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T H E VOLUME ESTIMATES AND T H E I E 
APPLICATIONS 

B. S. KASHIN AND V. N. TEMLYAKOV * 

Dedicated to S. A. Telyakovskii on the occasion of his 70th birthday 

We prove new estimates for the entropy numbers of classes of multi­
variate functions with bounded mixed derivative. It is known that the 
investigation of these classes requires development of new techniques 
comparing to the univariate classes. In this paper we continue to de­
velop the technique based on estimates of volumes of sets of the Fourier 
coefficients of trigonometric polynomials with frequencies in special re­
gions. We obtain new volume estimates and use them to get right orders 
of decay of the entropy numbers of classes of functions of two variables 
with a mixed derivative bounded in the Li-norm. This is the first such 
result for these classes. This result essentially completes the investiga­
tion of orders of decay of the entropy numbers of classes of functions 
of two variables with bounded mixed derivative. The case of similar 
classes of functions of more than two variables is still open. 

1. Introduct ion 

We obtain in this paper new estimates of volumes of sets of the Fourier 
coefficients of trigonometric polynomials of two variables with frequencies in 
a hyperbolic layer. Section 2 is devoted to this kind of estimates. Then, in 
Section 3 we use results of Section 2 to prove lower estimates for the en­
tropy numbers of classes of functions with bounded mixed derivative. The 
new volume estimates from Section 2 allowed us to essentially complete the 
investigation of orders of decay of the entropy numbers €m(Wqt(Xi Lp) for all 
1 < Я)Р < ° ° a n d large enough г in the case of classes of functions of two 
variables. In Section 4 we apply results of Section 2 to the following prob­
lem of discretization. We look for a set of points with a property: (E) the 
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uniform norm on this set of points is equivalent to the uniform norm for any 
trigonometric polynomial with frequencies from a given hyperbolic layer. We 
give in Section 4 other proof of the following surprising result from [KT3], 
[KT4]: the cardinality of a set with the property (E) must grow at least as 
iV 1 + a , a > 0, where N is the dimension of the corresponding subspace of 
trigonometric polynomials. The proof of the above result from [КТЗ], [КТ4] 
made use of extremal properties of the multivariate normal distribution and 
an inequality for the trigonometric polynomials from [T2]. Later, other in­
equality for the trigonometric polynomials has been obtained in [T6]. Our 
proof in this paper uses this new inequality and the volume estimates from 
Section 2. This allowed us to simplify the original proof (see [KT4]). 

We now formulate the main results of the paper. Let s = ( s i , . . . , sj) be 
a vector with non-negative integer coordinates (s 6 Z+) and 

p(s) :={k = (k1,..., kd) € Ъ\ : [2*'"1] < |*,-| < 2 " , j = 1 , . . . , d} 

where [a] denotes the integer part of a number a. For any natural number n, 
let us denote 

Qn := ( J p(s)] AQn := Qn \Qn-i 
N l i < " 

with \\s\\i — si H h $d for s € Z ^ . We call the set AQn a hyperbolic layer. 

For a finite set Л с ^ denote 

T(A):=ff:f(x) = Ylc^i(k,X)}-

We assign to each / = J2keA f{k)el(<k,x^ € T(A) a vector 

A(f) := {.(Re/(*), 1 т / ( * ) ) , к в A] € М2 'л ' 

where |Л| denotes the cardinality of Л and define 
Bb(Lp):={A(f):f£T(A), \\/\\p < 1}. 

The volume estimates of the sets B\(Lp) and related questions have been 
studied in a number of papers by the authors: the case Л = [—гг, ?г], р — oo in 
[Kl]; the case Л = [-NuNi] x • • • x [~Nd, Nd], p ~ oo in [T2], [T3]; the case 
of arbitrary Л and p = 1 in [KTl] . In particular, the results of [KTl] imply 
(see Theorem 2.4 of this paper) for d = 2 and 1 < p < oo that 

( v o l ( S A Q „ ( ^ ) ) ) ( 2 | A 9 " i r l ~ | Л < ? п Г 1 / 2 x {2ппГ'1\ 

We shall prove in Section 2 (see Theorem 2.5) that in the case p = oo the 
volume est imate is different: 

( V O U B A Q J L O O ) ) ) ^ " ! ) - 1 x (2nn2)-1/2. 
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We note tha t in the case A = [—N\, N\] x • • • x [—iV<f, Nd] the volume estimate 
is the same for all 1 < p < oo. We discuss this in more detail in Section 2. 

