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Properties of probability measures on the set

of quantum states and their applications.

M.E.Shirokov ∗

1 Introduction

The notion of ensemble as a set of states with corresponding set of probabil-
ities is widely used in quantum information theory. In particular, important
characteristics such as the Holevo capacity of a quantum channel and the
entanglement of formation of a quantum state are defined by optimization of
the particular functionals depending on ensemble of states [10].

An ensemble of quantum states can be considered as an atomic probability
measure on the set of all states, which atoms correspond to the states of
the ensemble. So, it is natural to consider an arbitrary Borel probability
measure on the set of all states as a generalized ensemble. This point of view
is especially useful in dealing with infinite dimensional quantum channels and
systems since in this case there are no reasons for existence of ensembles called
optimal, at which extrema of several important functionals are achieved, but
under some conditions it is possible to show existence of optimal measures
[7]. Moreover, by considering probability measures as generalized ensembles
it is possible to prove results, which formally have no relations to probability
measures [18]. The advantage of this approach is based on application of
general results of the theory of probability measures on complete separable
metric spaces [6],[14].

In this paper some observations concerning the Choquet ordering [15] on
the set of all probability measures on the set of quantum states are considered
(proposition 1, corollary 1 and lemma 3). They imply, in particular, that
arbitrary measures supported by pure states can be weakly approximated by
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a sequence of atomic measures supported by pure states and having the same
barycenter (corollary 2).

The important property of finite ensembles of quantum states proved in
[17] (lemma 3) can be expressed figuratively speaking as follows: an arbitrary
continuous deformation of the average state of any finite ensemble can be re-
alized by appropriate continuous deformation of the states of the ensemble
and their weights.1 This property is the basic point of the proof of lower
semicontinuity of the χ-function of an arbitrary quantum channel (proposi-
tion 3 in [17]). In this paper we show that it implies the openness properties
of the mapping, which associates with a probability measure the barycenter
of this measure (propositions 2 and 3). These properties and the compactness
criterion for subsets of measures obtained in [7] result in interesting observa-
tions on properties of functions on the set of quantum states (theorems 1, 2,
propositions 4, 5, corollaries 8, 10).

In particular, it is shown that every continuous bounded function on the
set of quantum states has continuous bounded convex closure (proposition
4). It is also shown that every continuous bounded function on the set of
pure quantum states has convex (concave) continuous bounded extension on
the set of all states having the particular minimality (maximality) property
(proposition 5).

The above general observations have several applications to quantum in-
formation theory (corollaries 6,7 and 9). In particular, they provide a nec-
essary and sufficient condition of boundedness and continuity of the convex
closure of the output entropy of a quantum channel (corollary 9). These re-
sults can also be used for construction of continuous bounded characteristics
of quantum states as the above convex (concave) extensions of continuous
bounded functions defined on the set of pure states. As an example, we
consider the construction of quasimeasure of entanglement, which is a con-
tinuous bounded function on the whole state space of a infinite dimensional
bipartite system closely related to the entanglement of formation (remark 3).

In [18] the open problem of coinciding of two definitions of the entan-
glement of formation of a state in infinite dimensional bipartite system is
discussed. In this paper we construct an example showing that this problem
can not be solved by using only simple analytical properties of the quantum
entropy (remark 2 and the note below).

1Even in R
3 there exist convex sets for which the analogue of this assertion is not valid.
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2 Preliminaries

Let H be a separable Hilbert space, B(H) - the set of all bounded operators
in H with the cone B+(H) of all positive operators, T(H) - the Banach space
of all trace-class operators with the trace norm ‖ · ‖1 and S(H) - the closed
convex subset of T(H) consisting of all positive operators with the unit trace
- density operators in H, which is complete separable metric space with the
metric defined by the trace norm. Each density operator uniquely defines a
normal state on B(H) [5], so, in what follows we will also for brevity use the
term ”state”.

We denote by coA (coA) the convex hull (closure) of a set A and by cof
(cof) the convex hull (closure) of a function f [13]. We denote by extA the
set of all extreme points of a convex set A.

Let P be the set of all Borel probability measures on S(H) endowed
with the topology of weak convergence [6],[14]. Since S(H) is a complete
separable metric space P is a complete separable metric space as well [14].

Let P̂ be the closed subset of P consisting of all measures supported by the
closed set extS(H) of all pure states.

The barycenter of the measure µ is the state defined by the Bochner
integral

ρ̄(µ) =

∫

S(H)

σµ(dσ).

For arbitrary subset A of S(H) let PA (corresp. P̂A) be the subset of

P (corresp. P̂) consisting of measures with the barycenter in A. By using
Prokhorov’s theorem [16] the following compactness criterion for subsets of
P is established in [7] (proposition 2): The set PA is compact if and only
if the set A is compact. It follows, in particular, that the subset P{ρ} of P,
consisting of all measures with the barycenter ρ, is compact as well as the
corresponding subset P̂{ρ} of P̂ .

An atomic probability measure consisting of atoms {ρi} with correspond-
ing weights {πi} is denoted by {πi, ρi}. A probability measure consisting of
finite number of atoms is denoted by {πi, ρi}f and is called a measure with
finite support.

