APPROXIMATION THEORY:A volume dedicated to Blagovest Sendov(B. Bojanov, Ed.), DARBA, Sofia, 2002, pp. 241-257.

On Lower Estimates for *n*-term Approximation in Hilbert Spaces

B.S. KASHIN

1. Introduction

Let B be a real normed space, let $\Phi \subset B$ be a subset of B — we will call it a *dictionary*, and let f be any element of B.

Definition 1. *n*-term approximation of an element $f \in B$ with respect to the dictionary Φ is

$$e_n(f, \Phi, B) \equiv \inf_{P \in \Sigma_n} ||f - P||_B, \tag{1}$$

10

where for n = 1, 2, ...

$$\Sigma_n \equiv \bigg\{ \sum_{j=1}^n a_j x_j, \ a_j \in \mathbb{R}, \ x_j \in \Phi \bigg\}.$$

Further, if K is a subset of B, then

$$e_n(K, \Phi, B) \equiv \sup_{f \in K} e_n(f, \Phi, B).$$
⁽²⁾

At present, research in *n*-term approximations has become a separate branch of approximation theory. The best-investigated situation is when K is some class of smooth functions defined on the domain Ω in \mathbb{R}^d and $B = L^p(\Omega)$, $1 \leq p \leq \infty$. Various dictionaries Φ have been considered. Here are the most important examples:

a) Φ is a complete orthonormal set of functions (O.N.S.) in $L^2(\Omega)$; in particular, Φ can be a trigonometric system;

b) for the approximation of functions of d variables, defined on the cube $I^d = (0, 1)^d$, we can consider the dictionary Φ_k that consists of all functions of the type

$$u(x_1, \dots, x_k) \cdot v(x_{k+1}, \dots, x_d), \qquad 1 \le k < d_{\mathbb{F}}$$

c) for the approximation of functions of d variables by "free knots splines" we can consider dictionaries that consist of functions of the type

where P is a polynomial of the degree $\leq r$ of d variables and χ_{Δ} is the characteristic function of the segment $\Delta \subset \mathbb{R}^d$;

d) Φ is the set of ridge functions, i.e., functions in $L^p(\Omega)$, $\Omega \subset \mathbb{R}^d$, of the type

$$u(x) = f(\langle x, \theta \rangle),$$

where f is a function of one variable, $x \in \Omega$, $\theta \in \mathbb{R}^d$, $|\theta| = 1$, and $\langle \cdot, \cdot \rangle$ is an inner product in \mathbb{R}^d .

For each of those families of dictionaries there are research results that are valuable from the theoretical as well as practical point of view (see [1], [2], [3]).

Research related to the example a), i.e., the situation when Φ is a complete O.N.S., has become more active due to the development of wavelet theory. As to Definition 1, for orthonormal dictionaries in Hilbert space H it was introduced back in 1955 by S. B. Stechkin [4] when he was investigating the absolute convergence of series with respect to general complete O.N.S. Note that in this case

$$e_n(f, \Phi, H) = \left(\sum_{k \ge n+1} [c_k^*(f)]^2\right)^{1/2},$$
(3)

where $\{c_k^*(f)\}\$ is a non-increasing rearrangement of the sequence of absolute values of the Fourier coefficients of the function f with respect to the complete O.N.S. Φ .

The author in [5] suggested a geometric approach to the proof of lower estimates for values (2); this approach can be applied to any orthonormal dictionary Φ in a Hilbert space H. More precisely, it was shown in [5] that if for some $n \in \mathbb{N}$ K contains the set Q of all vertices of a 2n-dimensional cube:

$$Q = \left\{ \sum_{i=1}^{2n} \varepsilon_i \psi_i, \ \varepsilon_i = \pm 1, \ \{\psi_i\}_{i=1}^{2n} \text{ is an O.N.S.} \right\},\tag{4}$$

then

$$e_n(K, \Phi, H) \ge c \cdot n^{1/2}, \qquad c > 0.$$
 (5)

To apply this result we need to inscribe a big enough cube in a given set K (i.e., for a given n we need to find a big enough number λ and a set Q of type (4) such that $\lambda \cdot Q \subset K$). This problem is not difficult to solve for classical function classes K and it allows us in certain cases to obtain order-sharp lower estimates for n-term approximations. Estimates analogous to (5) and its generalizations were obtained in [6], [7].

In 1993 S. V. Konyagin suggested a problem of estimating the values (2) when $B = L^2(I^d)$, Φ was an O.N.S., and K was the family of characteristic functions of convex subsets of the unit cube $I^d \subset \mathbb{R}^d$. This problem seems natural from both theoretical and practical point of view. Even for d = 1 it remained unsolved. In that case (i.e., d = 1), the problem essentially can be

reduced to the estimating quantities (2) for "one-parametric" family of functions

$$K = \mathbb{X} \equiv \{\chi_t\}_{t \in [0,1]}, \qquad \chi_t(x) = \begin{cases} 0, & \text{if } 0 \le x < t, \\ 1, & \text{if } t \le x \le 1. \end{cases}$$
(6)

S. V. Konyagin brought to the author's attention the problem of lower estimates for *n*-term approximation of the family (6); he also noted that there were exponential upper estimates for those values. More precisely, if Φ_0 is the Haar system, then

$$e_n(\mathbb{X}, \Phi_0, L^2(0, 1)) \le C \cdot 2^{-n/2}.$$
 (7)

This estimate can be checked by applying a standard error estimate for L^2 -approximation of functions χ_t ($0 \leq t \leq 1$) by partial sums of Fourier–Haar series (see, for example, [8], p. 75) noticing that each dyadic block of the Fourier–Haar series of χ_t has at most one non-zero coefficient.

