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1. Introduction

Let B be a real normed space, let & C B be a subset of B — we will call it
a dictionary, and let f be any element of B.

Definition 1. n-term approximation of an element f € B with respect to
the dictionary @ is

en(f,®,B) = inf — P||B, 1

n(f: ) ) Pes., Hf HB ( )

where forn =1,2,...

n
Yn = {Zajmj, a; €ER, z; € ‘1)}

Jj=1
Further, if K is a subset of B, then

en(K,®, B) = sup e,(f, @, B). (2)
feK

At present, research in n-term approximations has become a separate branch
of approximation theory. The best-investigated situation is when K is some
class of smooth functions defined on the domain © in RY and B = LP(f),
1 < p < . Various dictionaries ® have been considered. Here are the most
important examples: \

a) ® is a complete orthonormal set of functions (O.N.S.) in L?(Q); in par-
ticular, ® can be a trigonometric system;

b) for the approximation of functions of d variables, defined on the cube
I¢ = (0,1)¢, we can consider the dictionary ®;, that consists of all functions of
the type

w(zy, ..., x8)  v(Tpe1, ..., Tq), 1<k <d;

¢) for the approximation of functions of d variables by “free knots splines”
we can consider dictionaries that consist of functions of the type

P xa,
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where P is a polynomial of the degree < r of d variables and xa is the charac-
teristic function of the segment A C R?;

d) @ is the set of ridge functions, i.e., functions in LP(Q), & C R?, of the
type

u(z) = f((z,0)),

where f is a function of one variable, x € Q, § € R, |#| = 1, and (-,-) is an
inner product in R?.

For each of those families of dictionaries there are research results that are
valuable from the theoretical as well as practical point of view (see [1], [2], [3])-

Research related to the example a), i.e., the situation when @ is a complete
O.N.S., has become more active due to the development of wavelet theory.
As to Definition 1, for orthonormal dictionaries in Hilbert space H it was
introduced back in 1955 by S. B. Stechkin [4] when he was investigating the
absolute convergence of series with respect to general complete O.N.S. Note
that in this case

enlf, ®,H) = ( > {cz<f)]2) 1/2, (3)

k>n+1

where {c;(f)} is a non-increasing rearrangement of the sequence of absolute
values of the Fourier coefficients of the function f with respect to the complete
O.N.S. ©.

The author in [5] suggested a geometric approach to the proof of lower
estimates for values (2); this approach can be applied to any orthonormal
dictionary ¢ in a Hilbert space H. More precisely, it was shown in [5] that if
for some n € N K contains the set @) of all vertices of a 2n-dimensional cube:

2n
Q= {Zsid);, g; = £1, {4} is an O.N.S.}, (4)
i=1
then
en(K,®, H)>c-n'?  ¢>0. (5)

To apply this result we need to inscribe a big enough cube in a given set K
(i.e., for a given n we need to find a big enough number A and a set @ of type (4)
such that A-@Q C K). This problem is not difficult to solve for classical function
classes K and it allows us in certain cases to obtain order-sharp lower estimates
for n-term approximations. Estimates analogous to (5) and its generalizations
were obtained in [6], [7].

In 1993 S. V. Konyagin suggested a problem of estimating the values (2)
when B = L*(I?), ® was an O.N.S., and K was the family of characteristic
functions of convex subsets of the unit cube I* ¢ R*. This problem seems
natural from both theoretical and practical point of view. Even for d = 1 it
remained unsolved. In that case (i.e., d = 1), the problem essentially can be



B.S. Kashin ™ 243

reduced to the estimating quantities (2) for “one-parametric” family of func-
tions
0, ifo<z<t,

K=X= {Xt}te[o,lb xi(x) = { 1, ift<z<1

(6)
S. V. Konyagin brought to the author’s attention the problem of lower estimates
for n-term approximation of the family (6); he also noted that there were
exponential upper estimates for those values. More precisely, if ®¢ is the Haar
system, then

en(X, @0, L(0,1)) < C- 272, (7)

This estimate can be checked by applying a standard error estimate for
L?-approximation of functions x; (0 < ¢ < 1) by partial sums of Fourier—
Haar series (see, for example, [8], p. 75) noticing that each dyadic block of the
Fourier-Haar series of y; has at most one non-zero coefficient.

The family X is very “thin”. That is why the above mentioned geometric
approach to lower estimates for n-term approximation is not applicable to this
set. It turned out that instead we can use a technique from the theory of
general orthogonal series.

In this article, using the approach from author’s paper [9], we establish the
following two theorems.

