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The present paper contains some results which complement the research done in [B-
T1}, [B-T2}, [K] and [L].
We consider below ¢ x n matrices A = (ai,j)g=1, j—1, as linear operators acting from
a g-dimensional space ¢ to an n-dimensional space £;, for various values of 1 < p,r < 0.
In the papers mentioned above and in other articles, the authors obtain results con-
cerning the possibility of “improving” the properties of the operator A by restricting its
range in the corresponding coordinate space R™. In the language of matrices, one consid-
ers the possibility of selecting in A a submatrix A’ of size ¢ x m, with m < n, which has
additional properties. For instance, one such situation studied below is when A’ is selected
as to have the smallest possible norm among all the submatrices of A of the given size
g X m. Another case of interest is when A’ is selected as to minimize the expression
M(A") = max M
20 || AL]
The first case (i.e. when A’ has the smallest possible norm) is subsequently used below
in order to improve in the case of square matrices of small rank, a suppression £heorem
proved in [B-T2]. The other case is connected with a problem appearing naturally in
function theory, namely to find for a given orthonormal system {wi(z)}]_, in the space L,
(X,%, n) a finite set of points {z;}7L; C X of smallest possible cardinality m such that
the discrete system

{(wi(z1), wi(2), ..., 0i(zm)) I,

of vectors in R™ is “close” to being an orthogonal system.

We begin with a result on flat matrices, whose proof is based on a slight modification

of the argument used to prove Proposition 1.6 in [B-T2], which in turn relies on a method

developed in [G-Z].

THEOREM 1. There exists a constant D < oo such that, whenever n > D, 1 < g < n, A

is a linear operator from (3 to £3, and {£;}7_, is a sequence of {0,1}-valued independent

random variables of mean ¢ for some 0 < § < 1 over some probability space (2,3, i), then
/Q 1Ro () All2—1dp < D(6n'/2 + (5¢)1%)||Al|3—2,
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where, for w € Q, o(w) = {1 <i < n, &w)=1}.

PROOF: Suppose that Ae; =

J

n
= 2>

aijej, 1 <@ < q. Then, for w € Q and « = (z;)7_, € 43
1 .
we have that

n q
RJ(W)AQZ = ij(w) (Z aijm) €;j.
j=1 =1
Hence,

n

1= [IRs@alhdu= [ s > g

z€ly, ||=12<1 55

dp <

q
Zai,jmi
=1
n q n
<4 sup > 1 ay al/u+/Q o > (W)~ 9)
el

Qzel, lloll2<1 527 ;51 ' » l=ll2<1 55

dp <

u
E Q455
1=1

dudy’,

<ot [ [ s [S (6500 - )

»ell2<1 )55

q
L
=1

where {}}7_, is a copy of {¢; 7=1 over a probability space (',%', '), independent of
(22,%, ). It follows that

I < ont?||Allgms + 2// sup Zsjfj(w) dude.
Q

zely, ||z|[2<1 j=1

q
=1

Let now {g;(w")}7_; be a sequence of independent Gaussian random variables over a

third probability space (2”,%", u""), independent of (€2,%3, ). Then, by Slepian’s lemma
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(cf. [B-T2], Lemma 1.5) and Cauchy-Schwartz inequality, we conclude that

5 1/2

E Qg 54

=1

dudy” <

[
I <6n'?||Allgmn + V21 / / sup Zg] ")Ei(w
Q t meeq

2 ”$||2S1

9 1/2

< (5711/2HA||2_,2 2} 4\/7_7 / / sSup Zg] ” 'S] Z Qi ;T4 d,u,du" <
Q 1

zely, ||z|[2<1 |; i=1

1/2
< 0n'?||Al|gm + 4/7 // Z Zgg "Véj(w)as ; dudu” <
"i=1 7=1
1/2
< 0nt?||Allpms + 47 /ZZ@ )@ ;| dp <
=1 j=1
. 1/2
< 002 Alla—2 +2Vm6 | D0y ?
i=1 j=1
But s
q n /
DO lacl? < ||Alles < ¢"/*||All2—2
=1 j=1

where ||A||gs denotes as usual the Hilbert-Schmidt of A. This yields that

/ 1Ry Allosrdps < [572/ + 4(m5g) 2] Alls.
thus completing our proof.

m}

COROLLARY 2. There exists a constant D; < co 50 that, whenever n is an integer, 1 /n <

0 <1,1<q<mn, and A is a linear operator from {3 to {3, then there exists a set

n C{1,2,...,n} of cardinality || > én/4 so that
1/2
1Ry Allz < D (8724 (4) ) alas

PROOF: As usual, we use the Grothendieck factorization in the following way. Since, for

u{wGQ;

large n,
n

> (& -9)

=1

> 5n/2}



is near 0, we can easily find a point wy € € and a constant D depending on D, so that the

set 0 = o(wp) has cardinality |o| > dn/2 and

1R Allz—1 < D(6n'/2 + (69)"/%)]|Al|2—.

