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O N  B E S T  m - T E R M  A P P R O X I M A T I O N S  A N D  

T H E  E N T R O P Y  O F  S E T S  I N  T H E  S P A C E  L 1 

B. S. Kashin and V. N.  Temlyakov 

In this paper,  using results on the geometric properties of finite-dimensional convex bodies, we investigate 
approximate characteristics of sets of the spaces L ~ (Ra), Lp(Rd), p > 1. The paper contains two sections. 
In Sec. 1, for a wide class of systems 9 = {~,(x)}  we establish lower bounds for best approximations of 
functions of Sobolev classes by polynomials of the form 

m 

Z a,,q~n,(x), 
i=1 

1 <_ nl < n2 < . ' '  < nm; 

here the coefficients a~  and indices ni depend, in general, on the function approximated.  
In Sec. 2, we establish lower bounds for the e-entropy, widths, and best m- te rm tr iconometric approxi- 

mations in classes of functions of many variables with bounded mixed derivative or difference. In particular, 
the method  developed gives the possibility of obtaining order-precise lower bound for entropy numbers of 
the class Wp in the space L q for p = c~, q = 1, and even r. As is known, for the problems considered, 
obtaining exact results in "extreme cases," i.e., where the parameters p and q take the extreme values 1 
and co, is usually the most complicated. 

1. O n  b e s t  m - t e r m  a p p r o x i m a t i o n s  

~ .T o o  Let D be a bounded domain in I~ d, d = 1 , 2 , . . . ,  let 1 < p < cx~. and let 9 {~-( )},=1 be a system of 
functions of the space LP(D). Given a function f E LP(D), we put  

m H 
inf f ( x )  II am(f ,  9)p = - Zcicp,~,(x) , (1) 

{hi } = A C Z * , I A  = m ,  i = l  11 LI'(D) 

where IAI is the number  of elements of the finite set A. Next, if K C LP(D) is some class of functions, then 
we put  

Om(l( , 9)p = sup Crm(f, 9). (2) 
.ffiK 

Quant i ty  (1) is called the best m- t e rm approximation of the function f ,  relative to the system 9,  in L p (D). 
The difference between this quant i ty  and the quanti ty of the usual best approximation,  given by 

E,-,(f, 9) = inf I l f -   IILp<D), 
~ , ( N )  

} where 9 ( N )  = i=1 citpi(x) is the space of polynomials of order < m relative to the system 9,  consists in 

the possibility of choosing the spec t rum of the approximating polynomial,  i.e., the set A (see (1)), depending 
on the approximated function f .  It is clear that  a(f ,  9)p < Era(f, 9)p. Yet, in the seventiees (see [1, 2]), 
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it had  been es tabl ished tha t  for m a n y  na tura l  funct ional  compac ta  K and ~ystems 4) the  quant i t ies  (2) 
decrease as m --+ oc m u c h  more  rapidly  t han  

Era(K, 4)) = sup Era(f, 4)). 
f E K  

In recent years, interest  in the  s tudy  of m - t e r m  approximat ions  has been renewed,  in par t icular ,  in con- 
nect ion with their  appl ica t ions  to "image processing" problems.  Moreover,  in the  opin ion  of some authors  
(see [3, 4]), the  case p = 1 is par t icular ly  interest ing for applications.  It is this case t ha t  we consider  below. 
Under  certain a s sumpt ions  on the  proper t ies  of the sys tem 4), we establish,  in par t icular ,  the  lower bound  
of quant i ty  (2) in the  case where  p = 1 and 

K = L i p a  = { / :  l l f l l~  < 1, If(x) - f(y)t  <- I x - yl ~, 0 < x ,y  < 1}, 0 < a < 1; 

this bound  shows tha t  in the  case considered the  use of m - t e r m  approx imat ions  has no essential  advantages  
in compar ison wi th  the  usual  approximat ions .  We ment ion  at once tha t  the  s tudy  of quant i t ies  (1) and  (2) 
makes sense only in the  case where  the sys tem 4) has some "minimal i ty  proper ty"  (otherwise,  the funct ions  
{~o,} form a dense set on a sphere  in LP(D) and then  a l ( f ,  4)) = 0 for any f E LP(D)). A usual  p roper ty  of 
such a type is the o r thogona l i ty  of the  sys tem 4). As shown in [5], in considering approx ima t ions  in L2(D) 
the a s sumpt ion  of the  o r thogona l i ty  of the sys tem 4> is sufficient for ob ta in ing  nontr iv ia l  lower bounds  of 
aT, (K, 4)), depend ing  on the  geometr ic  propert ies  of the funct ional  class K.  For instance,  we establ ished [5] 
tha t  

a m ( L i p a ,  4))2 >_ cm -~, c > 0, m = 1 , 2 , . . .  

for any o r t h o n o r m a h z e d  sys tem 4). In passing to approximat ions  in L 1 (D) the  s i tua t ion  is changed.  This  
is i l lus t ra ted clearly by the  following s t a t emen t  (the proof  is given at the  end of the  section).  

P r o p o s i t i o n  1. There exists a complete orthonormaI system 4) = {!P- E L2(0, 1)} such that the set 
A(4)) = {A~pn, A > 0, n = 1 , 2 , . . . }  is dense in nl(O,1) and, consequently, a l ( f ,  4))l =O for any function 
f E L'(O, 1). 

Thus ,  to obta in  nontr iv ia l  lower bounds  for am(K, 4)) we need to restr ict  the  class of the  sys tems 4) 
under  considerat ion.  We assume tha t  the  sys tem 4) = {~0n} satisfies the  following two condit ions:  

(I) There  exist posit ive cons tants  K1, K2, Ka, such tha t  for each N = 1 , 2 , . . .  there  exists a finite set 
fiN C D such tha t  ]fiN] _< K1 �9 N, and for any funct ion c 2 6 4)(N) and 1 <_ p _< oo the  following inequalit ies 
hold: 

(II) There  exist cons tants  K4,  /(5,  such tha t  for N -- 1 , 2 , . . . ,  rn = 1 , 2 , . . . ,  1 < p < oo, and  for any 
funct ion ~ C 4)(N), the  following inequal i ty holds: 

a m  (~.~, f. "I I (4N~  ." ~v'~s.=~ ) </ ' :Sam(~,  4)). 

Note tha t  condi t ions  (I) and  (II) are valid for the known classical o r thonorma l  sys tems,  the  t r igonometr ic ,  
Haar, Walsh, and  Franckl in  sys tems,  as well as for systems of the "wavelet" type.  

Systems possessing p rope r ty  (3) for p = cx) (when the norms II~ll, and  sup~en N I ,(x)l are considered to 
be equivalent) are called [6] quas i -mat r ix  systems.  Condi t ions  of type (I) arise na tura l ly  in m a n y  problems 
of funct ion theory. For a t r iconometr ic  system, condi t ion (I) was es tabl ished by Mar t s inkevich  (see [7]). For 
a sys tem 4) of l inearly i ndependen t  funct ions,  condi t ion (II) is satisfied whenever  the  following condi t ion 
holds: 

(II') For any n = 1 , 2 , . . .  there  exists a mult ipl ier  AN = {AN,n} (i.e., a l inear opera to r  defined by 
AN(q~n) = AnOn, n = 1, 2 , . . . ,  on  polynomia ls  relative to 4)) such tha t  AN, n = 1 for n <_ N, AN, n = 0 for 
n > K4N, and 

IIAN(~)IIp < Ksll~ll,,, x <_ p_< ~ ,  
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for any po lynomia l  relati \  e to ~5. 
For p E [1,o0], N = 1, 2 , . . . ,  we pu t  

r  = { f  E O(N) " IIfIIL,(D ) ~ 1}. 