Theorem 1. There exists an absolute constant C' > 0 such that for each
n=1,2,... and for any orthonormal system ® C L*(0,1)

en(X,®,L%(0,1)) > C™",
Theorem 2. If ® is a complete uniformly bounded orthonormal system.:
¢ = {SOJ ;J?:l - L2(071)7
”‘Pj”Lm(o,l) SM, ]: ]-aQ,---:
then for eachmn =1,2,...

CM
ni/2

en(X, ®,L3(0,1)) > =2 > 0, (8)

Remark 1. The exact value of the constant C' in Theorem 1 is unknown.

Remark 2. Theorem 2 shows that the uniform boundedness condition
for the orthonormal dictionary & substantially changes (compared with the
general case) the behavior of n-term approximations of functions from the
family X. The sharpness of estimate (8) is demonstrated by the example of the
trigonometric system 7' : if ® =T, then

en(X, T, L%(0,1)) < C - n~ /2,

The results of this paper are announced in the note [10].
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2. Proof of Theorem 1

Below we denote by #A the cardinality (the number of elements) of a set A.

Lemma 1. Suppose N € N, A C N, #A < o0, {p;}jer is a normalized
system of functions in L*(0,1) (i.e. ||@;llzz01) =1 Vj € A), and for each
k=1,2,...,N

1
Xk/N = Zak,j% + Ay, Akl < N
JEA
where x: 1s defined in (6). Then

N 1/2 '
1L, 1 log, N 7
— T > —(1 — > = - —.
j;(zv AZ}“’W) 2 5N =72 == -5

Lemma 1, up to the constants, is a special case of Theorem 1 of the paper [9].
Still, let us prove it for the sake of completeness. For each N > 2 we define a
system of functions {f}2_, on (0,1) by the following formula:

i—1 i
Ly t—1 <<
N )ik MEE N’N)’Hék’l—z—N’
fi' (z) = E—1 k
0 if —_, = .
, xre < N ’N)
Using the classical inequality for a Hilbert bilinear form
N N N 1/2 N 1/2
aibi 2 2
> 5 () ()
k=1 i=1,i#k k=1 =1

(see [11], p. 256, th. 294) for any coefficients {aj}_,, we get
N

[ ~Ni—1/2\\*1?
o~ 77 5 (E e (7))

=1 “k=1

1 al .
= N7 Nsup Zbi(Z z'(ikk> (9)

> p2=1 =1 k#1
i=1 "

N - .
< Zj:l a;’- 12
— N .

“zile a sl

Now consider the integral
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1 N N LA
N N
4 = N> S = L
/0 ;Xk/N(x)fk () dz Z/o Xk/N - fi dz > 2. N Z PR

But
N N
S oxanfr= [Z Ok,jPk + Ak] T
k=1 k=1"‘jeA

and for each k =1,2,...,N ||fx]lre < 1; therefore

N
. k=1

1
/ YA d
0

N
< S IAML <1
k=1

Thus

1 NI
5(111 N-T7) < Z ; fi (2) (Z al,:,jﬁﬁj(ﬂi)) dx

JEA

By (9) and since the system {¢;} is normalized, the latter sum is bounded from
above by

)

1 N A 1/2
wz(ﬁzazﬂ.) .
JEA k=1

This completes the proof of Lemma 1.

Lemma 2. Let f be an absolutely continuous function on (0,1) such that
f'llz2(0,1) < 1. If for some N € N

1L LRV 3
(vx7(5) =%

2 4
3¢ < fllz20,1) < 3¢

then
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Proof. First we shall show that for each 7 € (0,1/N)

s (B G} s

k=1
Indeed,
k k k/N i k/N , \1/2
f(-) - f(—— - T> = / f'(z)dz| < 7'”‘(/ (f)?dal
l N N k/N—T1 Jk/N—1 /
therefore,
N k/N
T 5 1
~ (f')" dzx ;
Nkz:v/k/N T NZ

which proves the estimate (10). Then

71172 2(0,1) Z /UN /UN (‘" ”T>d7
A e

k=1

)

where v, € RV, (v,), = f(k/N —7), k = 1,2,..., N, and for any vector
v={(v)r}is, € RY

2

ol = (5 gj )

>- [V

Therefore, we get

i 1/N
: r 2
0 = [ el ar (1)
J0
besides, by (10),
1 1
llvo = vrllrs, sy 0<t<4

and by assumption, [lvlzz, > 3/N. Using the triangle inequality, for each
7 € (0,1/N) we get

2 U
= ool 5 <

that is, for each 7 € (0,1/N) we have

2, <llvollze, = i3 < Hlorllzz, < lvollze, + = S ;E”'UOHL%;

16
~I|vo|lL> <llorllzg, < 5 llvollz,,

and Lemma 2 now follows from (11) and the definition of the vector vg.
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Lemma 3. Suppose f is an absolutely continuous function on (0,1),
f() =0, [If'lle20,1) < 1 and ||fllr2(01) = 0. Then there exists an interval

w C (0,1) such that its measure |w| > 36 and

[f(z)] > =6 Ve w.

