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On Weyl’s multipliers for almost everywhere convergence
of orthogonal series

B. S. KASIN

The aim of this paper is to prove the theorems stated in [4].

Let {¢,(x)}:2, be an orthonormal set of functions (ONS) on the segment [0, 1].
A sequence of numbers 4, (2,=0, 1,,.,=>1,) is called a Weyl multiplier (WM) for
almost everywhere (a. e.) convergence of series with respect to this set, if the ine-
quality

implies the a. e. convergence on [0, 1] of the series
2 _Zl Ca Pu(X).

The WM {4,} is called a precise Weyl multiplier (PWM) if for every sequence f§,=
=o0(4,) there exists a series (2) diverging on a set of positive measure, whereas

©o

2 Cafn =< .

n=1

The classical theorem of D. E. Mensov and G. Rademacher (see, e.g., [2, Chap-
ter V, § 3]) states that 1,=log? n is a WM for the a. e. convergence of series with
respect to any ONS.

MenSov also constructed an ONS for which A,,—Iog~ nis a PWM. The set con-
structed by MenSov was not uniformly bounded, and for a long time it had not
been clear of what order a WM for series with respect.to a uniformly bounded
ONS must be. '

In [5] KoLmoGoRrROV and MENSov constructed an ONS {¢,(x)} such that

1) e, (x)|=1 for x€[0,1] and n=1,2,...;

2) every sequence f,, such that B,=o(logn), is not a WM for the a. e. con-
vergence of series with respect to {q),, (x)}
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In 1938 MeNSov proved (see [6]) that for any K>1 there exists an ONS {¢,(*)}
such that

1) |o,(x)|=K for x€[0,1] and n=1,2,...;

2) the sequence {log? n}is its PWM.
The extreme case K=1 is interesting. In [9] TANDORI proved that for every
&>0 there exists an ONS {p, (%)}, |¢,(x)|=1, n=1,2, ..., and a series (2) such that

1) 5’ c2logn(loglog n)l=2 < oo;
n=3

2) the series (2) diverges a. e. after a certain rearrangement of its terms.

The lessening of the order of magnitude of the WM for the orthonormal sets
{0.(%)}, |@.(x¥)|=1, would have had important effects in number theory and in
the theory of orthogonal series itself. It follows from Theorem 1, however, that
such a lessening is impossible.

Theorem 1. There exists an OSN {@,(x)}, |@,(x)|=1, on the segment [0, 1]
such that the sequence A,=log?n isits PWM.

Theorem 1 is easily deduced (as shown at the end of this paper) from the fol-
lowing lemma with standard reasoning.

Fundamental lemma. There exist absolute constants C;>0, C,>0 and
an integer M=1 such that for any positive integer q there exists a set of functions
{o;(X)}iZ, defined on the segment [0, 2M +1] and satisfying the requirements

D) |p;0)|=1 for x€[0,2M+1] and j=1,2,..., 2%

2M+1

2 [ aWe,®de=0; izj, 1=ij=2%
0

3) there exist N,(x) and N,(x) such that

s
where n=29.

To prove the fundamental lemma we need the following auxiliary statements.

N(x)
, ?; (%)

> C, Vnlog n} = C,,
J=Ny(x

Lemma 1 (MeNSov [6, p. 104]). Let {a;}; ;_, be a real square matrix of

order n and p€(0,n) be an integer. Let ﬁp=“m§e'1xp la;;|. Then on every segment
e
[c,d] such that d—c=2p, one can construct a set of functions {@s(x)};_, such

that



Almost everywhere convergence of orthogonal series 251
D lesx)| =1 for x€lc,d] and 1=s5=n;

d
) [e®e;xdx=—ay for li—jl=p, 1=ij=n;

d
3) [ o:@e;®dx=0 for i=j, |i—jl=p, 1=ij=n

Lemma 2. Let {;(x)};_, be a set of functions defined on the segment [0, 1]

JSor which a sequence {y,}s_} with the properties

1)

[ 0:(®)0;(x) dx

=7V-; forevery l=i<j=n,

n—1

2) 2 vp,<M

p=1
exists. Then the functions @;(x) can be extended to the segment [1,2M+1] in such
away that

2M+1

D [ e®e;0dx=0, 1=ij=n i#j;

0
2) lp;x)| =1 for xe(1,2M+1} and i=1,2,...,n.
Lemma 2 follows easily from Lemma 1. In fact, to prove it we subdivide the

segment [1,2M+1] into n—1 non-overlapping segments 4,, 1=p=n—1, of
length |4,|>y, and put

a;= [ ¢i(x)p;(x)dx.