The  following l e m m a  holds.  

L e m m a  1. Let a system r of linearly independent functions satisfy conditions (I) and (II). Then there 
exist constants 7 > O, c > O, such that 

am(O(n)oo,r  > c (4) 

for n = 1 ,2 , . . .  and m < Tn. 

P r o o f .  Using condi t ions  (I), (II), and  the l inear independence  of funct ions of ~,  we reduce the p rob lem 
of es t imat ing  the  le f t -hand side of (4) to the cor responding  problem in the f ini te-dimensional  space N M. 
Below we denote  by B M the uni t  ball in g M, and  by BM~(x) the set x + r .  B M. We in t roduce  a discrete 

analog of quant i t i tes  (1) (2). Let U {u,}i=l be a set of vectors of R M. For m _< n we pu t  

m l V  

o ' m ( x , U ) l  = i n f  x - E C i U k i  , (5) 
{cl},{k,} i= l  

a m ( G , U ) l  = supO'm(X,U)I, (6) 
xEG 

where the  lower b o u n d  in (5) is t aken  over all m-element  subsets  {ki}i~a of the set { 1 , . . . ,  n},  and  over all 
the coefficients {ci}. 

According to condi t ion  (II), to prove L e m m a  1 it is sufficient to establish the inequal i ty  

U , .  c' {~Pi}i=I )1 > :> 0 (7) 

under  a s sumpt ion  tha t  m < 7n.  
Given a n u m b e r  n, we denote  by P the  opera to r  of restr ic t ion of ~ to the finite set ~K4n 

condi t ion  (I)), 
= X M P ( ~ )  {~( i)}i=l 6 R M, M = [~K4n[ <-- KI" K4.n.  

= {xi} (see 

Using now condi t ion  ( i ) ,  w e  see tha t  inequal i ty  (7) is valid in turn ,  if for any set U = {Ui}i=lM 6 R M and 
for m < n /2  the  following inequal i ty  holds: 

Crm(P(n),U)l ~ cM > O, (8) 

where P(n)  = {P(so), 99 E O(n)oo}, and  the  cons tan t  c depends  only on K/ ,  1 < i < 5. 
Since the funct ions  of �9 are l inearly independen t  and condi t ion (I) holds for p = oo, we see tha t  

{P(99), ~ E r  is an n-d imens ional  subspace  of N M, and P(n) contains the  n-d imens iona l  cross section 
of the  cube K~ "1 M Boo. Thus ,  to prove L e m m a  1 it is sufficient to prove the following s ta tement .  

L e m m a  2. Let n and M be positive integers connected by the inequalities a M  < n ~_ M.  Also let 
m ~_ n/2 ,  let G ,  be an arbitrary n-dimensional cross section of the cube BMoo, and let U = {ui} be any 
system of vectors of N M. Then the following inequality is valid: 

~ m ( a n ,  U)I >___ c M ,  c = c(o~) > O. 

Taking into account  the known es t imates  of the  volume of the cube cross sections (see [8] and  also [9, 10]), 
we see t ha t  Lamina  2 follows in t u rn  f rom a more  general  s ta tement .  
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T h e o r e m  1. Let n and M be positive integers connected by the inequaliti~o a M  <_ n < M,  and let f~ be 
a family of systems U j J M = {ui }i=1 C N M, j = 1 , . . . ,  s, s <_ K M. Also let Ln C R M be an n-dimensional 
subspace, G C Ln A B M, and 

Voln G >__/3'~ Voln B~', /3 > 0. 

Then for m <_ n / 2  we have 

pm --= supinfGm(X , UJ)] > c M  1/2, 
x E G  3 

c = c(~, 9,  K)  > o. 

R e m a r k  1. We have denoted by Voln G the n-dimensional  Lebesgue measure  (the volume) of the set 
G C L C R M, d i m L  = n. If G is an n-dimensional  cross section of the cube Boo,M then,  applying Theorem 1 
and using the inclusion G C M 1/2 �9 (B  M ~ L) and the es t imate  Voln G > 1 > c n M  n/2 VolB~ (see [8]), we 
arrive at the conclusion of L e m m a  2. 

R e m a r k  2. Theo rem 1 shows that  under  its hypotheses,  even if we fix a wide class of systems and 
choose in this class a system with respect to which the m- t e rm approximat ion is taken, depending on the 
approximated element,  we do not obtain an essential improvement  of the approximat ion  in comparison with 
the trivial me thod  of approximat ion of any element of G by the zero element.  

R e m a r k  3. Under  the hypotheses  of Theorem 1, instead of systems U j of vectors consisting of M 
elements one can consider systems of vectors consisting of b. ;'t4 elements (b is a fixed constant) .  This case 
is reduced to the previous one if instead of U j r J~bM j = l u i l i= l  we consider all M - t e r m  sets of u i as separate  
systems of vectors. Then  their  number  increases < [c(b)] M times, which influences only the value of the 
constant  K.  

P r o o f  T h e o r e m  1. Evidently, it is sufficient to consider the case m = [n/2]. Pu t  p = Pb/2]" Given a 
number  j ,  we denote  by U j the set of all subspaces X C l~ m generated by m elements of the system U j, 

: {x:  x : span({u{,, }r=]) }. 

By the definition of p (see the formulat ion of Theorem 1), the following inclusion holds: 

G c 6 U (x-l- Bl,% )~ 
j----1 XCUJm 

moreover, by the assumption,  G C Ln N B M. Thus, 

GC 6 U {(X+BI,M) NL~GB~}" 
j=l x c u ~  

(9) 

For fixed j and X,  we es t imate  the n-dimensional  volume of the set 

M H = (X + B 1,p) n Ln N B M. 

It is clear that  
H C F =  P L . { ( X  + B1,%) } N B  M, 

where PL is the opera tor  of or thogonal  project ion onto L C R u .  Fur ther ,  

(10) 

M I PLo ( x  + B,,~) = Q + B~, 

where Q = PL., (X) ,  S~ = PL.  (B1M,,p) �9 Moreover, l = dim Q < dim X < m and each element  x 6 F can be 
represented in the form 

I 
x = q + u, q e Q, u e B,,, Ilxl12 _< 1. (11) 
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Let Q• be the ortLogonal conlplemeTlt of Q l:o L,,. (Note that dim Q• > n - m.) Let, us represent the 
element y in (11) in the form y = y - PQ. y + PQ• y. Then we have 

and 

x = (q T y -  PQ. (y)) + PQx(y) 

q + y - P Q - ( y )  e Q n B  M, PQJ_(y) ePQx(B'p). 