Since any operator from E!;’)' into #3 can be factorized through é’l;], one deduces for the

operator A*R, : £2] — ¢2 that there exists U : 21 2 with
1/2
1012 < V2D (824 (2)") il

and a diagonal operator V : 212l — ¢! 50 that A*R, = UV and

1/2 5\ 12
_ 2
||V||oo.*z—(§jm|> <(%).

i€o
where Ve, = v;e;; 1 € 0.

Hence, R, A = V*U* so if we put
n={i€o; |ul<v2}
then, for any z = (z;)!_, € ¢, we have that

* * 143
Iydle = 18V 02 s < VAU 2l < 2D (2 + (£)") e,

8
1/2
I1Ryllae <20 (544 (4)") 1Al
n
Furthermore,
2ol < S fuf? < bn/2
1€Ea~m

ie. '

In| > on/4.

o

We shall apply now Theorem 1 to the study of square matrices of small rank. First,

we prove the following result.



THEOREM 3. There exists a constant Dy < oo s0 that, whenever n > D5, 0 < § < 1,
{€;}7-1 is a sequence of {0, 1}-valued independent random variables of mean § over some
probability space (2, X, p), {€;}7—; a copy of {;}7 j=1 over a probability space (', %', u'),
independent of (Q, %, u), 1 < ¢ < n, A: 03 — £ with ||A||3 <1 and B : 03 — (3 with
||Bll2—2 < 1, then the operator C = BA - (3 — {7 satisfies

‘/Q/Q ”Ra(w)CRa(w')Hoo—»ldﬂdul < Dy(6%*n + 53/2((]”)1/2).

PROOF: As in the proof of Theorem 1, we notice that

//’wefn ||1:H°o<1Z

n
where (c; ;)7 ;_; is the matrix defined by Ce; = > cijej; 1 <i<n. Then

)| dpdy,

Z%fcz&

j=1
J <o+ Jo,
where
h:i/ E:qdag
Q zeln,, ||.»c11°°<1j 2 [i=1
and

dudy’.

n=[ [ o (&(w) -
2 'wa;,mﬂmSIE; ’

1

) Z ¢, & (w
i=1

In order to estimate J;, we observe that
J1 2/ ICR; () lloom1dp’ < IIBH2—»1/ ARG ()]l comadp <
Q Q
S n1/2HB”2—>2/$; HRa(w’)A*||2—>1d:u/'
Hence, by using Theorem 1 above and our assumptions, we conclude that,

Ji <n'2D(6n'/? + (89)'/?) = D(on + (5qn)"/?).
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The estimation of J; is done exactly as in the proof of Theorem 1. By using the same

notation as there, we get that
Z &5 (w

J2 < 2// f sup cz,]ngz
Q Tz€el?, ||z|leo<1 k=1 Z
w)l/z// / Z&i Zgj w)ci j| dudy'de <
Q 1 1" i:l

dudy'de <

1/2
<asen) Y [ Y@l | dus
i=1 79 \ j=1
1/2 1/2
n n n n
<4820 Y [ Slesl2 | <4 2@n 2 [ TS jes?| <
=1 \j=1 =1 j=1

< 453/2n1/2(27f)1/2]|C|IHS < 453/2n1/2q1/2(27r)1/2||0||2..,2 —

= 46%/%(2mqn) /2,

since C' is of rank q.

Now, by combining the above estimates, we obtain the result. o

COROLLARY 4. There exists a constant C < oo so that, whenever n is an integer, 1/n <

0<1,1<¢g<mnandA is a linear operator from 03 into itself whose rank is < g, then

)
min HR ARnu||2_,2 <C|d+ ( q) .
[n'|,In""|>8n /4 n

PROOF: Ifrank A is < ¢ then in the decomposition A = Sy+4S,, with S; = (A+A*)/2 and
Sz = (A~ A*)/2i, we have two selfadjoint operators of rank < 2¢. A simple diagonalization
argument yields the existence of unitary operators Uj : 03 — €351 =1,2, so that U;S; Ul =
Vi, where V; are diagonal operators on £ with real entries and rank Vi<2qi=1,2 1If

V; = V" =V;7, with V;* and V,~ being diagonal operators of rank < 2g having non-negative

entries only, then

Si =UlViU; = UV Ui = (\VIU) (ViU — (Vi Us) *WVIU), i=1,2.