The family X is very "thin". That is why the above mentioned geometric approach to lower estimates for *n*-term approximation is not applicable to this set. It turned out that instead we can use a technique from the theory of general orthogonal series.

In this article, using the approach from author's paper [9], we establish the following two theorems.

Theorem 1. There exists an absolute constant C > 0 such that for each n = 1, 2, ... and for any orthonormal system $\Phi \subset L^2(0, 1)$

$$e_n(\mathbb{X}, \Phi, L^2(0, 1)) \ge C^{-n}.$$

Theorem 2. If Φ is a complete uniformly bounded orthonormal system:

$$\Phi = \{\varphi_j\}_{j=1}^{\infty} \subset L^2(0,1), \|\varphi_j\|_{L^{\infty}(0,1)} \le M, \quad j = 1, 2, \dots,$$

then for each $n = 1, 2, \ldots$

$$e_n(\mathbb{X}, \Phi, L^2(0, 1)) \ge \frac{C_M}{n^{1/2}} > 0.$$
 (8)

Remark 1. The exact value of the constant C in Theorem 1 is unknown.

Remark 2. Theorem 2 shows that the uniform boundedness condition for the orthonormal dictionary Φ substantially changes (compared with the general case) the behavior of *n*-term approximations of functions from the family X. The sharpness of estimate (8) is demonstrated by the example of the trigonometric system T: if $\Phi = T$, then

$$e_n(\mathbb{X}, T, L^2(0, 1)) \le C \cdot n^{-1/2}.$$

The results of this paper are announced in the note [10].

On Lower Estimates for *n*-term Approximation in Hilbert Spaces

2. Proof of Theorem 1

Below we denote by $\#\Lambda$ the cardinality (the number of elements) of a set Λ .

Lemma 1. Suppose $N \in \mathbb{N}$, $\Lambda \subset \mathbb{N}$, $\#\Lambda < \infty$, $\{\varphi_j\}_{j \in \Lambda}$ is a normalized system of functions in $L^2(0,1)$ (i.e. $\|\varphi_j\|_{L^2(0,1)} = 1 \quad \forall j \in \Lambda$), and for each $k = 1, 2, \ldots, N$

$$\chi_{k/N} = \sum_{j \in \Lambda} a_{k,j} \varphi_j + \Delta_k, \qquad \|\Delta_k\|_{L^1} \le \frac{1}{N} \,,$$

where χ_t is defined in (6). Then

$$\sum_{j \in \Lambda} \left(\frac{1}{N} \sum_{k=1}^{N} a_{k,j}^2 \right)^{1/2} \ge \frac{1}{2\pi} (\ln N - 7) \ge \frac{\log_2 N}{3\pi} - \frac{7}{2\pi} \,.$$

Lemma 1, up to the constants, is a special case of Theorem 1 of the paper [9]. Still, let us prove it for the sake of completeness. For each N > 2 we define a system of functions $\{f_k^N\}_{k=1}^N$ on (0,1) by the following formula:

$$f_k^N(x) = \begin{cases} \frac{1}{i-k}, & \text{if } x \in \left(\frac{i-1}{N}, \frac{i}{N}\right), \ i \neq k, \ 1 \le i \le N, \\ 0, & \text{if } x \in \left(\frac{k-1}{N}, \frac{k}{N}\right). \end{cases}$$

Using the classical inequality for a Hilbert bilinear form

$$\left|\sum_{k=1}^{N}\sum_{i=1,i\neq k}^{N}\frac{a_{k}b_{i}}{i-k}\right| \leq \pi \left(\sum_{k=1}^{N}a_{k}^{2}\right)^{1/2} \cdot \left(\sum_{i=1}^{N}b_{i}^{2}\right)^{1/2}$$

(see [11], p. 256, th. 294) for any coefficients $\{a_k\}_{k=1}^N$, we get

$$\left\|\sum_{k=1}^{N} a_k f_k^N\right\|_{L^2(0,1)} = \frac{1}{N^{1/2}} \left[\sum_{i=1}^{N} \left(\sum_{k=1}^{N} a_k f_k^N \left(\frac{i-1/2}{N}\right)\right)^2\right]^{1/2}$$
$$= \frac{1}{N^{1/2}} \sup_{\substack{\sum_{i=1}^{N} b_i^2 = 1\\ i=1}} \sum_{i=1}^{N} b_i \left(\sum_{k \neq i} \frac{a_k}{i-k}\right)$$
$$\leq \pi \left(\frac{\sum_{j=1}^{N} a_j^2}{N}\right)^{1/2}.$$
(9)

Now consider the integral

2202

$$\int_{0}^{1} \sum_{k=1}^{N} \chi_{k/N}(x) f_{k}^{N}(x) dx = \sum_{k=1}^{N} \int_{0}^{1} \chi_{k/N} \cdot f_{k}^{N} dx \ge \sum_{k=1}^{N-1} \frac{1}{N} \sum_{i=k+1}^{N} \frac{1}{i-k}$$
$$= \frac{1}{N} \sum_{k=1}^{N-1} \sum_{r=1}^{N-k} \frac{1}{r} \ge \frac{1}{N} \sum_{k=1}^{[N/2]} \sum_{r=1}^{[N/2]} \frac{1}{r} \ge \frac{1}{2} (\ln N - 5).$$

