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Entropy characteristics of subsets of states. I

M. E. Shirokov

Abstract. We study the properties of quantum entropy and χ-capacity
(regarded as a function of sets of quantum states) in the infinite-dimensional
case. We obtain conditions for the boundedness and continuity of the restric-
tion of the entropy to a subset of quantum states, as well as conditions for the
existence of the state with maximal entropy in certain subsets. The notion
of χ-capacity is considered for an arbitrary subset of states. The existence of
an optimal average is proved for an arbitrary subset with finite χ-capacity.
We obtain a sufficient condition for the existence of an optimal measure and
prove a generalized maximal distance property.

§ 1. Introduction

This paper is devoted to the study of the properties of quantum entropy and
χ-capacity 1 (regarded as a function of sets of quantum states) in the infinite-
dimensional case.

Quantum entropy is a concave lower semicontinuous function with range [0,+∞]
on the set of all quantum states. It has bounded and even continuous restrictions to
some non-trivial closed subsets of states [10], [20]. The problem of characterizing
such subsets arises in many applications, in particular, in the condition for the
existence of an optimal measure for constrained quantum channels [19]. Another
interesting question is that of finding conditions for the existence of the state with
maximal entropy in a given set of quantum states with bounded entropy. In this
paper we consider these and other problems related to quantum entropy.

By the Holevo–Schumacher–Westmoreland theorem [13], [17], the χ-capacity of
a set of states determines the maximal rate of transmission of classical information
that can be achieved by using this set as an alphabet and applying a non-entangled
encoding in the transmitter followed by an entangled measurement-decoding proce-
dure in the receiver. The notion of χ-capacity is usually related to that of quantum
channel. But it is easy to see that the χ-capacity of a channel is uniquely deter-
mined by its output set. So we may regard χ-capacity as a function of sets of
states [14]. This approach is convenient because of its flexibility: we may speak
about the χ-capacity of an arbitrary set of states, which need not be the output set

1This notion is referred to as the Holevo capacity in the Western literature and is usually
associated with the notion of a quantum channel (see, for example, [17]). In this paper we regard
it as a function of sets of quantum states and use the term χ-capacity.
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of a channel. From this point of view, χ-capacity is a non-additive function of sets
(“non-additive measure”). It possesses many interesting properties, whose detailed
investigation seems to be useful in the development of quantum information theory.

In § 3 we consider conditions for the boundedness and continuity of the restric-
tion of the quantum entropy to sets of quantum states as well as conditions for the
existence of the state with maximal entropy in such sets (Propositions 1, 3, 4, 6
and Corollaries 1–3). It is shown that the quantum entropy is continuous at some
state (with respect to the convergence defined by the relative entropy) if and only if
the eigenvalues of this state have a sufficiently large rate of decay (Proposition 2).
We consider the relations between some properties of sets of states and the cor-
responding properties of their so-called “classical projections” (Proposition 5). In
particular, the results obtained show that discontinuity and unboundedness of the
quantum entropy are of a purely classical nature (see Remark 5).

In § 4 we consider the definition of χ-capacity for any set of quantum states.
In § 4.1 we introduce the notion of an optimal average state as a unique state inher-
iting the most important properties of the average state of an optimal ensemble for
a set of states in a finite-dimensional Hilbert space (Theorem 1 and Corollary 4).
Properties of the optimal average state enable us to show that every set of finite
χ-capacity is relatively compact (Corollary 5) and contained in the maximal set of
the same χ-capacity. This observation yields the following result related to quan-
tum channels. If the χ-capacity of an infinite-dimensional channel constrained by
some set is finite, then the image of this set under this channel is relatively com-
pact. In particular, every unconstrained channel of finite χ-capacity has a relatively
compact output (Corollary 6). Our results on χ-capacity also enable us to make an
important observation concerning general properties of quantum entropy (Corol-
lary 7). In § 4.2 we introduce the notion of an optimal measure of a set of states
and generalize the “maximal distance property” [14] to the infinite-dimensional case
(Proposition 7). This yields a necessary condition for the existence of an optimal
measure (Corollary 8). We also obtain a sufficient condition for the existence of an
optimal measure (Theorem 2).

§ 2. Preliminaries

Let H be a separable Hilbert space, B(H) the algebra of all bounded opera-
tors on H and T(H) the Banach space of all trace-class operators with the trace
norm ‖ · ‖1. We will use the term state for a positive trace-class operator ρ on H
with trace 1: ρ > 0, Tr ρ = 1. B(H) is often called the algebra of observables of a
quantum system. Every state ρ determines an expectation functional A 7→ Tr ρA,
A ∈ B(H), which is a normal state in the language of the theory of operator alge-
bras [1]. The set S(H) of all states is a closed convex subset of T(H) and is a
complete separable metric space with metric defined by the trace norm. We note
that the convergence of a sequence of states to a state in the weak operator topology
is equivalent to the convergence of that sequence to this state in the trace norm [2].
We will use the following compactness criterion for sets of states: a closed set K
of states is compact if and only if for every ε > 0 there is a finite-dimensional
projector Pε such that Tr ρPε > 1− ε for all ρ ∈ K [12], [19].
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Let A and B be positive operators in T(H). The von Neumann entropy of A
and the relative entropy of A and B are defined by the formulae

H(A) = −
∑

i

〈i|A log A|i〉, H(A ‖B) =
∑

i

〈i|A log A−A log B + B −A|i〉,

where
{
|i〉

}
is a basis of eigenvectors of A (see [8], [20]). The entropy (resp. relative

entropy) is a concave (resp. convex) lower semicontinuous function of its arguments
with range [0,+∞] [8], [20]. We shall use the inequality

H(ρ ‖σ) >
1
2
‖ρ− σ‖21, (1)

which holds for arbitrary states ρ and σ in S(H) [10].
The relative entropy H(ρ ‖σ) of states ρ and σ can be regarded as a measure

of divergence of these states. (Its classical analogue is called the Kullback–Leibler
distance.) Although this measure is not a metric (it is not symmetric and does
not satisfy the triangle inequality), one can introduce a notion of convergence
of a sequence {ρn} of states to a state ρ∗. This is defined by the condition
limn→+∞ H(ρn ‖ ρ∗) = 0. The topology on the set of states associated with this
convergence is studied in the classical case in [5], where it is called the strong infor-
mation topology. This type of convergence plays an important role in this paper; it
will be called H-convergence.

