Теорема Гаусса—Бонне

Теорема Гаусса—Бонне утверждает, что среднее значение гауссовой (или скалярной) кривизны на двумерном многообразии не зависит от выбора метрики и определяется исключительно топологией многообразия. Именно, рассмотрим двумерное компактное ориентируемое риманово многообразие с краем, которое обозначим через (M,g). Введём следующие обозначения:

- K(x) = R(x)/2, где R(x) скалярная кривизна в точке $x;^1$
- ullet ω форма объёма, согласованная с римановой метрикой и ориентацией.
- $\rho(\gamma)$, где γ связная компонента ∂M , это угол, на который поворачивается относительно вектора $\dot{\gamma}$ любой вектор, параллельно переносимый по γ (см. подробное определение ниже); $\rho(M) = \sum_{\gamma \subset \partial M} \rho(\gamma)$;
- $\chi(M)$ эйлерова характеристика M, которую нам удобно определить как $N_0 N_1 + N_2$, где $N_{0,1,2}$ это число вершин, рёбер и граней в любом разбиении M на односвязные (гомеоморфные диску) области.

Теорема 1 (Гаусса—Бонне) В указанных обозначениях

$$\int_{M} K\omega - \rho(\partial M) = 2\pi \chi(M). \tag{1}$$

Доказательство состоит из двух частей. В первой части разрезанием многообразия на части теорема сводится к случаю, когда M является замкнутым диском; доказательству теоремы в этом случае посвящена вторая часть.

1 Сведение к случаю замкнутого диска

Пусть на M зафиксировано некоторое разбиение на диски D_i . Мы будем предполагать, что все границы являются гладкими, за исключением возможных изломов в вершинах разбиения. Кроме того, будем считать, что углы между рёбрами, входящими в вершину, не равны нулю.

Будем приближать один такой диск $D=D_i$ дисками $D^{\varepsilon}=D_i^{\varepsilon}$ с гладкой границей так, что вне малых окрестностей изломов границы этих дисков совпадают, и выясним, каковы пределы меняются величины $\rho(\partial D^{\varepsilon})$ и $\int_{D^{\varepsilon}} K\omega$. Для второй величины это ясно:

$$\lim_{\varepsilon \to 0} \int_{D^{\varepsilon}} K\omega = \int_{D} K\omega.$$

Перейдём к нахождению предела $\rho(\partial D^{\varepsilon})$. Начнём с формального определения величины ρ . Если дана произвольная гладкая кривая γ , параметризованная натуральным параметром $s \in [a,b]$, то можно построить семейство линейных отображений $\nu_s \colon T_{\gamma(s)}M \to \mathbb{R}^2$, которые переводят риманову метрику в $T_{\gamma(s)}M$ в стандартное скалярное произведение на плоскости, положительную

 $[\]overline{}^1$ Если бы многообразие (M,g) было поверхностью в \mathbb{R}^3 с индуцированной метрикой, то K(x) было бы, очевидно, его гауссовой кривизной.

ориентацию в $T_{\gamma(s)}M$ в стандартную положительную ориентацию в \mathbb{R}^2 , а вектор $\dot{\gamma}(s)$ — в базисный вектор e_1 . Рассмотрим отображения $P_{a,c}\colon T_{\gamma(a)}M\to T_{\gamma(c)}M$ параллельного переноса вдоль $\gamma|_{[a,c]}$. Они сохраняют скалярное произведения векторов и ориентацию, поэтому и $\nu_c P_{a,c}\nu_a^{-1}$ сохраняют стандартное скалярное произведение и ориентацию в \mathbb{R}^2 , т. е. являются поворотами. Угол $\varphi_{a,c}$ поворота $P_{a,c}$ определён с точностью до $2\pi k$, но если потребовать, что $\varphi_{a,a}=0$ и что $\varphi_{a,c}$ непрерывно по c, то этот угол определён однозначно. Итак, по определению будем считать, что $\rho(\gamma)=\varphi_{a,b}$. Отметим также, что если рассмотреть произвольную, а не натуральную параметризацию, то результат будет тем же, но вместо условия $\nu_s(\dot{\gamma}(s))=e_1$ нужно требовать, чтобы $\nu_s(\dot{\gamma}(s))$ был сонаправлен с e_1 .

Пусть теперь на кривой γ имеется излом при t=c. Естественно определить величину $\rho(\gamma)$ как предел $\rho(\gamma_\varepsilon)$, где γ_ε — семейство кривых «сглаживающих» этот излом. Мы примем существование семейства сглаживающих кривых с указанными ниже свойствами без доказательства.