In Section 3 we apply the volume estimates to the problem of asymptotic 
behavior of the entropy numbers of the classes W[a. We now give the cor­
responding definitions. For a natural number m and a compact set F in a 
Banach space X with the unit ball B(X) we define the mth entropy number 
as f 

€m(F,X) := inf L : 3 / b . . . , /2~ G X : F С |J( / i + С ВД) 
^ j = i 

Let r > 0 and a E M. Define 
CO 

F r ( t , a ) := l + 2^k"rcos(kt-air/2)i t E [0,2тг]. 
fc = l 

We define for ж = (# i , #2) ап<^ <* = ( а Ь ^2) 

F r(a?,a) := F r ( ^ b « 1 ) ^ ( ^ 2 , « 2 ) . 

Finally, we define 

Wla:={f:f=Fr(;a)*<p, |И1,<1> 
where * means convolution. The problem of estimating em(W^a) Lp) has a 
long history. We shall mention some results only in the case d = 2. The 
first result on the right order of €m(W^a, Lp) in the case p — q = 2 has been 
obtained by Smolyak [Sm] in I960. Here is a list of further contributions: 
Dinh Dung [D], 1985, the case 1 < q = p < 00; Temlyakov [Tl], [T2], 1988, 
the case 1 < q,p < 00, r > 1 and the case p = 1,1 < q < 00; Belinskii [B], 
1990, the case p = 1, q = 00, r > 1/2; Kashin, Temlyakov [KT1], [KT2], 
1994-1995, the case p = 1, g = 00, r > 0; Kuelbs, Li [KL], 1993, the case 
p = 00, 5 = 2, г = 1; Temlyakov [T5], 1995, the case p = 00, 1 < q < 00; 
Temlyakov [T6], 1998, the case p = 00, q = 00, r > 1/2. 

In Section 3 we study the case left open: q — 1, 1 < p < 00. We prove 
that (see Theorem 3.1): 

em(Wr
la,Lp)^m-r([ogmy+1'\ 

(1.1) 
1 < p < 00, r > m a x ( l / 2 , 1 - 1/p) 

and 
€ m ( W T i 0 , I o o ) - r " - r ( l o g m ) P + 1 , Г > 1. 

It is interesting to compare these estimates with the case 1 < q,p < oo where 
we have 

(1.2) f f f l ( W ; i a , L p ) x m - r ( l o g m ) r . 

We note that when we turn from q > 1 to q — 1 the exponent for logm jumps 
from r in (1.2) to r + 1/2 in (1.1). 
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2. The volume estimates 

The main goal of this section is to prove new estimates for volumes of 
sets of the Fourier coefficients of trigonometric polynomials of two variables 
(dimension d = 2) with frequencies in a hyperbolic layer. In some cases we 
shall give estimates in arbitrary dimension d. It is well-known (see [Kl], [T2], 
[T4], [KT1]) that the volume estimates of the above mentioned sets can be 
used in different problems of approximation theory including the problem of 
estimating the entropy numbers of function classes. We use the notations 
Т(Л), A(f), and BA(LP) introduced in Section 1. In the case 

Л = П(Л0 := [-Nu Nx] x .-• x [~Nd, Nd], N := (Nu . . . , Nd), 

the volume estimates are known. We formulate it as a theorem. 

Theorem 2 .1 . For any 1 < p < oo we have 

with constants in x that may depend only on d. 

We note that the most difficult part of Theorem 2.1 is the lower estimate 
for p = oo. The corresponding estimate was proved in the case d = 1 in [Kl] 
and in the general case in [T2] and [T3]. The upper estimate for p = 1 in 
Theorem 2.1 can be easily reduced to the volume estimate for an octahedron 
(see, for instance, [T4]). 