Then for every integer p we define the set of functions {¢;(x)}}_, on the segment
4, according to Lemma 1. Thus we define the set {p;(x)}}_, on [l,2M+1].
It is obvious that for this set the requirement 2) is satisfied and that for any
1=i<j=n suchthat j—i=p we have

2M+1

[ e@e,®dx= [ @), dx+ [ ¢i(x)g;x)dx =0.
0 0 4,

Thus Lemma 2 is proved.

Lemma 3 (see [7, pp. 16 and 76)). Let {x;(2)}., be a set of independent func-
tions on the segment [0, 1] with the mean value of y;(z) being equal to 0 and |y;(z)|=B
for z€[0, 1] and i=1, ..., N. Then for any y=0, any positive integer k=N and for

2 Analysis Mathematica
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any set of real numbers {a}}_, the following inequality holds:

k k 1/2
® u{z: > a:(2) zy[za%] }§2e‘y2123.
i=1 i=1

It follows directly from the estimate (3) that for any integer r there exists a
constant C} depending only on B and r such that

k k 1/2 1
C) #{23 2 aix(2)| = CE{Z'a?logV], }'<“;,
i=1 i=1
where v is any integer exceeding 1. _
It easily follows from the estimate (4) that for any r=1 there exists a constant

C? such that

r

) : u{zr

> C2(mlog v)l/z} =
c

<~

2 x(2)e
k=1
for m<v and m=N (v=1).

In fact, we put C?=4C}, ; where C} ; is the constant from (4). For any
trigonometric polynomial P(x) of order not exceeding v the obvious inequality

2nq
&
= C2(mlogv)? = 4C,1+5(mlogv)1/2} =
C

|

= vr+5 W

[P = 2 max,

holds. Hence

e

V5
= ,u{z :
q=1

2 u(2)e™
k=1

2nq
v5

> y(2) exp [z‘k > 2C}, s;(mlogv)V 2} .
k=1

By virtue of (4) the latter sum does not exceed

1)

b

which supplies the estimate (5).

Further, we put y;(z)=0 for i<1 and i>N. Let s#0 be an integer. Con-
sider the set of functions {y;(2)y; (@)} _... It is clear that [y,(z)x;,,(2)| <82
by virtue of the requirements of Lemma 3. It is easy to verify that for every s the
functions of this set can be divided into two groups so that the functions of each
group are independent (e.g., for s=1 the first group contains the functions of
the form o Xox+1, —°o<Kk—<oo, while the second one contains the functions of
the form yo,_1Xor, — c<k< ).
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Therefore we can use the estimate (3), by virtue of which we obtain

u{z:

'"1 (2 1145(2)

> C?(mlogv)m} < ;1;, Ish=1,2,...,v.

Hence we immediately obtain that there exists a constant C} for which

© e
(e.g. CH=CPy).

Lemma 4. Let f(t)€C[0,2n] and {c,}or_.. be the sequence of its Fourier
coefficients. Then if A={a;;};";—_.. is the infinite matrix such that a;=c, then

2 Xl(Z)Xl+s(Z) = C4(m log V)I/Z} - -

<1],_.

l]’

Z al]xy_] = CO”f”Ca .

where C° is an absolute constant.
The statement of Lemma 4 is well known (see, e.g. [1, Theorem 303])

Lemma 5. There exists an absolute constant M, such that for any y=3

1 p
g(s-2)
p £ Y

Indeed, the function @(x)=x"'|log(l—x)| is monotonously increasing on
(0, 1). Therefore

[yl—2

2

p=1

= M,.

log[ v]l [Md =M, < oo.