Therefore, the n-dimensional volume of F is estimated as 

Vol, F < Voll B~. Voln-t PQx(B'p). (12) 

Since Qz c L , ,  by the definition B~ we have 

PQx(B' o) PQ• M = = (BI , . ) .  ( E l , . )  P Q .  M 

We now use the following known estimate: 

r Vol~Py(B M ) < % . r  -~, Y C R  M, d i m Y = r _ > T M .  (13) 

Taking into account that Pv (B M) is a convex polyhedron of _< 2M vertices, inscribed in an r-dimensional 
Euclidean ball (see [11, 12]), inequality (13) follows from the known estimates for volumes of polyhedrons. 
We also note that  (13) follows directly from the simplest estimate of cardinality of the covering of the 
octahedron B1M by Euclidean balls, and that there exist an absolute constant K and points x l , . . . ,  xk E R M, 
k ~_ K M, such that  

(see, e.g., [13, p. 561). 

K M 

i=I 

By inequalities (12) and (13), we obtain 

Vol. F < c"l-t/2p"-t(n - l) - ( " -0 .  (14) 

The conditions of Theorem 1, inclusion (9), and estimate (14) imply that 

(. _ < < _ l ) - ( - - o p - - t  ( 1 5 )  

(we also used the condition I <_ n/2). Comparing the left-hand and right-hand sides of (15) and taking into 
account that the function yV is bounded below by a positive constant for y > 0, we obtain 

p >_ c"nl/2 > cMl/2 

Theorem 1 has been proved. 

R e m a r k  4. It is easy to see that in the formulation and in the proof of Theorem i the norm ~M can 
be changed to any norm defined on IR M such that an analog of inequality (13) holds, 

Vol,-(Py(B)) <_ %MVol , . (BM.M-1/2NY),  d imV = r > 7 M  , _  (,) 

where B is the unit bM1 in N M. In turn, the last estimate is valid if, for example, the Euclidean ball 
M -1/2 . B M is an ellipsoid of maximal volume, inscribed in B, and Vol(B) _ C M. M -M/2 �9 Vol(BM). 

Now we give consequences of Theorem 1 and Lemma 1 for approximations of functional classes. We 
begin with the one-dimensional case. 
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T h e o r e m  2. Let a system �9 of linearly independent functions on D = (0, 1) satisfy conditions (I) 
and (II). Suppose that for some r > 0 the functions of d~ satisfy the "Bernstein inequality," i.e., there exists 
a constant c = c(r) such that for any N = 1, 2 , . . .  and r E @(N), 

I1~<:)11~ _< c .  N'I I~I I~ (16) 

(for fractional r the derivative is considered as the Weyl derivative). Then for the class 

W~o = { f :  Ilfllo~ + IIf (r) II~ -< 1) 

the following lower bound holds: 

O-m(WL,(I))l ~ c I �9 m -r ,  m : 1 , 2 ,  . . . .  (17) 

P r o o f .  By inequali ty (16), we have 

�9 (N)oo C c2~ r. Ws (18) 

Let 7 be the constant  defined in Lemma  1. Given a number  rn, we put  n = [m/7  ] + 1 and apply L e m m a  1. 
Then,  by (4) and (18), we arrive at es t imate  (17). 

As a consequence of Theorem 2, we get the lower bound  for best m - t e r m  t r iconometr ic  approximations,  
established in [14] 

~ m ( w s  >_ c ( r ) . ~  - r ,  - ~ :  1 ,2 ,  . . . .  

In the mult idimensional  (d-dimensional) case, the following analog of Theorem 2 is valid. 

T h e o r e m  3. Let a system ~2 of linearly independent functions on a domain D C R d satisfy condi- 
tions (I) and (II). Suppose that for some positive integer r > 0 and for a vector l = ( l l , . . . ,  td), such that 
11 + "" + Id < r and li > 0 are integers, the following inequalities hold: 

oll +...+la 
IID'~lloo - • �9 ox---~ ~ o~ < cNr/dll~ll~' ~ o E O ( N ) ,  N =  1,2, . . . .  

Then for the isotropic Sobolev class 

Ilt l l l  < ~  

the following lower bound holds: 
O-m(SW r ,  (I)) l  ~ clrtz -rId.  

The proof  of this theorem repeats  the proof  of Theorem 2. 
We now give an applicat ion of Theorem 1. As above, we assume tha t  D is a bounded  domain  in II~ d, ]Ir 

is a positive integer, {Dk}M=I is a par t i t ion of D (up to a set of measure  zero) into subdomains  such tha t  

c~l~--~ I < IOkl < #IDI 
- -  - -  M ' 

where IE] is the Lebesgue measure  of E.  Further ,  we denote  the  space of functions constant  on subdomains  
Dk, k = 1 , . . . , U ,  by S M = S({Dk}M=I), and the uni t  L~ in this space by S u = { f  E S M �9 

Ilflloo _< 1}. 
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T h e o r e m  4. Let. U j = {'*~}~1, J = 1 . . . .  ,.~, ~ _(- I( 'x' 
for  all m < _M/2 we have 

sup infer(f ,  UJ)I >_ c, 
fEsM 3 

, be a fami ly  of  s y s t ems  of fv ,  nc t ions  of  S M. Then  

c = c(~ , f l ,  K )  > O. (19) 

P r o o f .  Let ~0 E S M and  ~o(x) = q0k for x E Dk, k = 1 , 2 , . . . , M .  T h e n  for 1 < p < ~ we have 

Ib'll,, = I~o,,l"lD,,I • ~ ko,,t") �9 (20)  
k----1 

Associat ing wi th  each func t ion  99 E S M the  vector (9%,...,~OM) E R M, we reduce  the  p rob lem to the 
"f ini te-dimensional  case." Then ,  by T h e o r e m  1 (with n = M and  G = Boo M) and  re la t ion (20), we obta in  
es t imate  (19). 

We conclude this sect ion wi th  the  p roof  of Propos i t ion  1. 

P r o o f  P r o p o s i t i o n  1. Obviously,  the  completeness  of the sys tem cI, should  not  be given considerat ion;  
an incomple te  sys tem ~ wi th  dense A(~)  can always be completed.  It is also easy to see tha t  it is sufficient 
to cons t ruc t  an o r t h o n o r m a l  sys tem ~5 for which A( r  is dense on the uni t  sphere of L2(0, 1) in the n o r m  
of L 1. 

In fact, for any c > 0 and  for any funct ion  f E Ll(0 ,  1) there exists g E L2(0, 1) such tha t  Ilgl]2 > 0 and 
IIf - gilL1 < r If, in tu rn ,  for a given g there  exist n and  ,~ > 0 such tha t  

I lgtb i., < 211glb ' 

t h e n  I l Y -  J, I lg l l~ , , l l~ ,  < ~. 
Let g,,(x), IIg-II~ = 1, " = 1 , 2 , . . . ,  be a sequence of functions, dense on the unit sphere of L~(O, 1) in 

the  n o r m  of L2(0, 1), such t ha t  

9 . ( x )  = 0 for x e (0,  ' ~-~-f), n--- l ,2 , . . . ,  (21) 

( the existence of such a sequence can easily be established).  We pu t  

f . ( x )  = g . ( x ) .  10-" ,  n = 1,2, . . . .  (22) 

It is easy to see t ha t  

where for the  sequence {f.}.~__, C L2(f~), we have 

oo 

= sup [ y ~ a n f n  �9 
}"~a2n<-I n = l  L2(f~) 

We begin by cons t ruc t ing  an  auxil iary sys tem { r  such tha t  r  differ f rom 99, only by a mult ipl ier ,  

99,(x) = p , , r  p.  = const,  n = 1,2, . . . .  