The following version of the Choquet decomposition [15] adapted to the
case of closed convex subsets of S(H) is obtained in [8] (lemma 1): Let A be
a closed subset of S(H). Then every state in coA can be represented as the
barycenter of some Borel probability measure supported by A.
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3 Properties of probability measures

Let S be the set of all bounded continuous convex functions on S(H) and

Ŝ be the set of all functions on S(H), which can be represented as point-
wise limits of monotonous sequences of functions from the set S. It is easy
to see that the set Ŝ consists of convex functions, which are either lower
semicontinuous or upper semicontinuous.

Lemma 1. The set Ŝ contains the characteristic function

χA(ρ) =

{
1 ρ ∈ A
0, ρ ∈ S(H) \ A

of a subset A of S(H) in the following cases:

1) A is an arbitrary closed subset of extS(H);

2) A = S(H0) = {ρ ∈ S(H) | suppρ ⊆ H0} for arbitrary subspace H0 ⊆ H;

3) A = Sn(H) = {ρ ∈ S(H) | rankρ ≤ n} for arbitrary n ∈ N.

Proof. 1) It is sufficient to show that the function g(ρ) = supσ∈A Trρσ

lies in the class S since this implies that the functions fn(ρ) = 1− n
√

1 − g(ρ)
lie in the class S for all natural n (due to concavity of the increasing function
n
√
x) and the decreasing sequence of functions {fn(ρ)} pointwise converges to

the function χA(ρ).
Boundedness, convexity and lower semicontinuity of the function g(ρ) fol-

lows from its representation as the least upper bound of the family {Trρσ}σ∈A

of bounded continuous affine functions on S(H).
Suppose that the function g(ρ) is not upper semicontinuous. This implies

existence of a sequence {ρn} of states converging to some state ρ0 such that

lim
n→+∞

g(ρn) > g(ρ0). (1)

Let A = {|ϕ〉 ∈ H | |ϕ〉〈ϕ| ∈ A} be subset of H and A be its closure in the
weak topology in H. Lemma 2 on p.284 in [9] 2 implies

g(ρ0) = sup
σ∈A

Trρ0σ = sup
ϕ∈A

〈ϕ|ρ0|ϕ〉 = sup
ϕ∈A

〈ϕ|ρ0|ϕ〉. (2)

2Let {xn} be an arbitrary sequence of vectors in a Hilbert space weakly converging to
the vector x and A be an arbitrary compact operator. Then limn→+∞〈xn|A|xn〉 = 〈x|A|x〉.
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For arbitrary ε > 0 and arbitrary n there exists a vector ϕε
n ∈ A such

that 〈ϕε
n|ρn|ϕε

n〉 > g(ρn)−ε. Since the unit ball of the space H is compact in
the weak topology we can find a subsequence {ϕε

nk
}k of the sequence {ϕε

n}n

weakly converging to some vector ϕε ∈ A. By lemma 2 on p.284 in [9] the
sequence {〈ϕε

nk
|ρ0|ϕε

nk
〉}k converges to 〈ϕε|ρ0|ϕε〉 as k tends to the infinity.

This and the estimation |〈ϕε
nk
|ρnk

− ρ0|ϕε
nk
〉| ≤ ‖ρnk

− ρ0‖1 imply

lim
k→+∞

g(ρnk
) ≤ lim

k→+∞
〈ϕε

nk
|ρnk

|ϕε
nk
〉 − ε = 〈ϕε|ρ0|ϕε〉 − ε ≤ g(ρ0) − ε,

where the last inequality follows from (2). But this contradicts to the as-
sumption (1) due to the freedom of the choice of ε.

2) Let P0 be the projector on the subspace H0. Since g(ρ) = TrP0ρ is a
continuous affine function on S(H) the functions fn(ρ) = 1 − n

√
1 − g(ρ) lie

in the class S for all natural n (due to concavity of the increasing function
n
√
x) and the decreasing sequence of functions {fn(ρ)} pointwise converges to

the function χS(H0)(ρ).
3) For given n consider the continuous function g(ρ) =

∑n

i=1 λi, where
{λi}n

i=1 is the set of n maximal eigen values of the state ρ. The function g(ρ)
is convex since it can be represented as the least upper bound of the family
{TrPρ}P∈Pn(H) of affine functions, where Pn(H) is the set of all projectors

in H of rank n. Hence the functions fn(ρ) = 1 − n
√

1 − g(ρ) lie in the class
S for all natural n (due to concavity of the increasing function n

√
x) and the

decreasing sequence of functions {fn(ρ)} pointwise converges to the function
χSn(H)(ρ). �

Consider the following partial order on the set P of all probability mea-
sures on S(H). We say that µ ≻ ν if and only if

∫

S(H)

f(σ)µ(dσ) ≥
∫

S(H)

f(σ)ν(dσ) for all f in S.

The partial order of this type is widely used in the theory of integral repre-
sentation and is often called the Choquet ordering [15],[4].

It is easy to see (by considering affine continuous functions on S(H)) that
a relation µ ≻ ν implies ρ̄(µ) = ρ̄(ν).