Lemma 6. Let m and my;, m<my, be two given positive integers and let

{01(%), ...’ @u(X)} and {@p1(%), ..., (p,,,l(x)} be two sets of measurable functions
such that o (x)|=1 for x€[0,1] and k=1,2,...,my. Then there exists a mea-
surable function u(x) such that

D jux) =1 for x€[0,1],
2) _f(pi(x)(u(x)goj(x))dx =0 for lsis=m<j=m,.

Proof. Denote by &={gJ;1, an arbitrary vector with coordinates ¢,=+1
or —1. Define the set

E@) = {x€[0,1]: ou(x) =g, for k=1,2,...,m}

2%



254 B. S. Kasin

It follows from this definition that for every & all the functions ¢,(x) (k=
=1,2,...,m;) are constant on the set E(). Therefore any function u(x) such
that |u(x)|=1and
fu(x)dx =0 forall g
E@®)
will satisfy all the requirements of Lemma 6.

Remark 1. Let the set of functions {f;(x)}}_, on [0, 1] piece-wise constant

j 1
on the intervals [—l, i—] be described by the matrix A={a;}, i
non
fi(x) =fj{—:1—] =aq;; for —:; =x< i+1 and i=0,1,...,n—1.
Then
© Zl'ijfj(x) ll4ll [ ]
I
In fact,
n n—1 n 2)1/2
Zuneo] = (35 (Zo)] -
1 n
=—_= SUP 2 2“.,0‘,% ”All[ Z%] )
Vn "E- i=0 j=1
which was to be proved.

Proof of the fundamental lemma. Let g be the number in the funda-
mental lemma. We set

M n=24 R=[n*,

where [x] is the integral part of the number x.
By E; we denote the following set

x—L
. n

R
Ej={x: é;} for R=j=n—R,;

E; =90 for 1=j=R-1 and n—R<j=n.

It is clear that E;c[0, 1] for 1=j=n. First we construct the set of functions
{¥;(x)}i_R such that y;(x) coincides with the required function ¢;(x) on the set
E; and y;(x)=0 for x€E;. We define the piece-wise constant function ¥;(x)

1
with the help of a matrix C={c;;} by putting ¥;(x)=y j[ ] for xe]— i—

.I

and i=0,1,...,n—1; R=j=n—R. Denote by {8}, the following sequence

p=-n
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of numbers
0 for p=R and p<-—R,
_
®) B, =1 2(p—Vn)
Vn
———— for 0=p<R
2(p+V¥n)
We define the matrix 4= {q;;}, 0=i=n—1, R=j=n—R, by putting a;;=p,_;.
Finally, we define the set of piece-wise constant functions {ff(x)}i=R so that

for —R=p<0,

i i+1
-— X < —
n n

IIA

®) 1760 =1 (L = tor

(it is easy to see that fj(x)=0 for x¢E;). This set of functions resembles the
set used by MENSov in the paper [6, p. 110]. Here we have modified MenSov’s func-
tionsso that their supports be of small measure.

By direct calculation we obtain

[nx]1+R
2 ] fi®

Jj=[nx

©) u{xeio, 1]: > C,Vnlog n} > C,,

where C; and C, are absolute positive constants.
We also obtain that there exist numbers M* and yg), 1=k=n-1, for which

n—1
2 ,yl(Jl) - Ml’
p=1
(10) 1
fO@fPx)dx]=y®; for i#j and R=i,j=n—R
J li=Jl
0

The proof of the latter statement will be given at the end of this paper in order
not to overcomplicate the proof of the fundamental lemma.
Consider the set of numbers 4={4,}}__, such that

1) 6;,=0 for i= R, i<—R;

2) o; takes one of the following values

, = —_ =] <
(11) i 1-B, or =1 .

1
Since —-%—é == (see (8)),

(12) | ]5,.|§% for —n=i=n.
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Denote by B(4) the matrix B(4)={b,}, O=i=n—1, R=j=n—R, where
b;;j=0,_; and by B’(4) the matrix B’(4)={b;;}, 0=i=n—1, R=j=n—R, where

1 b 0;—; for i=j},
(12)) P10 for i>j.

It easily follows from the definition of the matrix 4+ B(4) that for every
set 4 the modulus of the entry of the matrix with indices (i, j) is equal to 1 for
—R=i—j<R. : S S »

We choose the required set using probabilistic considerations: We denote by
{f®P(x, HY;Z} the set of piece-wise constant functions defined as follows

. i1
L x<l+ , =j=n—R. .
n n

[IA.

