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Ои WeyPs multipliers for almost .everywhere convergence 
of orthogonal series 

в. s. KASIN 

The aim of this paper is to prove the theorems stated in [4].' • 
Let {(pn(x)}Z=i be an orthonormal set of functions (ONS) on the segment [0, 1]. 

A sequence of numbers Xn (А^О, АИ+1>ЛИ) is called a Weyl multiplier (WM) for 
almost everywhere (a. e.) convergence of series with respect to this set, if the ine­
quality 

(1) : • • , - • i c | A „ < -
n = l ... : . . . . . , • . . 

implies the a. e. convergence on [0, 1] of the series 

(2) 2cn<pH(x):' 
n = l 

The WM {X„}. is called a, precise Weyl multiplier (PWM) if for every sequence /?„ = 
= o(Xn} there exists a-series (2) diverging on a set of positive measure,'whereas 

И = 1 

The classical theorem of D. E. Mensov and G. Rademacher (see, e.g., [2, Chap­
ter V, § 3]) states that Xn=log2 n is a WM for the a. e. convergence of series with 
respect to any ONS. 

Mensov also constructed an ONS for which Aw=log2 n is a PWM. The set con­
structed by Mensov was not uniformly bounded, and for a long time it had not 
been clear of what order a WM for series with respect to a uniformly bounded 
ONS must be. 

In [5] KOLMOGOROV and MENSOV constructed an ONS {(pn(x)} such that 

1) \(pn(x)\ = l for *€[0,1] and /2 = 1,2,...; . .. . . 

2) every sequence fin9 such that f}n = o(logii), is not a WM for the a. e. con­
vergence of series with respect to {(pn(x)}. 
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In 1938 MENSOV proved (see [6]) that for any K^l there exists an ONS {(pn(x)} 
such that 

1) \(pn(x)\^К for *€[0,1] and « = 1,2,...; 

2) the sequence {log2 n) is its PWM. 
The extreme case K=l is interesting. In [9] TANDORI proved that for every 

e^O there exists an ONS {q>„(x)}, \q>n(x)\ = 1, w = l, 2, ..., and a series (2) such that 

1) 2, cn l og П ( log l o g Л)1""* < oo; 
и = 3 

2) the series (2) diverges a. e. after a certain rearrangement of its terms. 
The lessening of the order of magnitude of the WM for the orthonormal sets 

{(pn(x)}, \(pn(x)\ = l, would have had important effects in number theory and in 
the theory of orthogonal series itself. It follows from Theorem 1, however, that 
such a lessening is impossible. 

Theorem 1. There exists an OSN {(pn(x)}f \cpn(x)\ = 1, on the segment [0,1] 
such that the sequence Xn = log2 n is its PWM. 

Theorem 1 is easily deduced (as shown at the end of this paper) from the fol­
lowing lemma with standard reasoning. 

Fundamental lemma. There exist absolute constants Сх>0, С2>0 and 
an integer M^l such that for any positive integer q there exists a set of functions 
{̂ >у(лг)}̂ 1 defined on the segment [0, 2М-Ы] and satisfying the requirements 

1) \(р.(х)\ = 1 for хфЛМЛ-l] and ./=1,2, ...,2«; 
2M+1 

2) J <pt(x)q>j(x)dx = 0; i V / , 1 =g ij ^ 2*; 
о 

3) there exist N±{x) andN2(x) such that 

f I *«<*) | 1 
fi\x:\ 2 Ф/(*) >" CxVnlogn] ^ C 2 , 

To prove the fundamental lemma we need the following auxiliary statements. 

Lemma 1 (MENSOV [6, p. 104]). Let {tfl7}£J=1 be a real square matrix of 
order n and p£(0,n) be an integer. Let /L= max \au\. Then on every segment 
[c,d] such that d-~o2pp one can construct a set of functions {(ps{x)}n

s=x such 
that 
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1) l<P5(X)| = 1 for x€[c, d] and 1 ̂  s ^ n; 
d 

2) f (pi(x)(pj(x)dx = -aij for \i-j\=p, l^ij^n; 
с 

d 

3) / (pi^cpjixydx = 0 for i?*j9 \i~j\ ^ p, 1 ̂  ij ^ n. 
с 

Lemma й. Let {(Pi(x)}1=1 be a set of functions defined on the segment [0,1] 
for which a sequence {yp}p=i with the properties 

1) / Vt(x)<Pj(x)dx\ — V\i-j\ for every l = i<j^n, 

2) "ZJP^M 
P=I 

exists. Then the functions (pt(x) can be extended to the segment [1, 2M+1] in such 
a way that 

2M+1 

1) / <Pi(x)(Pj(x)dx = 0, ' 1 ^ ij ^n, i V y; 
0 

2) |^ (x) | = 1 /or x € ( l , 2 M + l ] and i = 1,2, . . . , / i . 

