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THE VOLUME ESTIMATES AND THEIR
APPLICATIONS
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Dedicated to S. A. Telyakovskii on the occasion of his 70th birthday

We prove new estimates for the entropy numbers of classes of multi-
variate functions with bounded mixed derivative. It is known that the
investigation of these classes requires development of new techniques
comparing to the univariate classes. In this paper we continue to de-
velop the technique based on estimates of volumes of sets of the Fourier
coefficients of trigonometric polynomials with frequencies in special re-
gions. We obtain new volumne estimates and use them to get right orders
of decay of the entropy numbers of classes of functions of two variables
with a mixed derivative bounded in the L;-norm. This is the first such
result for these classes. This result essentially completes the investiga-
tion of orders of decay of the entropy numbers of classes of functions
of two variables with bounded mixed derivative. The case of similar
classes of functions of more than two variables is still open.

1. Introduction

We obtain in this paper new estimates of volumes of sets of the Fourier
coefficients of trigonometric polynomials of two variables with frequencies in
a hyperbolic layer. Section 2 is devoted to this kind of estimates. Then, in
Section 3 we use results of Section 2 to prove lower estimates for the en-
tropy numbers of classes of functions with bounded mixed derivative. The
new volume estimates from Section 2 allowed us to essentially complete the
investigation of orders of decay of the entropy numbers ¢, (W ,, Lp) for all
1 € ¢,p < oo and large enough r in the case of classes of functions of two
variables. In Section 4 we apply results of Section 2 to the following prob-
lem of discretization. We look for a set of points with a property: (E) the
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uniform norm on this set of points is equivalent to the uniform norm for any
trigonometric polynomial with frequencies from a given-hyperbolic layer. We
give in Section 4 other proof of the following surprising result from [KT3],
[KT4]: the cardinality of a set with the property (E) must grow at least as
N'*2 a > 0, where N is the dimension of the corresponding subspace of
trigonometric polynomials. The proof of the above result from [KT3], [KT4]
made use of extremal properties of the multivariate normal distribution and
an inequality for the trigonometric polynomials from [T2]. Later, other in-
equality for the trigonometric polynomials has been obtained in [T6]. Our
proof in this paper uses this new inequality and the volume estimates from
Section 2. This allowed us to simplify the original proof (see [KT4]).

We now formulate the main results of the paper. Let s = (s1,...,54) be
a vector with non-negative integer coordinates (s € Z%) and

ps) = k= (k. ka) €240 9T S kil <2, G=1,...,d)

where [a] denotes the integer part of a number a. For any natural number n,
let us denote

Qn = U ,é(s); AQyn = Qn \ Qn-1

llslf1<n

with ||s|ji = s1+ - -+sqsfor s € Zi. We call the set AQ, a hyperbolic layer.
For a finite set A C Z4 denote

T(A) = {f (@) = kEZAcke“k'ﬂ}.

We assign to each f =73 ;5 f(k)e %) € T(A) a vector
A(f) = {(Ref(k), Imf(k)), ke A} eRAN

where |A| denotes the cardinality of A and define

Ba(Ly) :={A(f) : f €T(A), [Ifll, <1}

The volume estimates of the sets By(L,) and related questions have been
studied in a number of papers by the authors: the case A = [-n,n], p = o in
[K1]; the case A = [-Ny, N1] x -+ x [=Ng, Na], p = oo in [T2], [T3]; the case
of arbitrary A and p = 1 in [KT1]. In particular, the results of [KT1] imply
(see Theorem 2.4 of this paper) for d = 2 and 1 < p < oo that

(vol (Bag, (Ly))A1A@D™" < |AQ,|~1/2 < (2Mn)~1/2.

We shall prove in Section 2 (see Theorem 2.5) that in the case p = oo the
volume estimate is different:

(vol (Bag, (Leo)) 29D < (27n?)7172,
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We note that in the case A = [Ny, N1] x - - - x [~ Ng, Ng] the volume estimate
is the same for all 1 < p < co. We discuss this in more detail in Section 2.