Intuitively speaking, a relation µ ≻ ν means that ”the mass of µ is
removed farther away from the common barycenter of µ and ν, and comes
close to the extreme boundary” [1]. Note that the extreme boundary (=the
set of extreme points) of the set S(H) is the set of all pure states (=states of
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rank 1) and that for arbitrary subspace H0 of the space H the subset S(H0)
is a face of the set S(H). Thus the above characterization of the partial
order ” ≻ ” is confirmed by the following observations.

Proposition 1. Let µ and ν be arbitrary measures in P such that µ ≻ ν.
Then

• µ(A) ≥ ν(A) for arbitrary Borel subset A of the set extS(H);

• µ(S(H0)) ≥ ν(S(H0)) for arbitrary subspace H0 of the space H;

• µ(Sn(H)) ≥ ν(Sn(H)) for arbitrary n = 1, 2, ....

Proof. Since every measure in P is a Radon measure the assertions of
the proposition directly follow from lemma 1 and the part A of lemma 2
below. �

The monotonous convergence theorem [9] and the definition of weak con-
vergence [6] imply the following observation.

Lemma 2. A) Let µ and ν be measures in P such that µ ≻ ν. Then

∫

S(H)

g(σ)µ(dσ) ≥
∫

S(H)

g(σ)ν(dσ) (3)

for arbitrary function g in Ŝ.
B) Let {µn} and {νn} be two sequences of measures in P converging to

measures µ and ν correspondingly such that µn ≻ νn for all n. Then µ ≻ ν.
According to [15] a measure µ in P is called maximal if ν ≻ µ implies

ν = µ for any measure ν in P.
Corollary 1. The set of all maximal measures in P coincides with P̂.
For every measure µ in P there exists a maximal measure µ̂ in P such

that µ̂ ≻ µ.
Proof. The assertions of this corollary can be deduced from the gen-

eral results of the theory of measures on convex set [1],[4],[15], but we want
to show that proposition 1 and the compactness criterion for subsets of P
provide simple and constructive way of their proof.

Let µ be an arbitrary measure in P̂. By proposition 1 the assumption
ν ≻ µ for some measure ν in P implies ν(A) ≥ µ(A) for arbitrary Borel set A
of pure states. Since µ and ν are probability measures and µ is supported by
pure states equality necessarily holds in the above inequality, which means
that µ = ν. Thus µ is a maximal measure in P.
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If µ is a maximal measure in P then by the below observation there exists
a measure µ̂ in P̂ such that µ̂ ≻ µ and hence µ = µ̂.

Let µ be an arbitrary measure in P. By lemma 1 in [7] there exists se-
quence {µn} of measures in P with finite support, converging to the measure
µ. By using lemma 3 below we obtain the measure µ̂ such that µ̂ ≻ µ. �

The following observation based on the compactness criterion for subsets
of P plays an important role in this paper.

Lemma 3. Let µ0 be an arbitrary measure in P and {µn} be a sequence of
measures in P with finite support converging to the measure µ0. There exist
a subsequence {µnk

} of the sequence {µn} and a sequence {µ̂k} of atomic

measures in P̂ converging to some measure µ̂0 in P̂ such that

µ̂k ≻ µnk
, ρ̄(µ̂k) = ρ̄(µnk

), ∀k, and µ̂0 ≻ µ0.

Proof. Decomposing each atom of the measure µn into convex combi-
nation of pure states we obtain (as in the proof of the theorem in [7]) the
measure µ̂n with the same barycenter supported by pure states. It is easy to
see by definition that µ̂n ≻ µn. Continuity of the mapping µ 7→ ρ̄(µ) implies
compactness of the set {ρ̄(µn)}n≥0 ⊇ ρ̄ ({µ̂n}n>0). By the compactness cri-
terion for subsets of P the set {µ̂n}n>0 is a relatively compact subset of P.
This implies existence of subsequence {µ̂nk

} converging to a measure {µ̂0}
supported by pure states due to theorem 6.1 in [14]. Since µ̂nk

≻ µnk
for all

k, the part B of lemma 2 implies µ̂0 ≻ µ0. Denoting µ̂k = µ̂nk
we complete

the proof of the lemma.�
Corollary 1 and lemma 3 make possible to obtain the following analog of

lemma 1 in [7], which means weak density of atomic measures in the set of
all maximal measures with given barycenter.

Corollary 2. An arbitrary measure µ̂0 in P̂ can be weakly approximated
by a sequence {µ̂n} of atomic measures in P̂ such that ρ̄(µ̂n) = ρ̄(µ̂0), ∀n.

Proof. By lemma 1 in [7] for given measure µ̂0 there exists a sequence
{µn} of measures in P with finite support converging to the measure µ̂0

such that ρ̄(µn) = ρ̄(µ̂0), ∀n. Applying lemma 3 and corollary 1 it is easy
to construct from the above sequence a sequence {µ̂n} with the required
properties. �

The mapping µ 7→ ρ̄(µ) is a continuous mapping from P onto S(H) [7].
Lemma 3 in [17] makes possible to prove the another important topological
property of this mapping.