13 P, A.),{,.:fjévz) [%’ A] - by for

It is obvious that fP(x,4)=0 for x¢E;. Observe that |f’(x)+/f> ()|
is equal to 1 for x€E; and is equal to O almost everywhere outside E;.

Consider the set of independent functions {y,(z)};__, defined on the segment
[0, 1] with zero mean value and such that y,(z) takes only two values, namely
the ones taken by &, (see (11)). It is obvious that y,(z)=0 for |k|>R. By virtue
of (12) we have [y, (z)|=3/2 for all k. At every point z€[0, 1] the set {y,(z)} de-
fines some set 4, ie. y(2)=90,, —n=k=n. We denote this set by "4(z).

Let C°® be the constant given by Lemma 4. By virtue of Lemma 4 and the
estimate (5) we obtain o

u{z:||B'(4(2)|| = C°C3(Rlog n)%) =

éy{z:

If i>j, then

(14)

3=

o s
2 u(2)e®|| = C}(Rlog n)1’2}§
==k e .

1 . v: . .’ '
[ £2(x, A@)fP(x, 4(2))dx =
0 S o
0 for |p|=2R . (where p=i—j),
=di=1L 5 5. =L S g v for |p|=2R
T DKk T ﬂ'k_="_':R k:erk z) Ior |p| = 4n.
Using the estimate (5”), we obtain

1 1/v2 ' :
(15) y{z:“g}gkvﬁ@(x, A (x, A)dxl%C,“—(-z—@n—g—f)—}é L for n>1,
J1= 0 .

nr
i#j
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Further
0 for [p| = |i—j] > 2R,

Z 5kﬁk p_—“ 2 ﬁk pXk(Z) fOI' Ip]<2R

l’l_._.

1
ff,-(”(x, A)fO(x)dx =
0

Since

(B =z 5 A =

k=—n - j= }/; J 2
by virtue of (4) and the inequality 1=|p|=n, we obtain

1 1/410 1/2 2
. ) ) @ logtnl _ n-
(16) .u{z. max Lffj (x, A)fj+p(x)dxl> G ~ }= pr

We set r=3 in the inequalities (14)—(16) "Then it follows from these ine-
qualities that there exist a point z,€[0, 1], a set AO—A (zo) and an absolute constant
C® such that :

1) [1B'(4)| = C*(Rlog n)",

. 0 - for |p|=>2R,
(2) (2) =@ =) 5 > m)L/2 ‘
2) max| [ /7Gx 40/12, p(% Ay ds| =9 =1 C*Rlog '™ (RI8M for |pl = 2R;
17 o |
! 0. for |p|= 2R,
\2) (1) = 03 — 5,1/41~0l/2 5. ' .
3) max |6/‘ 2(x)fY (x)dxl P8 Con''*log'?n for |p| = 2R.

n

We remark that by virtue of (17) and (7) we have

- . 5p1/2 1/2 3/2 1/2
(18) Z", y® = R2C R nlog ‘ n - CR Log LI
p=—n : :
and - N - _
. /2
19 ' ' Zn' D= 2CRn logtn < Cn™Y10,

p=-—n n

Let x(E) ‘be the characteristic function of the set E. Then . -

[2 f“(x 4) = 2 1205, 40 [( ]] 2 760

i

where (see (12°), (13))
iomsp(l) - o sl 1)

n n:
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Therefore, by virtue of (6) and (17)

[ax]+ R
(20) 2 [(x, 4,)|| = C*RY2log'?n = Con?P.
Jj=[nx] Ly

Now we define the set of functions {/;(x)} by putting
Vi) =) +fP(x,4,) for x€[0,1] and R=j=n—-R
Using Ceby3ev’s inequality

Rlxel0, 1109 = 3} = 5 [ G d
0

we obtain from (9) and (20) that

[nx]4+R

,Z'] ;)

j=[nx

2D y{x: > Csﬂlogn}>C7>O.

By virtue of (10) and (17) for i¢j we have

| fl Y0¥ (x) dxl = | fl (FOFD 4 fOFO 4 f0 £@ 4 £@ £ dxl =

=P +9P +9P 498 =9©®  where p=i—j.
Besides (see (10), (18) and (19)),
(22) 2 795 <M (M being an absolute constant).