Lemma 2 follows easily from Lemma 1. In fact, to prove it we subdivide the 
segment [1,2M+1] into n~\ non-overlapping segments Ap9 l^p^n — l, of 
length |zip|>-yp and put 

i 
au = f <Pi(x)(pj(x)dx. 

о 

Then for every integer p we define the set of functions {(Pj(x)}n
j=zl on the segment 

Ap according to Lemma 1. Thus we define the set {(Pj(x)}n
j=1 on [1,2M+1]. 

It is obvious that for this set the requirement 2) is satisfied and that for any 
1 ̂  i-<j^n such that j—i=p we have 

2M+1 1 

J <pi(x)(pj(x)dx = J (pi(x)(pj{x)dx-\- J q>i(x)(pj(x)dx — 0. 
0 0 Ap 

Thus Lemma 2 is proved. 

Lemma 3 (see [7, pp. 16 and 76]). Let {Xt(z)}Z=i ^e a set °f independent func­
tions on the segment [0, 1] with the mean value of Xt(z) being equal to 0 and \Xi(z)\^B 
for z£[0, 1] and i=\, ..., N. Then for any y>0, any positive integer k^N and for 
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any set of real numbers {а(}У= г the following inequality holds: 

(3) »\z •• | i<w*(z) |=у ( i^ ) 1 "}= 2 е ~ у Ч г в -
It follows directly from the estimate (3) that for any integer r there exists a 

constant C) depending only on В and r such that 

(4) »{*•• Д*<*,(*) > ^( ia f logvj 1 2 } < 1 , 
where v is any integer exceeding 1. 

It easily follows from the estimate (4) that for any r ^ l there exists a constant 
C* such that 

(5) /JJ2 2х*(*)е° C2(wilog *)1/2} * v 
for m<v and m^JV(v>l ) . 

In fact, we put Cr
2 = 4Cr

1
+5 where С}+ъ is the constant from (4). For any 

trigonometric polynomial P(x) of order not exceeding v the obvious inequality 

\\P(x) 2 max P[2M 
[ v5 

holds. Hence 

f II m II 1 
I ll*=i He J 

s2 i I |*=i I, v ) 
IC^imlogv)11* }• 

By virtue of (4) the latter sum does not exceed 
v5 1 1 
У—_< _ 

k t l V+ 5 " V ' 
which supplies the estimate (5). 

Further, we put X;(z) = 0 for i<\ and />i\f. Let s^O be an integer. Con­
sider the set of functions {Xi(z)Xi+s(z)}T=-oo- It is clear that |/f(z)%i+s(z)|<j?2, 
by virtue of the requirements of Lemma 3. It is easy to verify that for every s the 
functions of this set can be divided into two groups so that the functions of each 
group are independent (e.g., for ^=1 the first group contains the functions of 
the form XzkXzk+i> — °°-</с<°о? while the second one contains the functions of 
the form Хш-гХш> -oo<£<co) . 
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Therefore we can use the estimate (3), by virtue of which we obtain 

|^| = 1,2,..., v. 

Hence we immediately obtain that there exists a constant C* for which 

(50 ' »{г:1 : max 2 Xi(z)Xi+s(z) 0(mlog ^j -v 
(e.g. C = C?+,). 

Lemma 4. Let f(t)£C[0, 2n] and {с„}Г=-оо be the sequence of its Fourier 
coefficients. Then if A=^{aij}^j:=_00 is the infinite matrix such that aij = ci_j, then 

1 И = sup 2 atjXtyj 
i,j= — oo 

^ C°\\f\\c, 

where C° is an absolute constant. 
The statement of Lemma 4 is well known (see, e.g. [1, Theorem 303]). 

Lemma 5. There exists an absolute constant M2 such that for any y ^ 3 

p) M - 2 1 

P = l P 
log 1 ^ M 2 . 