But /

$$\sum_{k=1}^{N} \chi_{k/N} f_k = \sum_{k=1}^{N} \left[\sum_{j \in \Lambda} a_{k,j} \varphi_k + \Delta_k \right] f_k$$

and for each $k = 1, 2, ..., N ||f_k||_{L^{\infty}} \leq 1$; therefore

$$\sum_{k=1}^{N} \left| \int_{0}^{1} f_{k}^{N} \Delta_{k} \, dx \right| \leq \sum_{k=1}^{N} ||\Delta_{k}||_{L^{1}} \leq 1.$$

Thus

$$\frac{1}{2}(\ln N - 7) \leq \sum_{k=1}^{N} \int_{0}^{1} f_{k}^{N}(x) \left(\sum_{j \in \Lambda} a_{k,j}\varphi_{j}(x)\right) dx$$

$$= \sum_{j \in \Lambda} \int_{0}^{1} \varphi_{j}(x) \left(\sum_{k=1}^{N} a_{k,j}f_{k}^{N}(x)\right) dx$$

$$\leq \sum_{j \in \Lambda} \left(\int_{0}^{1} \varphi_{j}^{2} dx\right)^{1/2} \left(\int_{0}^{1} \left(\sum_{k=1}^{N} a_{k,j}f_{k}^{N}\right)^{2} dx\right)^{1/2}.$$

By (9) and since the system $\{\varphi_j\}$ is normalized, the latter sum is bounded from above by

$$\pi \sum_{j \in \Lambda} \left(\frac{1}{N} \sum_{k=1}^{N} a_{k,j}^2 \right)^{1/2}.$$

This completes the proof of Lemma 1.

Lemma 2. Let f be an absolutely continuous function on (0,1) such that $||f'||_{L^2(0,1)} \leq 1$. If for some $N \in \mathbb{N}$

$$\left(\frac{1}{N}\sum_{k=1}^{N}f^{2}\left(\frac{k}{N}\right)\right)^{1/2} \equiv \varepsilon \geq \frac{3}{N},$$

then

$$\frac{2}{3}\varepsilon \le \|f\|_{L^2(0,1)} \le \frac{4}{3}\varepsilon.$$

On Lower Estimates for n-term Approximation in Hilbert Spaces

Proof. First we shall show that for each $\tau \in (0, 1/N)$

$$S = S_{\tau} \equiv \left\{ \frac{1}{N} \sum_{k=1}^{N} \left[f\left(\frac{k}{N}\right) - f\left(\frac{k}{N} - \tau\right) \right]^2 \right\}^{1/2} \le \frac{1}{N} \,. \tag{10}$$

Indeed,

$$\left| f\left(\frac{k}{N}\right) - f\left(\frac{k}{N} - \tau\right) \right| = \left| \int_{k/N-\tau}^{k/N} f'(x) \, dx \right| \le \tau^{1/2} \left(\int_{k/N-\tau}^{k/N} (f')^2 \, dx \right)^{1/2};$$

therefore,

$$S^2 \le \frac{\tau}{N} \sum_{k=1}^N \int_{k/N-\tau}^{k/N} (f')^2 \, dx \le \frac{1}{N^2} \,,$$

which proves the estimate (10). Then

$$\begin{split} \|f\|_{L^{2}(0,1)}^{2} &= \sum_{k=1}^{N} \int_{(k-1)/N}^{k/N} f^{2}(x) \, dx = \sum_{k=1}^{N} \int_{0}^{1/N} f^{2}\left(\frac{k}{N} - \tau\right) d\tau \\ &= N \int_{0}^{1/N} \left[\frac{1}{N} \sum_{k=1}^{N} f^{2}\left(\frac{k}{N} - \tau\right)\right] d\tau = N \int_{0}^{1/N} \|v_{\tau}\|_{L^{2}_{N}}^{2} d\tau, \end{split}$$

where $v_{\tau} \in \mathbb{R}^N$, $(v_{\tau})_k = f(k/N - \tau)$, $k = 1, 2, \dots, N$, and for any vector $v = \{(v)_k\}_{k=1}^N \in \mathbb{R}^N$

$$||v||_{L^2_N} \equiv \left(\frac{1}{N}\sum_{k=1}^N (v)_k^2\right)^{1/2}$$

Therefore, we get

$$||f||_{L^2}^2 = N \int_0^{1/N} ||v_\tau||_{L^2_N}^2 d\tau;$$
(11)

besides, by (10),

$$||v_0 - v_\tau||_{L^2_N} \le \frac{1}{N}, \qquad 0 < \tau < \frac{1}{N},$$

and by assumption, $||v_0||_{L^2_N} \geq 3/N$. Using the triangle inequality, for each $\tau \in (0, 1/N)$ we get

$$\frac{2}{3} ||v_0||_{L^2_N} \le ||v_0||_{L^2_N} - \frac{1}{N} \le ||v_\tau||_{L^2_N} \le ||v_0||_{L^2_N} + \frac{1}{N} \le \frac{4}{3} ||v_0||_{L^2_N};$$

that is, for each $\tau \in (0, 1/N)$ we have

$$\frac{4}{9} \|v_0\|_{L^2_N}^2 \le \|v_\tau\|_{L^2_N} \le \frac{16}{9} \|v_0\|_{L^2_N}^2,$$

and Lemma 2 now follows from (11) and the definition of the vector v_0 .