In the interval  (-~-f,  1) the  func t ion  r is defined by 

r  = fn(~:) ,  ,~ = 1 , 2 , . . . ,  x e (n-~-r, 1).  
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, 1 N To complete  the  defini t ion of the  funct ions  r  it is sufficient to define the  s.~t t@n}n=l for N = 1, 2 , . . .  in 
the interval ( N!+2, 1 N+I)" In this case we also control  the validity of the relat ions 

8 

1 < II{r < ~ + ~ 10-" ,  s 1 2, . . . .  ( 2 3 )  
1 0 -  - ' 

n = l  

_ 1 We fix N > 1 and (consider ing the  funct ions  r  n = 1, 2 , . . .  to be already defined in the  interval  (N-g-7, 1) 

in such a way tha t  (23) holds for s = Y - 1) we define the set { r  x e (N+21, N+11 ). 

By the  Schur t heo rem (see [15, p. 256]), we can realize this p rocedure  so t ha t  the  func t ions  {r 
1 be pairwise o r thogona l  on ( N - ~ ,  1) and  (see (22), (23)) 

IIr _ _  N - ,  
{ ~ n } n = l  

N - 1  
2 

+ I ICNIIL=(o,1) <- ~ + ~ lO-" + 1 0  N 

n = l  

for n = 1, 2 , . . . ,  N Hence,  inequal i ty  (23) is also valid for s = N.  Moreover,  by means  of the  cor responding  
2 1 1 contract ion and mul t ip l ica t ion  by a cons tan t  (wi thout  change of the n o r m  in L ( N-+2, N%-7)) one can ensure 

the smallness of the  norms  IlCnllL'(~=, ~ ) ,  ~ = 1 ,2 , . . . ,  N (see also the r emark  on p. 258 in [15]). More 
exactly, one can assume tha t  

l i e - I l L ' (  ' 1 < I I f - I IL '  
N~-2,  N%-T) - -  4 N ' 

n = 1, 2, . . . .  

Carrying out  the  men t ioned  cons t ruc t ions  for all N,  we obta in  the  sys tem {r x E (0, 1) of 
funct ions such tha t  

(1) {r is an o r thogona l  system; 

(2) ~ < I1r -< ~ ,  ~ = 1 ,2 , . . .  ; 
(3) IlL,- ~-tlL' -< IIf . l lL," ~--]s~_-,, 4-~ _ < Illllr,3,. , n = 1, 2, . . . .  
By the  last inequality,  we also have 

l i t -  - I O ~ - I I L '  -- - -  
Ib.llL, < 1 

--, , -'-, 3 n - 3 "  n = 1 2 ,  �9 

hence, for any func t ion  f E L 2, IlfltL=(0,1) = 1, and  for any ~ > 0, 

I l f -  10" "r < ~, (24) 

if n* is sufficiently large and  such tha t  [If - gn-Uzl < ~/2. 

Finally, we put q0n(x) -- ~,(z) ii~'llL2(O.1), n = 1,2, .... By (24) (see also (23)), ~ = {~n} is an orthonormal 

system, and on the unit sphere in L2(0, i) the set A(O) is dense in the norm of LI(0, i). Proposition 1 has 
been proved. 

2. L o w e r  b o u n d s  fo r  a p p r o x i m a t e  c h a r a c t e r i s t i c s  o f  c l a s se s  
o f  f u n c t i o n s  w i t h  b o u n d e d  m i x e d  d e r i v a t i v e  o r  d i f f e r e n c e  

lit this section, we establ ish order-precis lower bounds  for best  m - t e r m  t r i conomet r i c  approx ima t ions  
in the metr ic  of L p of classes of funct ions  wi th  b o u n d e d  mixed  difference H ~  or der ivat ive W ~ for q,c~ 
1 < p _< q < oo ( the defini t ion of the  classes is given below). In this case, the s t udy  of the  proper t ies  of 
the funct ional  class is reduced  to a discrete p rob lem (i.e., to the  s tudy  of proper t ies  of a set in a finite- 
d imensional  space) by using the  "quasi -matr ix  proper ty"  of the space of t r i conomet r i c  po lynomia l s  with  
paral le lepiped harmonics .  The  cor responding  uppe r  bounds  for m - t e r m  app rox ima t ions  are known  and 
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are attained when approximating by polynomials with hyperbolic cross harmonics (see [16-18], where the 
history of the problem considered in this section is also discussed). 

The second part of the section is devoted to estimates of the e-entropy and of the Kolmogorov widths for 
the class W~o,~. In this case, it is difficult to apply directly results of the finite-dimensional geometry, because 
we do not know if a space of polynomials with hyperbolic cross harmonics is "quasi-matrix." However, in 
a number of cases one can avoid this difficulty and obtain new order-precise results. In addition to modern 
results of the geometry of convex sets, our approach is based essentially on the uniqueness of the maximal 
volume ellipsoid inscribed in a centrally symmetric convex body. 

Let us introduce the notations and definitions we use below. We denote by f �9 g the convolution of 
functions f and 9- In this section, we assume that functions considered are 2a'-periodic with respect to each 
variable and such that  

(f * g)(x) = (27r)-dJ~[o,2,r]" f(z - Y)g(v)av 

For our purposes it is more convenient to use t h e  following definition of the LP-norm: 

Ilfllp = ((2~r)-a ~to,2,~p If(x)lt; d:c) 1/p, 

For r > 0 we define Bernoulli kernels 

1 <_p< o0. 

k -rcos . - y  ,  sR,  ,eR; 
k=l 

d 

= 1"[ �9 = e = e R d. 
j=l 

We denote by I~ the convolution operator with the kernel Fr(x, tr), I ~  = Fr(z, or) *qo(x). For r = 0 this 
operator can be well defined on the set of triconometric polynomials. It is convenient for us to use the 
notation I~, = I ~ The class W ~ is defined as follows: 

w r  ! ~ _ q,~ = { f :  f = f~qo, II~llq < 1}, 

w h e r e r  > 0 ,  l < q < c x ~ , ~ E R  d. 
We now define classes H ~ .  We denote by A~j the operator of the /-multiple difference with step tj 

in variable xj,  j = 1 , . . .  ,d. For a set of positive integers a of [1,d] we denote A~(a) = I-Ijea A~. Put  
l = [r] + 1, where [r] is the integer part of r. The class H~o is defined as follows: 

( 
H =  = { f :  f o r a l l a C  [1,d] wehaveHAit(a)fH~ <__ HltJ[r}" 

k jEa 1 

We need the following well-known triconometric polynomials: 
(a) the one-dimensional Fejer kernel, 

It, l < -  

(b) the multidimensional Fejer kernel, 

d 

iON(z) = I I  *,;N, (:r j), 
j = l  

I~I = ( 2Y 1 . . . .  , ATd ) ,  :,: = ( : r l , . . . ,  a:~); 
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(C) the one-dimensional  de la Vallee-Poussin kernel, 

V~(x) = 2K:2m(x) - ~m(X); 

(d) the mul t idimensional  de la Vallee-Poussin kernel, 

d 

y~(~) = I I  y~,(~;) .  
j = l  

We also need the following kernels: 

Am(x) = V2,,,-~(x) - V2=-=(x), m > 2, 

A l ( x )  = V l ( x )  - 1, ,ao(x  ) = 1, x �9 I~, 

d 

A~(z) = I I  A~s(zJ)' s = ( S 1 , . . .  ,$d) ,  Sj ~ O, 
j = l  

j =  1 , . . . , d ,  x � 9  d. 