Wi

Proof. We assume that § > 0. Consider

E={se0.1: 150> 3}
Clearly, E is an open set, and it can be written in the form

E = U(.«Ji,

where w; are non-overlapping intervals. The set E is not empty and, moreover,

. o . . 1 ‘ |
/ frdz = / fAde — / fPde > 6% - 26% = §52. (12)
E (0,1) Jo\E 9 9

'Let z; be the right-hand endpoint of the interval w;. Then |f(z;)| = £6. Further,
for each x € F there exists 7 such that z € w;, and then

2

< w2 (/ | lf’(tt)"zclu')l/d-

2

1 : L
[f(z)] < §5+|w,,;|1/2< I (u)]? (lu> , T € w;,

|f(z) = f(z)] = "(u) du

Hence

therefore 5 .
|f(@)]? < 552 +2wi| [ f (WP du, € w;,

Jwi

and (see (12))

Nej el

5 / dm—Z/[ﬂ do
Zw[ # 424l [ 17

2
< g0+ Lol || 1P du

By definition, put \; = / | (w)]? du.
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Then the previous inequality yields
Lo 2
géggmuf (13)

Since )
S [ IrwpPds,
; 0

by (13) we get that there exists an interval w; such that |w;|?> > 14% but in
that case we have |w;| > \/%7‘6 > £6. This completes the proof of Lemma 3.

Now we can start the proof of Theorem 1. Obviously, we can complete the
system @ if necessary, thus we can assume that ® is a complete O.N.S. It is
also clear that it suffices to consider only the case when n > ng. Let n > 4 be
given and

N = 260m, (14)
It is easy to check that in this case S
log, N 7 | logy N
TR A "
For the given O.N.S. ® we obviously have one of the following two cases:
) max en(xam, ®,0%) > 53> s
1<k<N 2N © 26in
2) 12&)\}\/6”(;“’/]\/’@’1;2) < —2%
Let us prove that in case 2)
9 1 1
12}%)(]\, en(Xe/n, @, L7) 2 N1+1/100 2 261n (16)

Thus, for each n > 4 the estimate in the Theorem 1 will be established if we
take C' = 261,
Now, if condition 2) holds, then for each k = 1,2,..., N,

Xi/n(2) = Péf’”(m) + Ag, N (),

where Péf’N (z) is a polynomial with respect to the system ® such that the
number of its non-zero coefficients is < n and

1
||Ak,]\! LZ(O,I) S ﬁ’ k:1,2,1N (17)
Suppose
Pe@) = Y ajpilr),  #EBun <n. (18)

JEEL N
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Clearly, we can assume below that

-1 .1
Qg,j = / Xk/N@jdT = / w;dz
/0 JEk/N

is a Fourier coefficient of the function x;,n. This follows directly from the
extremal properties of the Fourier coefficients.
By definition, put

NDOA= U spectrumPé’N,
k

where spectrumPp = {j : a; # 0} if Py = Z]EE a;jp; is a polynomial with
respect to the system ®. Clearly, #A < n - N. Now let us consider

1
/ pj da
k/N

L' = span{p;, j € A'}

1
2 2N~n1/2}

A'=<{jeA: max |a;;| = max
1<k<N T <k

and

— a subspace generated by the functions ¢;, j € A'. Then for each k =
1,2,..., N for the polynomial

kN __ .
PN =% a0
jenr

we have

1
2 < = (19)

Xk,N = pkN + Ak‘,Na HAA:,N N

Indeed,

Xew =P+ " a0+ A,
JEEL N\A

but by the very definition of A/,

> e

JEER N\A

1/2 ]
< ), -
Lo {" (2N)'2n] IN

from which, using also (17), we get (19).
By Lemma 1 (see also (15)), it follows from (19) that

1
> e ff = log, N, (20)
‘ 10 ‘
JEN'

where

1/2
& = {akiHlze, = <%Zafj> :

k=1
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Let us show that

there exists a number ko € {1,..., N} such that the set
of coefficients ay,,;, j € A', contains more than n (21)
coefficients whose absolute value is greater than 101100

The required relation (16) follows directly from (21).
By definition, for K C {1,...,N} put

_#K

p(K) N

The relation (21) will be proved if we check that

1
Z ,u,{k : |ak,]v| > W} > n. (22)
jen
We consider the decomposition
A/ — AII U /\II/
where

A”:{jeAIZE]‘>%}, A”I:A/\AH.