The results of [KT1] imply the following estimate. 

Theo rem 2.2. For any finite set kCTLd and any 1 < p < 2 we have 

vol(BA(bp)) (2 |A|r l xIAI-1 '2 . 

The following result of Bourgain-Milman [BM] plays an important role in 
the volume estimates of finite dimensional bodies. 

Theo rem 2.3. For any convex centrally symmetric body К С Шп we have 

(vol(K)vol(K°))l/n x (vol(BJ))2 / n x 1/n 

where K° is a polar for K, that is 

K° := {x еШп : sup (ж, j/) < 1}. 

Having in mind an application of Theorem 2.3 we define some other than 
BA(LP) sets. Let 

Ek(f)P:= inf ||/-Sf||P, < H ( / ) P : = ™\\f-9\\P 
#-LT(A) д±Т(А),д(к)еШ 
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and 

It is clear that 

Bi(Lp):={A(f):feT(A), E£(f)p<l}. 

BA(LP)CBJ:(LP). 

Moreover, if the orthogonal projector PA onto T(A) is bounded as an operator 
from Lp to Lp, then we have 

(2.1) vol(BA(L p))(Wr l
 x v o l ^ L p ) ) ^ ! ) - 1 . 

For example, it is the case when Л = {Js£A p(s). We also consider 

BA,R(LP) := {A(f) : \\f\\p < 1, / G T(A), /(*) G K} 

and 

Я Д . Я ^ Р ) == M ( / ) = ^ , « ( / ) P < 1. / € Т(Л), / (*) € R}. 

Using the Nikol'skii duality theorem and the basic properties of the de la 
Vallee-Poussin operators one can check that 

1 
(2.2) ~BiR(Lp,)cBAMLP)0C2BtR(Lpl), p> 

p-l 

We shall now show that the volumes of BA(Lp) С М2'л1 and BA>R(Lp) С Ш^ 
are closely related. First of all, if 

< l / 2 , 

then 

Therefore, 

(2.3) 

Next, let 

Г) < l / 2 , 
lp 1 1 кел 

Ь*е'(*'*> 

5>* + |6*)е'М 
1 &GA j 

< 1. 
lp 

(jBAtR(Lp)\ <8> UBKR(LP)\ С BA( 

/ ( 
*6Л 

ibk) ег(А:,а7) 

Then 
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and 

i£M<<*'*> = ±(/(*)-/(-*)). 
А ? € Л 

This implies that 

(2.4) BA(LP) С BAyR(Lp) ® Вл,л(ЬР). 

We get from (2.3) and (2.4) that 

(2.5) ( vo l (5 A ( I p ) ) ( 2 | A | r l x (уо1(ВА |л(ЬР)) ( | А | г 1 . 

Similarly we get 

(2.6) (vol(Bl[{Lp))WW-* ~ (vol(Bi:,fi(Lp))(lAl)-1. 

This observation, Theorems 2.2 and 2.3 combined with (2.1) imply the fol­
lowing statement. 

Theorem 2.4. Let A have the form A = \JS£S P(s)> w^ere S С ^+ is a 
finite set. Then, for any 1 < p < oo; we Aave 

У О 1 ( В Л ( 1 Р ) ) ( 2 | Л | Г 1 ^ Л Г 1 ' 2 . 

We now proceed to the main results of this section. First we denote 
N := 2|AQ„|. 

Theorem 2.5. In the case d = 2 we have 

(2.7) (vol(B A < , , ( ioo))) 1 / A f x(2"n 2 ) - 1 / 2 ; 

(2.8) ( у о 1 ( В ^ т ( 1 , ) ) ) 1 / Л Г ^ 2 - п / 2 . 

It is interesting to compare the first relation in Theorem 2.5 with the 
following estimate for 1 < p < oo that follows from Theorem 2.4 

(2.9) (vol( JBAQ n(Lp)))1 / J vx(2"n)-1 /2 . 

We see that in the case Л = AQn ? unlike the case Л = n(JVi,. . . , Nd), the 
estimate for p = oo is different from the estimate for 1 < p < oo. 

