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On singular Bosonic linear channels∗

M.E. Shirokov†

Steklov Mathematical Institute, RAS, Moscow

Abstract

Properties of Bosonic linear (quasi-free) channels, in particular,
Bosonic Gaussian channels with two types of degeneracy are consid-
ered.

The first type of degeneracy can be interpreted as existence of
noise-free canonical variables (for Gaussian channels it means that
detα = 0). It is shown that this degeneracy implies existence of (in-
finitely many) ”direct sum decompositions” of Bosonic linear channel,
which clarifies reversibility properties of this channel (described in
arXiv:1212.2354) and provides explicit construction of reversing chan-
nels.

The second type of degeneracy consists in rank deficiency of the
operator describing transformations of canonical variables. It is shown
that this degeneracy implies existence of (infinitely many) decomposi-
tions of input space into direct sum of orthogonal subspaces such that
the restriction of Bosonic linear channel to each of these subspaces is
a discrete classical-quantum channel.

1 Preliminaries

Let H be a separable Hilbert space, B(H) and T(H) – the Banach spaces
of all bounded operators in H and of all trace-class operators in H corre-
spondingly, S(H) – the closed convex subset of T(H) consisting of positive
operators with unit trace called states [5].
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Denote by IH and IdH the unit operator in a Hilbert space H and the
identity transformation of the Banach space T(H) correspondingly.

A completely positive trace preserving linear map Φ : T(HA) → T(HB)
is called quantum channel [5].

A channel Φ : T(HA) → T(HB) is called classical-quantum of discrete
type (briefly, discrete c-q channel) if it has the following representation

Φ(ρ) =

dimHA
∑

k=1

〈k|ρ|k〉σk, ρ ∈ T(HA), (1)

where {|k〉} is an orthonormal basis in HA and {σk} is a collection of states
in S(HB).
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Let HX (X = A,B, ...) be the space of irreducible representation of the
Canonical Commutation Relations (CCR)

WX(z)WX(z
′) = exp

[

−
i

2
z⊤∆Xz

′

]

WX(z
′ + z)

with a symplectic space (ZX ,∆X) and the Weyl operators WX(z) [5, Ch.12].
Denote by sX the number of modes of the system X , i.e. 2sX = dimZX .

We will use the Schrodinger representation of CCR: for a given symplectic
basis {ei, hi} in ZX , we can identify the space HX with the space L2(R

sX ) of
complex-valued functions of sX variables (which will be denoted ξ1, ..., ξsX)
and the Weyl operators WX(ei) and WX(hi) with the operators

ψ(ξ1, ..., ξsX) 7→ eiξiψ(ξ1, ..., ξsX) and ψ(ξ1, ..., ξsA) 7→ ψ(ξ1, ..., ξi+1, ..., ξsX).

A Bosonic linear channel Φ : T(HA) → T(HB) is defined via the action
of its dual Φ∗ : B(HB) → B(HA) on the Weyl operators:

Φ∗(WB(z)) =WA(Kz)f(z), z ∈ ZB, (2)

where K is a linear operator ZB → ZA, and f(z) is a complex continu-
ous function on ZB such that f(0) = 1 and the matrix with the elements
f(zs − zr) exp

(

i
2
z⊤s [∆B −K⊤∆AK]zr

)

is positive for any finite subset {zs}
of ZB [2, 4, 5].2 This channel will be denoted ΦK,f .

1We use the term ”discrete” here, since in infinite dimensions there exist channels
naturally called classical-quantum, which has no representation (1) [6].

2In [2] this channel is called quasi-free.
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A very important class of Bosonic linear channels consists of Bosonic
Gaussian channels defined by (2) with the Gaussian function

f(z) = exp
[

il⊤z − 1
2
z⊤αz

]

,

where l is a 2sB-dimensional real row and α is a real symmetric (2sB)×(2sB)
matrix satisfying the inequality

α ≥ ±
i

2

[

∆B −K⊤∆AK
]

.

Bosonic Gaussian channels play a central role in infinite-dimensional quan-
tum information theory [3, 5].

Denote by Zf the subset f−1(1) = {z ∈ ZB | f(z) = 1}. One can show
that Zf is a linear subspace of ZB coinciding with kerα in the case of
Gaussian function f [5, Ch.12].

In this paper we consider properties of a Bosonic linear channel ΦK,f with
the following two types of degeneracy:

• Zf
.
= f−1(1) 6= {0};

• rankK < dimZA (RanK 6= ZA).