Indeed, the function Ф(х)=х 1 | log(l— x)\ is monotonously increasing on 
(0, 1). Therefore 

M-2 1 2 -
P=i P log I y) у А р l0£ 1 

} | log(l-x)| , 

Lemma 6. Let m and ml9 m<ml9 be two given positive integers and let 
{ ^ ( 4 ..., (pm(x)} and {(pm+1(x), ...9<pm (x)} be two sets of measurable functions 
such that \(pk(x)\ = l for x£[0, 1] and &=1,2, ...,mv Then there exists a mea­
surable function u(x) such that 

1) |и(*)| = I for хф,1], 
i 

2) f (pi(x)(u(x)(pJ(x))dx = 0 for 1 ̂  i ^ m '< у ^ mx. 
о 

Proof. Denote by ^={^k=i a n arbitrary vector with coordinates ek= + \ 
or — 1. Define the set 

E(s) = {хф, 1]: (pk(x) = sk for к = 1,2,..., m j . 
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It follows from this definition that for every ё all the functions <pk(x) (k= 
= 1,2, ...,тг) are constant on the set Е(ё). Therefore any function u(x) such 
that |w(x)| = l and 

f u(x)dx = 0 for all e, 

will satisfy all the requirements of Lemma 6. 

R e m a r k 1. Let the set of functions {fj(x)}^=1 on [0, 1] piece-wise constant 
(i i+V\ 

on the intervals I —, be described by the matrix A = {au}9 i.e., 
[n n J 

Then 

(6) 

• ^ = / Д т г ) = a'; for 7 - x < i ^ ~ and ,' = 0'1" И - 1 . 

In fact, 
2ajfj(x) 

1/2 

l n-X n 
= -= sup 2 2^и^У1 = Ш 

*n "iSj-i i = 0 J = 1 

v = 0 

which was to be proved. 

Proof of the fundamenta l lemma. Let q be the number in the funda­
mental lemma. We set 

(7) и = 2«, R = [nsl% 

where [x] is the integral part of the number x. 
By Ej we denote the following set 

4 x: \x 
n 

Ej 

^—\ for R^j^n-R; 

for I ^j ^ R~-l and n-R~<j^n. 

It is clear that JE}CZ[0, 1] for l^j^n. First we construct the set of functions 
WO* (*)}"=!* s u c n t n a t l^jW coincides with the required function q)j(x) on the set 
Ej and \l/j(x)=0 for x£Ej. We define the piece-wise constant function ^ ( x ) 

( i) \i i+\\ 
with the help of a matrix С = {ct,} by putting i/r- (x) = ^ ,• I — = ct. for % £ —, —— 

\n) [n n ) 
and z=0, ! , . . . , « — 1; R^j^n—R. Denote by {/?p}p=_n the following sequence 
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of numbers 

(8) pp=\ 

\ ° 
fk 

j 2(p-YZ) 
fn 

2(p+fH) 

for p ^ R and p 

for -R^p^O, 

for O^p^R. 

-R, 

We define the matrix A = {au}, O^i^n — 1, R^j^n—R, by putting ау=А-</.-
Finally, we define the set of piece-wise constant functions {//1} (•*)};=i* s 0 that 

(80 Л»Ы-Л»{^-а« f„ l ^ * ± l 
(it is easy to see that f}(x)=0 for x$Ej). This set of functions resembles the 
set used by MEN§OV in the paper [6, p. 110]. Here we have modified Mensov's func­
tions so that their supports be of small measure. 

By direct calculation we obtain 

(9) /Лх€[0, 1]: 
[nx]+R 

j=[nx] 
^fnlogn} c2, 

where Cx and C2 are absolute positive constants. 
We also obtain that there exist numbers M1 and y£\ l^k^n — l, for which 

(10) 
\JfP(x)f}1)(x)dx\^yfP.jl for i*j and R^iJ^n-R. 

The proof of the latter statement will be given at the end of this paper in order 
not to overcomplicate the proof of the fundamental lemma. 

Consider the set of numbers A = {<5f}"= _n such that 

1) st = 0 for izzR, i-c-R; 

2) Si takes one of the following values 

сю 
Since - - s f t s s - (see (8)), 

' 1 l - A for -R s i < R. 
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Denote by В (A) the matrix B(A)={btj)y О^Ып-1, R^j^n-R, where 
Ьи=ё(_3. and by B'(A) the matrix B'(A) = {b'u}9 О^Шп-l, R^j^n-R, where 

, . t_f for / ^ / , 

<12'> ^HV for ,.,. " 1 о 
It easily follows from the definition of the matrix A+B(A) that for every 

set Л the modulus of the entry of the matrix with indices (/, j) is equal to 1 for 
-RSi-j<R. 