Рассмотрим разность

$$\Delta \varphi_{\varepsilon} = \varphi_{a,b}^{\gamma_{\varepsilon}} - \varphi_{a,c}^{\gamma} - \varphi_{c,b}^{\gamma}.$$

Первое условие на кривые γ_{ε} состоит в их совпадении с кривой γ при $t \notin [c - \varepsilon, c + \varepsilon]$. Угол поворота $\varphi_{x,y}^{\gamma}$ аддитивен:

$$\varphi_{x,y}^{\gamma} = \varphi_{x,z}^{\gamma} + \varphi_{z,y}^{\gamma}, \qquad x \le z \le y,$$

поэтому

$$\Delta \varphi_{\varepsilon} = \varphi_{c-\varepsilon,c+\varepsilon}^{\gamma_{\varepsilon}} - \varphi_{c-\varepsilon,c}^{\gamma} - \varphi_{c,c+\varepsilon}^{\gamma}.$$

Выберем координатную окрестность U точки $p = \gamma(c)$. Можно считать, что в точке p риманова метрика в этой системе координат равна δ_{ij} . Наконец, зададим в U векторное поле $a = \partial/\partial x^1$.

Все три участка кривых: $\gamma_{\varepsilon}|_{[c-\varepsilon,c+\varepsilon]}$, $\gamma|_{[c-\varepsilon,c]}$, $\gamma|_{[c,c+\varepsilon]}$ — имеют длину порядка $O(\varepsilon)$, поэтому координаты векторов при параллельном переносе вдоль этих кривых меняются тоже на $O(\varepsilon)$ (эти координаты являются решениями линейной системы $\dot{u}^i(t) = -\Gamma^i_{jk}(\gamma_{\varepsilon}(t))\dot{\gamma}_{\varepsilon}(t)u^j$ с ограниченной матрицей).

На кривых $\gamma|_{[c-\varepsilon,c]}$ и $\gamma|_{[c,c+\varepsilon]}$ координаты направляющего вектора $\dot{\gamma}$ также почти постоянны (они близки к координатам $\dot{\gamma}(c-0)$ и $\dot{\gamma}(c+0)$). Следовательно, почти постоянны и углы между $\dot{\gamma}$ и переносимым вектором:

$$\varphi_{c-\varepsilon,c}^{\gamma} \to 0, \qquad \varphi_{c,c+\varepsilon}^{\gamma} \to 0 \quad \text{при } \varepsilon \to +0.$$

Рассмотрим теперь $\varphi_{c-\varepsilon,c+\varepsilon}^{\gamma_\varepsilon}$. Поскольку, как уже говорилось, поворачиваемый вектор имеет почти постоянные координаты, этот угол близок к углу, на который поворачивается $a(\gamma_\varepsilon(t))$ вокруг $\dot{\gamma}(t)$. Удобно рассмотреть отличающийся от него лишь знаком угол, на который поворачивается $\dot{\gamma}(t)$ вокруг $a(\gamma_\varepsilon(t))$.

Если в окрестности U заменить непостоянную риманову метрику $g_{ij}(x)$ на близкую к ней постоянную метрику δ_{ij} , то углы поворота изменятся мало (углы $\varphi_{a,c} \mod 2\pi$ мало изменятся изза малого изменения метрики, а тогда и поднятие отображения $c \mapsto (\varphi_{a,c} \mod 2\pi)$ с окружности на прямую изменится мало).

Следовательно, мы свели общий случай к случаю постоянной римановой метрики, иными словами, к случаю области на плоскости. Здесь угол поворота касательной к кривой можно найти

непосредственно, он близок к $\pi - \alpha$, где α — угол при вершине. (Доказательство того, почему именно этот угол нужно выбрать из класса $\pi - \alpha + 2\pi k$, довольно сложно. Значительно проще *построить явно* кривые γ_{ε} так, чтобы это было верно.)

Итак, для кривой γ с изломами при $t=t_1,\ldots,t_{k-1}$ мы полагаем

$$\rho(\gamma) = \sum_{i=1}^{k} \gamma|_{[t_{i-1}, t_i]} + \sum_{i=1}^{k-1} (\alpha_i - \pi), \tag{2}$$

где α_i — угол при изломе.