In Section 3 we apply the volume estimates to the problem of asymptotic
behavior of the entropy numbers of the classes W[ ,. We now give the cor-
responding definitions. For a natural number m and a compact set F' in a
Banach space X with the unit ball B(X) we define the mth entropy number
as

-
em(F, X) 1= inf{f 23f1, . fem € X0 FC W +cB(X))}.

j=1
Let » > 0 and o € R. Define

Fo(t,a) =1+ 22 k=" cos(kt — an/2), t€0,2n].
k=1
We define for ¢ = (21, z2) and a = (a1, az)

Fr(m» 0‘) = Fr(mlaal)Fr(x% O‘Z)-
Finally, we define

W;,a ={f:f= FT('»a)*SO’ ”‘P”q < 1}

where * means convolution. The problem of estimating e (Wy o, Lp) has a
long history. We shall mention some results only in the case d = 2. The
first result on the right order of ¢, (W] ,, Ly) in the case p = ¢ = 2 has been
obtained by Smolyak [Sm] in 1960. Here is a list of further contributions:
Dinh Dung [D], 1985, the case 1 < ¢ = p < oo; Temlyakov [T1], [T2], 1988,
the case 1 < q,p < 0o, » > 1 and the case p = 1,1 < ¢ < oo; Belinskii [B],
1990, the case p = 1, ¢ = oo, r > 1/2; Kashin, Temlyakov [KT1], [KT2],
1994-1995, the case p = 1, ¢ = oo, 7 > 0; Kuelbs, Li [KL], 1993, the case
p =00, ¢ =2, r = 1; Temlyakov [T5], 1995, the case p = 00, 1 < ¢ < 00;
Temlyakov [T6], 1998, the case p = 00, ¢ = 00, 7 > 1/2.

In Section 3 we study the case left open: ¢ = 1, 1 < p < co. We prove
that (see Theorem 3.1):

em(WT o, Lp) < m~" (logm)™+1/2
(1.1) b

1<p<oo, r>max(l/2,1-1/p)
and
em(W1 gy Loo) X m™"(logm)™*',  »> 1.
It is interesting to compare these estimates with the case 1 < ¢,p < co where
we have

(1.2) em(W]

)a’

L,) < m™"(logm)".

We note that when we turn from ¢ > 1 to ¢ = 1 the exponent for logm jumps
from r in (1.2) to r + 1/2 in (1.1).
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2. The volume estimates

The main goal of this section is to prove new estimates for volumes of
sets of the Fourier coeflicients of trigonometric polynomials of two variables
(dimension d = 2) with frequencies in a hyperbolic layer. In some cases we
shall give estimates in arbitrary dimension d. It is well-known (see [K1], [T2],
[T4], [KT1]) that the volume estimates of the above mentioned sets can be
used in different problems of approximation theory including the problem of
estimating the entropy numbers of function classes. We use the notations
T(A), A(f), and Bo(L,) introduced in Section 1. In the case

A=T(N) :=[=Ni, N ] X -+« x [=Ng, N4}, N :=(Ny,...,Nq),

the volume estimates are known. We formulate it as a theorem.

Theorem 2.1. For any 1 < p < 0o we have
(vol (B (L)) VD™ < jm(a)|=/2,

with constants in < that may depend only on d.

We note that the most difficult part of Theorem 2.1 is the lower estimate
for p = co. The corresponding estimate was proved in the case d = 1 in [K1]
and in the general case in [T2] and [T3]. The upper estimate for p = 1 in
Theorem 2.1 can be easily reduced to the volume estimate for an octahedron
(see, for instance, [T4]).

The results of [KT1] imply the following estimate.

Theorem 2.2. For any finite set A C Z% and any 1 < p < 2 we have
vol (Ba (L, ))2IAD™" < |A =172,

The following result of Bourgain-Milman [BM] plays an important role in
the volume estimates of finite dimensional bodies.

Theorem 2.3. For any convez cenirally symmeiric body K C R™ we have
(vol (K )vol (K°))Y/™ < (vol (BR))*™ < 1/n
where K° is a polar for K, that is

K°:={z €eR" : sup(z,y) < 1}.
yeEK

Having in mind an application of Theorem 2.3 we define some other than
BA(Lp) sets. Let

EL = inf — EL = inf —
N gil;;wllf 9llp, ar(f)p le(;l){g(k)emllf gllp
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and
Bx(Lp) :={A(f) : f € T(A), Ex(f), <1}.