These types of degeneracy are related via the notion of a weak complementary
channel (see detailed definition in [5, Ch.6]). Indeed, under the assumption
of existence of Bosonic linear unitary dilation3 for a channel ΦK,f a weak
complementary channel to ΦK,f is a Bosonic linear channel ΦL,g from T(HA)
into T(HE), where E is a Bosonic system-environment [1, 5, 9]. Lemma 2 in
[9] implies4

dim[RanL]⊥ = dimZf , dim[RanK]⊥ = dimZg.

Hence a channel ΦK,f has the first type of degeneracy if and only if any5

weak complementary channel to ΦK,f has the second type of degeneracy and
vice versa.

3A sufficient condition for existence of such dilation is given in [2]. For Bosonic Gaussian
channels it is proved in [1] (see also [5, Ch.12]).

4Here ” ⊥ ” denotes the skew-orthogonal complementary subspace. We will always use
this sense of the symbol ” ⊥ ” dealing with a subspace of a symplectic space.

5In contrast to complementary channel a weak complementary channel is not uniquely
defined.
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2 The case Zf
.
= f−1(1) 6= {0} (detα = 0)

Physically, the condition Zf 6= {0} means (in the Heisenberg picture) that
the channel Φ∗

K,f injects no noise in some canonical variables of the system
B (which can be called noise-free canonical variables).

We will use the following simple observation (see e.g. Lemma 2 in [9]).

Lemma 1. The restriction of the operator K to the subspace Zf is non-
degenerate and ∆A(Kz1, Kz2) = ∆B(z1, z2) for all z1, z2 ∈ Zf .

Let ZA0
and ZB0

be minimal symplectic subspaces containing respectively
K(Zf) and Zf . By Lemma 1 dimZA0

= dimZB0
. We have

ZX = ZX0
⊕ ZX∗

(ZX∗
= [ZX0

]⊥), HX = HX0
⊗HX∗

, (X = A,B).

Since WB(z) = WB0
(z) ⊗ IB∗

and WA(Kz) = WA0
(Kz) ⊗ IA∗

for all
z ∈ Zf , the von Neumann algebras A and B generated respectively by the
families {WA(Kz)}z∈Zf

and {WB(z)}z∈Zf
have the following forms

A = A0 ⊗ IA∗
, B = B0 ⊗ IB∗

,

where A0 and B0 are algebras acting respectively on HA0
and on HB0

.

By Lemma 1 and Lemma 2 in the Appendix there exists a symplectic
transformation T : ZB0

→ ZA0
such that Kz = Tz for all z ∈ Zf . Hence

WA0
(Kz) = UTWB0

(z)U∗
T for all z ∈ Zf , where UT is the unitary oper-

ator implementing T . It follows that the algebras A0 and B0 are unitary
equivalent, i.e. A0 = UTB0U

∗
T .

Since Φ∗
K,f(WB0

(z)⊗ IB∗
) = WA0

(Kz)⊗ IA∗
for all z ∈ Zf (by definition

of the channel ΦK,f), the restriction of the dual channel Φ∗
K,f to the algebra

B coincides with the isomorphism

B = B0 ⊗ IB∗
∋ Y ⊗ IB∗

7→ [UTY U
∗

T ]⊗ IA∗
∈ A0 ⊗ IA∗

= A

between the algebras B and A.

It follows, in particular, that for an arbitrary projector P ∈ A there
exists a projector Q ∈ B such that P = Φ∗

K,f(Q). It is easy to see that
this relation means that ΦK,f (T(P (HA))) ⊆ T(Q(HB)). So, we obtain the
following observation.
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Proposition 1. Let ΦK,f be a Bosonic channel with Zf 6= {0}. For an

arbitrary orthogonal resolution of the identity 6 {Pk} ⊂ A
.
=

[

{WA(Kz)}z∈Zf

]′′

there exists an orthogonal resolution of the identity {Qk} ⊂ B
.
=

[

{WB(z)}z∈Zf

]′′

such that Pk = Φ∗
K,f(Qk) for all k and hence

ΦK,f

(

T(Hk
A)
)

⊆ T(Hk
B) ∀k, (3)

where Hk
A = Pk(HA) and Hk

B = Qk(HB) (so that HX =
⊕

k H
k
X , X = A,B).

Remark 1. If Zc
f is a nontrivial isotropic subspace of Zf then the al-

gebra Ac = [{WA(Kz)}z∈Zc
f
]′′ is commutative and isomorphic to the algebra

L∞(Rd), where d = dimZc
f . It follows that any element of an orthogonal

resolution of the identity {Pk} ⊂ Ac ⊆ A can be represented as a sum of mu-
tually orthogonal projectors in Ac. Hence, by Proposition 1, any subspace of
the corresponding decomposition HA =

⊕

k H
k
A can be, in turn, decomposed

into direct sum of orthogonal subspaces, for each of which the invariance
relation similar to (3) holds.

