T Koo-z(k — &%) > (@)oo, (2.3)
k€ep(s)

Relation (2.3) and the above-mentioned remarks yield estimate (2.2).
It is clear that H' C B! IY,,|1/2B£Y"I.
Functions K™ f have the form

Krf=t=) * (), t,eT(@2-1).
s€f,

On functions of such a form we define the operator R,

Rit)= Y e Dtl(z), 1! =Ret,.
s€Ef,
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It is easy to see that R is bounded as an operator from B, to B; ,; more exactly,

”R”Bl,l—’Bl,l <1l

Now instead of the set ® = {p;};_, we consider the set ¥ = {1;}%_; of functions, /; = RK"yp;. Then
¥; € T'(Y,),and for any t € T'(Y,) and ¢ € span({cp,-};=1) we have the following estimate for ¢y = RK":

LK™t~ lls, , = IRE™(t - ¢)ll,, < c(d)lit - ¢ll5, .- (2.4)

Let us consider a system U = {uj};=l, u; = J¢; € RM. Then, by Remark 3 to Theorem 1.1, esti-
mate (2.2) implies the inequality '

om(H',U) > ca(d,c')|Yal- (2.5)
Further, for an arbitrary t € T7'(Y,,),

R TE R S W ()F

s<pu<s+l

hence,

i< Y 4@l

s<pu<s+l

Therefore, for t € T'(Y,) we obtain

e, =" Y HAu®lh =Y NI

8€0, s<pu<s+1 s€b,
2c(d) Y {p(2 P -D) Y 0 2 e d2 | (2.6)
s€b, keN(2e—-2-)

Comparing relations (2.6), (2.5), and (2.4), we complete the proof of Theorem 2.1.

Theorem 2.1 can be applied for the study of m-term triconometric approximations, i.e., approximations
relative to the system T = {e(¥*)}, cza.

Corollary 1. For m = 1,2,... the following lower bounds hold:

om(HL, T)p > e(r,d, p)m ™" (log m){4-1+1/2), 1< p< oo, (*)
om(Weor T)p 2 c(r,d,q,p)m "(logm) =D 1<p<g<on ()

Proof of these estimates is based on Theorem 2.1 and on the following well-known inequalities. The
inequality (an analog is in [16, p. 36})

fllp < c(d,p)fllB,2r  2S P < oo, (2.7)
is a simple consequence of the Littlewood-Paley theorem. The inequality dual to (2.7) takes the form

Ifllp 2 c(d,p)IfllB,., 1<p<2. (2.8)

First, we prove relation (*). By the characterizing theorem (see [16, p. 32]), for the classes HZ, there
exists a positive number a(r,d) such that

a(r,d)2""T(Ya)B,. .. C HS. (2.9)



Further, let us denote by Py, the orthogonal projector onto 7(Y3). It is kn~wn (see, e.g., [16, p. 7]) that

Py_ is bounded as an operator from L? to L?, 1 < p < oo. Therefore,

n

Gm(T(Yn)B;,w,T)p > c(p, d)om(T (Yn) Beo » {6757 Yieva )5 (2.10)

To estimate the right-hand side of (2.10), we use Theorem 2.1 for & = {¢(**)}, ¢y and s = |Y4|.

The right-hand side of relation (%) is independent of p (with the exception of the constant); therefore,
it is sufficient to prove (*) for 1 < p < 2. In this case the lower bound of the norm in L? is given by
inequality (2.8). We note that for polynomials of 7 (Y,) we have

[t5,., < c(@n=D72|t]p, , < c(d)n'*=D|t]|5 1<p< oo (2.11)

p,2?

Combining (2.8)-(2.11) and applying Theorem 2.1, we obtain estimate (*).
Relation (**) is proved analogously if instead of (2.9) we use the inclusion

a(r,d,q)n= D22 (V) C W] (2.12)

Let us prove inclusion (2.12). Given a polynomial t € 7(Y,)nB by (2.7) we have for 2 < g < o0,

oo ,00 ?