It is clear that
BA(LP) - Bk(Lp)-

Moreover, if the orthogonal projector Pa onto 7 (A) is bounded as an operator
from L, to Ly, then we have

(2.1) vol (Ba(Ly)) 0™ x vol (B (L)) 07"

For example, it is the case when A = (J,¢ 4 p(s). We also consider

Bar(Lp) = {AN) : Il <1, fET(A), f(k)ER}

and

B r(Lp) = {A(f) : EXr(f)p <1, fET(A), f(k)€R}.

Using the Nikol’skii duality theorem and the basic properties of the de la
Vallée-Poussin operators one can check that

1 p
(2.2) 53,{,,2@,,,) C Bar(Lp)° C 2By p(Ly), P = T

We shall now show that the volumes of By(L,) C R2Al and Bar(Lp) C RIAI
are closely related. First of all, if

Sae®| <12, | ndt| <172
keA P kEA
then
> (ak +ib)ef NN <1
keA P
Therefore,
1 1
(2.3) 5B R(Lp) 5BaR(Lp) | € Ba(Ly)-
Next, let
;1:) = Z(ak + ibk)ei(k’x).
EEA
Then

D are’®®) = f(ﬂf) + f(-2))

keA
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and

i3 et = (@) - fl-2)).

keA

This implies that

(2.4) - Ba(Lp) € Ba,r(Lp) ® Ba,r(Lp)-

We get from (2.3) and (2.4) that

(2.5) (vol (B (Lp))PAD™" < (vol (By g(L,))1AD 7.
Similarly we get

(2.6) (vol (B (L,))AIA™ < (vol (Bf g(Lp))D™".

This observation, Theorems 2.2 and 2.3 combined with (2.1) imply the fol-
lowing statement.

Theorem 2.4. Let A have the form A = | .5 p(s), where S C Zi is a
finite set. Then, for any 1 < p < oo, we have

vol (Ba(L,))@AD™ < (a=1/2,

We now proceed to the main results of this section. First we denote
N = 2|AQ,|.

Theorem 2.5. In the case d = 2 we have

(2.7) . (vol(Bag. (Loo)))l/N - (211"2)—1/2;

(2.8) (vol (Bxg, (LN < 2772,

It is interesting to compare the first relation in Theorem 2.5 with the
following estimate for 1 < p < oo that follows from Theorem 2.4

(2.9) (vol(BAQn(Lp)))l/N = (2"n)"1/2,

We see that in the case A = AQ,, unlike the case A = II(Ny,..., Ny), the
estimate for p = oo is different from the estimate for 1 < p < oco.

Proof of Theorem 2.5. We begin with the proof of the lower estimate in
(2.7). We shall formulate and prove it in a more general form.

Lemma 2.1. Let A C [-2",2"]% and N := 2|A|. Then

(vol(Ba(Loo )N > C(d)(Nn)~'/2.
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Proof. We use the following result of Gluskin [G].
Theorem 2.6. Lel Y = {y1,...,ym} CRY, |li|l=1,i=1,..., M, and

Then
(vol (W(Y))MN > Clog(M/N))~'/2.

Consider the following lattice on T%
Gni={z()=(l,...,lg)m2™"" 1 1< <2 [ eN, j=1,...,d}.

It is clear that iGnl’: 24(n+2) 1t is well-known that for any f € 7 ([-2",2"]9)
one has

[1flleo < C1(d) max |f(x)].
Thus, for any A C [-2",2"]¢ we have
(2100 {A(F): FETA), () <Ci(d), @ €Gn}C Balles):

Further
2

f()I*

> fkye

keA

2
( Z Ref(k) cos(k, &) — Imf (k) sin(k, :c))

keA

2
+ ( Z Ref(k)sin(k, z) + Imf(k) cos(k, :L')> .

keA

We associate with each point = € G, two vectors y!(z) and y*(z) from RY:

y'(z) = {(cos(k,z),—sin(k,z)), k€ A},
vi(z) = {(sin(k,z),cos(k,z)), k€A}.
Then
lly' (@)II” = lly*(@)II* = |A]|
and

[F(@)I* = (A(f), ¥ (2))* + (A(), * (2))*.
It is clear that the condition |f(z)| < C1(d)~! is satisfied if
((A(), ¥ (@) < 271 2Cu(@)7!, =12