By inequality (1), H-convergence is stronger than the convergence defined by
the trace norm.

For an arbitrary set A, let co(A) and co(A) be its convex hull and convex closure
respectively. Let Ext(A) be the set of all extreme points of A [6].

When speaking about the continuity of a particular function on some set of
states, we mean the continuity of the restriction of this function to this set.

A finite set {ρi} of states with a corresponding set of probabilities {πi} is called
a (finite) ensemble and is denoted by {πi, ρi}. The state ρ̄ =

∑
i πiρi is called the

average of this ensemble. In [19], the notion of a generalized ensemble is introduced
as an arbitrary Borel probability measure µ on S(H). The average of a generalized
ensemble (measure) µ is the state 2 defined by the Bochner integral

ρ̄(µ) =
∫

S(H)

ρµ(dρ).

Ordinary ensembles correspond to finitely supported measures.
Given an arbitrary closed subset A of S(H), we denote by P(A) the set of all

probability measures supported by A [11].
In what follows we regard all ensembles {πi, ρi} as particular cases of probability

measures. In particular, a convex combination of ensembles is defined as the convex
combination of the corresponding probability measures.

Consider the functionals

χ(µ) =
∫

S(H)

H
(
ρ ‖ ρ̄(µ)

)
µ(dρ), Ĥ(µ) =

∫
S(H)

H(ρ)µ(dρ).

2This state is also called the barycentre of the measure µ.



1268 M. E. Shirokov

As shown in [19] (Proposition 1 and proof of the theorem), these functionals are
well defined and lower semicontinuous on P

(
S(H)

)
, and we have

χ(µ) = H
(
ρ̄(µ)

)
− Ĥ(µ) (2)

for every measure µ with H
(
ρ̄(µ)

)
< +∞.

If µ = {πi, ρi}, then

χ
(
{πi, ρi}

)
=

n∑
i=1

πiH(ρi ‖ ρ̄), Ĥ
(
{πi, ρi}

)
=

n∑
i=1

πiH(ρi).

We will use Donald’s identity [3], [10],
n∑

i=1

πiH(ρi ‖ ρ̂) =
n∑

i=1

πiH(ρi ‖ ρ̄) + H(ρ̄ ‖ ρ̂), (3)

which holds for any ensemble {πi, ρi} of n states with average ρ̄ and for any state ρ̂.
We will also use the generalized integral version of Donald’s identity [19],∫

S(H)

H(ρ ‖ ρ̂)µ(dρ) =
∫

S(H)

H
(
ρ ‖ ρ̄(µ)

)
µ(dρ) + H

(
ρ̄(µ) ‖ ρ̂

)
, (4)

which holds for any probability measure µ with barycentre ρ̄(µ) and for any state ρ̂
and yields the following property of the functional χ(µ).

Lemma 1. Let {µk}m
k=1 be a finite set of probability measures on S(H) and let

{λk}m
k=1 be a probability distribution. Then

χ

( m∑
k=1

λkµk

)
=

m∑
k=1

λkχ(µk) + χ
({

λk, ρ̄(µk)
}m

k=1

)
.

If m = 2, then the following inequality holds for every λ ∈ [0, 1]:

χ
(
λµ1 + (1− λ)µ2

)
> λχ(µ1) + (1− λ)χ(µ2) +

λ(1− λ)
2

∥∥ρ̄(µ2)− ρ̄(µ1)
∥∥2

1
.

Proof. Let µ =
∑m

k=1 λkµk. By definition,

χ(µ) =
m∑

k=1

λk

∫
S(H)

H
(
ρ ‖ ρ̄(µ)

)
µk(dρ).

Applying (4) to every integral on the right-hand side, we obtain the identity in the
lemma.

To prove the inequality for m = 2, we estimate the last term in the identity in
the lemma by applying inequality (1):

λH
(
ρ̄(µ1) ‖λρ̄(µ1) + (1− λ)ρ̄(µ2)

)
+ (1− λ)H

(
ρ̄(µ2) ‖λρ̄(µ1) + (1− λ)ρ̄(µ2)

)
>

1
2

λ
∥∥(1− λ)

(
ρ̄(µ2)− ρ̄(µ1)

)∥∥2

1
+

1
2

(1− λ)
∥∥λ

(
ρ̄(µ2)− ρ̄(µ1)

)∥∥2

1

=
1
2

λ(1− λ)
∥∥ρ̄(µ2)− ρ̄(µ1)

∥∥2

1
.
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Note that Lemma 1 yields the inequality

H
(
λρ1 + (1− λ)ρ2

)
> λH(ρ1) + (1− λ)H(ρ2) +

λ(1− λ)
2

‖ρ2 − ρ1‖21, (5)

which holds for all states ρ1 and ρ2. To prove this, it suffices to regard the spec-
tral decompositions of these states as probability measures on S(H) and apply
Lemma 1.

§ 3. Properties of the quantum entropy

In this section we study the properties of the restrictions of the quantum entropy
to sets of quantum states.

Let A be a set of quantum states with supρ∈A H(ρ) < +∞. If this supremum is
attained at some state, then that state is called the maximal entropy state of A,
and we denote it by Γ(A). Using inequality (5), we make the following simple
observation.

Lemma 2. Let A be a closed convex set of states with supρ∈A H(ρ) < +∞ and let
{ρn} be any sequence of states in A such that

lim
n→+∞

H(ρn) = sup
ρ∈A

H(ρ).

Then {ρn} converges 3 to a uniquely determined state ρ∗(A) in A.
If the maximal entropy state Γ(A) exists, then it coincides with ρ∗(A), and the

restriction of the entropy to A is continuous at Γ(A).