We ehoose the required set using probabilistic considerations. We denote by 
{fj2)(x, A)}"JZR the set of piece-wise constant, functions defined as follows 

(13) fP(x, A)=fj* [ | , 4] = btj for I i + l 
=SJC< -, R^ j^n-R. 

n 

It is obvious that fj2)(x,A)=0 for x$Ej. Observe that \fj*\x)+f?*(x)\ 
is equal to 1 for x£Ej and is equal to 0 almost everywhere outside Ej. 

Consider the set of independent functions {Xk(z)}k=-n defined on the segment 
[0, 1] with zero mean value and such that /fc(z) takes only two values, namely 
the ones taken by Sk (see (11)). It is obvious that xfc(z) = 0 for \k\>R. By virtue 
of (12) we have |/fc(z)|^3/2 for alii:. At every point z£[0, 1] the set {xk(

z)} de­
fines some set A, i.e. %k(z)^5k, —п^кшп. We denote this set by A(z). 

Let C° be the constant given by Lemma 4. By virtue of Lemma 4 and the 
estimate (5) we obtain 

li{z '• \\В'(Л(Щ\ ^ C*C?(R\ognfi*} * 

^ 4 z : i Xk(z)eikt\\ ^ C?(R\ogn)A ^ ±. 
I \\k=-R !|C J Пг 

If i^j, then 

Jf^(x9A(z))fP(x,A(z))dx= -
0 for \p\ > 2R (where p == /—y% •-... 

, ~ 1 *A + p = ^ 1 -ALpZ»W for |/>|*s2Ji. 
t-V.^-fc^-R.i : И k=-R ,-• 

Using the estimate (50, we obtain v
 ; 

(15) Jz: max 1 /,#а>(х, A)f}*>(x, A)dx\ ^ C* (2Rl°g ^ l ^ - 1 f o r " : 
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Further 

j f?\x,A)fP{x)dx 
0 

Since 

0 for \p\ = \i-j\>2R, 

\; 2 8kpk-p = ±-2'Pk-p&(z) for \p\*2R. 

и-г-ш"-* 
by virtue of (4) and the inequality l^\p\^n9 we obtain 

z : max | / f}*>(x, A)f^p(x).dx\ >.С?УП *°S " j S £ . 

We set r=3 in the inequalities (14)—(16). Then it follows from these ine­
qualities that there exist a point z06[0, 1], a set AQ=A (z0) and an absolute constant 
C5 such that 

1) \\B>(AJ\\*C*<filogny!\ 

2) max | / fP(x, AM$P(x, A0)dx\ ^ у <s (2) 

0 for \p\>2R, 
С 5 ^ ' ° ^ > 1 / 2 for H , 2 , ; 

(17) 

Ъ) max\Jff(x)f$p{x)dx\^y (3) 
p 

0 for . [/?|>2Л,,-

(18) 

and 

(19) 

We remark that by virtue of (17) and (7) we have 

2C5R112 log1/2 n CR3'2 log1/2 и 
p=-n 

Cn-1'1* 

2ур.±.2СЧЬР')о&*п : С п_1 / 1 Л 

Let /(Е) be the characteristic function of the set E. Then 

[«*]+# n-R {( j\) n-R 

;=&.*] /=я I1- « ' ) i=R 

where (see (12'), (13)) 

/РЙГЛГ(4)-«6 ** - # ^ ) , 
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Therefore, by virtue of (6) and (17) 

(20) 
[nx]+R 

j=[nx] 
^C5R1/2log1/2n^C5ri' 2/5 

Now we define the set of functions {*А/(х)} by putting 
tj(x)=f}1)(x)+ff>(x,A0) for *€[0, 1] and R^j^n-R. 