1s|pi=n—2R
Obviously, we may choose M an integer here. Now we construct the required
set of functions {p;(x)}j_, (#=29 on the segment [0, 1] by putting
re+j(x) for x€[0,1,1=j<R and n—R<j=n,
@;j(x) =\r44;(x) for x¢E; and R=j=n-—R,
y;(x) for x€E; and R=j=n—R,
where r,(x) is the kth Rademacher function.

It is clear that |p;(x)|=1 for x€[0, 1] and j=1, 2, ..., n. Since the functions
Y;(x) are piece-wise constant it is easy to see that for every 1=i<j=n

@ f <P'(x)¢‘(x)dx={f Vv e Tor R=F=s= 0=

, 0 for other i j.
i i+1 .\
If xE[—, z——-—], then by the definition of ¢;(x) we have ¢;(x)=y;(x) for
n’ n
all j such that | j—i|<R, since for such j the set E; contains the point x. Therefore
n—R

[nx]+R fnx]+

> 0 = ]ij(x) for xS B,

Jj=Inx] J=[nx
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and consequently (see (21))

[x]+R
] ¢ ;(x)

Jj=Inx

> C%Ynlog n} > CO,

(24) u {x :

If we put yp=yg’) for 1=|p|=n—2R and y,=0 for other p’s, then, as it follows
from the relations (22), (23) and from Lemma 2, the functions {@;(x)}j_, can be
extended to the segment [0, 2M + 1] in such a way that

1) |, =1 for x€[0,2M+1] and j=1,2,..;

2M+1
2) f 0;(x)@;j(x)dx =0 for i#j.

0

Since the estimate (24) also holds, the constructed set satisfies all the require-
ments of the fundamental lemma.

Lemma is completely proved under the assumption that the estimate (10) holds.
Now we prove that estimate. For every j, R=j=n—R we set

.
2(nx—j—Vn)’

g(x) for —R=nx—j<0,
gi(x)={gP(kx) for 0=nx—j=R,
0 for |nx—j| = R.

Vn

A(x) = ———————
S Sy

g (x) =

and

As a matter of fact, these are functions constructed by MenSov (see [6, p. 110]),
but we have modified them so that their supports be of small measure.

The function g;(x) -does not differ much from the function f}”(x). In fact,
" let k be an integer, then

‘ 0 for |k—j| = R,
Vn
k ———— for —-R=k—-j<0,
(25) & [—n—] =7 2(k—j—Vn)
——ﬁ———_— for 0=k—j=R.
2(k—j+Vn) _

Therefore by virtue of (8), (8”) and (25)

(26) g; [%] = fv [%] for k—j#R.
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k k+1
It is easy to verify that for k—j=R and —<x<———
n

&) - g,[k]l Vn.

Since the functions fj(l)(x) are piece-wise constant, the relations (26) and (27)
supply the following estimate for the function D;(x)=f{"(x)—g;(x)

@7

(28) [D;(x)| = ———_ for j= R,‘;..,n—R.

Vn

Suppose that there exists a sequence {y,} such that

1
1) lf g,-(x)gj(x)dx; =y-; foral i#j, R=i,j=n-R;
0
(29) '
n—1
2) 2 v, =M,
r=1

where M, is an absolute constant.
Then it is easy to deduce (10) from (29). In fact, for 0<|i—j|=2R we have

|ff“’f‘”dx1 If(g,+D)(g,+D)dx|

lf g,g,dxl+|f g,Djdxl+lf g;D; dxl+|fDD dxl
By virtue of (28) we obtain
1 .
_ lofp,.p,.dxl = %
Forevery i and f the estimate A 7
].flg;D.:dxl f | ,fd C‘°g” |

holds (see (28) and (8")).
It follows from the definition of the functlons f “’(x) that '

(30) f FOFOEx =0 for - I'i—j[ﬁT% 2R,
0 oo .
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Thus

1 1 2Clogn e
0 N

0 for |i—j|=2R

and, consequently, there exist numbers y$ such that

1
|[r®fPax] =P, forall R=i,j=n—R and i},
[ .
where

nl 2R 1 2Clogn 4CR10 n_
r=1 p=1

This completes the proof of the estﬁnate (10).
Now we have to prove the estimate {29). To do this we estimate the numbers

1
oy = [ 2i(x)g;(x)dx.
0
We consider three cases.