Proof. By hypothesis, for every ε > 0 there is an Nε such that H(ρn) >
supρ∈A H(ρ)− ε for all n > Nε. Using inequality (5) with λ = 1/2, we get

sup
ρ∈A

H(ρ)−ε 6
1
2

H(ρn1) +
1
2

H(ρn2)

6 H

(
1
2

ρn1 +
1
2

ρn2

)
− 1

8
‖ρn2 − ρn1‖21 6 sup

ρ∈A
H(ρ)− 1

8
‖ρn2 − ρn1‖21.

Hence ‖ρn2 − ρn1‖1 <
√

8ε for all n1 > Nε and n2 > Nε. Thus {ρn} is a Cauchy
sequence and so converges to some state ρ∗ in A. It is easy to see that ρ∗ does not
depend on the choice of the sequence {ρn}, and so it is determined by A alone. We
denote this state by ρ∗(A).

If the maximal entropy state Γ(A) exists, then it coincides with ρ∗(A) by the
observation above. The assertion on continuity follows from the definition of Γ(A)
and the lower semicontinuity of the entropy. The lemma is proved.

Since the entropy is lower semicontinuous, we have

H
(
ρ∗(A)

)
6 sup

ρ∈A
H(ρ),

3Using Proposition 1 of [16] and Lemma 1 of [16] for the identical channel Φ, one can obtain
a stronger version of Lemma 2, which asserts the H-convergence of {ρn} to ρ∗(A) = Ω(Φ,A).
This observation and Proposition 2 below imply that ρ∗(A) = Γ(A) if there is a λ < 1 such

that Tr
`
ρ∗(A)

´λ
< +∞.
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and the maximal entropy state exists if and only if this is an equation. Proposi-
tions 1 and 3 give examples of sets for which equality does not hold. The possible
breach of equality and its corollaries in the classical case are considered in [4], where
it is called the effect of “entropy loss”.

Following [19], we use the term H-operator for an unbounded positive operator H
on H with discrete spectrum of finite multiplicity. Let Qn be the spectral projector
of H corresponding to the lowest n eigenvalues. In accordance with [18], we put

Tr ρH = lim
n→∞

Tr ρQnH, (6)

where the sequence on the right-hand side is non-decreasing. As shown in [18], [19],
any compact set K of states is contained in the convex compact set KH,h ={
ρ ∈ S(H) | Tr ρH 6 h

}
determined by an H-operator H and a positive number h.

Let hm(H) be the minimal eigenvalue of H and let Hm(H) be the corresponding
(finite-dimensional) eigenspace.

Note that KH,h is empty if h < hm(H), KH,h = S
(
Hm(H)

)
if h = hm(H),

and KH,h contains infinite-dimensional states if h > hm(H).
The following proposition shows that the properties of the restriction of the

quantum entropy to KH,h are determined by the growth coefficient g(H) of
the H-operator H, which is defined by

g(H) = inf
{
λ > 0 | Tr exp(−λH) < +∞

}
.

Here we assume that g(H) = +∞ if Tr exp(−λH) = +∞ for all λ > 0.
It is known [10], [20] that if g(H) = 0, then the entropy is continuous on

the compact set KH,h and attains its (finite) maximum at the state Γ(KH,h)
of the form

(
Tr exp(−λH)

)−1 exp(−λH). The following proposition generalizes
this observation. It also provides a necessary and sufficient condition for the
existence of the maximal entropy state of KH,h. Put h∗(H) = Tr H exp(−g(H)H)

Tr exp(−g(H)H)

if Tr exp
(
−g(H)H

)
< +∞ and h∗(H) = +∞ otherwise.

Proposition 1. Let H be an H-operator on a Hilbert space H, and let h be a
positive number such that h > hm(H).

1) The entropy is bounded on KH,h if and only if g(H) < +∞.
2) The entropy is continuous on KH,h if and only if g(H) = 0.
3) If h 6 h∗(H), then supρ∈KH,h

H(ρ) = λ∗h + log Tr exp(−λ∗H), where λ∗ =
λ∗(H,h) > g(H) is uniquely determined by the equation

TrH exp(−λH) = h Tr exp(−λH),

and the maximal entropy state

Γ(KH,h) =
(
Tr exp(−λ∗H)

)−1 exp(−λ∗H)

exists. If h > h∗(H), then supρ∈KH,h
H(ρ) = g(H)h + log Tr exp

(
−g(H)H

)
, and

the maximal entropy state of KH,h does not exist. In both cases, supρ∈KH,h
H(ρ) =

infλ∈(g(H),+∞)

(
λh + log Tr exp(−λH)

)
.
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The function FH(h) = supρ∈KH,h
H(ρ) has the following properties.

i) It is a continuous increasing function on [hm,+∞) such that FH(hm) =
log dimHm(H) and limh→+∞ FH(h) = +∞.

ii) It has a continuous derivative on (hm,+∞):

dFH(h)
dh

=

{
λ∗(H,h), h ∈

(
hm(H), h∗(H)

)
,

g(H), h ∈
[
h∗(H),+∞

)
,

dFH(h)
dh

∣∣∣∣
h=hm+0

= lim
h→hm(H)+0

dFH(h)
dh

= +∞, lim
h→+∞

dFH(h)
dh

= g(H).

iii) It is strictly concave on
[
hm(H), h∗(H)

)
and linear on

[
h∗(H),+∞

)
if h∗(H) < +∞.

The results of numerical calculations of supρ∈KH,h
H(ρ) as a function of h = c for

the H-operator H = − log σ with finite h∗(H) are shown among other characteristics
in Fig. 2 of part II of this paper, which will be published in the next issue of this
journal.