Let now . .
Y={y'(@)/lly'(@)ll, z€GCGn i=12}
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Then M = 24+2)+1 and by Theorem 2.6
(2.11) (vol (W(YIN)'N > (log(M/N))~ 1% > n=1/2,
Using the fact that the condition

[(ACS), ¥ (@) < 1

is equivalent to the condition
(AW, ¥ (@)/1ly (2)ID] < (N/2)71/2,
we get from (2.10) and (2.11)
(vol (Ba(Leo)))' /N > (Nn) 712,
This completes the proof of Lemma 2.1

Lemma 2.1 implies immediately the lower estimate in (2.7) because in
this case |AQn| < 2"n. We emphasize that Lemma 2.1 shows that a lower
estimate similar to (2.7) holds for any A C [-2",2")? with |A| < |AQy| and
therefore it does not depend on the geometry of A.

We now proceed to the proof of the upper estimate in (2.7). This proof
uses the geometry of AQ,. Comparing the estimate (2.7) with Theorem 2.1
we conclude that the upper estimate in (2.7) cannot be generalized for all
A C [-2",2"]? with |A| < |AQ,|. We prove first the lower estimate in (2.8).
We shall use the following lemma that follows directly from Lemma 2.4 in

[T6]. |
Lemma 2.2. Let d = 2. For any f € T(AQ,) salisfying
Ilés(f)”oo S 17 ”'5”] =n, 6s(f) = Z f(](;)ei(]"y'l')7
kep(s)

we have

Eg.(fh<C.
Let us denote
Hoo(AQn) :={f € T(AQn) : [|6:(f)lloo < 1}

and
A(Hoo(AQn)) == {A(f) : f € Hoo(AQn)}-
Lemma 2.2 implies that (N = 2|AQ,])

(2.12) (vol (Bxq, (L1))'N > (vol (A(Hoo (AQn))))N.
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Using Theorem 2.1 we get

/ 1/N
vol (A(Hoo (AQ NN = vol(A(T (p(5))eo
oy (A ("P (AT (p(s)) )))

> 2—11/2’
where
T(p(s))oo :={t € T(p(s)) : [It|lo < 1}

The lower estimate in (2.8) follows from (2.12) and (2.13).
Using Theorem 2.3 and relations (2.2), (2.5), and (2.6) we complete the
proof of Theorem 2.5.

3. Estimates of the e-entropy

In this section we use the results from Section 2 for obtaining new lower
estimates for the e-entropy of the classes W{ , in Ly, 1 < p < co. We confine
ourselves to the case of functions of two variables. We prove the following
theorem here.

Theorem 3.1. The following relations hold

em(W7 o, Lp) < m™"(logm)™+1/2,
(3.1)
1<p<oo, r>max(1/2,1-1/p);
(3.2) em(W7 g, Leo) < m™"(logm)™!, r> 1.

Proof. We first prove the upper estimates. We shall prove the estimates
for a bigger class H]. We remind the definition of this class. Let, for a positive
integer {, Al f(y),t,y € [0, 27] denote the I-th difference of f with step ¢, and

Aéh,tz)f(‘”l ,T2) = Aiz(Ailf(m] ,Z32))

be the mixed [-th difference with the step t; in the variable z;, j = 1,2.
Define

HE = {f 11l < LIALFC a2l < [l AL fr, )l < Jeal
1Afy e F @1, 22l < Itatal},

with [ = [r] + 1. For the embedding of the classes W] into HY, see [Te].
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It proved to be useful in studying approximation of functions with a
bounded mixed derivative to consider along with the L,-norms the Besov
type norms. Let V,(t) be the de la Vallée-Poussin polynomials, ¢ € [0, 2x].
We define

Ao(t) = 1,
.Al(t) = W (t) -1,
.An(t) = VZn—l(t) - Vzn—z(t), n Z 2,

and for = (1, z2), s = (s1, 52)
As(z) := As (21)As, (22).
Consider the convolution operator A; with the kernel A;(z),
As(f) = [+ As,

and define the B, ¢-norm as follows

' 1/6
1715, . :=<ZIIAs(f)IIZ>  l<f<co.