Using Cebysev's inequality 

фф, 1] :/(*) >y}*± jf\x)dx, 
У о 

we obtain from (9) and (20) that 
f \inx]+R I ) 

(21) / ф : 2 1 ФЛх) >• C 6 }^log«[^C 7 =-0. 
I |j=Di«] I J 

By virtue of (10) and (17) for *Vy we have 

|/fc(*)*/*H = l/c//1^4 +/*(1)Л2) + / W +//2)Л1)Н ^ 
о о 

SyV+yf+yP+yVp^yP where /» = i-y-
Besides (see (10), (18) and (19)), 
(22) 2 y°p-< M (M being an absolute constant). 

l^\p\^n-2R 

Obviously, we may choose M an integer here. Now we construct the required 
set of functions {(Pj(x)}n

j:=1 (n=2q) on the segment [0, 1] by putting 

irq+j(x) for x€[0,1], 1 ^j •< R and n—R^j^n, 
(Pj(x) = j rq+j(x) for JC$ £} and R^j^ n—R, 

[il/j(x) for x€£} and R^j^ n—R, 

where rfe(x) is the Aith Rademacher function. 
It is clear that \(pj(x)\ = l for x€[0, 1] and jf=l, 2, . . . , л. Since the functions 

il/j(x) are piece-wise constant it is easy to see that for every l^i^j^n 
i 

)dx for R^ i^j^n—R, 
о 

(23) 1*ШМ*х = \!ШиХ)1 
0 * 0 for other 15^7. 

If x€ —, — ~ L then by the definition of (рЛх) we have <рЛх)=ф,(х) for 
[и я J 

all j such that \j—i\<R, since for such j the set £} contains the point x. Therefore 
[nx]+R [nx)+R n-R 

2 <Pj(x)= 2 Ь(х) for x^2 Ek, 
j^lnx] j=[nx] k=R 
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and consequently (see (21)) 

f \[nx]+R I ] 
(24) ц\х: I 2 (pj(x)\^Ce]/nlogn\^C^. 

I \j=inx] I J 

If we put ур=ур
0) for \^\p\^n—2R and yp=0 for other /?/s, then, as it follows 

from the relations (22), (23) and from Lemma 2, the functions {<pj(x)}n
j=sl can be 

extended to the segment [О, 2М+1] in such a way that 

1) \<Pj(x)\ = 1 for x€[0,2M+l] and y = l,2,. . . ; 
2M+1 

2) / (Pi(x)(pj(x)dx = 0 for /=^y. 
о 

Since the estimate (24) also holds, the constructed set satisfies all the require­
ments of the fundamental lemma. 

Lemma is completely proved under the assumption that the estimate (10) holds. 
Now we prove that estimate. For every j \ R^j^n—R we set 

WM = • gPM 
fn 

and 
2(> nx-j- fn) 

gf\x) = fit 
2(nx—j+Yn) 

gj(x) 

gj1}(x) for -R^nx-j^ 0, 
gf\x) for O^nx-j^R, 

0 for \nx—j\>R. 

As a matter of fact, these are functions constructed by MENSOV (see [6, p. 110]), 
but we have modified them so that their supports be of small measure. 

The function gj(x) does not differ much from the function /j1}(*)- In fact, 
let к be an integer, then 

(25) • ( f ) - { 2(k-j-YH) 

2{k-j+fn) 

Therefore by virtue of (8), (8') and (25) 

0 

fit 

for \k-j\>R, 

for -R^k-j^O, 

for O^k-j^R. 

(26) Sj (IM4) for k-j^R. 
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к k + l 
It is easy to verify that for к—j^R and— ^д:< 

n n 

(27) *M-*\$ fii' 

Since the functions fjl)(x) are piece-wise constant, the relations (26) and (27) 
supply the following estimate for the function D, (x) =jfj1}(x)—g7-(x) 

(28) I ^ W H - ^ for j = R,...9n-R. 

Suppose that there exists a sequence {yp} such that 
i 

1) \f gi(x)gj(x)dx\ ^y\i-j{ for all i^j, R^i,j^n~R; 
(29) 

2) 2 Ч ^ м 1 9 

where Mx is an absolute constant. 
Then it is easy to deduce (10) from (29). In fact, for 0<\i—j\^2R we have 

\JfPfPdx\ = \f-(gt+Dd(gj^bjyih\^ 

^J</^'^/^l"+l/. ^ ^ ^ l 4 " ! / ^^ '^t + J /^?^^l 
By virtue of (28) we obtain 

i / i 1 

For every / ahd/ the estimate 

С log n \f gjDidk\ ^:±= f \gj\dxm^ 
о V« о < n 

holds (see (28) and (80). 
It follows from the definition of the functions ff*(x) that 

(30) J fPfl^dx = 0 for :\i-j\> 22?. 
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Thus 
1 2Clogn 

\ffPfVdx\^ ^ + 7 + - ^ ^ *A*\t-j\*2R. 