We denote by As the convolution opera tor  with the kernel A~(x). 
In addi t ion to the LP-norm, we consider the norm Bq,o, analogous to the norm of the Besov space, defined 

for t r iconometr ic  polynomials  by 

IltllB~,o = IIAs(t)ll , l _ < q _ < o o ,  1 < 8 < o o ;  

this definition is na tura l ly  modified for 0 = cx~. 

By analogy, we define the norm [[f[[Bq.o for functions f �9 L 1 such that  the series ~-~s [[As(f)[I ~ is 
convergent. Below, the norms Bq,o play an auxiliary role. 

Let us define spaces of t r iconometr ic  polynomials  with harmonics  of sets related to hyperbol ic  crosses. 
F o r s = ( s l ,  �9 Sd) � 9  .. , + we put  

p(s) = {k = (k l , . . .  ,kd) e Z { :  [28~ -11 < kS < 28', j = 1 , . . .  ,d},  

~(s) = {k �9 Z~:  2sJ -1 < kj < 2~J, j = 1 , . . . , d } ,  

On = U P(*), IDnl • 2 n. d -~, 
H*lh=n 

0n = {s :  Ilslll = 2[n/2], sj is even, sj > O, j = 1,... ,d}, 

and, finally, 

Yo= 
sEOn 

For a set A C Z d we denote  

:r(h) = {~ :t(X) : E Ckei(k'x)}" 
IkleA 

Given a normed funct ion space X ,  we denote by T ( A ) x  the unit  X-ba l l  in T(A).  
We now prove a s t a t ement  on the approximat ion of polynomials  of T(Yn)B~.~; below we use this 

s ta tement  to establ ish lower bounds  for approximations of the classes H ~  and W r by  m- te rm tr iconometr ic  q,c~ 
polynomials.  
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T h e o r e m  2.1.  There ezists a constant c(d) > 0 such that for any set ~ = {~0j}j=~ C B~,~, s < c'l~%l, 
of functions the estimate 

~m(r(Y.)8= =,~')~,, > c , .  d-~, ~, = c , (d ,c ' )  > O, 

hog& for art m < c(d)lg.l. 
P r o o f .  Instead of T ( Y , )  it is convenient for us to consider a subspaee T ' ( Y , )  C 7-(1I,) of dimension 

> c(d)]Y, I. Let us describe this subspace. For N = (N~ , . . . ,  Nd) we denote by RT(N)  the space of real 
trieonometric polynomials  of d variables of degree _< Nj in variable x j ,  j = 1 , . . . ,  d. We define the subspace 
r,(Y.) by 

r ' ( Y . )  {t:t(x) y~ , ( v , . ) . , . ,  , } = = e r, tx), t ,  E RT(2  "-2 - I) , 
sEO. 

where k" = ( k t , . . . , k ~ ) ,  k;  = 2"J- '  + 2 ",-2,  S t > 2, 2 "-2 = ( 2 " ' - 2 , . . . , 2 " ' - 2 ) ,  [ = ( 1 , . . . ,  1). It is clear 
that  r ' ( Y . ) n = , =  c r(Y.)B=,| 

In this space, the  diseretization is carried out in the following way. Pu t  

= \ 2 ~ 7 1 ' ' " ' 2 N - - a d T 1  ' k j = 0 ' l ' ' ' ' ' 2 N j '  j =  1 , . . . , d  . 

With a polynomial  t ~. T ' ( Y , )  we associate the vector J(t)  ~. R M, 

J ( t )  , t -~ ( t s ( x ) } x k E f l ( 2 s - 2 - 1 1 ) , s E O n  

where M = Y] .E0 .  v( 2"-2  - I),  v (N)  = l-lj~, (2Nj + 1). 

Conversely, with a vector y = {y(xt)},ken(2,-a_~),seo. e RM we associate the polynomial  

J - ' ( u ) =  ~ ' ( ' " ~ ) ( ~ ( 2 " - ' - K ) }  -' ~ ~(x')D2.-=_~(~-=,),  
s~:O~ xk Eft(2o-2--1T) 

where 
d 

oN(x) = I I  DNj(X,) 
j= l  

is a mult idimensional  Dirichlet kernel normalized by DN(0) = v(N). 
In the space R M let us consider the set 

H = l;I S=( 2"-2 - ~), 
sE0. 

where the symbol R means the direct product ,  and 

Soo(N) = {y  = {y(x~)}~kEft(~ E R " ( ~ :  ]]t(x,y)t[oo <_ 1 t (x ,y)  - v(DI)-' ~ y(xk)DN(x -- xk)} .  
,k eft(N) 

It is known (see Lemma 1.1 of [18]) that  

Vol(S~(N)) > ~(d) -''(r'~), 
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and therefore 
VolH > H c(d)-"(2"-=-a) > c(d)-W"l" 

sEOn 

We need a special operator  K n that  maps L 1 into T(Yn) .  Introducing the polynomial  

(2.1) 

~--~ i (k ' , x )* . ,  t ~ /cn(z) 
sEOn 

we define the operator  K "  as the convolution operator with the kernel K:n(x). It is clear that  the range 
Of K n lies in T(Yn) .  Moreover, this operator  is bounded as an operator from B1,1 to B1,1. In fact, we have 

I lA , (Knf ) l l ,  = I lKnA,(f) l la = ~ ei(k"'x)]C2 ,-2 , A t l ( f  ) < c(d) llm,l(f)lll . 

Therefore, 

IIKn(f)llB,,1 ~ c(d)llfllB,,1. 
The operator J K n J  -1 maps the set H to a set H '  which is convex, centrally symmetr ic ,  and such that  

Vol H '  E c(d) -IY"I. (2.2) 

Let us clarify relation (2.2). Consider the image of the set Soo(2 s-2 -K) under  the action of J K n J  -~. We 
first note that  the action K n can be easily described in terms of Fourier coefficients of the polynomials t~'. 
Namely, if 

t ( x ) =  E /(k',z).l,  , e ~s(X), 
SEOn 

then 
R-~-t(k) = K2.-2(k  - kS)Ps(k - e ) ,  k �9 Z(~). 

Let us consider the operator  which associates the vector 

with the set of Fourier coefficients in the expansion (by sines and cosines) of a polynomial  t E RT(N).  This 
operator is orthogonal  in R "(N). Moreover, 

I-[ ~2 . -2(k  - k s) _> c(d)l~.)t. 
ke~(s) 

(2.3) 

Relation (2.3) and the above-mentioned remarks yield est imate (2.2). 
It is clear that  g '  C B W"I C IYnI1/2B~ Y"I. 
Functions K n f  have the form 

E i(k',x). , x K " f  = t = e ~s~X),  

sEOn 

ts E T(2 s-2 - 1[). 

On functions of such a form we define the operator  R, 

e rstX), 
sES. 

Ps = Rets .  
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It is easy to see that R is bounded as an operator from B1,1 t o  Bl,1; more exactly, 

IIRIIm,,-.B,,, < 1. 