ģ

Solicitation of the second sec

Lemma 3. Suppose f is an absolutely continuous function on (0,1), f(1) = 0, $||f'||_{L^2(0,1)} \leq 1$ and $||f||_{L^2(0,1)} = \delta$. Then there exists an interval $\omega \subset (0,1)$ such that its measure $|\omega| \geq \frac{1}{2}\delta$ and

$$|f(x)| \ge \frac{1}{3}\delta \qquad \forall x \in \omega.$$

Proof. We assume that $\delta > 0$. Consider

$$E = \left\{ x \in (0,1) : |f(x)| > \frac{1}{3}\delta \right\}.$$

Clearly, E is an open set, and it can be written in the form

$$E = \bigcup \omega_i,$$

where ω_i are non-overlapping intervals. The set E is not empty and, moreover,

$$\int_{E} f^{2} dx = \int_{(0,1)} f^{2} dx - \int_{(0,1)\setminus E} f^{2} dx \ge \delta^{2} - \frac{1}{9}\delta^{2} = \frac{8}{9}\delta^{2}.$$
 (12)

^{*f*}Let z_i be the right-hand endpoint of the interval ω_i . Then $|f(z_i)| = \frac{1}{3}\delta$. Further, for each $x \in E$ there exists *i* such that $x \in \omega_i$, and then

$$|f(x) - f(z_i)| = \left| \int_x^{z_i} f'(u) \, du \right| \le |\omega_i|^{1/2} \left(\int_{\omega_i} |f'(u)|^2 \, du \right)^{1/2}$$

Hence

$$|f(x)| \le \frac{1}{3}\delta + |\omega_i|^{1/2} \left(\int_{\omega_i} |f'(u)|^2 \, du \right)^{1/2}, \qquad x \in \omega_i,$$

therefore

$$|f(x)|^2 \le \frac{2}{9}\delta^2 + 2|\omega_i| \int_{\omega_i} |f'(u)|^2 du, \qquad x \in \omega_i,$$

3

and (see (12))

$$\frac{8}{9}\delta^2 \leq \int_E f^2 dx = \sum_i \int_{\omega_i} |f|^2 dx$$
$$\leq \sum_i |\omega_i| \left[\frac{2}{9}\delta^2 + 2|\omega_i| \int_{\omega_i} |f'(u)|^2 du\right]$$
$$\leq \frac{2}{9}\delta^2 + \sum_i 2|\omega_i|^2 \int_{\omega_i} |f'(u)|^2 du.$$

By definition, put $\lambda_i = \int_{\omega_i} |f'(u)|^2 du$.

Then the previous inequality yields

$$\frac{1}{3}\delta^2 \le \sum_i |\omega_i|^2 \lambda_i. \tag{13}$$

Since

$$\sum_{i} \lambda_i \le \int_0^1 |f'(u)|^2 \, du \le 1,$$

by (13) we get that there exists an interval ω_i such that $|\omega_i|^2 \geq \frac{1}{3}\delta^2$, but in that case we have $|\omega_i| \geq \frac{1}{\sqrt{3}}\delta > \frac{1}{2}\delta$. This completes the proof of Lemma 3.

Now we can start the proof of Theorem 1. Obviously, we can complete the system Φ if necessary, thus we can assume that Φ is a complete O.N.S. It is also clear that it suffices to consider only the case when $n \ge n_0$. Let $n \ge 4$ be given and

$$N = 2^{60 n}. (14)$$

It is easy to check that in this case

$$\frac{\log_2 N}{3\pi} - \frac{7}{2\pi} \not\ge \frac{\log_2 N}{10} \,. \tag{15}$$

For the given O.N.S. Φ we obviously have one of the following two cases:

1)
$$\max_{1 \le k \le N} e_n(\chi_{k/N}, \Phi, L^2) \ge \frac{1}{2N} > \frac{1}{2^{61 n}};$$

2)
$$\max_{1 \le k \le N} e_n(\chi_{k/N}, \Phi, L^2) < \frac{1}{2N}.$$

Let us prove that in case 2)

$$\max_{1 \le k \le N} e_n(\chi_{k/N}, \Phi, L^2) \ge \frac{1}{N^{1+1/100}} \ge \frac{1}{2^{61\,n}} \,. \tag{16}$$

Thus, for each $n \ge 4$ the estimate in the Theorem 1 will be established if we take $C = 2^{61}$.

Now, if condition 2) holds, then for each k = 1, 2, ..., N,

$$\chi_{k/N}(x) = P_{\Phi}^{k,N}(x) + \Delta_{k,N}(x),$$

where $P_{\Phi}^{k,N}(x)$ is a polynomial with respect to the system Φ such that the number of its non-zero coefficients is $\leq n$ and

$$\|\Delta_{k,N}\|_{L^2(0,1)} \le \frac{1}{2N}, \qquad k = 1, 2, \dots, N.$$
 (17)

Suppose

$$P_{\Phi}^{k,N}(x) = \sum_{j \in E_{k,N}} a_{k,j} \varphi_j(x), \qquad \# E_{k,N} \le n.$$
(18)

Clearly, we can assume below that

$$a_{k,j} = \int_0^1 \chi_{k/N} \varphi_j \, dx = \int_{k/N}^1 \varphi_j \, dx$$

is a Fourier coefficient of the function $\chi_{k/N}$. This follows directly from the extremal properties of the Fourier coefficients.