Itllg < e(d, Q)lItllB,.. < c(d, @)18n] ([t By o < (d, @)l D2,

9.2 — 00,00 —

Then, by the Bernstein inequality (see [16]), we obtain
1Dy < e(d, @)@/ (2.13)

Relation (2.13) implies inclusion (2.12).
This completes the proof of Corollary 1.
Now let A be a finite subset of Z¢, and put

T(A) = {t ) =) {(k)ei("")}.

keA

We establish a number of properties of the spaces T(A) and then apply these properties to estimate approx-
imate characteristics of the classes W7 , and H,. We use the profound results of Bourgain and Milman [19]
for finite-dimensional convex bodies. In addition, we need the following classical result (see [20]).

Theorem A. Let B be a centrally symmetric conver body in R™. Then there ezists a unique ellipsoid
of mazimal volume, contained in B.

We now recall the following definition.

Definition. For a normed space X, a constant C,(X) of cotype 2 is called the least of the constants C
such that for any finite set {z1,...,zm} C X,

here ri(t), i =1,...,m are Rademacher functions.

m

> ri(t)z

=1

ez S laillz) %

A constant of cotype 2 is well defined for any finite-dimensional space X and, what is important for us
for the spaces LP, 1 < p < 2. Moreover, by the Khinchin inequalities, we have

?

C:(X) <10, X =LYRY). (2.14)
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Theorem [19]. Let X be an n-dimensional real normed space with the unit ball B, and let £ be an
ellipsoid of mazimal volume, contained in B. Then

(Vol,. B

1/n
2 4
Vol,.S) < KCy(X) - log* C3(X).

Given a finite subset A C Z¢, we define the operator
A= A(A): T(A) - R
by
A(t) = {Ref(k), Imi(k), k € A} e Rt e T(A); (2.15)

here the coordinate order is fixed in an arbitrary way. Put
Ba = {A(t) : t € T(A), Jitly < 1}. (2.16)

It is clear that B, is a convex centrally symmetric body in R2*!, The following lemma is valid.

Lemma 2.1. The unit ball ng s an ellipsoid of mazimal volume, lying in By.
Proof. The obvious relations

el < Hitllzs el = NA@®Neg, ¢t € T(A),

yield the inclusion BgIAI C Ba. Let us show that Bj cannot contain an ellipsoid of volume greater

than Vol BZMI. In fact, let
2JA|

~ \2
$=EA={¢1€R2IAI:ZMSI}
=

2|A

be an ellipsoid of maximal volume inscribed in By, and let {¢;, i;} j=1| be a set of directions of the semi-axes

Ex and of their lengths, ||¢;|l2 =1, 1 < 7 < 2|A|. We define the operator
J: R2A 5 R2IA

by
J({ar, bk tkea) = ({—bx,aktken)-

It is clear that J is orthogonal in R4l J2 = —1d, and for t € T(A),
J(A®) = AG-1),  lstlly = It
By the last relations and Theorem A, we have
J(Er) = &n.

Moreover, (a,J(a)) = 0 for any a € R?Al, and the two-dimensional subspace generated by the vectors a
and J(a) is J-invariant. Therefore, it is easy to see that the ellipsoid £4 can be rewritten in the form

[A]

£, = (a e R Y (a,¢;)* +/\(?-.a’ J(¢;))? < 1}’

1=1



where ||cjll2 = ||J(¢j)ll2 = 1 for 5 = 1,...,|A|. With each pair {c;,.J(c;)} of vectors we associate a
polynomial ¢t; € T(A) such that ¢; = A(tj). Then, by the orthogonality of the system {c;,J(cj)} of
semi-axes, we see that the polynomials ¢; are orthogonal and

|A] -1 (2
£A={aeR2IAI:ZW<1}. (2.17)