Proof of Theorem 2.5. We begin with the proof of the lower estimate in 
(2.7). We shall formulate and prove it in a more general form. 

Lemma 2.1 . Let А С [ -2 n ,2 n ] d and N := 2|A|. Then 

(vol(£A(LTO)))1/iV > C{d){Nn)-ll\ 
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Proof. We use the following result of Gluskin [G]. 

Theorem 2.6. Let Y = {2/1,.. .,2/м} C l ^ , | M | = 1, i = 1, • • •, M, and 

W(Y) := {x G RN : |(*, Vi)\ < 1, i = 1 , . . . , M}. 

Then 
(vol(W(Y)))^N > C{\og{M/N))-ll2. 

Consider the following lattice on Td: 

Gn:={x(l) = (lu...Jd)7r2-n-\ l<lj<2n+2
y Ijen, i = l , . . . , d } . 

It is clear that \Gn\ = 2<n+2\ It is well-known that for any / G T( [ -2 n , 2n]d) 
one has 

\\f\\00<C1(d)ma,x\f(x)\. 
x£Gn 

Thus, for any Л С [-2n , 2n]d we have 

(2.10) {A(f):feT(A), \f(x)\ < Ci(d)'\ x G Gn] С BA(L^). 

Further 

i/o x;/(*)e'(fc-r 
Ател 

2 

2* Re/(fc) cos(&, ж) — Im/(fe) sin(&, x) 

+1 YJ Re/(fc) sin(fc, x) + Im/(fc) cos(&, ж) 

We associate with each point x G Gn two vectors уг(х) and t/2(#) from MN: 

yl(x) := {(cos(&,x), — sin(fc, x)), к G A}, 
y2(x) := {(sin(&, x)) cos(&, x)), & G A}. 

Then 

and 
|/(Ж)|2 = И / ) , у1 {x)f + (A(f), у2(z))2. 

It is clear that the condition |/(ж)| < Ci(rf) -1 is satisfied if 

\(A(f),j(x))\<2-1'iC1(d)-1, i = 1 , 2 . 

Let now 
У :={^(Ж)/ | |УЧ^)П- *eG„, *•= 1,2}. 
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Then M = 2rf(n+2>+1 and by Theorem 2.6 

(2.11) (vol(W(Y)))l'N > (log(Af/iV))-V2 ^ n " 1 / 2 . 

Using the fact that the condition 

\WM{x))\<i 

is equivalent to the condition 

\(A(f),j/(x)/\\j/(x)\\)\<(N/2rlf\ 

we get from (2.10) and (2.11) 

(vol(SA(Loc))) 1 / W>(JVn)- 1 / 2 . 

This completes the proof of Lemma 2.1 

Lemma 2.1 implies immediately the lower estimate in (2.7) because in 
this case |AQ n | ^ 2nn. We emphasize that Lemma 2.1 shows that a lower 
estimate similar to (2.7) holds for any Л С [-2 n ,2 n ] 2 with |Л| х |AQn | and 
therefore it does not depend on the geometry of A. 

We now proceed to the proof of the upper estimate in (2.7). This proof 
uses the geometry of AQn. Comparing the estimate (2.7) with Theorem 2.1 
we conclude that the upper estimate in (2.7) cannot be generalized for all 
Л С [ -2 n ,2 n ] 2 with |Л| х \AQn\. We prove first the lower estimate in (2.8). 
We shall use the following lemma that follows directly from Lemma 2.4 in 
[T6]. 

Lemma 2.2. Let d = 2. For any f £ T(AQn) satisfying 

ll«.(/)lloo < 1, Nil = n, «,(/) := £ / W ( M ) -
k£p(s) 

we have 
E}jH(f)i<C. 

Let us denote 

Яоо(Д<Э„) := {/ G T(AQn) : ||6Д/)||ГО < 1} 

and 
Л(Я 0 о (Дд„)) := {A(f) : / € Я т о (Дд п ) } . 