By definition, put

$$\mathbb{N} \supset \Lambda \equiv \bigcup_{k} \operatorname{spectrum} P_{\Phi}^{k,N},$$

where spectrum $P_{\Phi} = \{j : a_j \neq 0\}$ if $P_{\Phi} = \sum_{j \in E} a_j \varphi_j$ is a polynomial with respect to the system Φ . Clearly, $\#\Lambda \leq n \cdot N$. Now let us consider

$$\Lambda' = \left\{ j \in \Lambda : \max_{1 \le k \le N} |a_{k,j}| = \max_{1 \le k \le N} \left| \int_{k/N}^{1} \varphi_j \, dx \right| \ge \frac{1}{2N \cdot n^{1/2}} \right\}$$

and

ţ

$$L' = \operatorname{span}\{\varphi_j, \ j \in \Lambda'\}$$

— a subspace generated by the functions $\varphi_j, j \in \Lambda'$. Then for each $k = 1, 2, \ldots, N$ for the polynomial

$$\widetilde{P}^{k,N} = \sum_{j \in \Lambda'} a_{k,j} \varphi_j$$

we have

$$\chi_{k,N} = \widetilde{P}^{k,N} + \widetilde{\Delta}_{k,N}, \qquad \|\widetilde{\Delta}_{k,N}\|_{L^2} \le \frac{1}{N}.$$
(19)

Indeed,

$$\chi_{k,N} = \widetilde{P}^{k,N} + \sum_{j \in E_{k,N} \setminus \Lambda'} a_{k,j} \varphi_j + \Delta_{k,N},$$

but by the very definition of Λ' ,

$$\left\|\sum_{j\in E_{k,N}\setminus\Lambda'}a_{k,j}\varphi_j\right\|_{L^2} \leq \left[n\frac{1}{(2N)^2n}\right]^{1/2} = \frac{1}{2N}$$

from which, using also (17), we get (19).

By Lemma 1 (see also (15)), it follows from (19) that

$$\sum_{j \in \Lambda'} \varepsilon_j \nleq \frac{1}{10} \log_2 N, \tag{20}$$

where

$$\varepsilon_j = ||\{a_{k,j}\}||_{L^2_N} \equiv \left(\frac{1}{N}\sum_{k=1}^N a_{k,j}^2\right)^{1/2}.$$

Let us show that

there exists a number $k_0 \in \{1, ..., N\}$ such that the set of coefficients $a_{k_0,j}, j \in \Lambda'$, contains more than ncoefficients whose absolute value is greater than $\frac{1}{N^{101/100}}$. $\left.\right\}$ (21)

The required relation (16) follows directly from (21).

By definition, for $K \subset \{1, \ldots, N\}$ put

$$\mu(K) = \frac{\#K}{N} \,.$$

The relation (21) will be proved if we check that

$$\sum_{j \in \Lambda'} \mu \left\{ k : |a_{k,j}| > \frac{1}{N^{1.01}} \right\} > n.$$
(22)

We consider the decomposition

$$\Lambda' = \Lambda'' \cup \Lambda''',$$

where

$$\Lambda'' = \left\{ j \in \Lambda' : \varepsilon_j > \frac{6}{N} \right\}, \qquad \Lambda''' = \Lambda' \setminus \Lambda''.$$

By the definition of Λ' and the inequality $N^{1.01}\geq 2N\cdot n^{1/2}$ (see (14)), we obtain that for each $j\in\Lambda'''$

$$\left\{k:|a_{k,j}|\geq \frac{1}{N^{1.01}}\right\}\neq \emptyset;$$

therefore, for each $j \in \Lambda^{\prime\prime\prime}$,

$$\mu \left\{ k : |a_{k,j}| \ge \frac{1}{N^{1.01}} \right\} \ge \frac{1}{N} \ge \frac{1}{6} \varepsilon_j$$

and, thus,

$$\sum_{j \in \Lambda^{\prime\prime\prime}} \mu\left\{k : |a_{k,j}| \ge \frac{1}{N^{1.01}}\right\} \ge \frac{1}{6} \sum_{j \in \Lambda^{\prime\prime\prime}} \varepsilon_j.$$
(23)

On the other hand, if $j \in \Lambda''$, then $||\{a_{k,j}\}||_{L^2_N} = \varepsilon_j > 6/N$ and the application of Lemma 2 to the function

$$f(x) = \int_{x}^{1} \varphi_{j}(t) \, dt$$

yields

$$||f||_{L^2(0,1)} \equiv \left\| \int_x^1 \varphi_j(t) \, dt \right\|_{L^2(0,1)} \ge \frac{2}{3} \varepsilon_j > \frac{4}{N} \, .$$

Therefore, by Lemma 3, there exists an interval $\omega \subset (0,1)$ such that its measure is $1 \qquad 2$

$$|\omega| \ge \frac{1}{2} ||f||_{L^2(0,1)} > \frac{2}{N}$$

and for each $x\in\omega$

$$\left| \int_{x}^{1} \varphi_{j}(t) \, dt \right| \ge \frac{1}{3} ||f||_{L^{2}(0,1)} \ge \frac{2}{9} \varepsilon_{j}.$$
(24)

Note that the lower estimate for the number of points of the form k/N, $1 \leq k \leq N$, within the interval ω is $|\omega| \cdot N - 1$, so we can see that for each $j \in \Lambda''$ this number is not less than $\frac{N}{3}\varepsilon_j - 1 > \frac{N}{6}\varepsilon_j$.

Hence

 γ_{ij}

$$\sum_{j \in \Lambda''} \mu\{k : |a_{k,j}| \ge N^{-1.01}\} \ge \sum_{j \in \Lambda''} \mu\{k : |a_{k,j}| \ge \frac{2}{9}\varepsilon_j\} \ge \sum_{j \in \Lambda''} \frac{\varepsilon_j}{6} \qquad (25) \quad (25)$$

(we used the estimate $N^{-1.01} \leq N^{-1} \leq \frac{2}{9}\varepsilon_j$ for $j \in \Lambda''$). Finally, we have (see (23), (25))

$$\sum_{j \in \Lambda'} \mu \{k : |a_{k,j}| \ge N^{-1.01}\} = \sum_{j \in \Lambda''} + \sum_{j \in \Lambda''} \oint \sum_{j \in \Lambda''} \frac{1}{6} \varepsilon_j + \sum_{j \in \Lambda''} \frac{1}{6} \varepsilon_j = \frac{1}{6} \sum_{j \in \Lambda'} \varepsilon_j.$$

The right-hand side of this relation, by (20) and (14), is not less than n. Thus the inequality (22) is established, and this completes the proof of Theorem 1.

