= BRIEF COMMUNICATIONS =

Lower Bounds for *n*-Term Approximations

B. S. Kashin

Received May 31, 2001

KEY WORDS: n-term approximation with respect to orthonormal systems, uniformly bounded orthonormal system, lower bound, normed space, function class.

Let X be a real normed space, let $\Phi \subset X$ be a subset in X (a dictionary), and let $f \in X$.

Definition. The *n*-term approximation of an element f with respect to the dictionary Φ is defined as the expression

$$e_n(f, \Phi, X) \equiv \inf_{P \in \Sigma_n} \|f - P\|_X, \tag{1}$$

where for $n = 1, 2, \ldots$

$$\Sigma_n \equiv \bigg\{ \sum_{j=1}^n a_j x_j, \ a_j \in \mathbb{R}, \ x_j \in \Phi \bigg\}.$$

Further, if K is a subset of X, then

$$e_n(K,\Phi,X) \equiv \sup_{f \in K} e_n(f,\Phi,X).$$
(2)

Estimates of the expressions (2) for different K, Φ , and X are of importance in both theory and practice (for more details, see [1, 2]).

In the present paper, we restrict our consideration to the case in which $X = L^2(\Omega)$ and Φ is a complete orthonormal system (o.n.s.) in X. In this case the expression (1) was introduced by S. B. Stechkin [3]. As is easy to see, it is equal to

$$e_n(f, \Phi, L^2(\Omega)) = \left\{ \sum_{k \ge n+1} [c_k^*(f)]^2 \right\}^{1/2},$$
(3)

where $\{c_k^*(f)\}\$ is a nonincreasing rearrangement of the sequence of absolute values of the Fourier coefficients for the function f with respect to the system Φ .

In the author's work [4], a geometric scheme for obtaining the lower bounds for the variables (2) was proposed for the case in which Φ is an orthonormal system. More precisely, it was shown in [4] that the embedding in K of the set of vertices of the 2n-dimensional cube, i.e., of the set Q of the form

$$Q = \left\{ \sum_{i=1}^{2n} \varepsilon_i \psi_i, \ \varepsilon_i = \pm 1, \ L^2(\Omega) \supset \{\psi_i\}_{i=1}^{2n} \text{ is an o.n.s.} \right\},\tag{4}$$

implies the inequality

$$e_n(K, \Phi, L^2(\Omega)) \ge cn^{1/2}, \qquad c > 0.$$
 (5)

To use this result in applications, it suffices to solve the problem of inscribing the largest possible cube in a given function class K (i.e., of finding, for a given n, a sufficiently large number λ and a set Q of the form (4) such that $\lambda \cdot Q \subset K$). This problem can be solved easily for the classical function classes K. As a result, this allows one, in several cases, to find the lower estimates for *n*-term approximations that are sharp in order. Various generalizations and analogs of the estimate (5) were established in [5, 6].

In 1993 S. V. Konyagin posed the problem of estimating the expressions (2) in the case where $X = L^2(I^d)$, Φ is an o.n.s. in X, and K is the set of characteristic functions of convex subsets of the unit cube $I^d \subset \mathbb{R}^d$. Already for d = 1 the problem remained unsolved. For d = 1 this problem is, in fact, reduced to finding bounds for (2) for the "one-parametric family"

$$K = \mathbb{X} \equiv \{\chi_t\}_{t \in [0,1]}, \qquad \chi_t(x) = \begin{cases} 0 & \text{if } 0 \le x < t, \\ 1 & \text{if } t \le x \le 1. \end{cases}$$
(6)

Konyagin draw the author's attention to the problem of obtaining lower bounds for *n*-term approximations of the family (6), by pointing out that it is possible to obtain upper bounds for these expressions. More precisely, if $\Phi = H$ is a Haar system, then

$$e_n(\mathbb{X}, H, L^2(0, 1)) \le C 2^{-n/2}.$$
 (7)

To verify (7), it suffices to use the standard estimate for the error of the L^2 -approximation of the functions χ_t ($0 \le t \le 1$) by partial sums of the Fourier–Haar series (e.g., see [7, p. 75]) and to take into account the fact that each block of the Fourier–Haar series of the function χ_t contains only one nonzero coefficient.