Proposition 2. The mapping P ∋ µ 7→ ρ̄(µ) ∈ S(H) is open.
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Proof. Let U be an arbitrary open subset of P. Suppose ρ̄(U) is not
open. Then there exist a state ρ0 ∈ ρ̄(U) and a sequence {ρn} of states in
S(H) \ ρ̄(U) converging to the state ρ0.

Let µ0 be a measure in U such that ρ̄(µ0) = ρ0. Since U is an open
set we may consider due to lemma 1 in [7] that µ0 is a measure with finite
support, so that µ0 = {π0

i , ρ
0
i }m

i=1. By lemma 3 in [17] there exists a sequence
of measures µn = {πn

i , ρ
n
i }m

i=1 converging to the measure µ0 = {π0
i , ρ

0
i }m

i=1

such that ρ̄(µn) = ρn, ∀n. Openness of the set U implies µn ∈ U for all
sufficiently large n contradicting to the choice of the sequence {ρn}.�

Note that openness of the mapping µ 7→ ρ̄(µ) does not follow from con-
tinuity of this mapping and compactness criterion for subsets of P. There
exist compact convex subsets in R

n, n ≥ 3, for which the analogous mapping
is not open.

Practically it is convenient to use the following reformulation of proposi-
tion 2.

Corollary 3. Let µ0 be an arbitrary measure in P and {ρn} be an ar-
bitrary sequence of states converging to the state ρ̄(µ0) = ρ0. There exist
a subsequence {ρnk

} of the sequence {ρn} and a sequence {µk} of measures
with finite support converging to the measure µ0 such that ρ̄(µk) = ρnk

, ∀k.
Proof. Note that P is a complete separable metric space [14].
For given k ∈ N let Uk be the open ball in P with the center µ0 and

radius 1/k. By proposition 2 the set ρ̄(Uk) is an open vicinity of the state
ρ0 and hence it contains at least one state ρnk

of the sequence {ρn} so that
ρnk

= ρ̄(µk) for some measure µk ∈ Uk. Since the set Uk is open it follows
from lemma 1 in [7] that we may consider that the measure µk has finite
support. By the construction the sequence {µk} converges to the measure
µ0. �

The above observations concerning properties of the partial order ” ≻ ”
makes possible to strengthen proposition 2 as follows.

Proposition 3. The restriction of the mapping P ∋ µ → ρ̄(µ) ∈ S(H)

to the set P̂ is open.
Proof. It is sufficient to show that for arbitrary measure µ̂0 in P̂ and ar-

bitrary sequence of states {ρn} converging to the state ρ̄(µ̂0) = ρ0 there exist
a subsequence {ρnk

} of the sequence {ρn} and a sequence {µ̂k} of measures

in P̂ converging to the measure µ̂0 such that ρ̄(µ̂k) = ρnk
for all k. By corol-

lary 3 for given measure µ̂0 and sequence {ρn} there exist subsequence {ρnk
}

of the sequence {ρn} and a sequence {νk} of measures with finite support

8



converging to the measure µ̂0 such that ρ̄(νk) = ρnk
for all k. By lemma 3

there exist a subsequence {ρnkm
} of the sequence {ρnk

} and a sequence {ν̂m}
of atomic measures in P̂ converging to some measure ν̂0 in P̂ such that

ρ̄(ν̂m) = ρ̄(νkm
) = ρnkm

, ∀m and ν̂0 ≻ µ̂0.

Since µ̂0 ∈ P̂ corollary 1 implies ν̂0 = µ̂0. Thus the subsequence {ρnkm
} and

the sequence of measures {ν̂m} have the required properties.�
In the proof of proposition 3 the following observation was established.
Corollary 4. Let µ̂0 be an arbitrary measure in P̂ and {ρn} be an ar-

bitrary sequence of states converging to the state ρ̄(µ̂0) = ρ0. There exist
a subsequence {ρnk

} of the sequence {ρn} and a sequence {µ̂k} of atomic

measures in P̂ converging to the measure µ̂0 such that ρ̄(µ̂k) = ρnk
for all k.

4 Applications

The results in the previous section concerning properties of probability mea-
sures on the set of quantum states imply some nontrivial properties of func-
tions defined on this set.

As it was noted in [2] the general results of the convex analysis can be
successfully applied for study some characteristics of quantum channels and
systems. In particular, the entanglement of formation of a state in finite
dimensional bipartite system [3] can be considered as the convex closure of
the output entropy of partial trace channel and this observation can be used
to define the entanglement of formation of a state in infinite dimensional
bipartite system [18].

The convex closure3 cof of a function f on a convex topological space X
is defined as the maximal closed (lower semicontinuous) convex function on
X majorized by f and generally does not coincide with the convex hull cof
of the function f defined as the maximal convex function on X majorized
by f [1],[13].4 Coincidence of cof with cof always holds if the function f is
continuous and the space X is compact [1], but even in R

3 there exist convex
compact set X and continuous function f on X such that cof = cof is not
continuous on X.

3The lower envelope in terms of [1].
4See also Appendix in [18] for brief description.
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In this section it is shown that for an arbitrary continuous and bounded
function f on the set X = S(H) (which is noncompact if dimH = +∞) the
convex closure cof of the function f is a continuous and bounded function
on the set S(H), coinciding with the convex hull cof of the function f .
This result (proposition 4 below) is a corollary of the following more general
observation.