Since 1/V;TU; and 4/V,”U; are in fact operators from 2% into E%q, we conclude from The-

orem 3 above that, for some constant D3 < oo,

/ / 1R 10y A Ror oy lloo1disdi < Da(8%n + 6%/2(qn)1/2),
QJar
Hence, '
min ||Ry ARyr||oo—1 < D3(8%n + 63/%(qn)/?)
lo"),|o" [>6n/2
from which, by using factorization as in the proof of Corollary 3, we deduce that

5(] 1/2
min HR AR,,]//||2_,2 < C (5 + < ) .
[n'],|n"|>8n/4 n

for a suitable constant C' < oo. o

COROLLARY 5. There exists a constant C' < 00 50 that, whenever n is an integer, 1/n <

6 <1,1<q<n and A is linear operator on {3, then

| Ry ARpr||2—2 < C ( o(A)8' 2+ 5+ (5q> ) ,

In'l, ln"l>5 /4 n

where aq(A) = min{||A — B||o—9, B : £§ — ¢2, rank B < q} denotes the g-approximation
number of A.

PROOF: This is a consequence of Theorem 3 and the definition of aqg(A). o

COROLLARY 6. There exists a constant C; < oo such that, whenever n is an integer,
I/n<d<1,1<qg<mnandA is a linear operator on £y of rank q with 0’s on the diagonal,
and ||A||2—2 < 1, then there exists a set n € {1,2, .. .,n}, |n| > én/4 for which

50\ 12
”R AR»,IHQ_,Q <Cy ((5+ (nq> ) .

PROOF: By the decoupling result Proposition 1.9 from [B-T1],

/ IlRa(w)ARo(w)Hooald.u < 20/ / ||Ra(w)ARo(w’)||oo—->1dﬂd/i,-
Q Q Jor

The rest of the proof is exactly as in that of Corollary 4. o

The next topic considered here concerns certain matrices cousisting of ¢ orthogonal
rows in £3, where ¢ is, in general, much smaller than n. The aim is to find submatrices of

size ¢ X m, for different values of m, which are well invertible.

We need first a lemma of a probabilistic nature.
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{LEMMA 7. Fix0<e<1,B>0and0<d < 1/2, and suppose that g and n are integers

'so that q divides n and
e26n

Then, whenever {{;}7_, is a sequence of {0,1}-valued independent random variables of

)

mean § over some probability space (Q, X, 1) and, for1 < j < q, I; = {Q_Tl)?l +1,..., L;—}
the set

ow)={1 <k <n;é(w)=1}

satisfies the inequality
(1= 2)olL;| < lo() N L] < (1 + £)8| I ;

. . 1e 2
for all 1 < j < ¢, with probability > 1 — 5

PROOF: First notice that, by [B] (see also Lemma 7 in [K-T]),
2
2
. . — > sn/
w e 1121?%((1'1'561-(&(('0) 0)] 2 v} < 2qe” %75,

for any 0 <y < én/q. Hence, with v = E‘ST", it follows that

mw € Q; max |lo(w) N 1| —6|L;|| > edn/q} <
1<5<q

e26n . 2
< 2qe'% < 2qe~(B+l)logg _ 353

which, of course, completes the proof. u!

We present now a result which allows the selection of submatrices of a certain size,
which are at the same time bounded and well invertible, from the matrix consisting of the

first ¢ Walsh vectors of length n. We have considered here only random selections.

THEOREM 8. Suppose that 0 <e <1, B>0and0< § < % are given, and that q and n

are integers so that n is a power of 2, q divides n and

loga < e?én
TORTS BTy
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Let W, be the ¢ x n matrix whose rows consist of the first ¢ Walsh vectors of length n,
fmormalized in £3. Then, with o(w) having the same meaning as in Theorem 1 and with

srobability > 1 — Ezg,
(1= €)26Y2||2]|3 < | Ro(u)Wonalla < (1+€)/26%2||z]|,,
for all z € £3, and

(1—e)on < lo(w)| < (1 + €)dn.

PROOF: Since the first ¢ vectors in the Walsh system of order n are constant on each of
the intervals I; = {(7—_;—)2 +1,..., l}}, introduced in the previous lemma, it follows that,

for any z € £, the vector W, ,,x is of the form
2 q,

g
Wq:nx = : :CJXIJ )
i=1

where Xy, denotes the characteristic function of the set I, c {1,2,...,n}; 1 < j < n.