Proof. Write H =
∑+∞

k=1 hk|k〉〈k|, where
{
|k〉

}
k∈N is an orthonormal basis of H

and {hk} is a non-decreasing sequence of positive numbers converging to +∞. Let
d = dimHm(H). Then hk = hm for k = 1, . . . , d, and

{
|k〉

}d

k=1
is a basis of the

subspace Hm(H).
Let us prove assertion 1) of the proposition.
Suppose that g(H) < +∞. Then there is λ > 0 such that

σ =
(
Tr exp(−λH)

)−1 exp(−λH)

is a state. Since the relative entropy is non-negative, we see from the definition
of KH,h that

H(ρ) = λ Tr ρH + log Tr exp(−λH)−H(ρ ‖σ) 6 λh + log Tr exp(−λH) < +∞

for all ρ in KH,h. Hence the entropy is bounded on KH,h.
Suppose that supρ∈KH,h

H(ρ) < +∞. We claim that the equation

n∑
k=1

hk exp(−λhk) = h
n∑

k=1

exp(−λhk) (7)

has a unique positive solution λn for all sufficiently large n and that the sequence
{λn} is increasing. Indeed, (7) is equivalent to the equation fn(λ) = 0, where
fn(λ) =

∑n
k=1(hk − h) exp

(
−λ(hk − h)

)
. Since

f ′n(λ) = −
n∑

k=1

(hk − h)2 exp
(
−λ(hk − h)

)
< 0,

the function fn(λ) is strictly decreasing on [0,+∞). It is easy to see that

fn(0) =
n∑

k=1

hk − nh, lim
λ→+∞

fn(λ) = −∞, h > hm.
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Since the sequence {hk} is non-decreasing and unbounded, we have
∑n

k=1 hk > nh
for all sufficiently large n. Thus the observation above yields the existence of a
unique positive solution λn of the equation fn(λ) = 0. To prove that λn+1 > λn, it
suffices to note that fn+1(λ) > fn(λ) for all λ in [0,+∞) and all n such that hn > h.

For every sufficiently large n, we consider the state

ρn =
( n∑

k=1

exp(−λnhk)
)−1 n∑

k=1

exp(−λnhk)|k〉〈k| (8)

in KH,h. This state is the maximum point of the function H(ρ) on the subset Kn
H,h

of KH,h. (This subset consists of states supported by the linear hull of the vec-
tors

{
|k〉

}n

k=1
.) Indeed, since the relative entropy is non-negative, we easily see

from the definition of ρn that

H(ρ) = λn Tr ρH + log
n∑

k=1

exp(−λnhk)−H(ρ ‖ ρn) 6 λnh + log
n∑

k=1

exp(−λnhk)

for all ρ in Kn
H,h. Moreover, this inequality is an equation if and only if ρ = ρn.

Using this observation and the monotonicity of the logarithm, we obtain

H(ρn) = λnh + log
n∑

k=1

exp(−λnhk) > λn(h− hm). (9)

Since h > hm, the assumption supρ∈KH,h
H(ρ) < +∞ guarantees that the

sequence {λn} is bounded. As mentioned above, this sequence is also monotone.
Hence, limn→+∞ λn = λ∗ < +∞ exists. Since λn 6 λ∗ for all n, equality in (9)
implies that

n∑
k=1

exp(−λ∗hk) 6
n∑

k=1

exp(−λnhk) < exp
(

sup
ρ∈KH,h

H(ρ)
)

< +∞ (10)

for all n and, therefore,
+∞∑
k=1

exp(−λ∗hk) < +∞. (11)

This proves that g(H) 6 λ∗ < +∞.
Since KH,h =

⋃
nKn

H,h and supρ∈Kn
H,h

H(ρ) = H(ρn), the lower semicontinuity
of the entropy yields that

sup
ρ∈KH,h

H(ρ) = lim
n→+∞

H(ρn).

By Lemma 2, the sequence {ρn} of states converges to the state ρ∗(KH,h). Since
limn→+∞ λn = λ∗, the sequence{

An =
n∑

k=1

exp(−λnhk)|k〉〈k|
}

n
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of operators in T(H) converges in the weak operator topology to the operator
A∗ =

∑∞
k=1 exp(−λ∗hk)|k〉〈k| in T(H). Combining these observations, we easily

see that

lim
n→+∞

TrAn = lim
n→+∞

n∑
k=1

exp(−λnhk) =
+∞∑
k=1

exp(−λ∗hk) = TrA∗, (12)

ρ∗(KH,h) = lim
n→+∞

ρn =
( +∞∑

k=1

exp(−λ∗hk)
)−1 +∞∑

k=1

exp(−λ∗hk)|k〉〈k|. (13)

Using (9) and (12), we obtain

sup
ρ∈KH,h

H(ρ) = lim
n→+∞

H(ρn) = hλ∗ + log
+∞∑
k=1

exp(−λ∗hk). (14)

The lower semicontinuity of the entropy implies that

H
(
ρ∗(KH,h)

)
= λ∗

∑+∞
k=1 hk exp(−λ∗hk)∑+∞

k=1 exp(−λ∗hk)
+ log

+∞∑
k=1

exp(−λ∗hk) 6 lim
n→+∞

H(ρn).

It follows from (14) that this inequality is equivalent to the inequality

+∞∑
k=1

hk exp(−λ∗hk) 6 h

+∞∑
k=1

exp(−λ∗hk). (15)

If these inequalities become equations, then ρ∗(KH,h) = Γ(KH,h). Conversely, if the
maximal entropy state Γ(KH,h) exists, then it coincides with ρ∗(KH,h) by Lemma 2,
and hence equality holds in (15). Thus the maximal entropy state Γ(KH,h) exists
if and only if we have equality in (15). To complete the proof of assertion 1) of
the proposition, it suffices to show that the inequality h 6 h∗(H) is equivalent to
equality in (15).

First, we claim that the inequality λ∗ > g(H) yields equality in (15). Indeed,
consider the function

f(λ) = lim
n→+∞

fn(λ) =
+∞∑
k=1

(hk − h) exp
(
−λ(hk − h)

)
.