3. Proof of Theorem 2

The considerations below are in some sense similar to the proof of the estimate (9) in [9]. Let us check that for each O.N.S. Φ that satisfies the conditions of Theorem 2, for each $n \in \mathbb{N}$ and $N = [2000 M^2 n]$ the following inequality holds

$$\max_{1 \le k \le N} e_n(\chi_{k/N}, \Phi, L^2(0, 1)) \ge \frac{1}{1000 M} \cdot \frac{1}{n^{1/2}}.$$
 (26)

It is clear that Theorem 2 follows from (26). In order to prove the estimate (26) we define (for N > 10) the system of functions $\{f_k^N\}_{k=1}^N$ on the segment [0,1] such that these functions are constant on each interval $\left(\frac{r-1}{N}, \frac{r}{N}\right), 1 \le r \le N$, and

$$f_k^N\left(\frac{r-1/2}{N}\right) = \begin{cases} \frac{1}{2}, & \text{if } 2 \le r-k \le 3, \ 4 < r \le N-4, \\ -\frac{1}{2}, & \text{if } 2 \le k-r \le 3, \ 4 < r \le N-4, \\ 0 & \text{for other } k, \ r. \end{cases}$$
(27)

It follows from definition (27) that

a)
$$f_{k}^{N}(x) = 0$$
 when $4 \le k \le N - 4$ and $x \notin \left[\frac{k-4}{N}, \frac{k+3}{N}\right]$;
b) $f_{k}^{N}(x) \ge 0$ when $x \ge \frac{k}{N}$;
c) $\sum_{k=1}^{N} f_{k}^{N} \equiv 0$;
d) $\|f_{k}^{N}\|_{L^{1}} \le \frac{2}{N}, \|f_{k}^{N}\| \le \frac{1}{N^{1/2}}$.
(28)

For $k = 1, 2, \ldots, N$ put

$$a_{k,j} = \int_0^1 \chi_{k/N} \varphi_j \, dx, \qquad j = 1, 2, \dots$$

Note that

$$|a_{k,j} - a_{k+1,j}| \le \frac{M}{N}, \qquad 1 \le k \le N - 1,$$
(29)

which follows from the estimate

$$|a_{k,j} - a_{k+1,j}| = \left| \int_0^1 \varphi_j(\chi_{k/N} - \chi_{(k+1)/N}) \, dx \right| = \left| \int_{k/N}^{(k+1)/N} \varphi_j \, dx \right| \le \frac{M}{N} \, .$$

From the definitions and properties of the functions f_k^N , (see (27), (28)) it follows directly that

$$\int_{0}^{1} \sum_{k=1}^{N} \chi_{k/N} f_{k}^{N} dx \ge \sum_{k=4}^{N-8} \int_{k/N}^{1} f_{k}^{N}(x) dx \ge \frac{N-12}{N} \ge \frac{1}{2}$$
(30)

(we used here that $N \ge 2000$). Thus

$$\frac{1}{2} \leq \int_{0}^{1} \sum_{k=1}^{N} \chi_{k/N} f_{k}^{N} dx
= \int_{0}^{1} \sum_{k=1}^{N} f_{k}^{N} \left(\sum_{j=1}^{\infty} a_{k,j} \varphi_{j} \right) dx
= \sum_{j=1}^{\infty} \sum_{k=1}^{N} a_{k,j} \int_{0}^{1} f_{k}^{N} \varphi_{j} dx \equiv R_{1} + R_{2},$$
(31)

where

$$R_1 = \sum_{j=1}^{\infty} \int_0^1 \varphi_j \left(\sum_{k: |a_{k,j}| > 2M/N} a_{k,j} f_k^N \right) dx, \tag{32}$$

 $B.\,S.\,Kashin$

1

$$R_2 = \sum_{k=1}^{N} \sum_{j: |a_{k,j}| \le 2M/N} a_{k,j} \int_0^1 \varphi_j f_k^N dx.$$
 (33)

Now let us estimate R_1 and R_2 . For j = 1, 2, ..., consider

 $\mathbb{V}_{\frac{1}{2}}$

.

$$F_{j}(x) \equiv \sum_{k: |a_{k,j}| > 2M/N} a_{k,j} f_{k}^{\bar{N}}.$$
 (34)

Then (using the estimate $|\varphi_j(x)| \leq M, \, j = 1, 2, \ldots$) we obtain

$$R_1 \le M \sum_{j=1}^{\infty} \int_0^1 |F_j(x)| \, dx.$$
(35)

Now let us estimate separately each term in the sum in the right-hand side of (35). By definition, for each $r \in \{1, \ldots, N\}$ put $\underline{r} = \max\{1, r - 4\}, \overline{r} = \min\{N, r + 4\}$. Then

$$\int_0^1 |F_j(x)| \, dx = \int_{E_1^j} |F_j| \, dx + \int_{E_2^j} |F_j| \, dx,$$

where

$$E_1^j = \left\{ x : x \in \left(\frac{r-1}{N}, \frac{r}{N}\right), \max_{\underline{r} \le k \le \overline{r}} |a_{k,j}| > \frac{16\,M}{N} \right\},$$
$$E_2^j = (0,1) \setminus E_1^j.$$