Theorem 1. Let f be a lower bounded lower semicontinuous function on
the set S(H).

A) The functions

f̌(ρ) = inf
µ∈P{ρ}

∫

S(H)

f(σ)µ(dσ) and f̂(ρ) = sup
µ∈P{ρ}

∫

S(H)

f(σ)µ(dσ)

are lower semicontinuous functions on the set S(H).
B) The function f̌ is the convex closure cof of the function f ;
C) For an arbitrary state ρ in S(H) there exists a measure µf

ρ in P{ρ}

such that

f̌(ρ) =

∫

S(H)

f(σ)µf
ρ(dσ).

If in addition f is a concave function such that −f ∈ Ŝ then the measure µf
ρ

can be chosen in P̂{ρ}.
5

D) The function f̂ can be also defined as follows

f̂(ρ) = sup
{πiρi}f∈P{ρ}

∑

i

πif(ρi), ∀ρ ∈ S(H),

which means that f̂ is the minimal concave function majorizing the function
f (the concave hull of f).

The expression for the function f̂ in the part D means that for any state
ρ the supremum in the definition of the value f̂(ρ) can be taken over the
subset of P{ρ} consisting of measures with finite support.

Remark 1. The analogies of the assertions C and D in theorem 1 are
not true for the functions f̂ and f̌ correspondingly.

It is easy to construct bounded lower semicontinuous function f and a
state ρ0 such that the supremum in the definition of the value f̂(ρ0) is not

5The set Ŝ is defined at the begin of section 3. It is sufficient to require that the
assertion A of lemma 2 holds for the function −f .
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achieved. Indeed, let

f(ρ) =

{
Trρ2, ρ is a mixed state
0, ρ is a pure state

be a lower semicontinuous bounded function and ρ0 = 1
2π

∫ 2π

0
Vt|ψ〉〈ψ|V ∗

t dt,
where Vt is the unitary representation in the Hilbert space H of the torus T,
identified with [0, 2π), and |ψ〉 is an arbitrary vector in H. Then f̂(ρ0) = 1
and hence the supremum in the definition of the value f̂(ρ0) is not achieved
since f(ρ) < 1 for all ρ. To show that f̂(ρ0) = 1 it is sufficient to note that

the mixed state ρδ = δ−1
∫ δ

0
Vt|ψ〉〈ψ|V ∗

t dt tends to the pure state |ψ〉〈ψ| and
hence f(ρδ) tends to 1 as δ → +0.

To show that the infimum in the definition of the value f̌(ρ) can not be
taken over the subset of P{ρ} consisting of measures with finite support it
is sufficient to consider the quantum entropy in the role of function f (cf.
lemma 2 in [18]). �

Proof of theorem 1. Convexity and concavity of the functions f̌ and
f̂ correspondingly easily follows from the definitions and convexity of the set
P.

By using the arguments from the proof of theorem 2.1 in [6] it is possible
to show that the assumption of the theorem implies that the functional

µ 7→
∫
f(σ)µ(dσ) (4)

is lower semicontinuous on P. It follows from this and compactness of the set
P{ρ} that for arbitrary state ρ in S(H) the infimum in the definition of the

value f̌(ρ) is achieved at some measure µf
ρ in P{ρ}. If f is a concave function

such that −f ∈ Ŝ and µ̂f
ρ is any maximal measure such that µ̂f

ρ ≻ µf
ρ existing

by corollary 1 then by the part A of lemma 2 optimality of the measure µf
ρ

implies optimality of the measure µ̂f
ρ .

Lower semicontinuity of the functional (4) and lemma 1 in [7] also imply
that for any state ρ the supremum in the definition of the value f̂(ρ) can be
taken over the subset of P{ρ} consisting of measures with finite support.

Suppose the function f̌(ρ) is not lower semicontinuous. This implies
existence of a sequence of states {ρn} converging to some state ρ0 such that

lim
n→+∞

f̌(ρn) < f̌(ρ0). (5)

11



By the previous observation for each n = 1, 2, ... there exists a measure µn

in P{ρn} such that

f̌(ρn) =

∫
f(σ)µn(dσ).

Let A = {ρn}+∞
n=0 be a compact subset of S(H). By proposition 2 in [7] the

set PA is compact. Since {µn} ⊂ PA there exists subsequence {µnk
} of the

sequence {µn} converging to some measure µ0. Continuity of the mapping
µ 7→ ρ̄(µ) implies µ0 ∈ P{ρ0}. By lower semicontinuity of the functional (4)
we obtain

f̌(ρ0) ≤
∫
f(σ)µ0(dσ) ≤ lim inf

k→+∞

∫
f(σ)µnk

(dσ) = lim
k→+∞

f̌(ρnk
),

which contradicts to (5).
Thus the convex function f̌ is lower semicontinuous and hence the defi-

nition of the convex closure implies f̌(ρ) ≤ cof(ρ) for all ρ in S(H) . Since
cof is a convex and lower semicontinuous function majorized by f Yensen’s
inequality implies

cof(ρ) ≤ inf
µ∈P{ρ}

∫
cof(σ)µ(dσ) ≤ inf

µ∈P{ρ}

∫
f(σ)µ(dσ) = f̌(ρ)

for all ρ in S(H). It follows that f̌ = cof .
Suppose the function f̂(ρ) is not lower semicontinuous. This implies

existence of a sequence of states {ρn} converging to some state ρ0 such that

lim
n→+∞

f̂(ρn) < f̂(ρ0). (6)

Let ε be an arbitrary and µε
0 be a measure in P{ρ0} such that

f̂(ρ0) <

∫
f(σ)µε

0(dσ) + ε.