Since the series
∑+∞

k=1 hp
k exp(−λhk) converges uniformly on

[
g(H) + ε, +∞

)
for

any p ∈ N and ε > 0, the function f(λ) has a continuous derivative f ′(λ) =
−

∑+∞
k=1(hk−h)2 exp

(
−λ(hk−h)

)
< 0 on the interval

(
g(H),+∞

)
. By construction,

we have f(λn) > fn(λn) = 0 for all sufficiently large n. Thus the continuity of f(λ)
at the point λ∗ ∈

(
g(H),+∞

)
implies that f(λ∗) > 0. Since (15) is equivalent to

the reverse inequality, we get f(λ∗) = 0, which means that equality holds in (15).
If h < h∗(H), then f

(
g(H)

)
> 0 (admitting the case f

(
g(H)

)
= +∞). Since (15)

implies that f(λ∗) 6 0, we have λ∗ > g(H) and, by the observation above,
f(λ∗) = 0.
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If h = h∗(H), then f
(
g(H)

)
= 0 and, therefore, λ∗= g(H). Indeed, if λ∗ > g(H),

then the observation above shows that f(λ∗) = 0 = f
(
g(H)

)
, contrary to the fact

that f(λ) is strictly decreasing.
If h > h∗(H), then f

(
g(H)

)
< 0. Since the function f(λ) is decreasing, we have

f(λ∗) < 0 and, therefore, strict inequality holds in (15).
Let us prove assertion 2) of the proposition. If g(H) = 0, then the entropy is

continuous on KH,h by an observation in [20]. This also follows from the implication
(i) ⇒ (ii) in Proposition 4 below.

To prove the converse assertion, consider the sequence of states

σn = (1− qn)|1〉〈1|+ qn

n

n+1∑
k=2

|k〉〈k|,

where {qn} is the sequence of positive numbers

qn = (h− hm)
(

n−1
n+1∑
k=2

hk − hm

)−1

,

which obviously converges to zero. Here we assume that n is so large that qn 6 1.
Since the sequence {σn} is contained in KH,h and converges to the pure state |1〉〈1|,
continuity of the entropy on KH,h implies that the following sequence of positive
numbers converges to zero:

H(σn) = h2(qn) + qn log n = h2(qn) +
(h− hm) log n

n−1
∑n+1

k=2 hk − hm

.

The obvious estimate n−1
∑n+1

k=2 hk 6 hn+1 shows that the sequence {νn =
h−1

n+1 log n} converges to zero. Therefore, for arbitrary λ > 0, we have

Tr exp(−λH) =
+∞∑
n=0

exp(−λhn+1) =
+∞∑
n=1

n−
λ

νn < +∞.

Hence g(H) = 0.
The general expression for supρ∈KH,h

H(ρ) can be deduced from the previous
observation by noting that the infimum in this expression is attained at λ = λ∗

if h 6 h∗(H), and at λ = g(H) if h > h∗(H).
The proofs of the properties of the function FH(ρ) are based on the implicit

function theorem and are given in § 5.

Let σ be an arbitrary state. In what follows we use the coefficient d(σ) of
decrease of the state σ, which is defined by

d(σ) = inf
{
λ > 0 | Trσλ < +∞

}
∈ [0, 1].

If σ is a full rank state, then − log σ is an H-operator and d(σ) = g(− log σ).
It is easy to see that if d(σ) < 1, then H(σ) < +∞. However, there are states σ

with finite entropy such that d(σ) = 1 (for example, the state with spectrum
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a
(
(k+1) log3(k+1)

)−1}, where a is a coefficient). The special role of these states
is shown by the following proposition, which is a non-commutative generalization
of Theorem 21 in [5], where a classical state (a probability distribution) σ is said
to be hyperbolic if d(σ) = 1, and power dominated if d(σ) < 1.

Proposition 2. Let σ be a state with finite entropy.
1) If d(σ) < 1, then

lim
n→+∞

H(ρn) = H(σ)

for every sequence of states {ρn} that H-converges 4 to σ.
2) If d(σ) = 1, then for every h > H(σ) there is a sequence {ρn} of finite-rank

states that H-converges to σ and satisfies

lim
n→+∞

H(ρn) = h.

Remark 1. Proposition 2 shows that the convex set
{
σ ∈ S(H) | d(σ) < 1

}
is the

maximal set of continuity of the entropy with respect to H-convergence.

The proof of Proposition 2 is based on the following lemma.

Lemma 3. Let σ be a state with d(σ) < 1. Then the entropy H(ρ) is finite for every
state ρ with H(ρ ‖σ) < +∞, and the following identity holds for every λ > d(σ):

H
(
ρ ‖ (Trσλ)−1σλ

)
= λH(ρ ‖σ) + log Trσλ − (1− λ)H(ρ).

If Trσd(σ) < +∞, then this identity also holds for λ = d(σ).

Proof. Let {Pn} be the increasing sequence of spectral projectors of the state σ.
For every n, the positive trace-class operators An = PnρPn and Bn = Pnσ satisfy

H(An ‖Bλ
n) = Tr(An log An −An log Bλ

n + Bλ
n −An)

= Tr
((

λ + (1− λ)
)
An log An − λAn log Bn + Bλ

n −An

)
= λH(An ‖Bn) + TrBλ

n − λ TrBn − (1− λ) Tr An − (1− λ) Tr An(− log An).

Since Bλ
n = Pnσλ, Lemma 4 of [8] implies that

lim
n→+∞

TrAn(− log An) = H(ρ), lim
n→+∞

H(An ‖Bλ
n) = H(ρ ‖σλ)

for all λ > d(σ). Passing to the limit as n → +∞ in the previous equality, we get

H(ρ ‖σλ) = λH(ρ ‖σ) + Trσλ − 1− (1− λ)H(ρ).

Thus the finiteness of H(ρ ‖σ) implies that H(ρ) and H(ρ ‖σλ) are finite for all
λ > d(σ). Noting that

H
(
ρ ‖ (Trσλ)−1σλ

)
= H(ρ ‖σλ) + log Trσλ − Trσλ + 1,

we obtain the identity in the lemma.
4This means that limn→+∞H(ρn ‖σ) = 0.
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Proof of Proposition 2. Let d(σ) < 1. Then Lemma 3 implies that

H
(
ρn ‖ (Trσλ)−1σλ

)
− λH(ρn ‖σ)

1− λ
=

log Trσλ

1− λ
−H(ρn) (16)

for all λ > d(σ). Suppose that lim infn→+∞ H(ρn) − H(σ) = ∆ > 0. Since the
first term on the right-hand side of (16) tends to H(σ) as λ → 1, there is a λ′ < 1
such that the right-hand of (16) is less than −∆/2 for λ = λ′ and all sufficiently
large n. On the other hand, since the relative entropy is non-negative, we see
that the left-hand side of (16) does not exceed −λ′H(ρn ‖σ)

1−λ′ , which tends to zero
as n → +∞.