Since (see (27))

$$f_k^N\left(\frac{r-1/2}{N}\right) = 0 \quad \text{when} \quad k < r \quad \text{or} \quad k > \overline{r} \tag{36}$$

we see that by definition of E_2^j and (28d),

$$\int_{E_{2}^{j}} |F_{j}| dx \leq \int_{0}^{1} \sum_{\substack{k: (2M)/N \leq |a_{k,j}| \leq (16M)/N \\ k: (2M)/N \leq |a_{k,j}| \leq (16M)/N}} |a_{k,j}| |f_{k}^{N}(x)| dx$$

$$\leq \frac{2}{N} \sum_{\substack{k: (2M)/N \leq |a_{k,j}| \leq (16M)/N \\ k: (2M)/N \leq |a_{k,j}| \leq (16M)/N}} |a_{k,j}|.$$
(37)

Further, the definition of E_1^j yields

$$\min_{\underline{r} \le k \le \overline{r}} |a_{k,j}| > \frac{8M}{N} \quad \text{if} \quad \frac{r-1/2}{N} \in E_1^j.$$

$$(38)$$

Indeed, for $x = \frac{r-1/2}{N} \in E_1^j$,

$$\max_{\underline{r} \le k \le \overline{r}} |a_{k,j}| > \frac{16\,M}{N} \,.$$

Therefore (see (29))

$$\min_{\underline{r} \le k \le \overline{r}} |a_{k,j}| > \frac{16\,M}{N} - \frac{8M}{N} = \frac{8M}{N} \,,$$

1000

and (38) is established. Using (36) and (38) we get that for $x = \frac{r - 1/2}{N} \in E_1^j$

$$F_{j}(x) = \sum_{k=1}^{N} a_{k,j} f_{k}^{N}(x) = \sum_{k=\underline{r}}^{\overline{r}} a_{k,j} f_{k}^{N}(x) = \sum_{k=\underline{r}}^{\overline{r}} (a_{k,j} - a_{\underline{r},j}) f_{k}^{N}(x) + a_{\underline{r},j} \sum_{k=\underline{r}}^{\overline{r}} f_{k}^{N}(x).$$

The latter sum is equal to zero by (28c) and (28a). Besides (see (29)),

$$|a_{k,j} - a_{\underline{r},j}| \le \frac{8M}{N}$$
 if $\underline{r} \le k \le \overline{r}$, $r = 1, 2, \dots, N$,

and $||f_k^N||_{L^{\infty}} \leq \frac{1}{2}$. Hence, for each point $x = \frac{r-1/2}{N} \in E_1^j$ there is an estimate

$$|F_j(x)| \le \frac{8M}{N} \cdot \frac{1}{2} \cdot \sum_{\underline{r} \le k \le \overline{r}} 1$$

and, therefore (see (38)),

$$|F_j(x)| \le \frac{4M}{N} \sum_{\{k \in \{\underline{r}, \dots, \overline{r}\}: |a_{k,j}| \ge 8M/N\}} 1.$$
(39)

It follows from (39) that

$$\int_{E_1^j} |F_j(x)| \, dx \le \sum_{\substack{r: (r-1/2)/N \in E_1^j}} \frac{1}{N} \cdot \frac{4M}{N} \cdot \sum_{\substack{k \in \{\underline{r}, \dots, \overline{r}\}: |a_{k,j}| \ge 8M/N}} 1 \\ \le \frac{4M}{N^2} \cdot 9 \cdot \sum_{\substack{k: |a_{k,j}| \ge 8M/N}} 1 = \frac{36M}{N^2} \sum_{\substack{k: |a_{k,j}| \ge 8M/N}} 1.$$
(40)

Combining (40) and (37), we obtain that for each j = 1, 2, ...

$$\int_{0}^{1} |F_{j}| \, dx \leq \frac{36\,M}{N^{2}} \sum_{k: |a_{k,j}| \geq 8M/N} 1 + \frac{2}{N} \cdot \frac{16\,M}{N} \cdot \sum_{k: |a_{k,j}| \geq 2M/N} 1$$
$$\leq \frac{70\,M}{N^{2}} \sum_{k: |a_{k,j}| \geq 2M/N} 1.$$

Hence (see (35))

$$R_1 \le \frac{70 M^2}{N^2} \sum_{(k,j): |a_{k,j}| \ge 2M/N} 1.$$
(41)

1

Note that in (41) the summation is done over all pairs (k, j) such that $j \in \mathbb{N}$, $k \in \{1, \ldots, N\}$ and $|a_{k,j}| \ge 2M/N$. Now let us estimate R_2 (see (33)). By the Cauchy inequality,

$$R_2 \le \sum_{k=1}^N \left(\sum_{j: |a_{k,j}| \le 2M/N} a_{k,j}^2 \right)^{1/2} \cdot \left(\sum_{j=1}^\infty c_{k,j}^2 \right)^{1/2},$$

where for each $j = 1, 2, ... \text{ and } k \in \{1, ..., N\}$

$$c_{k,j} = \int_0^1 f_k^N(x)\varphi_j(x) \, dx.$$

At the same time, by Bessel inequality and (28d), for each k = 1, 2, ..., N,

$$\left(\sum_{j=1}^{\infty} c_{k,j}^2\right)^{1/2} \le N^{-1/2}.$$

Thus,

$$R_2 \le \sum_{k=1}^N N^{-1/2} \left(\sum_{j: |a_{k,j}| \le 2M/N} a_{k,j}^2 \right)^{1/2}.$$
(42)