Since the "set of the family X is extremely small," it is impossible to use the above geometric scheme for finding the lower bounds for *n*-term approximations of this family. It turns out that, instead of this scheme, the technique of the theory of general orthogonal series can be used.

Theorem 1. There exists an absolute positive constant C such that for an arbitrary orthonormal system $\Phi \subset L^2(0, 1)$ the inequality

$$e_n(\mathbb{X}, \Phi, L^2(0, 1)) \ge C^{-n}$$

holds for n = 1, 2, ...

Remark 1. The problem of finding the exact value of the constant C in Theorem 1 remains open. However, it follows from the proof that this constant is "not too large."

As is shown below, for uniformly bounded o.n.s. Φ , the lower bound for $e_n(\mathbb{X}, \Phi, L^2(0, 1))$ can be improved significantly.

Theorem 2. If Φ is a uniformly bounded complete o.n.s: $\Phi = \{\varphi_j\}_{j=1}^{\infty} \subset L^2(0,1)$,

$$\|\varphi_j\|_{L^{\infty}(0,1)} \le M, \qquad j = 1, 2, \dots,$$

then for $n = 1, 2, \ldots$ we have

$$e_n(\mathbb{X}, \Phi, L^2(0, 1)) \ge \frac{C_M}{\sqrt{n}} > 0.$$
 (8)

Remark 2. The accuracy of the estimate (8) can be verified by using the special example of trigonometric systems: if $\Phi = T$ is a trigonometric system, then $e_n(\mathbb{X}, T, L^2) \leq Cn^{-1/2}$.

In the proofs of Theorems 1 and 2 the results of the author's paper [8] play an essential role. In particular, the proof of Theorem 1 is based on the following inequality (in fact, this is a special case of Theorem 1 in [8]).

MATHEMATICAL NOTES Vol. 70 No. 4 2001

Lemma. Suppose that N = 1, 2, ... and $\{\varphi_j\}_{j \in \Lambda}$ is an arbitrary normed system of functions in $L^2(0, 1)$. Suppose also that the representation

$$\chi_{k/N} = \sum_{j \in \Lambda} a_{k,j} \varphi_j + \Delta_k, \qquad \|\Delta_k\|_{L^1} \le \frac{1}{N}$$

holds for $k = 1, 2, \ldots, N$. Then

$$\sum_{j\in\Lambda} \left(\frac{1}{N}\sum_{k=1}^N a_{k,j}^2\right)^{1/2} \ge B\ln N,$$

where B > 0 is an absolute constant.

The proof of Theorem 2 is based on an argument close to that used in establishing the estimate (9) in the paper [8]. In conclusion, we note that the first lower bounds for the coefficients of the expansion of functions from the family \mathbb{X} (see (6)) in the series with respect to general uniformly bounded o.n.s. were obtained by S. V. Bochkarev [9].

ACKNOWLEDGMENTS

This research was supported by the Russian Foundation for Basic Research under grant no. 99-01-00062.

REFERENCES

- 1. R. A. DeVore, Acta Numer., 7 (1998), 51–150.
- V. N. Temlyakov, Nonlinear Methods of Approximation, IMI Preprint 2001:09, University of South Carolina, 2001.
- 3. S. B. Stechkin, Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 102 (1955), no. 1, 37-40.
- 4. B. S. Kashin, Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.], 172 (1985), 187–191.
- 5. B. S. Kashin and V. N. Temlyakov, Mat. Zametki [Math. Notes], 56 (1994), no. 5, 57-86.
- 6. D. L. Donoho, Ann. Statist., 25 (1997), no. 5, 1870–1911.
- 7. B. S. Kashin and A. A. Saakyan, Orthogonal Series [in Russian], 2nd ed., AFTs, Moscow, 1999.
- 8. B. S. Kashin, Sibirsk. Mat. Zh. [Siberian Math. J.], 18 (1977), no. 1, 122–131.
- 9. S. V. Bochkarev, Mat. Zametki [Math. Notes], 15 (1974), no. 3, 363-370.

V. A. STEKLOV MATHEMATICS INSTITUTE, RUSSIAN ACADEMY OF SCIENCES