By the definition of A’ and the inequality N1 > 2N - n!/? (see (14)), we
obtain that for each j € A"

1
{k’ : l(l"\i,j| 2 W} # @;
therefore, for each j € A",

&j

D=

1 1
1 ki|“m]2m 252

and, thus,

Z M{k tak,gl > ]ﬁ} > % Z £ (23)

}E/\’“ jEAIH

On the other hand, if j € A", then |[{ax;}{|z2, = €; > 6/N and the application
of Lemma 2 to the function

.1
f@) = [ i

/1 oi(t) dt

yields
2 4
> "?;Ej > —.

fllz2000) =
L2(0,1) N
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Therefore, by Lemma 3, there exists an interval w C (0, 1) such that its measure
is
1., 2
Wl 2 5l1flle200 >
4

N
-1
/ p;(t) dt| >

Note that the lower estimate for the number of points of the form k/N, 1 <
k < N, within the interval w is |w|- IV — 1, so we can see that for each j € A"

and for each x € w

Ej- (24)

this number is not less than 56 1> 5 &
Hence
t
— §
S ufbclangl 2670 2 Y wdbsfangl 2 32} pop
jeA// jEA” —t eN

(we used the estimate N 10" < N~ < 2¢; for j € A").
Finally, we have (see (23), (25))

Zu{k laA,|>N101}—Z Z%Z~€]+Z 125‘]-.

]EAI Jel\” ]El\!ll—j__ ]eAll ]EA”I IE/\,

The right-hand side of this relation, by (20) and (14), is neHes& than n. Thus
the inequality (22) is established, and this completes the proof of Theorem 1.

3. Proof of Theorem 2

The considerations below are in some sense similar to the proof of the
estimate (9) in [9]. Let us check that for each O.N.S. ® that satisfies the
conditions of Theorem 2, for each n € N and N = [2000 M?n] the following
inequality holds ‘

max en(xk/N &, L2 (0, 1)) ! 1

1<k< = 1000 M ni/Z’ (26)

It is clear that Theorem 2 follows from (26). In order to prove the estimate (26)
we define (for N > 10) the system of functions {f{¥}1_, on the segment [0, 1]

. . -1 r
such that these functions are constant on each interval ( ) 1<r <N,

N 'N
#(2) -1 -

and
o if2<r—k<3, 4<r<N -4,

DN | = DO =

, f2<k—-r<3,4<r<N-—-4
0 for other k, 7.



252 On Lower Estimates for n-term Approximation in Hilbert Spaces

It follows from definition (27) that

a) fN(z)=0when4<k<N-4andz¢ {k—];—‘lk—;f’}
b) f(z) >0 when z > 7’;—;
N (28)
Z =0
@ 1N < e W) < 5175
For k=1,2,...,N put
1
ap,j = / Xk/N$j dz, J=12....
0
Note that
M
lak,j — arg1,5] < N 1<k<N-1, (29)
which follows from the estimate
: (k+1)/N M
lak; — apgr,j] = !/ i (Xk/N = X(k+1)/n) dT| = / pjdz| < N
0 k/N

From the definitions and properties of the functions fJ, (see (27), (28)) it
follows directly that

1 N N-— —
| it da > Z/ Reya>2s 2 @)
k=1 k=4

(we used here that N > 2000).

Thus

1

3 S/ > xun £ do
0

k:l
A S (Zakm)fu (31)
0 p=1
o N 1
= Ak, fi pjde = Ry + Ra,
Jj=1k=1
where

m=S o X an)e (32)

j=1" k:lag,j|>2M /N
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N 1
‘ RQ :Z Z ak,j/o (pJflivdﬂ? (33)

k=1j:|ar ;|<2M/N
Now let us estimate R; and R». For j = 1,2,..., consider
Fj(z) = S arifi. (34)
k:lan,;|>2M/N

Then (using the estimate |@;(z)| < M, j =1,2,...) we obtain
-
Ri<MY / |F ()] da. (35)
j=1"0

Now let us estimate separately each term in the sum in the right-hand side
of (35). By definition, for each r € {1,...,N} put r = max{l,r — 4}, 7 =
min{N,r + 4}. Then

/01|Fj(:v)Id:c=/E{_ |Fj|dm+/Eg |F}| dz,

where

i e r—1r ax | 4|>16M
I N N ) iy Wil 2 T
E} =(0,1)\ El.