To conclude the proof of (26) and, therefore, Theorem 2, we use the inequality

$$\frac{70\,M^2}{N^2} \sum_{(k,j): |a_{k,j}| \ge 2M/N} 1 + \sum_{k=1}^N N^{-1/2} \left(\sum_{(k,j): |a_{k,j}| \le 2M/N} a_{k,j}^2 \right)^{1/2} \ge \frac{1}{2} \quad (43)$$

which we proved above (see (31), (41), (42)). Assuming that n is fixed and $N = [2000 M^2 n]$, suppose

$$\max_{1 \le k \le N} e_n(\chi_{k/N}, \Phi, L^2(0, 1)) < \frac{1}{400 \, M n^{1/2}};$$
(44)

(otherwise, for a given n (26) evidently holds) and let $\Lambda_k \subset \mathbb{N}, \ \#\Lambda_k = n$, be a set of indices such that

$$||P_k - \chi_{k/N}||_{L^2} \le \frac{1}{400 \, M n^{1/2}}, \qquad P_k = \sum_{j \in \Lambda_k} a_{k,j} \varphi_j$$

Then

$$\sum_{j: |a_{k,j}| \le 2M/N} a_{k,j}^2 \le \sum_{\{j: |a_{k,j}| \le 2M/N\} \cap \Lambda_k} a_{k,j}^2 + \sum_{\{j: |a_{k,j}| \le 2M/N\} \cap C\Lambda_k} a_{k,j}^2, \quad (45)$$

where $C\Lambda_k = \mathbb{N} \setminus \Lambda_k$.

Combining (45) with the inequality

$$\sum_{j \in C\Lambda_k} a_{k,j}^2 \le \frac{1}{(400\,M)^2 n} \,,$$

we obtain

$$\sum_{j: |a_{k,j}| \le 2M/N} a_{k,j}^2 \le n \cdot \frac{(2M)^2}{N^2} + \frac{1}{(400\,M)^2 n} \, .$$

Hence, the second sum in (43) is not greater than

$$\sum_{k=1}^{N} N^{-1/2} \left[\sqrt{2} \, \frac{2M}{N} n^{1/2} + \frac{\sqrt{2} \cdot 1}{400 \, M n^{1/2}} \right] \le 2\sqrt{2} \, M \left(\frac{n}{N}\right)^{1/2} + \frac{\sqrt{2}}{400 \, M} \left(\frac{N}{n}\right)^{1/2} \le \frac{1}{4} \, .$$

Thus, assuming that (44) holds, we may claim (see (43)) that

$$\frac{70\,M^2}{N^2} \sum_{(k,j): \, |a_{k,j}| \ge 2M/N} 1 \ge \frac{1}{4}.$$
(46)

From (46) and the definition of N it follows that there exists a number $k_0 \in \{1, \ldots, N\}$ such that

$$\#\left\{j: |a_{k,j}| \ge \frac{2M}{N}\right\} \ge \frac{N}{280\,M^2} \ge 2n. \tag{47}$$

The inequality (47) yields the following estimate for the *n*-term approximation of the function $\chi_{k_0/N}$:

$$e_n(\chi_{k_0/N}, \Phi, L^2(0, 1)) \ge \left[\left(\frac{2M}{N}\right)^2 \cdot n \right]^{1/2} = \frac{2M}{N} \cdot n^{1/2}$$
$$= \frac{2M \cdot n^{1/2}}{[2000 M^2] \cdot n} \ge \frac{1}{1000 M} \cdot n^{-1/2},$$

which means that under the assumption (44) the estimate (26) also holds. This completes the proof of Theorem 2.

References

- [1] R. A. DEVORE, Nonlinear approximation, Acta Numerica 7 (1998), 51-150.
- [2] V. N. TEMLYAKOV, Nonlinear Methods of Approximation, IMI Preprint 2001:09, University of South Carolina, 2001.
- [3] K. I. OSKOLKOV, Linear and nonlinear methods in ridge approximation, in "Metric Function Theory and Related Topics" (dedicated to P. L. Ulyanov's 70th birthday), pp. 165–195, AFC, Moscow, 1999. [In Russian]

No.

 S. B. STECHKIN, On absolute convergence of orthonormal series, *Dokl. Akad.* Nauk SSSR 102, 1 (1955), 37–40. [In Russian]

1

- B. S. KASHIN, On approximation properties of complete orthonormal systems, Trudy Mat. Inst. Steklov 172 (1985), 187–191; Proc. Steklov Inst. Math. 3 (1987), 207–211. [English translation]
- [6] B. S. KASHIN AND V. N. TEMLYAKOV, On best *m*-term approximations and the entropy of sets in the space L^1 , Math. Notes **56**, 5 (1994), 57–86.
- [7] D. L. DONOHO, CART and best-ortho-basis: a connection, Ann. of Statistics 25, 5 (1997), 1870-1911.
- [8] B. S. KASHIN AND A. A. SAAKYAN, "Orthogonal Series," 2nd edition, AFC, Moscow, 1999. [In Russian]
- [9] B. S. KASHIN, On the coefficients of expansion of functions from a certain class with respect to complete systems, *Siberian J. Math.* **18**, 1 (1977), 122–131.
- [10] B. S. KASHIN, On lower estimates for n-term approximations, Math. Notes 70, 4 (2001), 636–638.
- [11] G. HARDY, D. LITTLEWOOD, AND G. POLIA, "Inequalities," Inostrannaya Literatura, Moscow, 1948. [In Russian]

 \mathbf{v}

BORIS KASHIN

Steklov Mathematical Institute Vavilov str. 42 Moscow 117 966 GSP-1, RUSSIA *E-mail:* kashin@ipsun.ac.msk.su