A quantum channel Φ : T(HA) → T(HB) is called reversible (or sufficient)
with respect to a family S of states in S(HA) if there exists a quantum
channel Ψ : T(HB) → T(HA) such that Ψ(Φ(ρ)) = ρ for all ρ ∈ S [7, 8].

The above family S is naturally called reversed family for the channel Φ,
while the channel Ψ may be called reversing channel.

Necessary and sufficient conditions for reversibility of Bosonic linear chan-
nels with respect to orthogonal and non-orthogonal families of pure states
(as well as explicit forms of reversed families) are explored in [9] by using the
”method of complementary channel”.

Proposition 1 clarifies the sufficiency in the ”orthogonal part” of these
conditions. Moreover, it shows reversibility of the channel ΦK,f such that
Zf 6= {0} with respect to particular orthogonal families of states (not neces-
sarily pure) and provides explicit description of reversing channels.

Corollary 1. Let ΦK,f be a Bosonic linear channel such that Zf 6= {0}

and {Pk} an orthogonal resolution of the identity in A
.
=

[

{WA(Kz)}z∈Zf

]′′
.

The channel ΦK,f is reversible with respect to any family {ρk} of states in
S(HA) such that suppρk ⊆ Hk

A = Pk(HA). The simplest reversing channel

6An orthogonal resolution of the identity is a family of mutually orthogonal projectors
whose sum coincides with the identity operator.
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for the family {ρk} has the form

Ψ(σ) =
∑

k

[TrQkσ]ρk, σ ∈ S(HB),

where {Qk} is the orthogonal resolution of the identity in B
.
=

[

{WB(z)}z∈Zf

]′′

described in Proposition 1.

Corollary 1 gives an explicit proof of the part of Theorem 2 in [9], which
states reversibility of the channel ΦK,f with respect to non-complete orthogo-
nal families of pure states provided that Zf is a nontrivial isotropic subspace
of ZB. It also shows sufficiency of the condition obtained in Section 4.3 in
[9] describing all reversed families in this case.

Indeed, if Zf is a nontrivial isotropic subspace of ZB then the above-
defined algebras A = A0 ⊗ IA∗

and B = B0 ⊗ IB∗
are commutative and in

the Schrodinger representation (described in Section 1) A0
∼= B0

∼= L∞(Rd),
where d = dimZf . For X = A,B the algebra X = X0 ⊗ IX∗

acts on the
space HX

∼= L2(R
sX) as follows:

(F⊗IX∗
ψ)(ξ1, . . . , ξsX) = F (ξ1, . . . , ξd)ψ(ξ1, . . . , ξsX), F ∈ X0

∼= L∞(Rd). (4)

Since projectors in L∞(Rd) correspond to indicator functions of subsets of
R

d, any orthogonal resolutions of the identity {Pk} and {Qk} involved in
Proposition 1 correspond to a decomposition {Dk} of Rd into disjoint mea-
surable subsets. So, Hk

A = Pk(HA) = L2(Dk × R
sA−d) is the subspace of

HA = L2(R
sA) consisting of functions vanishing almost everywhere outside

the cylinder

Dk × R
sA−d = {(ξ1, . . . , ξsA) | (ξ1, . . . , ξd) ∈ Dk}.

while Hk
B = Qk(HB) = L2(Dk × R

sB−d) is the subspace of HB = L2(R
sB)

consisting of functions vanishing almost everywhere outside the cylinder

Dk × R
sB−d = {(ξ1, . . . , ξsB) | (ξ1, . . . , ξd) ∈ Dk}.

Proposition 1 asserts that all states supported by Hk
A are transformed by the

channel ΦK,f into states supported by Hk
B.

It follows (as stated in Corollary 1) that any family {|ψk〉〈ψk|} such that
ψk ∈ L2(Dk×R

sA−d) for each k is a reversed family for the channel ΦK,f and
the role of reversing channel is played by the map σ 7→

∑

k[TrQkσ]|ψk〉〈ψk|.
The arguments from Subsection 4.3 in [9] (the case ri(ΦK,f) = 01) show that
all reversed families for the channel ΦK,f have the above-described form.
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3 The case rankK < dimZA

It is shown in [9, Proposition 3] that the condition rankK < dimZA is
equivalent to existence of discrete c-q subchannels of the channel ΦK,f . The
following proposition strengthens this observation.

Proposition 2. If rankK < dimZA then for arbitrary given m ≤ +∞
there exists a decomposition HA =

⊕+∞

k=1H
k
A such that dimHk

A = m and

ΦK,f |T(Hk
A
) is a discrete c-q channel for each k.