Suppose that d(σ) = 1 and h > H(σ). Without loss of generality, we may assume
that σ is a full-rank state, − log σ is an H-operator with g(− log σ) = d(σ) = 1
and h∗(− log σ) = H(σ) < +∞. By Proposition 1, supρ∈K− log σ,h

H(ρ) = h for
all h > h∗(− log σ). For any given h > h∗(− log σ), the proof of Proposition 1
yields a sequence {ρn} of states defined by formula (8) and converging to the state
ρ∗(K− log σ,h) = σ, which is defined by (13). By construction,

lim
n→+∞

H(ρn) = sup
ρ∈K− log σ,h

H(ρ) = h, lim
n→+∞

H(ρn ‖σ) = 0.

The proposition is proved.

We consider the set Vσ,c =
{
ρ ∈ S(H) | H(ρ ‖σ) 6 c

}
, which is determined

by a state σ and a non-negative number c. The properties of the relative entropy
imply that Vσ,c is a non-empty, closed, convex subset of S(H) for all σ and c. We
may regard Vσ,c as a c-pseudoneighbourhood of σ with respect to the pseudometric
defined by the relative entropy. In the next section, we will see that this set plays
a special role related to the notion of χ-capacity of a set of states.

We put c∗(σ) = H
((

Trσd(σ)
)−1

σd(σ) ‖σ
)

if Tr σd(σ) < +∞, and c∗(σ) = +∞
otherwise. The following proposition describes some properties of the restriction of
the entropy to Vσ,c and gives necessary and sufficient conditions for the existence
of the maximal entropy state of Vσ,c.

Proposition 3. Let σ be any state in S(H) and let c be a positive number.

1) The set Vσ,c is a compact convex subset of S(H).
2) The entropy is bounded on Vσ,c if and only if d(σ) < 1.
3) The entropy is continuous on Vσ,c if and only if d(σ) = 0.

4) If d(σ) < 1 and c 6 c∗(σ), then supρ∈Vσ,c
H(ρ) = λ∗c+log Tr σλ∗

1−λ∗ , where
λ∗ = λ∗(σ, c) > d(σ) is uniquely determined by the equation 5

(λ− 1) Tr(σλ log σ) = (c + log Trσλ) Tr σλ,

and the maximal entropy state Γ(Vσ,c) = (Trσλ∗)−1σλ∗ exists.

5This equation means that H
`
(Tr σλ∗ )−1σλ∗ ‖σ

´
= c.
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If d(σ) < 1 and c > c∗(σ), then supρ∈Vσ,c
H(ρ) = d(σ)c+log Tr σd(σ)

1−d(σ) and the maximal
entropy state of Vσ,c does not exist. The following equation holds in both cases
if d(σ) < 1:

sup
ρ∈Vσ,c

H(ρ) = inf
λ∈(d(σ),1)

λc + log Trσλ

1− λ
.

The results of numerical calculations of supρ∈Vσ,c
H(ρ) as a function of c for

states σ with d(σ) < 1 and c∗(σ) < +∞ are shown among other characteristics
in Fig. 2 of part II of this paper.

Proof. Without loss of generality, we may assume that σ is a full-rank state and
− log σ is an H-operator.6

1) The proof of the assertion on compactness is based on the compactness crite-
rion described in § 2 and the inequality

H(ρ ‖σ) > H(PρP ‖PσP ) > Tr(Pρ) log
Tr(Pρ)
Tr(Pσ)

+ Tr(Pσ)− Tr(Pρ), (17)

which holds for any states ρ, σ and any projector P . This inequality follows from
Lemma 3 of [8] and the monotonicity property of the relative entropy [9] applied
to the trace-preserving completely positive map Φ(A) = (TrA)τ , where τ is an
arbitrary state.

For a given σ, let {Pn} be a sequence of finite-rank projectors such that
TrPnσ > 1 − n−1. Suppose that Vσ,c is non-compact. By the compactness cri-
terion, for every n there is a state ρn in Vσ,c such that Tr(IH−Pn)ρn > ε for some
positive ε. Using inequality (17) with P = IH − Pn, we get

H(ρn ‖σ) > Tr
(
(IH − Pn)ρn

)
log

Tr
(
(IH − Pn)ρn

)
Tr

(
(IH − Pn)σ

)
+ Tr

(
(IH − Pn)σ

)
− Tr

(
(IH − Pn)ρn

)
> ε log(εn)− 1

for all sufficiently large n. Hence H(ρn ‖σ) tends to +∞ as n → +∞. This
contradicts the definition of Vσ,c.

2) If d(σ) = 1, then the entropy is unbounded on Vσ,c by assertion 2) of Propo-
sition 2.

If d(σ) < 1, then Lemma 3 implies that

H(ρ) =
λH(ρ ‖σ) + log Trσλ −H(ρ ‖σλ)

1− λ
6

cλ + log Trσλ

1− λ
(18)

for all λ in
(
d(σ), 1

)
and all ρ in Vσ,c. Therefore supρ∈Vσ,c

H(ρ) < +∞.
3) If d(σ) > 0, then Proposition 1 shows that the entropy is discontinuous on

the set K− log σ,c, which is contained in Vσ,c.
If d(σ) = 0, then supρ∈Vσ,c

H(ρ) = d < +∞ by the observation above. Hence
the set Vσ,c is contained in K− log σ,c+d. By Proposition 1, the entropy is continuous
on K− log σ,c+d.