Let F, be an h-translation operator, Fi(f(z)) = f(z — h), and
Fu(a) = A[Fi(A7Y(a))], aeRYAL

It is clear that F} is an orthogonal operator in R2/Al. Since the space T(A) and the norm || - ||; are
translation-invariant for any A € R?, we have
Fh(g/\) = fA, h e Rd. (2.18)

In turn, property (2.18) implies that ,
for any X the linear hull E) = span({t;}, j € {1,...,|A]}, A; = A)

(over the field of complex numbers) is translation-invariant. (2.19)
It is known that property (2.19) implies that there exists a basis of exponents in Ej,
E, = spa.n{ei(k;’r),i. ek 'I)}, s =dim Ej. (2.20)
By (2.20) and (2.17), we conclude that

€y = {CL c R2IAL Z Z I(A-l(a))‘,zei(k,z))l < 1}

AMEN#ED kieilki2) € Ey

and therefore the ellipsoid €4 can be represented in the form
T~ 2
A1 (a)(k
gA:{a:ZJ___(_aZ)(_)l§1}.

#kz)|| <1 for any complex numbers ¢ such that
1

In other words,

ZkEA Ckc

|A]

D lelui <1

k=1

Thus, 2 < 1 for any k, and, therefore, €5 C ng. This completes the proof of Lemma 2.1.

To give a complete proof, we deduce (2.20) from (2.19). Let v1,...,%, be an orthonormal basis in E}.
By property (2.19), for any y € R and m = 1,...,3s,

L]

Um(z—y) =Y (Y)vi(z)

i=1

(the functions ¥, and cJ* are continuous) and therefore for any k and m=1,...,s,

D (k) - 57 = (zfr)-d/

(0,274

Ym(z —y)e'*Vdy =Y " 65™;(2) € B,
i=1
whence (2.20) follows immediately.
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Lemma 2.2. There ezists an absolute constant C such that for any finite set A C Z9,
Vol,(By) < C* - Vol B;, s = 2]A|. (2.21)

Proof. Let X be a normed space for which By is the unit ball. Then, by (2.14) (see also (2.16)), we
have C,(X) < 10. Applying Theorem B and Lemma 2.1, we arrive at the conclusion of the lemma.

In addition to T(A), let us introduce the space of polynomials with real coefficients,
Tr(A) = {t € T(A) : {(k) € R},
and the operator Ag: Tr(A) = RIA defined by
Ar(t) = {f(k)}ken.

We also put
Bri(A) = {{t‘(k)} e RIA:

3 (k)eitk)

keA

< 1}.
1
Lemma 2.3. For any finite set A C Z¢, the following estimate is valid:

Volja|{Bri(A)} < C'M1- Vol BIM

where C is an absolute constant.
Proof. We represent R?/Al in the form

RYM = RIM @ RIA = A(Tr(A)) ® A(iTr(A)).
It is clear that for any a € $Bg,1(A), b € 1Bg,1(A), we have
a®be By

and therefore

[(3)A1. Vol{BR,1(A)}]? < Vol By.

By the last inequality and inequality (2.21), we arrive at the conclusion of Lemma 2.3.
Given a function f, a subset A C Z¢, and 1 < p < oo, we put

EX(f) = If = wllp,

inf
ui(k)=0,k€EA

and
Bioo(A) = {{f(k)} € RI" : t € Tr(A), Ef(t)eo <1}.

Lemma 2.4. For any finite set A C Z¢, the following estimate is valid:
Volja{ Bk oo(A)} > M Vol BYM.