By corollary 3 there exist a subsequence {ρnk
} of the sequence {ρn} and

a sequence {µk} of measures in P converging to the measure µε
0 such that

ρ̄(µk) = ρnk
for all k. By lower semicontinuity of the functional (4) we obtain

f̂(ρ0) ≤
∫
f(σ)µε

0(dσ) + ε ≤ lim inf
k→+∞

∫
f(σ)µk(dσ) + ε ≤ lim

k→+∞
f̂(ρnk

) + ε,

which contradicts to (6) since ε can be arbitrarily small.�
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Since by proposition 4 in [11] the quantum entropy is a function rep-
resented as a pointwise limit of increasing sequence of concave continuous
bounded functions theorem 1 implies, in particular, the following result [18].

Corollary 5. The convex closure coHΦ of the output entropy HΦ =
H(Φ(·)) of an arbitrary channel Φ is defined by the expression

coHΦ(ρ) = inf
µ∈P{ρ}

∫

S(H)

HΦ(σ)µ(dσ), ∀ρ ∈ S(H),

in which the infimum is achieved at a particular measure in P{ρ} supported
by pure states.

If f is a continuous bounded function on the set S(H) then theorem
1 is applicable for the functions f and −f simultaneously resulting in the
following observation.

Proposition 4. Let f be a continuous bounded function on the set S(H).
The convex closure cof of the function f is a continuous bounded function
on the set S(H) defined by the expression

cof(ρ) = inf
{πiρi}f∈P{ρ}

∑

i

πif(ρi) = inf
µ∈P{ρ}

∫

S(H)

f(σ)µ(dσ), ∀ρ ∈ S(H),

(7)
in which the last infimum is achieved at a particular measure in P{ρ}.

The above expression implies that the convex closure cof of the function
f coincides with its convex hull cof .

As a simple application of this proposition consider the following sufficient
condition of boundedness and continuity of the convex closure coHΦ of the
output entropy HΦ of a quantum channel Φ, which implies, in particular,
continuity of the entanglement of formation of states in tensor product of
two systems with one of them finite dimensional.6

Corollary 6. If the output entropy HΦ of a particular channel Φ is
bounded and continuous on the set S(H) then the convex closure coHΦ of
the output entropy is bounded and continuous on the set S(H) and coincides
with its convex hull coHΦ.

Note that boundedness and continuity of the output entropy HΦ is not
a necessary condition of boundedness and continuity of its convex closure
coHΦ. For example, if Φ is the noiseless channel then coHΦ ≡ 0 while HΦ

6Note that the proof of continuity of the entanglement of formation is not trivial even
in the finite dimensional case [12].
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as well as coHΦ take infinite values on a dense subset of states. Below by
using proposition 3 we will obtain a necessary and sufficient condition of
boundedness and continuity the function coHΦ (corollary 9.)

One of the most common problem of the convex analysis is the problem
of extension of a particular function defined on the set extX of all extreme
points of a particular convex set X to a convex (concave) function defined
on the whole set X. In what follows we consider this problem for the set
X = S(H).

Below it is shown that every continuous and bounded function f defined
on the set extS(H) of all pure states can be extended to continuous and
bounded convex (concave) function on the set S(H) with the particular
maximality (minimality) property. This result (proposition 5 below) is a
corollary of the following more general observation.

Theorem 2. Let f be a lower bounded lower semicontinuous function on
the set extS(H).

A) The functions

f∗(ρ) = inf
µ∈P̂{ρ}

∫

extS(H)

f(σ)µ(dσ) and f ∗(ρ) = sup
µ∈P̂{ρ}

∫

extS(H)

f(σ)µ(dσ)

are lower semicontinuous functions on the set S(H);
B) The function f∗ is the maximal lower semicontinuous convex extension

of the function f to the set S(H);

C) For an arbitrary state ρ in S(H) there exists a measure µ̂f
ρ in P̂{ρ}

such that

f∗(ρ) =

∫

extS(H)

f(σ)µ̂f
ρ(dσ);

D) The function f ∗ can be defined as follows

f ∗(ρ) = sup
{πiρi}∈P̂{ρ}

∑

i

πif(ρi), ∀ρ ∈ S(H),

which means that f ∗ is the minimal lower bounded 7 concave extension of the
function f to the set S(H).