Now instead of the set �9 = {~1}~=1 we consider the set q = {r of functions, r  = RK"qoj. Then 
Cj E T ' ( Y . ) ,  and for any t E T ' ( Y . )  and q0 E span({~j };=1) we have the following estimate for r = RK"qo: 

I IK"t  - r = I IRK"(t  - ~)llm,, -< c(d)llt - ~llo,,1. (2.4) 

Let us consider a system U = {uj}~=l, uj = JCj E R M. Then, by Remark 3 to Theorem 1.1, esti- 
mate (2.2) implies the inequality 

Further, for an arbitrary t E T ' (Y . ) ,  

hence, 

Therefore, for t E T ' ( Y . )  we obtain 

II, E E 
sEO. s_<~_<s+II 

~ ( H ' , U h  _> c2(d,c') lY~l.  

i ( t ' ,~ )  1 e to(x)= ~ al,(t); 

1 IIt~lll ~ ~ }lA.(t)ll~. 
s <  tJ < s +  II 

IIA.(t)II~ _> ~ Iltilll 
s e e n  

> c(d) ~ {0(2 "-2 - K)} -* ~ Itl~(xk)l >_ c(d)2-nllJtlll. 
s e a .  x k Ef l (2o-2- I I )  

(2.5) 

(2.6) 

( ,)  

(**) 

Proof of these estimates is based on Theorem 2.1 and on the following well-known inequalities. T h e  
inequality (an analog is in [16, p. 36]) 

Ilfllp <- c(d,p)ilfllo~,=, 2 < p < ~ ,  (2.7) 

is a simple consequence of the Littlewood-Paley theorem. The inequality dual to (2.7) takes the form 

Ilfllp ~ c(d,P)[lfllB.,~, 1 < p < 2. 

First, we prove relation (*). By the characterizing theorem (see [16, p. 32]), for the classes H r 
exists a positive number a(r, d) such that 

a(r,d)2-~"T(Yn)B~,~ C H ~ .  

(2.8) 

there 

(2.9) 
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a m ( H r , T ) p  >_ c ( r ,d ,p )m-r ( logm)  (d-D(r+l/2), 1 < p <_ oo, 

am(W~,a,T)p > c(r ,d ,q ,p )m-r ( logm)  (d-O~, 1 < p < q < oo. 

Comparing relations (2.6), (2.5), and (2.4), we complete the proof of Theorem 2.1. 
Theorem 2.1 can be applied for the study of m-term triconometric approximations, i.e., approximations 

relative to the system T = {ei(k'~)}kEZd. 

Coro l l a ry  1. For m = 1 ,2 , . . .  the following lower bounds hold: 



Further ,  let us denote  by Py, the  or thogonal  pro jec tor  onto  T(Y~). It i.~ k.~,wn (see, e.g., [16, p. 7]) tha t  
Py, is b o u n d e d  as an opera tor  f rom L p to L p, 1 < p < cr Therefore,  

O ' m ( 7 ( Y n )  B . . . .  '~.)p > c(p, d)Grn(7(Yn)Boo,oo , {e i (k 'X)}kEy  " )p. (2.10) 

To es t imate  the  r igh t -hand  side of (2.10), we use T h e o r e m  2.1 for �9 = {ei(k'=)}key, and  s = lY.I. 
The  r igh t -hand  side of relat ion (*) is i ndependen t  of p (with the except ion of the  cons tant ) ;  therefore,  

it is sufficient to prove (*) for 1 < p _< 2. In this case the lower bound  of the n o r m  in L p is given by 
inequal i ty (2.8). We note  tha t  for po lynomia ls  of T(Yn) we have 

IltllB,,, --< C(d)n(a-1)/211tllB,,= <-- c(d)n(a- )/211tllB,, , i <_ p < oo. (2.11) 

Combin ing  (2.8)-(2.11) and apply ing  T h e o r e m  2.1, we obta in  es t imate  (*). 
Rela t ion  (**) is proved analogously if ins tead of (2.9) we use the  inclusion 

a(r, d, q)n-(d-D/22-r'~7-(Yn)B~,or C W r 
q ,o t  " (2.12) 

Let us prove inclusion (2.12). Given a po lynomia l  t E T(Yn)Boo.oo, by (2.7) we have for 2 < q < oo, 

Iltllq _< c(d,q)lltllBq,= <_ c(d,q)lO.l /211tllB=o,= <_ c(d,q)n (a-')/2. 

Then,  by the  Berns te in  inequal i ty  (see [161) , we ob ta in  

11(/2)-ltllq < c(d, r, q)n(d-1)/22~". (2.13) 

Relat ion  (2.13) implies inclusion (2.12). 
This  completes  the  p roof  of Corol lary 1. 

Now let A be a finite subset  of 77,, a, and  pu t  

T(A) = { t  : t(x) = E {(k)ei(k'=) } .  
kEA 

We establish a n u m b e r  of proper t ies  of the  spaces T(A) and  then  apply these proper t ies  to e s t ima te  approx- 
imate  character is t ics  of the  classes W ~ and H ~ .  We use the  p ro found  results  of Bourga in  and  Mi lman  [19] 
for f ini te-dimensional  convex bodies.  In addi t ion,  we need the  following classical resul t  (see [20]). 

T h e o r e m  A.  Let B be a centrally symmetric convex body in N n. Then there exists a unique ellipsoid 
of maximal volume, contained in B. 

We now recall the  following definit ion. 

D e f i n i t i o n .  For a n o r m e d  space X ,  a cons tan t  C2(X)  of cotype 2 is called the least of the  cons tan ts  C 
such t ha t  for any finite set { X l , . . . , X m }  C X ,  

f0i  x C. r i( t)xi  at > 

here ri(t), i = 1 , . . . ,  rn are R a d e m a c h e r  funct ions.  

A cons tant  of cotype  2 is well defined for any f ini te-dimensional  space X and,  wha t  is i m p o r t a n t  for us, 
for the  spaces L p, 1 < p < 2. Moreover,  by the  Khinch in  inequalit ies,  we have 

C2(X)  _< 10, X = L ' (Ra ) .  (2.14) 
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T h e o r e m  [19]. Let X be an n-dimensional real normed space with the unit ball B, and let s be an 
ellipsoid of maximal volume, contained in B. Then 

1/n 
Vol. < KC (X). log 4 B ) 
Vol. s ] - 

Given a finite subset A C gd, we define the operator 

A = A(A): T(A) -* R ~1̂ 1 

by 
A(t) = {Rei(k), Imi(k) ,  k 6 A} 6 R 21AI, 

here the coordinate order is fixed in an arbitrary way. Put 

BA = {A(t):  t 6 T(A), Ht]la < i}. 

t �9 T(A); (2.15) 

It is clear that BA is a convex centrally symmetric body in R 21AI. The following lemma is valid. 

1~2IAI is an ellipsoid of maximal volume, lying in BA. L e m m a  2.1. The unit ball ~2 
Proof .  The obvious relations 

Iltlla tltll~, Iltll~ = IIA(t)llt~, t �9 T ( A ) ,  

(2.16) 

by 

J :  N21AI __+ R21AI 

J({ak,bk}keA) = ( { - - b k , a k } k e A ) .  

It is clear that J is orthogonal in R 21AI, j2  = _ Id, and for t �9 T(A), 

J(A(t))  = A(i . t), 

By the last relations and Theorem A, we have 

J(EA) = s 

Moreover, (a, J(a)) = 0 for any a �9 R 21AI, and the two-dimensional subspace generated by the vectors a 
and J(a) is d-invariant. Therefore, it is easy to see that the ellipsoid s can be rewritten in the form 

( IAI ( a ' c j ) 2 + ~  a'J(cj))2 } 

j = l  

Ilitll  = Ilt l l l .  