The proof is based on the Bourgain—-Milman inequality [19], by which for any convex centrally symmetric
body K C R™,
Vol K - Vol K° > C™(Vol B})?,

where C > 0 is an absolute constant and K° is a polar to K, i.e.,

K° = {r e R" : sup(z,y) < 1}.
yeER
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Let K = Bp,1(A). Taking into account Lemma 2.3, it is sufficient to verify that 2 K° C BIJ{',OO(A). The
following equality is a consequence of the Hahn-Banach theorem:

Ej(t)o = sup |(t,g)l,  teT(A). (2.22)
g€ET(A)
gl <1

Let us represent an arbitrary polynomial g € T(A), ||g]l1 £ 1, in the form

g=g'+1g" = Z Reg(k)ei(k’z) +1 Z Img(k)ei(k”)_

Then ¢’,¢"” € Tr(A) and
lg'lh = ||2(g(z) + 32|, <1, Ng"llh = ||3(g(=) — G(—2))||, < L.

Since
(¢, 9)| < 2max{|(t,g")],1(t,9")|},

it follows from (2.22) that
Ei(t)eo <2 t,9)l.
A(t)eo <2 max |(2,9)]
llgllx <1

Ift = A};](a) and a is an arbitrary vector of Rl then the last inequality implies the inclusion
3K° C B;li,oo(A)‘

Lemma 2.4 has been proved.

We now use Lemma 2.4 to establish new lower bounds for the Kolmogorov widths and the entropy
numbers of the classes W[, ,. We formulate these results as the following theorem.

Theorem 2.2. For any r > 0 we have

dn(Wio s Lp) 2 c{r,d, p)m™"(logm)™ =D, p>1,

sm(W;o,Ov Ll) > C(T, d)m_r(log m)r(d_l) .

Proof. We begin by proving the first relation. We use the following lemma.

Lemma A [9]. Let a convez centrally symmetric body A be contained in the unit ball BY of the Euclidean
space RY, and let Vol(A) > ¢7™ Vol BY, where ¢; > 0 is a constant. Then for any subspace L C RN of
dimension not less than N/2 there ezists an element a € AN L such that |[afl;y 2 c2 > 0.

Let ¥ C L? be an arbitrary subspace of dimension m, and let n be the least number that satisfies the
condition |D,| > 4m. We use Lemma A, where as the body A we take B}L%,oo(D”)‘ By the definition of this
set and the conclusion of Lemma 2.4, the body A satisfies the condition of Lemma A. As the subspace L
we take

L = {Ag(t), t € Tr(Dn), (Int, ) = 0 for all ¢ € ¥},

It is clear that dim L > %]Dﬂ|. Then, by Lemma A, we find an element
ac Bﬁ'w(Dn)
such that for ¢ = AR'(a) € Tr(Dy), we have

Ef (9)eo <1, liellz > 2 >0,
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and
(Ia¢,¢) = 07 1,[) 6 \I/
Suppose that the element ¢+ € {T(D,)}* is such that

g — et leo < 2. (2.23)

We define

F=I(3(p =)
then f € W[, ,. We take an arbitrary ¢» € ¥ and estimate the quantity || f — ¢||, from below. Suppose
that ¢ = ;;Ll. Then inequality (2.23) implies that

lp =@ tllg < 2. (2.24)

Obviously, it is sufficient to consider the case 1 < p < 2. Then 2 < ¢ < oo, and, by the multidimensional
Littlewood-Paley theorem and the Riesz theorem on the boundedness of the triconometric conjugation as
an operator from L? to L9, we see that the orthoprojector on T(D,) is bounded as an operator from L?
to LY. Therefore, taking into account (2.24), we obtain

lellg < ca(q). (2.25)

By the above-mentioned Riesz theorem, inequality (2.25) implies that

[ ally < c2(q). (2.26)
Further, we have
1 r r L 1 T
bi=(f 4 law) = (£, Lap) = 5(Law = Lop™. Lap) = 5 (Iop, Lap)
1 o A —-rn— —-rn—
=5 Y BEEOBEP 227 plf 227 (2.27)
k€D,

On the other hand,

b < |If —¥llplllaplly < c2(@)llf — ¥, (2.28)

The first relation of Theorem 2.2 follows now from (2.27), (2.28), the arbitrariness of ¢ € ¥, and the
arbitrariness of the space ¥, dim ¥ = m.