7The requirement of lower boundedness is essential. Indeed, the function

g(ρ) =

{
f∗(ρ), rankρ < +∞
−∞, rankρ = +∞

is a concave extension of the function f majorized by f∗.
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The expression for the function f ∗ in the part D means that for any state
ρ the supremum in the definition of the value f ∗(ρ) can be taken over the

subset of P̂{ρ} consisting of atomic measures.
Remark 2. The analogies of the assertions C and D in theorem 2 are

not true for the functions f ∗ and f∗ correspondingly.
Below we construct bounded lower semicontinuous function fs on the set

of pure states and a state ρ0 such that the supremum in the definition of the
value f ∗

s (ρ0) is not achieved.
Let As be the closed set of all pure product states in S(H⊗H) and ρ0

be the separable state in S(H⊗H) constructed in [8] such that any measure
with the barycenter ρ0 has no atoms in the set As. Let

fs(ρ) =

{
supσ∈As

Trρσ, ρ ∈ extS(H⊗H) \ As

0, ρ ∈ As.

By the observation in the proof of lemma 1 this function is bounded and
lower semicontinuous on the set extS(H ⊗ H). Since fs(ρ) < 1 for all ρ
in extS(H ⊗ H) to show that the supremum in the definition of the value
f ∗

s (ρ0) is not achieved it is sufficient to show that f ∗
s (ρ0) = 1. Let µ̂0 be

a measure (purely nonatomic) supported by As such that ρ̄(µ̂0) = ρ0. By

corollary 2 there exists a sequence {µ̂n} of atomic measures in P̂{ρ0} weakly
converging to the measure µ̂0. Since by the observation in the proof of lemma
1 the function gs(ρ) = supσ∈As

Trρσ is bounded and continuous on the set
S(H⊗H) the definition of weak convergence implies

lim
n→+∞

∫
gs(σ)µ̂n(dσ) =

∫
gs(σ)µ̂0(dσ) = 1. (8)

By the construction of the state ρ0 for each n all atoms of the measure
µ̂n lie in extS(H⊗H) \ As and hence

∫
gs(σ)µ̂n(dσ) =

∫
fs(σ)µ̂n(dσ).

This and (8) imply f ∗(ρ0) = 1.
To show that the infimum in the definition of the value f∗(ρ) can not

be taken over the subset of P̂{ρ} consisting of atomic measures consider the
function χĀs

= 1−χAs
, where As is the closed set of all pure product states

in S(H⊗H) and ρ0 be the separable state described in the above example.
Since by the observation in the proof of lemma 1 the function χĀs

can be
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represented as a pointwise limit of increasing family of concave continuous
and bounded functions it is concave and lower semicontinuous. We have

inf
µ∈P̂{ρ0}

∫
χĀs

(σ)µ(dσ) = 0, while inf
{πiρi}∈P̂{ρ0}

∑

i

πiχĀs
(ρi) = 1, (9)

since by the construction of the state ρ0 each countable convex decomposition
of this state does not contain states from As. �

The last example in remark 2 shows that the coincidence of two defini-
tions of EoF for an arbitrary state in infinite dimensional bipartite system
conjectured in [18] can not be proved by using only such analytical proper-
ties of the entropy as concavity and lower semicontinuity. Even more deeper
property of the entropy, consisting in its representation as a pointwise limit of
increasing sequence of continuous concave functions [11], can not help since
by the construction in the proof of lemma 1 the above function χĀs

has this
property but relations (9) hold for this function.

Proof of theorem 2. Convexity and concavity of the functions f∗ and
f ∗ correspondingly easily follows from the definitions and convexity of the
set P̂ .

The proof of almost all assertions of this theorem is a repetition of the
proof of the corresponding assertions of theorem 1 with using corollary 2
and corollary 4 instead of lemma 1 in [7] and corollary 3 correspondingly. It
is necessary only to show the maximality and minimality properties of the
functions f∗ and f ∗ correspondingly.

Suppose g is a convex lower bounded lower semicontinuous extension of
the function f to the set S(H). Yensen’s inequality implies

g(ρ) ≤ inf
µ∈P̂{ρ}

∫
g(σ)µ(dσ) = inf

µ∈P̂{ρ}

∫
f(σ)µ(dσ) = f∗(ρ)

for arbitrary state ρ in S(H). It follows that f∗ is the maximal convex lower
semicontinuous extension of the function f to the set S(H).

Suppose g is a lower bounded concave extension of the function f to the
set S(H). Since for this function the discrete version of Yensen’s inequality
is valid we have

g(ρ) ≥ sup
{πi,ρi}∈P̂{ρ}

∑

i

πig(ρi) = sup
{πi,ρi}∈P̂{ρ}

∑

i

πif(ρi) = f ∗(ρ)

for arbitrary state ρ in S(H). It follows that f ∗ is the minimal lower bounded
concave extension of the function f to the set S(H).�
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Note that any measure of entanglement (see [10] for the definition) coin-
cides with the entropy of a partial trace on the set of pure states. Theorems
1C and 2B imply the following characterization of the entanglement of for-
mation.

Corollary 7. The entanglement of formation (defined as the convex
closure of the output entropy of a partial trace channel) is the maximal lower
semicontinuous function coinciding with the entropy of a partial trace on the
set of pure states.

If f is a continuous bounded function on the set extS(H) then theorem
2 is applicable for the functions f and −f simultaneously resulting in the
following observation.