It is proved in [T2] that
(3.3) em(HT, Booo) € m™"(logm) /2 7> 1.
The corresponding proof from [T2] implies also that
(3.4) em(H], Boo,1) € m~"(logm) ™t »> 1.
Using the obvious estimate

(3.5) Iflloo < 1F11Bos

we get the upper estimate in (3.2) from (3.4) and (3.5).
We now proceed to the upper estimate in (3.1). The proof in [T2] was
based on the following known estimate of the entropy numbers of an octahe-

dron B} in €% (see [H], [M]).

Lemma 3.1. The following estimates hold

m~!(log(n/m))?, 2m<n
p~1g-m/n 2m > n.

em (BT, £5,) <<{

One can use instead of Lemma 3.1 the following result (see [S]).
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Lemma 3.2. The following estimates hold

m!/P=(log(l + n/m))\~1/P, m<n

n gn
€m(Bl y p) < {nl/p_12—m/n’ m>n.

Then, similarly to the proof in [T2], one gets instead of (3.3) the estimate
(3.6) em(H}, Boo2) € m™"(logm)™1/2 »>1-1/p.

Next, we use the well-known corollary of the Littlewood-Paley inequality (see,
for instance [Te])

(3.7) W/ lly < I\fllB,,.n 2 <p<oco.

The upper estimate in (3.1) for 2 < p < oo follows from (3.6) and (3.7). The
corresponding upper estimate for 1 < p < 2 follows from already considered
case p = 2.

We now proceed to the lower estimates. We begin with the lower estimate
in (3.1) for p = 2. We use the following simple well-known fact on a minimal
e-covering (see [P, p.57]). Let a Banach space E be the R? equipped with a
norm || - ||g. Denote the corresponding unit ball by Bg. Let N.(F, E) be the
minimal number of balls of radius ¢ needed for covering F'. Then, for any
body F with existing vol (F'), we have

_a VOl(F)

(3.8) N(F,E) > ¢ ol (B

For a fixed natural number n we consider the orthogonal projector Sag, onto
T(AQr). Then, for any m,

(3.9) (W] 0 L2) 2 em(Saqu (Wi o), Ls N T(AQ0))
Next, it is easy to understand that

SaauWia) = {f €T(AQn) : = Fu(se)*e(),

? € T(AQn), Fhq,(9)i <1}

We observe that the operator of convolution with Fy(z, ) defined on 7(AQy)
induces an orthogonal operator in the space R24@=l of Fourier coefficients

A(f). Therefore,
Vol ({A(f) : f € Sag. (Wi HNAALD™ 5 97 (vol (Bq, (L1)))@4e-D7"
Applying Theorem 2.5 we get

(3.10) VOL({A(f) : f € Saqg. (W )HEAQDT! 5 9=nlr+1/2),



480 THE VOLUME ESTIMATES AND THEIR APPLICATIONS

Further,

(3.11)  (vol{A(f) : fF€T(AQn), |Ifll2 < 1})EAQDT! & (grp)=1/2,
Thus, the relations (3.8)-(3.11) imply
(3.12) N (WY o, Ly)(218QaDT" 5, —19=rnpl/2,
Specifying m = 2|AQr| we get from (3.12)
€m > 2701/ < m~" (logm) /2,

It is clear that the case of general m follows from the special case m = 2|AQ,|,
n € N, which has been considered above. So, we have established the lower
estimate in (3.1) for p = 2. It implies the corresponding lower estimate for all
p22.

Let us prove the lower estimate in (3.1) for p = 1. We use the following
interpolation inequality for the entropy numbers (see.[Pi])

(3.13) Em-1(W] g L2) < 2em(W] o, L1) 267D (W 4, L) 05D

with p > 2 such that 1 — 1/p < r. The lower estimate for the left hand side
of (3.13) and the upper estimate for e, (W7 ,, Lp), 7 > 1 — 1/p, have already
been proved above. Substituting these estimates into (3.13) we obtain the
required lower estimate for em(W{,a,Ll). This completes the proof of the
lower estimate in (3.1).

We now proceed to the lower estimate in (3.2). Let M (F, E) denote the
maximal number of points x; € F such that ||z; — z;||lg > ¢, ¢ # j. The
following simple inequality is well-known

(3.14) N(F,E) < M(F,E) < N.jo(F, E).