Since (see (27))

f,ﬁV<T—N1/2>=.0 when k<r or k>T (36)

we see that by definition of Ej and (28d),

1
/E Bl < / 5 a1 (@) de

k: (2M)/N<[ax, ;| <(16M) /N

) " (37)
< N Z |ak,;.
ki (2M)/N<|ap ;|<(16M)/N
Further, the definition of E{ yields
Elénkng]akﬂ >N if v € Ei. (38)
~1/2 .
Indeed, for z = - N/ € B,

s fan | > 16M


file:///Fj/dx
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Therefore (see (29))

o fan > 1M _SM_ 8M
i ok > =g N N

r—1/2 .
: /eE{

and (38) is established. Using (36) and (38) we get that for z =

Fj(x) Zakjf,\ x Zak,fk (z :Z((zu ar ;) I ( +a,JZ)‘,\’.,.
k=r

The latter sum is equal to zero by (28¢) and (28a). Besides (see (29)),

Y
|a’k'l al,]l<8A[ if Z_Skgra 7‘:1527-'-3N7
N
N r— 1/2 j . ) .
and || f;"||L= < 5. Hence, for each point z = N € LY there is an estimate
8M 1
|Fj(z)] < N 2 Z

and, therefore (see (38)),

40

Fi(@)l < — > 1. (39)

(ke {r,...7}: [an,;|28M/N)

It follows from (39) that

1 4M
[ mees 2 LA 5 !

“1 '/*—1/‘7)/NEE{ {ke{r,...7}: lar,j|>8M/N}
4M 36 M (40)
ki law ;| >8M/N kilay ;| >8M/N
Combining (40) and (37), we obtain that for each j = 1,2, ...
.1 P y
36 M 2 16 M
Fildz < 1+ = —-
/0 l J‘ z 2 Z + N N 1
ki fak,;|>8M/N kilay,;|>2M/N
70 M
S N2 Z L
k: Iak.jIEZM/N
Hence (see (35))
70 M?
Ry < —— > 1. (41)

(kd): lak ;|>2M /N
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Note that in (41) the summation is done over all pairs (k, 7) such that j € N,
ke{l,...,N} and |ar ;| > 2M/N.
Now let us estimate Ry (see (33)). By the Cauchy inequality,

N

1/2 00 1/2
(X a) (X))
j=1

k=1 “j:|ap ;|<2M/N

where for each j =1,2,...and k € {1,...,N}

4

-1
Ch,j 2/0 f (2)pj () de.

At the same time, by Bessel inequality and (28d), for each k =1,2,..., N,

Thus,
N 1/2
R2§ZN‘1/2< > a',i,j) . (42)
k=1 Jilar ;| <2M/N

To conclude the proof of (26) and, therefore, Theorem 2, we use the inequality

70 M? ) , O\ 2
SR > 1+ZN—1/~< > a,—w) z% (43)

(k,j): |ar,;|>2M /N k=1 (k,j): lag, ;| <2M/N

which we proved above (see (31), (41), (42)). Assuming that n is fixed and
N = [2000 M*n], suppose

. 1
max e”(Xl\:/N; (1)7 L2(0> 1)) <

1<E<N 400 Mn1/2 ; (44)

(otherwise, for a given n (26) evidently holds) and let Ay, C N, #Aj =n, be a
set of indices such that

1

WP — xi/nllne < 300 Ml B = Z Ak, 5P -
JEAL
Then
> s > ajj + > aijr (45)
j:|ak'j|§2M/N {_] [(lk‘j]SQIW/N}nAk {J [ak‘j|S2N[/N}ﬂC'Ak

where CA, = N\ Ay.
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Combining (45) with the inequality

) 1
S ahy <
e (400 M)2n

we obtain

Z aj; <n- (2M)? + L
, SRS ONZT T (400 M)
Jilan,;1<2M/N

Hence, the second sum in (43) is not greater than

N 1/2 1/2
2M . V2-1 n V2 (N 1
2ol P | <22 M| — —) <=
I;N [f N +400Mn1/2] <225 ) el <3
Thus, assuming that (44) holds, we may claim (see (43)) that
70 M? 1
= > 1> 7 (46)

(k,j): fan,j|22M /N

From (46) and the definition of N it follows that there exists a number
ko € {1,..., N} such that

2M N
| ag i > — > —— > .
#{y lag,;| > N }_ 580 312 > 2n (47)

The inequality (47) yields the following estimate for the n-term approximation
of the function xp, /v :

2

. oMN\? 1Y* om .,
2(Xk 2 > (=2 ) . N V)
en(xko/N,@,L(o,l))_[(N> n] M

_ M2 1 i
~ 200007 -n = T000M

which means that under the assumption (44) the estimate (26) also holds. This
completes the proof of Theorem 2.
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