6This assumption and the assumption that the dimension of H is infinite (which is used in
the proof) imply that the rank of σ is infinite. However, one can show that all the assertions
in Proposition 3 are valid for all states σ of finite rank.
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4) We denote the state (Trσλ)−1σλ by σλ and note that the continuous function
f(λ) = H(σλ ‖σ) is decreasing on the interval

(
d(σ), 1

)
. Indeed, it is easy to see

that this function has derivative

f ′(λ) = −(1− λ)
(
Trσλ log2 σ − (Trσλ log σ)2

)
< 0

for every λ in
(
d(σ), 1

)
. We also note that

lim
λ→d(σ)+0

f(λ) = c∗ 6 +∞, f(1) = 0.

Suppose that c 6 c∗. Then the observation above implies that there is a unique
solution λ∗ of the equation f(λ) = c. Thus H(σλ∗ ‖σ) = c and, therefore,

H(σλ∗) =
cλ∗ + log Trσλ∗

1− λ∗
.

Inequality (18) implies that H(ρ) 6 H(σλ∗) for all ρ in Vσ,c.
Suppose that c∗ < +∞ and c > c∗. Then

h =
d(σ)c + log Trσd(σ)

1− d(σ)
>

d(σ)c∗ + log Trσd(σ)

1− d(σ)
= H(σd(σ)).

Since d(σd(σ)) = 1, Proposition 2 yields that for every sufficiently large m there is
a sequence {ρm

n }n of states such that

lim
n→+∞

H
(
ρm

n ‖σd(σ)

)
= 0, lim

n→+∞
H(ρm

n ) = h− 1
m

. (19)

Using Lemma 3, we get

lim
n→+∞

H(ρm
n ‖σ) = lim

n→+∞

H(ρm
n ‖σd(σ))− log Trσd(σ) +

(
1− d(σ)

)
H(ρm

n )
d(σ)

=

(
1− d(σ)

)
h− log Trσd(σ)

d(σ)
− 1− d(σ)

d(σ)m
= c− 1− d(σ)

d(σ)m
.

Thus for every m there is an N(m) such that ρm
n belongs to Vσ,c for all n > N(m).

Using this and (19), we see that the family {ρm
n }n,m contains a sequence {ρ̂n}n

of states in Vσ,c such that {ρ̂n}n converges to σd(σ) and limn→+∞ H(ρ̂n) = h.
Therefore supρ∈Vσ,c

H(ρ) > h. Since the reverse inequality follows from (18), we
have supρ∈Vσ,c

H(ρ) = h > H(σd(σ)). By Lemma 2, the set Vσ,c contains no
maximal entropy state in this case.

The general expression for supρ∈Vσ,c
H(ρ) can be deduced from the previous

observations by observing that the infimum in this expression is attained at λ = λ∗

if c 6 c∗(σ), and at λ = d(σ) if c > c∗(σ).

The following proposition concerns the question of continuity of the entropy on
arbitrary sets of states.
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Proposition 4. Let A be an arbitrary closed subset of S(H). Then the following
properties are equivalent.

(i) A ⊆ KH,h for some H-operator H with g(H) = 0 and some positive number h.
(ii) The entropy is continuous on A and there is a state σ in S(H) such that

the relative entropy H(ρ ‖σ) is continuous and bounded on A.
(iii) There is an H-operator H̃ with g(H̃) < +∞ such that the linear function

Tr ρH̃ is continuous and bounded on A.
If A possesses the equivalent properties (i)–(iii), then the H-operators H , H̃

and the state σ can be chosen in such a way that TrσH < +∞, H̃ = − log σ and
H(σ) < +∞.

Remark 2. The last assertion of Proposition 4 implies that if properties (i)–(iii)
hold for A, then they hold for the set co{A, σ}.

Proof of Proposition 4. (ii) ⇒ (iii). Since the entropy is finite on A by (ii), we have

H(ρ ‖σ) = −H(ρ) + Tr ρ(− log σ) ∀ ρ ∈ A. (20)

By Proposition 3, A is compact. Therefore the entropy is bounded on A. Hence
(ii) and (20) imply that the function Tr ρ(− log σ) is continuous and bounded on A.
Thus (iii) holds with H̃ = − log σ.

(iii) ⇒ (ii). Suppose that λ > g(H̃) and let σ =
(
Tr exp(−λH̃)

)−1 exp(−λH̃) be
a state in S(H) with finite entropy. Then (iii) means that the function Tr ρ(− log σ)
is continuous and bounded on A. Since the entropy and relative entropy are lower
semicontinuous, it follows from (20) that the functions H(ρ) and H(ρ ‖σ) are con-
tinuous and bounded on A.

(i) ⇒ (iii). Let H =
∑

k hk|k〉〈k|, where {|k〉} is an orthonormal basis of H.
By assumption, we have

∑
k exp(−λhk) < +∞ for all λ > 0 and, therefore,∑

k hk exp(−λhk) < +∞ for all λ > 0. Hence there is a sequence {λk} of positive
numbers converging monotonically to zero and satisfying

∑
k hk exp(−λkhk) < +∞.

This sequence can be constructed as follows. For every positive integer m, let N(m)
be the minimal positive integer such that

∑+∞
k=N(m) hk exp(−hk/m) < 2−m. It is

easy to see that the sequence

λk =

1, k < N(2),
1
m

, N(m) 6 k < N(m + 1), m > 2

satisfies the desired condition. Since Tr ρH =
∑

k hk〈k|ρ|k〉 6 h for all ρ in A, the
series

∑
k λkhk〈k|ρ|k〉 converges uniformly on A. This yields the continuity on A

of the function Tr ρ(− log σ), where

σ =
( ∑

k

exp(−λkhk)
)−1 ∑

k

exp(−λkhk)|k〉〈k|.

Note that the condition
∑

k hk exp(−λkhk) < +∞ implies that TrσH < +∞
and H(σ) < +∞. Thus (iii) holds with H̃ = − log σ.
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(iii) ⇒ (i). Let H̃ =
∑

k h̃k|k〉〈k|, where
{
|k〉

}
is an orthonormal basis in H.