Proposition 5. Let f be a continuous bounded function on the set extS(H).
The functions f∗ and f ∗ introduced in theorem 2 are continuous functions

on the set S(H), which can be also defined as follows

f∗(ρ) = inf
{πiρi}∈P̂{ρ}

∑

i

πif(ρi) and f
∗(ρ) = sup

{πiρi}∈P̂{ρ}

∑

i

πif(ρi), ∀ρ ∈ S(H).

The functions f∗ and f ∗ are the maximal upper bounded convex and the
minimal lower bounded concave extensions of the function f to the set S(H)
correspondingly.

Proposition 5 implies, in particular, the following observation, which
seems to be nontrivial since the set extS(H) is not compact if dimH = +∞.

Corollary 8. Arbitrary bounded continuous function on the set extS(H)
can be extended to convex (concave) continuous bounded function on the set
S(H).

Theorem 1 and proposition 5 also imply a necessary and sufficient con-
dition of continuity and boundedness of the convex closure of the output
entropy of a quantum channel.

Corollary 9. The convex closure coHΦ of the output entropy HΦ of a
particular channel Φ is bounded and continuous on the set S(H) if and only
if the output entropy HΦ is bounded and continuous on the set extS(H). In
this case

coHΦ(ρ) = inf
{πiρi}∈P̂{ρ}

∑

i

πiHΦ(ρi), ∀ρ ∈ S(H).

Due to proposition 4 in [11] this corollary is a partial case of the following
one.

Corollary 10. Let f be a concave lower bounded lower semicontinuous
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function such that −f ∈ Ŝ.8 The convex closure cof of the function f is
bounded and continuous on the set S(H) if and only if the function f is
bounded and continuous on the set extS(H). In this case

cof(ρ) = inf
{πiρi}∈P̂{ρ}

∑

i

πif(ρi), ∀ρ ∈ S(H).

Proof. The assumption of the corollary and the parts B and C of theorem
1 imply

f∗(ρ) = inf
µ∈P̂{ρ}

∫
f(σ)µ(dσ) = cof(ρ), ∀ρ ∈ S(H).

If the function f is bounded and continuous on the set extS(H) then by
proposition 5 the function f∗ = cof is bounded and continuous on the set
S(H).

The converse assertion is trivial since by theorem 1B the functions f and
cof coincide on the set extS(H).

The expression for the function cof = f∗ follows from proposition 5. �

Remark 3. Proposition 5 can be used for construction of continuous
convex (concave) characteristics of quantum states as the above maximal
convex (minimal concave) extensions of continuous bounded functions de-
fined on the set of pure states. For example, it is possible to construct a
quasimeasure9 of entanglement, which is a continuous bounded function on
the whole state space of infinite dimensional bipartite system closely related
to the entanglement of formation EF

10. Let n > 1 be fixed natural number.
For arbitrary pure state ω in the tensor product state space S(H⊗K) let

Hn(ω) = −
n∑

i=1

λi log λi +

(
n∑

i=1

λi

)
log

(
n∑

i=1

λi

)

where {λi}n
i=1 is the set of n maximal eigen values of the state TrKω ∼= TrHω.

By proposition 4 in [11] the sequence {Hn} of continuous bounded functions

8The set Ŝ is defined at the begin of section 3. It is sufficient to require that the
assertion A of lemma 2 holds for the function −f .

9A measure of entanglement is a function on the set of states of a bipartite system
satisfying the set of axioms [10], which imply, in particular, that any measure of entangle-
ment coincides on the set of pure states with the entropy of partial trace and hence it can
not be continuous in the infinite dimensional case.

10More precisely, to the function E2
F

, which is defined in [18] as the convex closure of
the output entropy of partial trace channel
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on extS(H ⊗ K) is nondecreasing and pointwise converges to the quantum
entropy of a partial trace.

Let En
F be the extension (Hn)∗ of the function Hn to the set S(H ⊗K)

considered in proposition 5. By this proposition the function En
F is continuous

convex bounded function on S(H ⊗ K). By the construction the function
En

F has the following properties:

1) En
F (ω) = 0 if and only if ω is a separable state in S(H⊗K);

2) En
F (ω) ≤ EF (ω) for arbitrary state ω in S(H⊗K);

3) En
F (ω) = EF (ω) for arbitrary state ω in S(H ⊗ K) such that either

rankTrKω ≤ n or rankTrHω ≤ n;

4) 0 ≤ En
F (ω) ≤ logn for arbitrary state ω in S(H⊗K).

The sequence {En
F}n of continuous bounded functions on S(H ⊗ K) is

increasing. Hence its pointwise limit E+∞
F is a convex lower semicontinuous

function on S(H⊗K), coinciding on the set of pure states with the entropy
of a partial trace. An interesting open question is a relation between E+∞

F

and EF . By the construction E+∞
F (ω) ≤ EF (ω) for arbitrary state ω and

equality here takes place if ω is a pure state or such a state that either
rankTrKω < +∞ or rankTrHω < +∞. Coincidence of E+∞

F and EF would

imply that EF is a function of the class Ŝ.
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