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Let X be a real normed space, let Φ ⊂ X be a subset in X (a dictionary), and let f ∈ X .

Definition. The n-term approximation of an element f with respect to the dictionary Φ is
defined as the expression

en(f , Φ, X) ≡ inf
P∈Σn

‖f − P‖X , (1)

where for n = 1, 2, . . .

Σn ≡
{ n∑
j=1

ajxj , aj ∈ R, xj ∈ Φ

}
.

Further, if K is a subset of X , then

en(K, Φ, X) ≡ sup
f∈K

en(f , Φ, X). (2)

Estimates of the expressions (2) for different K , Φ , and X are of importance in both theory and
practice (for more details, see [1, 2]).

In the present paper, we restrict our consideration to the case in which X = L2(Ω) and Φ is
a complete orthonormal system (o.n.s.) in X . In this case the expression (1) was introduced by
S. B. Stechkin [3]. As is easy to see, it is equal to

en(f , Φ, L
2(Ω)) =

{ ∑
k≥n+1

[c∗k(f)]
2

}1/2
, (3)

where {c∗k(f)} is a nonincreasing rearrangement of the sequence of absolute values of the Fourier
coefficients for the function f with respect to the system Φ.

In the author’s work [4], a geometric scheme for obtaining the lower bounds for the variables (2)
was proposed for the case in which Φ is an orthonormal system. More precisely, it was shown
in [4] that the embedding in K of the set of vertices of the 2n-dimensional cube, i.e., of the set Q
of the form

Q =

{ 2n∑
i=1

εiψi , εi = ±1, L2(Ω) ⊃ {ψi}2ni=1 is an o.n.s.

}
, (4)

implies the inequality

en(K, Φ, L2(Ω)) ≥ cn1/2 , c > 0. (5)
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To use this result in applications, it suffices to solve the problem of inscribing the largest possible
cube in a given function class K (i.e., of finding, for a given n , a sufficiently large number λ and
a set Q of the form (4) such that λ ·Q ⊂ K). This problem can be solved easily for the classical
function classes K . As a result, this allows one, in several cases, to find the lower estimates
for n-term approximations that are sharp in order. Various generalizations and analogs of the
estimate (5) were established in [5, 6].

In 1993 S. V. Konyagin posed the problem of estimating the expressions (2) in the case where
X = L2(Id) , Φ is an o.n.s. in X , and K is the set of characteristic functions of convex subsets
of the unit cube Id ⊂ Rd . Already for d = 1 the problem remained unsolved. For d = 1 this
problem is, in fact, reduced to finding bounds for (2) for the “one-parametric family”

K = X ≡ {χt}t∈[0,1] , χt(x) =

{
0 if 0 ≤ x < t,

1 if t ≤ x ≤ 1.
(6)

Konyagin draw the author’s attention to the problem of obtaining lower bounds for n-term ap-
proximations of the family (6), by pointing out that it is possible to obtain upper bounds for these
expressions. More precisely, if Φ = H is a Haar system, then

en(X, H , L2(0, 1)) ≤ C 2−n/2. (7)

To verify (7), it suffices to use the standard estimate for the error of the L2-approximation of the
functions χt (0 ≤ t ≤ 1) by partial sums of the Fourier–Haar series (e.g., see [7, p. 75]) and to
take into account the fact that each block of the Fourier–Haar series of the function χt contains
only one nonzero coefficient.

Since the “set of the family X is extremely small,” it is impossible to use the above geometric
scheme for finding the lower bounds for n-term approximations of this family. It turns out that,
instead of this scheme, the technique of the theory of general orthogonal series can be used.

Theorem 1. There exists an absolute positive constant C such that for an arbitrary orthonormal
system Φ ⊂ L2(0, 1) the inequality

en(X, Φ, L
2(0, 1)) ≥ C−n

holds for n = 1, 2, . . .

Remark 1. The problem of finding the exact value of the constant C in Theorem 1 remains open.
However, it follows from the proof that this constant is “not too large.”

As is shown below, for uniformly bounded o.n.s. Φ , the lower bound for en(X, Φ, L
2(0, 1)) can

be improved significantly.

Theorem 2. If Φ is a uniformly bounded complete o.n.s: Φ = {ϕj}∞j=1 ⊂ L2(0, 1) ,
‖ϕj‖L∞(0,1) ≤M, j = 1, 2, . . . ,

then for n = 1, 2, . . . we have

en(X, Φ, L
2(0, 1)) ≥ CM√

n
> 0. (8)

Remark 2. The accuracy of the estimate (8) can be verified by using the special example of
trigonometric systems: if Φ = T is a trigonometric system, then en(X, T , L

2) ≤ Cn−1/2 .
In the proofs of Theorems 1 and 2 the results of the author’s paper [8] play an essential role.

In particular, the proof of Theorem 1 is based on the following inequality (in fact, this is a special
case of Theorem 1 in [8]).
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Lemma. Suppose that N = 1, 2, . . . and {ϕj}j∈Λ is an arbitrary normed system of functions in
L2(0, 1) . Suppose also that the representation

χk/N =
∑
j∈Λ

ak,jϕj +∆k , ‖∆k‖L1 ≤ 1

N

holds for k = 1, 2, . . . , N . Then

∑
j∈Λ

(
1

N

N∑
k=1

a2k,j

)1/2
≥ B lnN ,

where B > 0 is an absolute constant.

The proof of Theorem 2 is based on an argument close to that used in establishing the esti-
mate (9) in the paper [8]. In conclusion, we note that the first lower bounds for the coefficients
of the expansion of functions from the family X (see (6)) in the series with respect to general
uniformly bounded o.n.s. were obtained by S. V. Bochkarev [9].
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