Any such decomposition is determined by the following parameters:

• non-trivial isotropic subspace Z0 ⊆ [RanK]⊥;

• non-degenerate decomposition {Di}
m
i=1 of R

d, where d = dimZ0;

• collection {Ei}
m
i=1, where Ei = {|eik〉}

+∞

k=1 is an ONB in L2(Di×R
sA−d);

• collection {πi}
m
i=1, where πi is a permutation of N.

For a given choice of these parameters,

ΦK,f(ρ) =

m
∑

i=1

〈eiπi(k)
|ρ|eiπi(k)

〉σi
k, ρ ∈ S(Hk

A), (5)

for each k, where {σi
k} is a collection of states in HB.

Proof. Let Z0 be a non-trivial isotropic subspace of [RanK]⊥. Then
the commutative von Neumann algebra A0 = [{WA(z)}z∈Z0

]′′ is contained
in the algebra [{WA(Kz)}z∈ZB

]′. In the Schrodinger representation the al-
gebra A0 coincides with the algebra L∞(Rd), where d = dimZ0, acting on
the space HA = L2(R

sA) in accordance with formula (4). Hence an arbitrary
orthogonal resolution of the identity {Pi}

m
i=1 in A0 corresponds to a decom-

position {Di}
m
i=1 of R

d into disjoint measurable subsets (in the sense that
the projector Pi corresponds to the indicator function of the set Di).

For a given decomposition {Di}
m
i=1 of R

d choose collections {Ei}
m
i=1 and

{πi}
m
i=1, where Ei = {|eik〉}

+∞

k=1 is an orthonormal basis in L2(Di × R
sA−d) =

Pi(HA) and πi is a permutation of N. For each k ∈ N let Hk
A be the subspace

ofHA generated by the family {|eiπi(k)
〉}mi=1. Since {Pi}

m
i=1 ⊂ [{WA(Kz)}z∈ZB

]′,
we have

〈eiπi(k)
|WA(Kz)|e

j

πj(k)
〉 = 0 for all i 6= j and all k.
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By Lemma 3 in [9, Appendix 6.1] the subchannel of the channel ΦK,f cor-
responding to the subspace Hk

A is a discrete c-q channel for each k having
representation (5). �

Corollary 2. Let HA =
⊕+∞

k=1H
k
A be a given decomposition from Propo-

sition 2 and Pk the projector onto Hk
A for each k. The channel ΦK,f coincides

with the discrete c-q channel

ρ 7→
+∞
∑

k=1

m
∑

i=1

〈eiπi(k)
|ρ|eiπi(k)

〉σi
k

on the set {ρ ∈ S(HA) | ρ = Π(ρ)}, where Π(ρ) =
∑+∞

k=1 PkρPk.

Corollary 2 implies, in particular, that ΦK,f ◦Π is a discrete c-q channel.

Appendix

Lemma 2. Let Z0 be an arbitrary subspace of Z and K : Z0 → Z a linear
map such that Kz1 6= Kz2 and ∆(Kz1, Kz2) = ∆(z1, z2) for all z1 6= z2 in
Z0. There exists a symplectic transformation T : Z → Z such that Kz = Tz

for all z ∈ Z0.
7

Proof. We may assume that the subspace Z0 is not symplectic (since
otherwise the assertion of the lemma is trivial).

By Lemma 6 in [9, Appendix 6.2] there exists a symplectic basis {ei, hi}
in Z such that {ei, hi}

d
i=1 ∪ {ei}

p
i=d+1 is a basis in Z0. To prove the lemma

it suffices to show that the set of vectors {Kei, Khi}
d
i=1 ∪ {Kei}

p
i=d+1 can

be extended to a symplectic basis in Z. By the property of the map K

the set {Kei, Khi}
d
i=1 is a symplectic basis in the linear hull Zd of this set

and {Kei}
p
i=d+1 ⊂ [Zd]

⊥. So, we have to find a set of vectors {h̃i}
p
i=d+1 in

[Zd]
⊥ such that ∆(Kei, h̃j) = δij , i, j = d+ 1, p. This set can be constructed

sequentially: the vector h̃d+1 can be chosen in the subspace

[Zd]
⊥ ∩

[

[

{Kei}
p
i=d+2

]⊥
\
[

{Kei}
p
i=d+1

]⊥
]

,

the vector h̃d+2 – in the subspace

[Zd+1]
⊥ ∩

[

[

{Kei}
p
i=d+3

]⊥
\
[

{Kei}
p
i=d+2

]⊥
]

,

7I would be grateful for a direct reference on this result.
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where Zd+1 = Zd ⊕ lin[Ked+1, h̃d+1], etc. �

I am grateful to A.S.Holevo for useful discussion.
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