Lemma 2.2 implies that (N = 2|AQn |) 

(2.12) (voliBig^Lx)))1'" > (УО1(У1(Я 0 0 (Д^ П ) ) ) ) 1 / Л Г . 
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Using Theorem 2.1 we get 

(2-13) V ^ i , / 

> 2~ n / 2 , 

where 
T(^))TO:={^ET(/>(.s)):|HU<l}. 

The lower estimate in (2.8) follows from (2.12) and (2.13). 
Using Theorem 2.3 and relations (2.2), (2.5), and (2.6) we complete the 

proof of Theorem 2.5. 

3. Estimates of the 6-entropy 
In this section we use the results from Section 2 for obtaining new lower 

estimates for the e-entropy of the classes W[ a in Lp, 1 < p < сю. We confine 
ourselves to the case of functions of two variables. We prove the following 
theorem here. 

Theorem 3.1, The following relations hold 

e m ( ^ a , L p ) x m - r ( l o g m r + 1 / 2 , 
(3.1) 

1 < p < oo, r > max(l/2,1 - 1/p); 

(3.2) €m(l^1
r

i 0 ,LM)xm- r(logm)'-+ 1 , r > 1. 

Proof. We first prove the upper estimates. We shall prove the estimates 
for a bigger class H\. We remind the definition of this class. Let, for a positive 
integer /, Al

tf(y),t,y G [0,27r] denote the /-th difference of/ with step t, and 

ДкыЯ^-яг) = < ( < / ( * ! , *2)) 
be the mixed /-th difference with the step tj in the variable Xj, j — 1,2. 
Define 

H[ = {f-. H/Hi < i, ||AU(-> **)III < Mr> «Д1,Л«1. Oik < Ыг, 

\\A{ti>t2)f(x1,x2)\\1<\tlt2\r}, 

with / = [r] -j- 1. For the embedding of the classes W[ into # [ , see [Те]. 
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It proved to be useful in studying approximation of functions with a 
bounded mixed derivative to consider along with the Lp-norrns the Besov 
type norms. Let Vn(t) be the de la Vallee-Poussin polynomials, t £ [0,27r]. 
We define 

Ao(t) 

Ai(t) 

An{t) 

= 1, 

= V2n-1(t)~V2n-2(t)) n > 2 , 

and for x = (x\, x2))
 s = (si, s2) 

As(x) := ASl(xi)AS2(x2). 

Consider the convolution operator As with the kernel As(x)1 

Mf) :=/*Л, 
and define the J5P)^-norm as follows 

H/HB,.. ••= (l2\\Mf)\\e
P) , i<o<oo. 

\ s ' 

It is proved in [T2] that 

(3.3) e w ( # [ , ,800,2) <77i- r ( logm) r + 1 / 2 , r > 1. 

The corresponding proof from [T2] implies also that 

(3.4) 6 w ( # [ , B 0 0 ^ ) < m - r ( l o g m ) r + 1
l r > 1. 

Using the obvious estimate 

(3.5) ll/Hoo < ll/lliw 

we get the upper estimate in (3.2) from (3.4) and (3.5). 
We now proceed to the upper estimate in (3.1). The proof in [T2] was 

based on the following known estimate of the entropy numbers of an octahe­
dron Bf i n ^ (see [H], [M]). 

Lemma 3.1. The following estimates hold 

с (un ^ п ч ^ / ^ ' Ч М п / ш ) ) 2 , 2 m < n 
e m № ' I J < < | n - 1 r ^ ) 2m > n . 

One can use instead of Lemma 3.1 the following result (see [S]). 
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Lemma 3.2. The following estimates hold 

, д» «ч ^ / « ' " ' - ' ( M l + n/m))1-1'', m < n е т ( ^ Д р ) < ^ 1 / р _ 1 2 _ г о / п > т > п 

Then, similarly to the proof in [T2], one gets instead of (3.3) the estimate 

(3.6) 6 m ( H [ , B 0 0 ) 2 ) < m " r ( l o g m ) r + 1 / 2
J r > 1 - 1/p. 

Next, we use the well-known corollary of the Littlewood-Paley inequality (see, 
for instance [Те]) 

(3.7) ll/llr<ll/lk,2, 2 < P < o o . 