We now prove the second relation of the conclusion of Theorem 2.2. In the proof we use Lemma 2.4,
where A = D, and n is the least number that satisfies the condition |D,| > m. Then, for the number
N, of the e-network elements of the set Blli,oo(Dn)v the estimate of the volume of Bil{_,oo(Dn)’ given by

Lemma 2.4, implies the following estimate in the metric of ZIZD"I:
C [Dn|
Ne,n Z <_) .
£

Therefore, for € = ¢ > 0 we have
Nep > 2Pn1

Thus we see that there exist 2™ polynomials {t; € TR(Dn)}?:1 such that

: m 1 C
Eén(t_])oosla 7=1,...,2", ”tl—‘t1“22'2_60$ z:,é]
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Further, suppose that the elements t ,j=1,...,2™ are such that tJ' € {T(D,)}* and
lIt; — 5 lloo < 2. (2.29)

We consider the set

1 . m
@jzﬁ(tj_tf), fJ':‘PJ'*FT(an)’ 7=12,...,2"

Then f; € W, 0,7 =1,...,2™. Let us estimate ||f; — f;||1 from below for 7 # j. We consider quantities
Oi; = (fl - fj)‘pi - S‘o])

On the one hand, by (2.29) we have
oij <2 fi = fill1-

=D E(k,0)[@:(k) = ¢;(k)F 2 Y Fr(k,0)l@u(k) — (k)|
k

k€D,

> 27 3 (k) — (k)P = 27 - 1.
keD,

On the other hand,

Thus,
Ifi = filh 227" %, i #.

Taking into account that the set {f;} consists of 2™ elements and 2"n?~! < ¢(d)m, we arrive at the second
conclusion of Theorem 2.2.

Going back to m-term approximations, we now use Lemma 2.2 to prove a statement similar to Theo-
rem 2.1 for approximations in L!.

Theorem 2.3. There ezists a constant c(d) such that for any set ® = {p,; € T(YV,)}¥
the following estimate holds for any all m < c(d)|Ya|:

Om (T(Yn)Boo,oo’(b)l > c(d,k)n(d‘l)/2_

N < K|Y,|,

j=D

Proof. We reduce the problem to the problem in R?Y»l. We carry out the discretization by using
coefficients of the Fourier polynomials of 7(Y,). We consider the operator A defined by (see (2.15) for
A=Y,)

A(t) = {Ret(k), Imi(k), k € Y,,}.

Put

Aco(Ya) = {A( teT(Ya) || 3 dme| <1, een}.
kER(s) =
The set Ao (Yr) is convex and centrally symmetric. The following estimate is known (see [17, p. 206]):
Vol(Aeo(Yn)) > 27 "¥=le(d)=1%1 ¢(d) > 0. (2.30)

To use Remark 4 to Theorem 1.1, we take as G the following set:
G ={a e R q|f,'/? € A(Yn)}.
Then G C Bgly"l and, by (2.30), we have
Vol G > c(d) ¥~ voi (B2 1), (2.31)
Let us introduce the following norm in R?¥»! induced by the L'-norm in T(Y,):
lalls = |A™ (@)l for ae R

To prove that this norm satisfies condition (x), we use Lemma 2.2 and the following well-known result (see,
for example, [13, p. 56]).
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Let B be a convezx centrally symmetric body in RN, let BY c B, and let Vol B < CN Vol BY. Then there
ezist a constant K = K(cy) and points {z;,...,zm} CRN, M < KN, such that

M
Bc | By (zi). (2.32)

=1

By Lemma 2.2 for A =Y, and inclusion (2.32) for N = 2|Y,|, we see that the ball B = {a: ||a||p < 1}
satisfies the condition (*).

To complete the proof of Theorem 2.3, it remains to use estimate (2.31) and Remark 4 to Theorem 1.1.
The authors thank R. A. De Vore for useful discussions of the questions considered in this paper.
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