Alike the above case we shall carry out the proof for m of a special form:
m = 2|AQn|. Using Theorem 2.5 and the relation (3.8) we shall get the
following analog of (3.12):

(3.15) N(T(AQn)E, Ly)A1AQD™ 5, =1p1/2)

where

T(AQn)i = {f € T(AQn) : Exq, (1 < 1}.

By (3.14) and (3.15) we conclude that there are 2™ polynomials {¢; }JZZI from
T(AQ,) such that

(3.16) Exq. ()1 <1, j=1,...,2™
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(3.17) lt: = t;l|2>n, i#j.
Let tJJf €T(AQ,)Y, j=1,...,2™, be such that

(3.18) I — -l < 2.

Consider the following collection of functions

pj = (t — tjl)/2) fi = F(,0)%9i(), j=1,...,2™
Then
fjerr,O’ j=1,...,2m.
We now estimate from below the quantities ||f; — fj|lco for ¢ # j. Consider
the inner products
aij = {fi = fj, pi — ;)
On the one hand, by (3.18) we have

(3.19) aij < 2||fi = filloo-

On the other hand,

(3.20) aij = Y Fr(k,0)|i(k) — @;(k)* > 27 (|t: — 45113
k

Thus, by (3.17), (3.19), and (3.20), we get

Nfi = fillo >27™n, i#j.

Therefore,
em(W7 0, Loo) > 27" n x m™" (logm)"*.

This completes the proof of Theorem 3.1.

4. The discrete Lo.-norm for polynomials from 7 (A)

We begin with the following conditional statement.

Theorem 4.1. Assume that a finite set A C Z% has the following proper-
ties:

(4.1) (vol (BA(Loo))YN < KyN~Y2 N :=2|A|,
and a set Q = {z',... M} satisfies the condition

(4.2) VIeT@)  IMllw < Kellfllosa,  [1fllco,0 := max|f(z)].
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Then, there exists an absolute constant C > 0 such that
M > NeCEE)™

Proof. Using the assumption (4.2) we derive from Theorem 2.6, in the
same way as we proved Lemma 2.1, the following volume estimate

(4.3) (vol (BA(Leo )N > CLK; (N log(M/N))~!/?

with an absolute constant C; > 0. Comparing (4.3) with the assumption (4.1)
we get
M > NeCEE)™ o = 2,

Theorem 4.1 is proved.
We now give some corollaries from Theorem 4.1.

Theorem 4.2. Assume a finite set Q C T2 has the following property:
(4.4) Vit € T(AQR) Htlloo < K2||t||co,2-

Then )
1] > 2|AQ, |/ Kz

with an absolute constant C > 0.
Proof. By Theorem 2.5 (see (2.7)) we have
(vol (Baq. (Leo))'/V < C(@mn?)"1/? < Ca=V/2N =112
with an absolute constant C' > 0. Using Theorem 4.1 we obtain
12 2 2/AQu /.

This proves Theorem 4.2.

Remark 4.1. In the particular case Ko = bn®*, 0 < @ < 1/2, Theorem 4.2
gives
] > 2|AQ,|eC* T T,

Corollary 4.1. Let a set Q C T? have the property:
VEET(AQR)  [ltllo < bn*|lt]lco,n

with some 0 < o < 1/2. Then

-2,

lQ' 2 C32nner—2n1 o 2 Cl(b, d, a)lQn|€CZ(b’d'a)nl_2a
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Corollary 4.2. Let a sel Q C T? be such that |Q| < Cs|Qn|. Then

sup | flloo/ll fllco,0 > Cn'/2.
FET(Qn)

Proof. Denote

Ky:= sup  ||flloo/[|flloo,
FET(QnR)

Then the condition (4.4) of Theorem 4.2 is satisfied with this K,. Therefore,
by Theorem 4.2,

2AQ,[“M K3 < 19| < C5|Qul-

This implies that

Ky > n/?,

Remark 4.2. One can derive from the known results on recovery of
functions from the classes W7, (see [T7], [T8]) that for any n there is a set
Q, C T4 such that |Q,| < C|Q,| and

sup (|| flloo/ll flloo,.) < n¥1.
FET(Qn)
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