0 for \i-j\>2R 

and, consequently, there exist numbers y^ such that 

To 
where 

l 

IffPf^dxl^y^-ji for all R^iJ^n-R and i^j\ 

" ^ m ¥$( -1 2Clogn) шг 4CRlogn ъж 
p = l p=i\ П П ) П 

This completes the proof of the estimate (10). 
Now we have to prove the estimate (29). To do this we estimate the numbers 

l 

<*u = f gi(x)gj(x)dx. 
0 

We consider three cases. 

Case 1. \i—j\>2R, By the definition of the functions gi(x) 

(31) ay = 0. 

Case 2. l^\i—j\^R. Let, for example, / >/. In this case 
Sin Цп U+R)!n 

«u= f g?>gPdx+ f gPg?>dx+ f gVgfdx. 
(i-R)/n Sin i/n 

Note that 

4 fwb-Zjg-j, 
(32) >-Н-1Ш'-Ш1 

1 i i-j+in , 1 , j-i+R+Уп 

= -^—7 lOg — Г ,.+.—-7 log ~ J=r- . 

By similar calculation we obtain 

(320 4 / > « f & = _ _ ^ l o g b ^ . 
- sin: у '': ; !; /-7+2УЛ \n 

Further, the function g^}(x) is the translate of the function gf\x) along 
/—/ ' (. the x-axis by (a similar relation holds for the functions gf\x) and g\2\x)\ 
n J 
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Using this fact, we easily prove that 

(32") 
U+R)ln Jin 
f g[2)gj2)dx= f gVg?4x. 

iln (i-R)ln 

The latter integral has already been calculated. 
Thus by virtue of (32), (320 and (32") we obtain 

. 2 t i-j+Yn 4a,-, = -log 
i-J 

Let 

2 , i-j+Yn , 2 t j-i+R+Yn 
.——log—^=— + log-^— p-^— 

fn i-j+2fn fn i-j R+Yn 

ri-j 
2

:юё^+Гп 2 l o g . ' - ' ^ 
i-j Yn i-j+2Yn in 

y & = -
Then (see (7)) 

i -J 
log j-i+R+Yn 

R+fit 

p=i p = i />=i / 7 ( / ? + 2 K w ) yn 

MENSOV showed (see [6, formulae (3.8), (3.11) and (3.14)]) that the latter sum is 
bounded by an absolute constant, i.e., 

n — 1 

Since 
2 1 

by Lemma 5 we obtain 
R R 1 

lonfl ^ 11 8l л+^jl 
llonfl * 1 1 o s l J l + ) d 

Hence faijl^y^+yf^yp for l^ | / - j |^i?, where 

(33) 27, 
p=l 

=§ A/3+2Af2. 

==i2M2 

Case 3. Л<|1-7'|^2Л. In this case 
a+R)in t а+л)/« ^ 

4al7 = 4 / ^ i - f / 
U-R)ln (i-R)ln 

i-j+2in \ R+fit ) 
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for i> / . Therefore |al7| = yf_y (R<i—j^2R), where 

УР = _— log 
2{p+2ln)\ KR+ffi 

{p+2jn Л 
{ R+Vn ) 

Now we estimate the sum 

c Й I S 1 , ip±rfii ) S= Z lp = — 2 p l o g 7= 1 
t P=R+I 2 P=R+I p+2\n I \ R+fn ) 

1 2K 

7 2 l l ogl 
R P=R+l\ 

[р±^п_Л 
\ R+Vn ) 

We put q=2R-p, then 

Consequently 
1 я - 1 

S ^ Z logII D ,-

^ + 2 1 ^ 1 = 1 q , ' . 
i?+]//z Я+| /и" 

* -]l«2-!-M 1 

By Lemma 5 the latter sum does not exceed M2 , i.e., 
2R 

(34) 2 У„^М,. 