Вернёмся к сведению общего случая к случаю диска. Если для дисков D_i^{ε} теорема Гаусса—Бонне верна, то, переходя к пределу по $\varepsilon \to 0$, мы получим, что

$$\int_{D_i} K\omega - \rho(\partial D_i) = 2\pi.$$

Сложив такие равенства по всем i и подставив выражения (2) для $\rho(\partial D_i)$, получим следующее:

$$\int_M K\omega - (\Sigma_1 = \text{сумма } \rho(\gamma) \text{ по всем рёбрам во всех } \partial D_i) -$$

$$- (\Sigma_0 = \text{сумма } (\alpha - \pi) \text{ по всем углам всех } \partial D_i) = 2\pi N_2. \quad (3)$$

Для вычисления Σ_1 рассмотрим ребро e нашего разбиения. Если это ребро лежит внутри M, то слагаемое $\rho(e)$ встретится в Σ_1 два раза с разными знаками. Если же оно лежит на границе, то $\rho(e)$ будет одно, причём с положительным знаком, если ориентация e согласована с ориентацией границы. Следовательно, $\Sigma_1 = \rho(\partial M)$.

В сумме Σ_0 сгруппируем слагаемые, относящиеся к одной вершине v разбиения. Если вершина v внутренняя, то $\sum_l \alpha_l = 2\pi$, поэтому вклад вершины в Σ_0 равен $(2 - \operatorname{val} v)\pi$, где $\operatorname{val} v - \operatorname{это}$ валентность v, равная числу рёбер, выходящих из неё. Если же v лежит на границе, то $\sum_l \alpha_l = \pi$, и к v прилегает $\operatorname{val} v - 1$ углов, поэтому вклад равен $\pi - (\operatorname{val} v - 1)\pi = (2 - \operatorname{val} v)\pi$. Итак, $\Sigma_0 = 2\pi N_0 - \pi \sum_v \operatorname{val} v$. Остаётся заметить, что сумма валентностей всех вершин равна удвоенному числу рёбер, т. е. $\Sigma_0 = 2\pi (N_0 - N_1)$.

Подставляя найденные значения Σ_0 и Σ_1 в (3), получим

$$\int_{M} K\omega - \rho(\partial M) - 2\pi N_0 + 2\pi N_1 = 2\pi N_2,$$

т. е. формулу (1).

2 Случай замкнутого диска

Итак, пусть на замкнутом диске D задана система координат (x^1, x^2) . Например, можно считать, D «круглым диском» $\{x^2 + y^2 \le 1\}$ на плоскости \mathbb{R}^2 (однако метрика на D, конечно, не равна $dx^2 + dy^2$).

Определим векторное поле a на D так, что $\langle a,a\rangle=1$, например, $a=(g_{11})^{-1/2}(\partial/\partial x^1)$. Поле b возьмём ортогональным к нему и таким, что $\omega(a,b)=1$ (тогда $\langle b,b\rangle=1$).

Мы приведём формулу (1) к формуле Стокса для некоторой формы.

Преобразуем сначала интеграл от кривизны. Как было показано в доказательстве теоремы Гаусса, $R=-2R_{12,12}$ в любой ортонормированной системе координат. Возьмём систему координат $(x^{1'},x^{2'})$, в которой (в одной точке p) выполнено $a=\partial/\partial x^{1'},\,b=\partial/\partial x^{2'}$. Тогда

$$K = -R_{1'2',1'2'} = -\langle R(a,b)a,b\rangle.$$

Далее, рассмотрим тензор типа (0,2), задаваемый формулой

$$\theta(\xi, \eta) = -\langle R(\xi, \eta)a, b \rangle.$$

В силу симметрий тензора Римана θ является кососимметрической 2-формой, причём значение θ на векторах $\xi=a,\ \eta=b$ совпадает с таковым для формы $K\omega$. Следовательно, они совпадают при всех значениях ξ и η . Итак, $\int_M K\omega=\int_M \theta$.

Преобразуем теперь $\rho(D)$. Пусть ∂D задана как путь $\gamma\colon [0,\tau]\to M,\ u(t)$ — параллельный перенос некоторого вектора вдоль γ .