.Case 1. |i—j|=>2R. By the definition of the functions g;(x)
(31) “ij = O.

Case 2. 1=|i—j|=R.Let, for example, i>j. In this case

jln in (+R)n
;= f g g dx+ j‘ g“’g‘”dxﬁ— f g® g dx.
(i—R)/n < jin iln
Note that '
in Vn Vn i : dx

4 gVgMdx = . —
(:_‘z{;/,. R Rf)/n[ (i+Vn]][ [J+f]]
x— x—
. n
_ _l,logl_]+ﬁ - .,log-' —1+R+Vn .
i—j Yn Ti=jo T R4+Vn

By similar calculation we obtain

(32

il Sy iy
, 2 , z—j+V—7;
G2y 4 g(1>g(2>dx— ——=—]log .
B Jl"[ : f “]"‘ZV— ﬁ o

Further, the functlon g“)(x) is the translate of the function g{"(x) along

the x-axis by —_ (a similar relatlon holds for the functions gP(x) and g (x)).
n
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Using this fact, we easily prove that

G+R)n ifn

(32) [ &PePdx= [ gMegPax.
in (i—R)/n

The latter integral has already been calculated.
Thus by virtue of (32), (32") and (32”) we obtain

4o = 2 logl—_]_H/;— 2 logl_J+V;+ 2 tog ]—H_RTVZ.
i—j Va i—j+2Vn Vn i—j R+Vn
Let
)’i@j=l 2 log i—j+Vn _ 2 _log i—j+Vn ’
i—j Vn i—j+2Vn Vn
Yo, = 2 |10g j—i+R+Vn )
i—j R+Vn
Then (see (7))
R n—1 n-1 41/; P+‘/’—1
PP = 3 9@ = lo =
pg; ’ Pgl ’ Pg p(p+2Vn) ¢ Vn

MenSov showed (see [6, formulae (3.8), (3.11) and (3.14)]) that the latter sum is
bounded by an absolute constant, i.e.,

n—1
2 IV;@I < M.
p=1

Since
2 )4
@ ="llo [1—— ] ,
Vp > 2 RV
by Lemma S we obtain
5 22“1[1 P]' 2M.
= —|log [1— = .
P=1'Yp p=1P £ R+Vn :

Hence |o,;|=7P+yP=y, for 1=|i—j|=R, where
R

(33) 310 = Myt 20,
p=

Case 3. R<|i—j|=2R. Inthis case

G+R)in 1 GBI dx
4o, = 4 f gPgWdx = =

o ot EE) )

= 2 Iog[lbﬁ-zﬂ——l]

i—j+2Vn R+Vn
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for i>j. Therefore |o;|=y,_; (R<i—j=2R), where

a()

Vp = =
i 2(p+2Vn)
Now we estimate the sum
2R 1 2R 1 [p+21/‘ ]l
S= =— || =
7 p=§+1?" 2 o8 R+Vn
2R
éi 2 log[p+2V— 1”
R p=R+1 R+Vn
We put g=2R—p, then
p+2Vn q
——_1=1_‘—T-
R+Vn R+}/n
Consequently
15 q
=— Iog{l— ] log[l— ]l
R & +Vn Z R+Vn

By Lemma 5 the latter sum does not exceed M,, i.e.,

2R
(34) 2 Vp =M.

p=R+1

Combining the estimates of cases 1—3 (see (31), (33) and (34)) we obtain

1
|[ &) g;(x)dx| = vy
0

-1
for all i#j and R=i, j=n—R, where nZ' Pp<M;. This is the required estimate
p=1

(29), thus the fundamental lemma is completely proved.

Now we show how the set satisfying the requirements of Theorem 1 is con-
structed.