Combining the estimates of cases 1—3 (see (31), (33) and (34)) we obtain 
i 

\f gi(x)gj(x)dx\ ^У\1-д 
0 

и - 1 

for all iy£j and R^i,j^n—R, where J£ yp^M±. This is the required estimate 

(29), thus the fundamental lemma is completely proved. 
Now we show how the set satisfying the requirements of Theorem 1 is con­

structed. 
Denote by {^(*)}m=i ^ е s e t °f functions satisfying the conditions of the 

fundamental lemma with the given #»and with the variable mapped homothetically 
onto the segment [0, 1]. We construct the infinite set of functions {J/n(x)}^=z by 
putting 

Фп(х) = <р%(х) for n = 2q + m, l^m^2q. 
Using Lemma 6 it is easy to prove that there exists a sequence of functions 

/«(*)> 0=1> 2, ..., such that \fq(x)\ = l and the set {cpn(x)}7=z 

<Рп(х)=А(хЖ(х), 2«^п^2«+\ $ r = l , 2 , . . . , 
is orthonormal on the segment [0,1]. 
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To prove that the set {(pn(x)} satisfies all the requirements of Theorem 1 it 
is sufficient for every sequence {/?„} such that 

(35) pn = o(log*n), /U~, i - ~ , 

to find a series (2) diverging on a set of positive measure, while 

и = 3 

For this purpose we construct the sequence of integers qj in such a way that 
W^q-L^q^... and (see (35)) 

(36) 0^p$^-jzqJ9 7 = 1,2,.... 
J J 

We put 

c s №W-*J 
" I 0 

^Г1 for 2 ^ < n s 2 4 y = l , 2 , . . . ; 
for other n. 

By virtue of the estimate (36) and the requirement 3) of the fundamental lemma 
we easily obtain 

/фб[0 , .1 ] . 
N'j(x) 

Z Cn<Pn(x) 
n=Nj(x) 

Clj\ = 

where 2qJ-x~<Nj(x)^Nj(x)^2qJ and j=29 3, .... 
It follows from the latter estimate that the series (2) diverges on a set of positive 

measure. Besides, 

oo oo 1 

n=3 j = l J 

The proof of Theorem 1 is completed. 

R e m a r k 2. While proving Theorem 1 we actually obtained the following 
intermediate result. 

Let the numbers n and R be as in the fundamental lemma (see (7)). Then there 
exists a sequence {%}jf= _#, sk = ± 1, such that 

(37) 
1) 24^Cxin\ogn, 

k=0 

2) 1 e4e* C2]//2, 

w/zere Q and C2 are positive absolute constants. 
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It is well known (see [3]) that for every integer there exists a sequence {Sk}%=19 

dk=±l, such that 

(38) 2Skeikt 

k = l 
3sc3i/; m. 

Using (37) and (38) it is not difficult to construct for every given integer r 

a polynomial Pr(t) = 2еке*к'> %=±1> such that 
k = l 

i) \\PM\C^CY?9 
(39) 

2) the partial sum Sr(Pr, <д)^Сг}[г logr. 
Denote by Рг(г,т9^ the following trigonometric polynomial 

P±(r9 m, t) = RQ\—=Pr(t)eimt\ = 2?-p^cos(m+/t)£. 
{fir ) k=i \2r 

It follows from (39) that for any integers r and m 

(40) \\P1(r9m9t)\\c^C9 ^ n + , (P i ( r ? m, t)90)^ Q l o g r . 

These properties of the polynomials i \ ( r , m, t) are analogous to those of 
Fejer's polynomials. However, all non-zero coefficients in P1(r,m,t) have the 
same modulus. Using these polynomials instead of Fejer's polynomials and repeating 
the routine reasonings (see [10, p. 477, Theorem (2.1)]) we obtain the following result. 

There exists a continuous function f(x) on [—n9n] such that 

1) / (*) = 2 ak cos kx9 
k=l 

2)a>(f,5) = oi—Ц-j, 

3) ItfJlO, as к -+• oo5 

4) the Fourier series of f(x) diverges at the origin. 

This result is a sharpening of a theorem due to SALEM (see [8]), who obtained 
it without requirement 2). 
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О множителях Вейля для сходимости почти всюду ортогональных рядов 

Б. С. КАШИН 

Изучается сходимость почти всюду ортогональных рядов. Основным результатом 
является следующая теорема. 

Теорема. Существует ортонормированная на отрезке [0,1] система функций {срп(х)}п=г 
такая, что \(рп(х)\==19 х€[0,1], л = 1,2,... и для любой последовательности 0n=o(log*ri) 
найдется ряд 

I сп<Рп(х) 
п = 1 

который расходится на множестве положительной меры, хотя 

п = 1 
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