1151 

1,21AI be an ellipsoid of maximal volume inscribed in BA, and let { 5j,/hi j j=l be a set of directions of the semi-axes 
s and of their lengths, I]6/I]2 = 1, 1 <_ j _< 2]h I. We define the operator 

yield the inclusion B221AI C BA. Let us show that BA cannot contain an ellipsoid of volume greater 
than VolB221AI. In fact, let 

~r163 = { a E R 2 I A I : ~  I(a'~j)2 } ~ ~ < 1  
j=1 /zj 



where Ilcjll2 = IIJ(cj)ll2 = 1 for j = 1 , . . . ,  IAI . With each pair {cj,.l(cj)} of vectors we associate a 
polynomial tj E T(A) such that cj = A(tj). Then, by the orthogonality of the system {cj,J(cj)} of 
semi-axes, we see that the polynomials tj are orthogonal and 

IAI 
C^={aER2'AI:E' (A- ' (a) ' tJ ) '2  < 1 } .  (2.17) 

j=l A~ - 

Let -~h be an h-translation operator, -Ph(f(z)) = f(x - h), and 

Fh(a)  = A [ - ~ h ( A - l ( a ) ) ] ,  a ~ R 21A~. 

It is clear that Fh is an orthogonal operator in II~ 21AI. Since the space T(A) and the norm I I  II1 are 
translation-invariant for any h E R a, we have 

Fh(CA) = CA, h C I~ d. (2.18) 

In turn, property (2.18) implies that 

for any A the linear hull E;~ = span({tj}, j E {Z,. . . , IAI},  Aj = A) 

(over the field of complex numbers) is translation-invariant. (2.19) 

It is known that property (2.19) implies that there exists a basis of exponents in Ex, 

Ex = span{ei(k~' :) , . . . ,ei(k~' :)},  s = dimEx.  (2.20) 

By (2.20) and (2.17), we conclude that 

X:E~,~Z k:ei(k,~)6E x 

and therefore the ellipsoid s can be represented in the form 

gA= (a: E IA-'~a)(k)[ 2 } 
keA P~ <_ 1 . 

In other words, ~kEA ckei(k'z) 1 -< 1 for any complex numbers ck such that 

IAI 

Ic,1%; ~ < 1. 
k = l  

Thus, #~. < 1 for any k, and, therefore, gA C B22IAI. This completes the proof of Lemma 2.1. 

To give a complete proof, we deduce (2.20) from (2.19). Let r  ~b, be an orthonormal basis in Ex. 
By property (2.19), for any y E IR d and rn = 1 , . . . ,  s, 

8 

j=l 

(the functions ~ n  and c~ are continuous) and therefore for any k and m = 1 , . . . ,  s, 

4,m(k).  ~'(~,~) = (2,~) -~ Cm(~ - y)e'(~'~)d~ = ~ b~'m~j(~) e E~, 
'21r]a j = l  

whence (2.20) follows immediately. 
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L e m m a  2.2. There ezists an absolute constant C such that for any finite set A C Z d, 

VoI,(BA) <_ C s .  VolB~,  s = 21AI. (2.21) 

P r o o f .  Let X be a normed space for which BA is the unit ball. Then, by (2.14) (see also (2.16)), we 
have C2(X) < 10. Applying Theorem B and Lemma 2.1, we arrive at the conclusion of the lemma. 

In addition to T(A), let us introduce the space of polynomials with real coefficients, 

T/Z(A) = {t �9 T(A) :  {(k) �9 R}, 

and the operator A/z: TR(A) --~ RI^I defined by 

We also put 

AR(t) = { { ( k ) } k e ^ .  

BR,I(A) = {{t.(k)} �9 RIAI : k~eAt.(k)ei(k'~)lll <_ l } .  

L e m m a  2.3. For any finite set A C Z d, the following estimate is valid: 

VollAl{Bm,(h) } _< cIAI. VolB~ AI 

where C is an absolute constant. 
P r o o f .  We represent R 21AI in the form 

R 2IAI = R IAI | R IAI -- A(TR(A)) | A(iTR(A)). 

1 It is clear that  for any a �9 �89 (A), b �9 ~BR,I (A), we have 

a |  BA 

and therefore 
[ ( ! j ^ l  . 2 ,  V~ 2 - < Vol BA. 

By the last inequality and inequality (2.21), we arrive at the conclusion of Lemma 2.3. 
Given a function f ,  a subset A C Z d, and 1 _< p _< ~ ,  we put 

E~(f )p  = inf IIf - ullp, 
u:fi( k )=O,kEA 

and 
B/~,oo(A ) : { {t(]r �9 ]I~ IA[" f: �9 TR(A), ZA-I-(t)oo < 1}. 

L e m m a  2.4. For any finite set A C Z d, the following estimate is valid: 

B -l- clAI B~AI Vollhl { moo(A)}>_ Vol 

The proof is based on the BourgMn-Milman inequality [19], by which for any convex centrally symmetric 
body K C N n, 

Vol K -  Vol K ~ > C"(Vol B~) 2, 

where C > 0 is an absolute constant and K ~ is a polar to A', i.e., 

I( ~ : {x 6 I{": sup(x,y) < i}. 
yEA 
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1 - '0 BR~,oo(A). The Let K = BR,I(A). Taking into account Lemma 2.3, it is sufficient to verify that  7K C 
following equality is a consequence of the Hahn-Banach theorem: 

E~(t)oo = sup I(t,g)l, t E T(A). (2.22) 
gET(A) 
llglh <1 

Let us represent an arbi trary polynomial g E T(A), Ilglll ~ 1, in the form 

g = g' + ig" -- E R e O ( k ) e  i(k'*) + i E ImO(k)ei(k'=)" 
kEA kEA 

Then g', g" E TR(A) and 

Ilg'll  = 11�89 ~0(-x))lll ~< 1, IIg"ll  = II -< 1. 

Since 

it follows from (2.22) that  

I(t,g)l ~< 2max{l(t,g')l,l(t,g")l}, 

E~(t)oo < 2 max I(t,g)l. 
gETR(A) 
liglh <1 

If t = A~l(a) and a is an arbitrary vector of IEIAI then the last inequality implies the inclusion 
!h-02_ C B~,o~(A). 

Lemma 2.4 has been proved. 

We now use Lemma  2.4 to establish new lower bounds for the Kolmogorov widths and the entropy 
numbers of the classes Wr ,~ .  We formulate these results as the following theorem. 

T h e o r e m  2.2. For any r > 0 we have 

dm(Wr ,a ,  Lp) > c(r, d ,p)m-r(log m) r(a- ' ) ,  

em(W•,0, L,)  > c(r, d)m-~(log m) ~(d-'). 

p > l ,  

P r o o f .  We begin by proving the first relation. We use the following lemma. 

L e m m a  A [9]. Let a convex centrally symmetric body A be contained in the unit ball B N of the Euclidean 
space N N, and let Vol(A) > c~ N V o l B  N, where Cl > 0 is a constant. Then for any subspace L C N g of 
dimension not less than N /2  there exists an element a E A M L such that ]]a]it~ > c2 > 0. 