The upper estimate in (3.1) for 2 < p < сю follows from (3.6) and (3.7). The 
corresponding upper estimate for 1 < p < 2 follows from already considered 
case p = 2. 

We now proceed to the lower estimates. We begin with the lower estimate 
in (3.1) for p = 2. We use the following simple well-known fact on a minimal 
6-covering (see [P, p.57]). Let a Banach space E be the Wd equipped with a 
norm || • \\E- Denote the corresponding unit ball by BE- Let Ne(F, E) be the 
minimal number of balls of radius e needed for covering F. Then, for any 
body F with existing vol(F), we have 

(3.8) N£(F, E) > f -d voI(F) 
VOI(BB)" 

For a fixed natural number n we consider the orthogonal projector SAQn onto 
T(AQn)- Then, for any m, 

(3.9) em(Wla,L2) > e m ( 5 A Q n ( H / [ | a ) ) L 2 n T ( A g n ) ) . 

Next, it is easy to understand that 

S&qAWi,a) = {/ € T(AQn) : f = Fr(-, a) * <p(.), 

V€T(AQn), EiQri{<p)x<l}. 

We observe that the operator of convolution with Fo(x, a) defined on T(AQn) 
induces an orthogonal operator in the space M2IA(W 0f Fourier coefficients 
A(f). Therefore, 

vol({A(/) : / G S^AWIJ})^^'1 > 2 — ( v o l ( ( 5 i Q n ( L 1 ) ) ) ( 2 i ^ ^ ) " 1 

Applying Theorem 2.5 we get 

(3.10) vol({A(/) : / € 5дд„(^ 1
г , а )} ) ( 2 | Д ( 3 " | г 1 > 2-^r+l'2\ 
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Further, 

(3.11) (vol {A(f) : / G T(AQn), | | / | |2 < ^ ( ^ « - Г 1 < ( 2»n)- 1 / 2 . 

Thus, the relations (3.8)—(3.11) imply 

(3.12) N€(WlQ, L2)(2|AQ*irl > rl2-rnnll\ 

Specifying m = 2\AQn\ we get from (3.12) 

ew > 2" rn7i1/2 x m- r ( logm) r + 1 / 2 . 

It is clear that the case of general m follows from the special case m = 2|ACJn|, 
n £ N, which has been considered above. So, we have established the lower 
estimate in (3.1) for p — 2. It implies the corresponding lower estimate for all 
p> 2. 

Let us prove the lower estimate in (3.1) for p = 1. We use the following 
interpolation inequality for the entropy numbers (see.[Pi]) 

(3.13) t2m-i(W;iQ, L2) < 2em{W[t„ L 1 ) ^ T e w ( i y i
r

) a , Lp)^ 

with p > 2 such that 1 — \jp < r\ The lower estimate for the left hand side 
of (3.13) and the upper estimate for €m(W\ a> ^P)> r > 1 "~ VP» n a v e a l r e a dy 
been proved above. Substituting these estimates into (3.13) we obtain the 
required lower estimate for em{W[a,L\). This completes the proof of the 
lower estimate in (3.1). 

We now proceed to the lower estimate in (3.2). Let M€(F} E) denote the 
maximal number of points X{ G F such that \\xi — XJ\\E > e> г• Ф 3- The 
following simple inequality is well-known 

(3.14) Nt(F, E) < M€(F, E) < N€,2(F, E). 

Alike the above case we shall carry out the proof for m of a special form: 
m = 2|A(5n|- Using Theorem 2.5 and the relation (3.8) we shall get the 
following analog of (3.12): 

(3.15) Ne(T(AQn)i,L2)(2^^ > £ - V / 2 , 

where 
T(AQn)t = if € T(AQn) : EiQn{f)i < 1}. 

By (3.14) and (3.15) we conclude that there are 2m polynomials {tj}j=1 from 
T(AQn) such that 

(3.16) EiQjtfr <1, j = l , . . . , 2 m ; 
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(3.17) l l* . - -<j l l !>n. *ФЗ-

Let tf G T ( A Q n ) x , j = 1 , . . . , 2m , be such that 

(3.18) \\tj -tf\U< 2. 