Hence, for any w € ©, and z € £,

q q9
(+) 1o ) Wanll = > [1Rawynr, Wanell3 = D le 2lo(w) n 1],

j=1 j=1

Thus, by Lemma 7 above, we have that
(1= €)8Y2||Wynella < ||Ro(u) Wonzlla < (1 +&)/26Y2||W, ,xl]a,

with probability > 1 — q%.
However, because of the orthonormality of Wy n, we have that |Wy,nzl||2 = l|z]|2, for

all z € £2, and this completes the proof. o

Theorem 8 is no longer valid if gloggq is large relative to én. More precisely, we can
prove the following result.
PROPOSITION 9. Suppose that (g;, n;, 5i); ©=1,2,... are triples such that ¢; and n; are
integers,
(i) ¢; < o;n; < g;¢;logg;,
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}?Withsi—»O, as 1 — 00,
” 1—
(i) nf <g; <n;”"

for some p > 0. Then, with probability tending to 1,

1/2
2——+2/Ji/ — o0,

HRG(w)WQi,m
as 1t — 0.

The proof of this proposition can be obtained by direct computation using the identity

(+) above. We do not reproduce the details here.

Proposition 9 shows that even in the simple case of the Walsh matrix, the random
choice of g x dn submatrices of W, ,, does not give the optimal estimate of the norm which
in this case is < §1/2.

It turns out that Theorem 8 remains valid if we replace the system consisting of the
first Walsh vectors of length n by any other orthonormal system of ¢ vectors in ¢, whose
entries are equal in absolute value to 1/,/n. However, in this case, we have to impose a
stronger condition on g and n.

The condition below that all the entries of the matrix have the same absolute value can
be wekened considerably but we do not pfesent here sharper versions in this direction since

the main problem seem to be that the condition below involving ¢2log ¢ can be improved

probably on a large extent.

THEOREM 9. Suppose that 0 < ¢ < 1/3, B> 0and 0 < § < 1/2 are given, and that q

and n are integers satisfying the condition

e*én

2
1 _con
T89S 5B 12

Then, whenever T, ,, is a ¢ X n matrix consisting of orthonormal rows whose entries have

all absolute values equal to 1/+/n, we have, with probability > 1 — q%, that

(1= )8"|[z|l2 < ||Ro() Ty nallz < (1+ )82z,
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%or all z € €3, and
‘ (1—¢)on < |o(w)| < (1+¢€)dn

T’ROOF Fix0<e<1/3,B>0,0<6<1/2, qand n as above, and let Tym : €3 — €5 be
an operator whose entries (a;;){., ;' satisfy |a; J| = 1/y/n, for all 4 and j. Let {&i13-
be as before, a sequence of {0,1}-valued independent random variables of mean § over

§ome probability space (2, X, u). Then, by [B] or Lemma 7 from [K-T], we get that,

n

_72
‘pi w € Q; max anai,jlz(ﬁj(w) =027 =u{wed |low)—dn| >~} <2 T,
1<:i<q =

and

pyw € max |3 nassan;(€(w) = 6)| > v < 2w,

for any choice of 0 < v < én.

Take now v = /4(B + 2)dnlogq and notice that

2

2(]26-%27 = 2¢%e~(B+2)logq _ 5
q

Hence, with probability > 1 — qifg, we have that

2 i
1I3a<x | | Ro(w)Tqneslls = | < o

and

2
2% | Bt Tones, Ro(o) Tymen) | < -

Consider the operator 15w Ro@w)Tyn - €5 — €3, and observe that, with probability
>1—-4/¢P, the diagonal D(w) of Ty nRo )Ty satisfies

8+ % > (D(w)es, &) = ||Rouy Ty meil|2 > 6 — %; 1<i<g,

and also

HT;,TT«RU(W)TQ;” - D(w)HQ < ||T;,nRU(w)Tq,n - D(W)HHS <
1/2

* Y
< Z I(Tq,nRa(w)Tq,nei7 eh)I2 < g-.
1<ih<q n
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f*;?’Thus, with the same probability as above,

1B ) Tainl2 = (T2 Rty Ton, ) < (‘S 1D )IIz)II%II%g
< (5+(‘-’“) )u 2,

forze £3. In particular, we get that

41 1/2
L S

' On the other hand, again with the same probability,

H(T;,nRU(w)Tq,n)_II'2 = II(D(C«)) + (T*,nRa(qu,n - D(w))_l”Q L

- _ 1
<ID@)™Hl2/ (L = 1D (W)ll2 1Ty wRo(wyTam — D(w)|l2) < P T
: Furthermore,

(T;,nRo(w)T ’n)—l(Ra(w)Tq,n)*Ra(w)Tq,nx =2z,

for all z € £, and thus,

1/2
lells < G R Tyl

e

3(g+ 1)y
Ro Tyl 2 (82 = 24LDTY o,

for all x € 4. The proof is then completed once we know that jlg 4+ 1) < €26n, which
- follows from the condition imposed on ¢ and n.

The fact that | |o(w)| = d,| < € is immediate. o
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