Let q C L p be an arbi trary subspace of dimension rn, and let n be the least number  that  satisfies the 
condition IDnl > 4m. We use Lemma A, where as the body A we take B~,oo(Dn ). By the definition of this 
set and the conclusion of Lemma 2.4, the body A satisfies the condition of Lemma A. As the subspace L 
we take 

L = {AR(t),  t E Tn(D, ) ,  ( I~ t , r  = 0 for all r E q} .  

1 ID" I. Then,  by Lemma A, we find an element It is clear that  dim L > 7 

a E B ~ , ~ ( D , , )  

such that  for ~ = A~l(a)  E TR(D, ) ,  we have 

J_ 
ED.(~)o~ < 1, I1~11~ ~ c~ > 0, 
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and 

Suppose that  the element : •  �9 { T ( D , ) }  • is such that  

l l:  - : •  -< 2. 

We define 

(2.23) 

f=/;(�89 :• 
We take an a rb i t ra ry  ~/, �9 ~ and est imate the quant i ty  IIf - ~bllp from below. Suppose 

On the other hand, 

1 .i~ 1 
- Is: ,Is:) = (It:,I~:) b: = ( f  - ~b, I s : )  = (f ,  I s : )  = ~( s :  ~ • 

1 
= ~ ~'~ ~ ( k , o ) l ~ ( k ) l  2 _> 2-~"-~II:IIN >__ 2-~-- 'cN.  

kED,-, 

b < lif - ~[Ipllzs:liq ~ c2(q)Hf - ~llp. (2.28) 

The first relation of Theorem 2.2 follows now from (2.27), (2.28), the arbitrariness of ~ �9 ~,  and the 
arbitrariness of the space ~I', d im �9 = m. 

We now prove the second relat ion of the conclusion of Theorem 2.2. In the proof  we use Lemma  2.4, 
where A = D,~ and n is the least number  that  satisfies the condition [D,, I > m. Then,  for the number  
N~,n of the e-network elements of the set Bf~,~(D,,), the est imate of the volume of B~,~(Dn),  given by 

Lemma  2.4, implies the following es t imate  in the metric of g~D, I: 

(})'~ 
Therefore,  for ~ = e0 > 0 we have 

Ne,n > 2 ID"I. 

Thus  we see tha t  there  exist 2 m polynomials {tj �9 TR(D.)}~21 such tha t  

E~.(tj)oo <_ 1, j 1, m. 1 . . . .  ,2 , [Iti--tJll2 ~ ~e0, i # j .  

(2.27) 
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Further ,  we have 

then f C W~.~.  
2' . Then  inequali ty (2.23) implies that  that  q = v-1 

II: - :]-Ilq -< 2. (2.24) 

Obviously, it is sufficient to consider the case 1 < p _< 2. Then  2 _< q < co, and, by the mult idimensional  
Li t t lewood-Paley  theorem and the Riesz theorem on the boundedness of the t r iconometr ic  conjugation as 
an operator  from Lq to Lq, we see tha t  the or thoprojector  on T(D,)  is bounded  as an operator  from Lq 
to Lq. Therefore,  taking into account  (2.24), we obtain 

II:[Iq < c~(q). (2.25) 

By the above-ment ioned Riesz theorem, inequali ty (2.25) implies that  

n l s : n q  _< c2(q). (2.26) 



Further ,  suppose  tha t  the  e lements  t f ,  j = 1 , . . . , 2  m, are such tha t  t~- E { T ( D , ) }  • and  

I l t J -  tJ-Iloo _< 2. 

We consider the  set 

( 2 .29 )  

1 2m ~j = -~(tj - t~), f j  = ~j �9 F~(x,O), j = 1 , 2 , . . . ,  . 

T h e n  f j  E Wc~,0, j = 1 , . . .  ,2 m. Let us es t imate  IIf~- fJIl~ f rom below for i # j .  We consider  quant i t ies  

On the one hand ,  by (2.29) we have 

On the other  hand ,  

O'ij  : ( f i  - -  f j , ~ O i  - -  s  

~i j  _< 21[fi - f i l l , .  

~ j  = ~_~, - (k ,O) l~ , (k)  - ~ ( k ) l  2 >_ ~ F~(k,0)l~,(k)- ~ ( k ) l  = 
k kED,, 

>_ 2 - ' ' - 2  ~ IZ~(~:) - i i ( k ) l  ~ = 2 - " " - 2 1 1 ~  - ~JII~" 
k E D .  

Thus,  

I[fi fjlla ~ " - r " - 5  2 - z eo, i C j .  

Taking into account  tha t  the  set {fi} consists of 2 m elements  and 2nn d-1 <_ c(d)m, we arrive at the  second 
conclusion of T h e o r e m  2.2. 

Going back to m - t e r m  approximat ions ,  we now use L e m m a  2.2 to prove a s t a t e m e n t  similar  to Theo-  
rem 2.1 for approx imat ions  in L 1. 

T h e o r e m  2.3.  There ezists a constant c(d) such that for any set 6# = {cpj E T(Yn)}~Y=,, N < I( ly~l,  
the following estimate holds for any all m < c(d)lY, l: 

~. . (7- ( r . ) .  . . . .  ~)1 >-- c(d,k) n(~-a>" 

P r o o f .  We reduce the  p rob lem to the p rob lem in IR 21Y"I. We carry out  the  discre t iza t ion by using 
coefficients of the  Fourier  po lynomia l s  of 7-(Yn). We consider the  opera to r  A defined by (see (2.15) for 
A = Y n )  

A(t) = {Re/ (k) ,  I m i ( k ) ,  k E Yn}. 

P u t  

A o o ( Y n ) = { A ( t ) : t E T - ( Y n )  ~-~ t(k)ei(k'x) oo<1, sEOn }. 

The  set Aoo(Y,) is convex and  central ly symmetr ic .  The  following es t imate  is known (see [17, p. 206]): 

Vol(Aoo(Y,)) _> 2-"lY"ic(d) -IY"I, c(d) > 0. (2.30) 

To use Remark  4 to T h e o r e m  1.1, we take as G the following set: 

G =  {a E R21Y"I : alOnl a/2 E a ~ ( Y n ) } .  

T h e n  G C/J2~21Y"I and,  by (2.30), we have 

Vol G >_ c(d) tY"l Vol(B 2Iy" I). (2.31) 

Let us in t roduce  the following n o r m  in I~ 2IY"I, induced by the La-norm in T(Y,~): 

IlallB = IlA-l(a)[Ix fox- a E R 21Y"I. 

To prove tha t  this n o r m  satisfies condi t ion  ( , ) ,  we use L e m m a  2.2 and the following wel l -known result  (see, 
for example,  [13, p. 56]). 
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Let B be a convex centrally symmetric body in R N, let B N c B, and let Vol B < C N Vol B N. Then there 
exist a constant K = K(cl)  and points {x l , . . . ,  XM } C R N, M < K N, such that 

M 

B c I,J (2.32) 
i----1 

By Lemma 2.2 for A = Y,~ and inclusion (2.32) for N = 2[Ynl, we see that the ball B = {a:  LlalIB _< 1} 
satisfies the condition (*). 

To complete the proof of Theorem 2.3, it remains to use estimate (2.31) and Remark 4 to Theorem 1.1. 
The authors thank R. A. De Vote for useful discussions of the questions considered in this paper. 
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