Рассмотрим три вектора: $\dot{\gamma}(t)$, u(t) и $a(\gamma(t))$. По определению $\rho(M)$, вектор u поворачивается на угол $\rho(M)$ относительно $\dot{\gamma}$. Но сам вектор $\dot{\gamma}$ поворачивается на угол 2π вокруг вектора a. (Почему это так?) Следовательно, если $\rho_a(M)$ — это угол поворота u относительно a при обходе границы, то $\rho_a(M) = \rho(M) + 2\pi$. С учётом того, что $\chi(D) = 1$, формула (1) приобретает вид

$$\int_{D} \theta = \rho_a(M). \tag{4}$$

Разложим u(t) по базису $(a(\gamma(t)), b(\gamma(t)))$:

$$u(t) = a(\gamma(t))\cos\varphi(t) + b(\gamma(t))\sin\varphi(t).$$

По определению, $\rho_a(M) = \varphi(\tau) - \varphi(0)$.

С другой стороны, из того, что вектор u(t) получается параллельным переносом вдоль γ , мы получаем, что

$$-\sin\varphi(t)\cdot\dot{\varphi}(t) = \frac{d}{dt}\langle u(t), a(\gamma(t))\rangle = \langle u, \nabla_{\dot{\gamma}}a\rangle.$$

$$\cos\varphi(t)\cdot\dot{\varphi}(t) = \frac{d}{dt}\langle u(t), b(\gamma(t))\rangle = \langle u, \nabla_{\dot{\gamma}}b\rangle.$$
(5)

(Вычисление совершенно аналогично доказательству того, что при параллельном переносе скалярное произведение векторов сохраняется.)

Найдём разложения векторов $\nabla_{\dot{\gamma}}a$ и $\nabla_{\dot{\gamma}}b$ в базисе a,b. (Ковариантно) дифференцируя вдоль кривой γ тождества $\langle a,a\rangle=1,\,\langle b,b\rangle=1,\,\langle a,b\rangle=0,\,$ получим, что

$$2\langle \nabla_{\dot{\gamma}} a, a \rangle = 0, \quad 2\langle \nabla_{\dot{\gamma}} b, b \rangle = 0, \langle \nabla_{\dot{\gamma}} a, b \rangle + \langle \nabla_{\dot{\gamma}} b, a \rangle = 0.$$
 (6)

Подставляя эти формулы в (5), имеем

$$-\sin\varphi \cdot \dot{\varphi} = \sin\varphi \langle b, \nabla_{\dot{\gamma}} a \rangle,$$
$$\cos\varphi \cdot \dot{\varphi} = \cos\varphi \langle a, \nabla_{\dot{\gamma}} b \rangle.$$

При любом значении φ хотя бы в одном из равенств можно сократить на $\sin \varphi$ или $\cos \varphi$, поэтому (с учётом последнего равенства в (6))

$$\dot{\varphi} = \langle a, \nabla_{\dot{\gamma}} b \rangle = -\langle b, \nabla_{\dot{\gamma}} a \rangle.$$

Рассмотрим теперь 1-форму

$$\psi(\xi) = \langle a, \nabla_{\xi} b \rangle = -\langle b, \nabla_{\xi} a \rangle.$$

Тогда

$$\rho_a(D) = \int_0^\tau \dot{\varphi} \, dt = \int_{\partial D} \psi.$$

Итак, формула (4) приобрела вид

$$\int_D \theta = \int_{\partial D} \psi$$

и остаётся проверить, что $\theta=d\psi$. Для этого воспользуемся равенством $d\psi=2\operatorname{Alt}(\nabla\psi)$ (проверьте!):

$$(d\psi)_{jk} = \nabla_j \langle a, \nabla_k b \rangle - \nabla_k \langle a, \nabla_j b \rangle = \langle \nabla_j a, \nabla_k b \rangle + \langle a, \nabla_j \nabla_k b \rangle - \langle \nabla_k a, \nabla_j b \rangle - \langle a, \nabla_k \nabla_j b \rangle.$$

С другой стороны

$$\theta_{jk} = -\left\langle R\bigg(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k}\bigg)a, b\right\rangle = \left\langle R\bigg(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k}\bigg)b, a\right\rangle = \left\langle \nabla_j \nabla_k b, a\right\rangle - \left\langle \nabla_j \nabla_k a, b\right\rangle.$$

Таким образом, осталось доказать равенство

$$\langle \nabla_i a, \nabla_k b \rangle - \langle \nabla_i b, \nabla_k a \rangle = 0.$$

В действительности каждый из членов в отдельности равен нулю. Для этого заметим, что $\nabla_j a$ перпендикулярно a (что следует из равенства $\nabla_j \langle a,a\rangle=0$), а значит, параллельно b. Аналогичным образом, $\nabla_k b$ параллельно a. Следовательно, $\nabla_j a$ и $\nabla_k b$ перпендикулярны друг другу.