Consider the following collection of functions 

<Pj := (tj - tf)/2, fr-=Fr(;0)*<Pj(-), i = l , - . - , 2 m . 

Then 

We now estimate from below the quantities ||/г- — /j||oo for « ф j - Consider 
the inner products 

<*ij := {fi -fj,<Pi-<Pj)-
On the one hand, by (3.18) we have 

(3.19) ciij < 2Ц/,- — /i||oo-

On the other hand, 

(3.20) atj = £ £ . ( * , 0 Ш * ) - <Pj(k)\2 > 2—™||*.- - tj\\l 
к 

Thus, by (3.17), (3.19), and (3.20), we get 

| | / i - / , - | | o o » 2 - r n n , гф]. 

Therefore, 
€m(Wl0, Loo) > 2~ rnn x m- r ( logm) r + 1 . 

This completes the proof of Theorem 3.1. 

4. The discrete loo-norm for polynomials from T(A) 

We begin with the following conditional statement. 

Theo rem 4 .1 . Assume that a finite set Л С ^ has the following proper­
ties: 

(4.1) (vol( JBA(ioo)))1 / JV<A'1W-1/2 , ЛГ:=2|Л|, 

and a set Q — {x1,. . . , xM} satisfies the condition 

(4.2) V /GT(A) ll/lloo < A'2||/||oo,n, | | / | |oo,n:=max| /(x) | . 
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Then, there exists an absolute constant С > 0 such that 

M > Nec(KlK2r\ 

Proof. Using the assumption (4.2) we derive from Theorem 2.6, in the 
same way as we proved Lemma 2.1, the following volume estimate 

(4.3) (vol(BA(Loo)))1/JV > dK^iNlogiM/N))-1'2 

with an absolute constant C\ > 0. Comparing (4.3) with the assumption (4.1) 
we get 

M>Nec^K*r\ C = Cl 
Theorem 4.1 is proved. 

We now give some corollaries from Theorem 4.1. 

Theorem 4.2. Assume a finite set Q С Т2 has the following property: 

(4.4) Vt € T(AQn) Hill» < tf2||i||oo,n. 

Then 
Щ > 2 |AQ n | e c " /^ 2 

with an absolute constant С > 0. 

Proof By Theorem 2.5 (see (2.7)) we have 

(vol(BAQn(boo)))1/ iV < C(2nn2)-1'2 < Cn~l'2N~1'2 

with an absolute constant С > 0. Using Theorem 4.1 we obtain 

|0| > 2|A<?n|eCn/4 

This proves Theorem 4.2. 

R e m a r k 4 .1 . In the particular case K2 = bna, 0 < a < 1/2, Theorem 4.2 
gives 

| f i |>2 |AQ n | e c 6 ~ 2 " 1 - 2 " . 

Corollary 4.1. Let a set CI С T d have the property: 

\/t £ T(AQn) H*||oo < bna\\t\\ 

with some 0 < a < 1/2. Then 

\Q\ > C32
nneCb~2nl~2a > Cx{b,d,a)\Qn\e

c*h'd^nl~2a 
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C o r o l l a r y 4 .2 , Let a set П С T 2 be such that |fi | < C*>\Qn\. Then 

sup H/lloo/ll/Hocn > Cn1'*. 
/€T(Q») 

Proof. Denote 

K2:= sup H/lloo/ll/Hocn. 
f f€T(Qn) 

Then the condition (4.4) of Theorem 4.2 is satisfied with this AV Therefore, 
by Theorem 4.2, 

2\AQn\eCn/K!<\n\<C5\Qn\. 

This implies tha t 
I<2 > nX'\ 

R e m a r k 4 . 2 . One can derive from the known results on recovery of 
functions from the classes W^ (see [T7], [T8]) that for any n there is a set 
O n С Td such tha t | O n | < C7|Q„| and 

sup ( Н / И о о / Н / Н о о л Х ^ - 1 . 
/€T(Qn) 
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