Denote by {¢%(x)}%_, the set of functions satisfying the conditions of the
fundamental lemma with the given g-and with the variable mapped homothetically
onto the segment [0, 1]. We construct the infinite set of functions {i,(x)};—, by
putting

V,(x) = ¢%(x) for n=214+m, l=m=24

Using Lemma 6 it is easy to prove that there exists a sequence of functions
fi(x),q=1,2, ..., suchthat |f,(x)|=1 and the set {p,(x)};>,

(Pn(x) :f;(x)lpn(x)’ 2<n= 2q+1’ q= 1’ 2: seey

is orthonormal on the segment [0, 1].
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To prove that the set {¢,(x)} satisfies all the requirements of Theorem 1 it
is sufficient for every sequence {f,} such that

(35) - ﬂn = O(Ingn), ﬁnf ®©, N >0,

to find a series (2) diverging on a set of positive measure, while
2 Cabn < .
n=3

For this purpose we construct the sequence of integers g¢; in such a way that
10=g¢;<g,<... and (see (35))

1 .
(36) 0<pBii=—54q, j=12, ...

We put
¢ = {(2‘“1324,-)‘”21“1 for 297'<n=2%, j=1,2,..;
" 0 for other n.

By virtue of the estimate (36) and the requirement 3) of the fundamental lemma
we easily obtain

N;(x)

2 pu(x)

n=N j(x)

where 2% <N;(x)=N;(x)=2% and j=2,3, ....
It follows from the latter estimate that the series (2) diverges on a set of positive
measure. Besides,

u{xE[O, 1]: = Clj} = G,

o = 1
Zcr%ﬁné 2_2<°°
j=1J

n=3
The proof of Theorem 1 is completed.
Remark 2. While proving Theorem 1 we actually obtained the following
intermediate result.

Let the numbers n and R be as in the fundamental lemma (see (7)). Then there
exists a sequence {g . _r, & =11, suchthat

R _
1) Se=CVnlogn,
en
R .
2) 2’ Bkelkt
=_R

= C2 V;n
C

where C; and C, are positive absolute constants.
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It is well known (see [3]) that for every integer there exists a sequence {J,}i-;,
J,= 1, such that

(3%) E CyVm.

m .
3 g
k=1

Using (37) and (38) it is not difficult to construct for every glven integer r
a polynomial P, (t) Z’sk e’ g, =+1, suchthat

D I1P,@)lc = CVr,
9)

2) the partial sum S,(P,, 0)=C, Vr logr.
Denote by P,(r, m, t) the following trigonometric polynomial

P,(r,m, ) =Re [—1= P.(9) ei'"'] = — cos (m+k)t.

V2r
It follows from (39) that for any integers » and m
(40) HPI(ra m, t)”C = C9 Sm+r(Pi(r9 m, t)a 0) = Cvl IOg r.

These properties of the polynomials P,(r,m,¢) are analogous to those of
Fejér’s polynomials. However, all non-zero coefficients in P, (r, m, t) have the
same modulus. Using these polynomials instead of Fejér’s polynomials and repeating
the routine reasonings (see [10, p. 477, Theorem (2.1)]) we obtain the following result.

There exists a continuous function f(x) on [—mn,n] such that

1) f(x) = S’a,, cos kx,
k=1
@w@@:O[IJ,

logg
3) |&]i0, as k oo,

—V

4) the Fourier series of f(x) diverges at the origin.

This result is a sharpeniﬁg of a theorem due to SALEM (see [8]), who obtained
it without requirement 2).
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O muoxutensnx Beiliifl A1 cX0AUMOCTH IOYTH BCIOJIy OPTOrOHAJBHLIX PSZIOB

B. C. KAIIMH

W3y4aeTcs CXOOAMOCTH IMOYTH BCIOAY OPTOTOHANBHBIX PsgoB. OCHOBHBIM DPe3yJIbTATOM
ABJISETCA Ceayiomas TeopeMa.

Teopema. Cywecmsyem opmornopmuposannas na ompesxe [0, 11 cucmema gynryuit {9, (x)}e=1
makaa, umo |, (x)|=1, x€[0,1], n=1,2,... u O0aa aw0boii nocredosamesnocmu B,=o(log?n)
Haiidemca pao

Y Capn(x)
n=1
KOMOopblii pacxooumcsa Ha MHOMCeCmeEe HOA0NCUMENbHOI Mepbl, XOMA

2 caBn< .
n=1
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