Since (iii) is equivalent to (ii), Proposition 3 shows that A is compact. By the
assumption (iii), the series

∑
k h̃k〈k|ρ|k〉 converges on the compact set A to

the continuous function Tr ρH̃. By Dini’s lemma, it converges uniformly on A.
This yields the existence of a sequence {λk} of positive numbers that converges
monotonically to +∞ and satisfies

∑
k λkh̃k〈k|ρ|k〉 6 h < +∞ for all ρ in A. It is

easy to see that (i) holds with H =
∑

k λkh̃k|k〉〈k|.
The last assertion of the proposition follows from the construction above.

The following observation is a corollary of Propositions 1 and 4.

Corollary 1. If H is an H-operator with g(H) = 0, then one can find a state σ

in S(H) and an H-operator H̃ with g(H̃) < +∞ such that the relative entropy
H(ρ ‖σ) and the linear function Tr ρH̃ are continuous on KH,h.

Since the set KH,h is convex, Propositions 1 and 4 yield the following result.

Corollary 2. If the entropy is continuous on the closed set A and there is a state σ
in S(H) such that the relative entropy H(ρ ‖σ) is continuous and bounded on A,
then the entropy is continuous on co(A).

Remark 3. The assumption on the existence of σ is essential in assertion (ii) of
Proposition 4 and in Corollary 2. Indeed, let A be the closed set of all pure states
in S(H). Then the entropy is equal to zero (and hence is continuous) on A, but is
not continuous on co(A) = S(H). There is a compact set A of pure states (a con-
vergent sequence) such that the entropy is unbounded on co(A) (see Example 1 in
part II of this paper).

Proposition 4 and Corollary 2 enable us to show that the entropy is continuous
on some non-trivial sets of states. The following result will be used in part II of
this paper.

Corollary 3. Let {Uλ}λ∈Λ be a closed family of unitary (anti-unitary) operators
on H and let ω be a state in S(H) such that UλωU∗

λ = ω for all λ ∈ Λ. Then the
functions H(ρ) and H(ρ ‖ω) are continuous on the set co

(
{UλσU∗

λ}λ∈Λ

)
for any

state σ with Trσ(− log ω) < +∞.

Given an arbitrary orthonormal basis
{
|k〉

}
⊂ H, we consider the trace-preserv-

ing completely positive map

Π{|k〉} : ρ 7→
∑

k

〈k|ρ|k〉|k〉〈k|.

The set of output states of the map Π{|k〉} can be regarded as the set of all clas-
sical states (probability distributions). Hence the set Π{|k〉}(A) may be called the
classical projection of A with respect to the basis

{
|k〉

}
.

The following proposition shows that some properties of sets of quantum states
are closely related to properties of the classical projections of these sets.

Proposition 5. Let A be an arbitrary closed subset of S(H).
1) The set A is compact if Π{|k〉}(A) is compact for at least one basis {|k〉}.
2) If A is compact, then Π{|k〉}(A) is compact for any basis {|k〉}.
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3) The entropy is bounded on A if it is bounded on Π{|k〉}(A) for at least one
basis

{
|k〉

}
.

4) If A is convex and the entropy is bounded on A, then it is bounded on Π{|k〉}(A)
for at least one basis

{
|k〉

}
.

5) The entropy is continuous on A if it is continuous on Π{|k〉}(A) for at least
one basis

{
|k〉

}
.

6) If the entropy is continuous on A and there is a state σ in S(H) such that
the relative entropy H(ρ ‖σ) is continuous and bounded on A, then the entropy is
continuous on Π{|k〉}(A) for at least one basis

{
|k〉

}
.

Proof. Suppose that Π{|k〉}(A) is compact. By the compactness criterion for sets
of classical states, for every ε > 0 there is an Nε such that

TrPερ =
Nε∑
k=1

〈k|ρ|k〉 > 1− ε ∀ ρ ∈ A,

where Pε =
∑Nε

k=1 |k〉〈k| is a finite-rank projector. By the compactness criterion
for subsets of S(H), it follows that A is compact.

If A is compact and
{
|k〉

}
is any basis, then Π{|k〉}(A) is compact, being the

image of a compact set under a continuous map.
To prove the remaining assertions, we use the identity

H
(
ρ ‖Π{|k〉}(ρ)

)
= H

(
Π{|k〉}(ρ)

)
−H(ρ), (21)

which holds for any state ρ with H
(
Π{|k〉}(ρ)

)
< +∞.

If the entropy is bounded on Π{|k〉}(A), then it is bounded on A. Indeed, since
the relative entropy is non-negative, we see from (21) that H(ρ) 6 H

(
Π{|k〉}(ρ)

)
for any ρ in A.

If the entropy is bounded on the convex set A, then Corollary 7 below shows
that A is contained in KH,h for some H-operator H with g(H) < +∞. Let

{
|k〉

}
be a basis of eigenvectors of the H-operator H. Then Π{|k〉}(A) is also contained
in KH,h and, therefore, the entropy is bounded on Π{|k〉}(A) by Proposition 1.

Suppose that the entropy is bounded on Π{|k〉}(A). Then it is finite on this
set. By (21), it is finite on A. Let ρ0 be a state in A and let {ρn} be a sequence
of states in A converging to ρ0. Since the entropy is continuous on Π{|k〉}(A) (by
assumption) and the relative entropy is lower semicontinuous, we see from (21) that

lim sup
n→+∞

H(ρn) = lim
n→+∞

H
(
Π{|k〉}(ρn)

)
− lim inf

n→+∞
H

(
ρn ‖Π{|k〉}(ρn)

)
6 H

(
Π{|k〉}(ρ0)

)
−H

(
ρ0 ‖Π{|k〉}(ρ0)

)
= H(ρ0).

This inequality and lower semicontinuity of the entropy imply that

lim
n→+∞

H(ρn) = H(ρ0).

If the entropy is continuous on A and there is a state σ in S(H) such that the
relative entropy H(ρ ‖σ) is continuous and bounded on A, then Proposition 4 shows
that A is contained in KH,h for some H-operator H with g(H) = 0. Let

{
|k〉

}
be

a basis of eigenvectors of H. Then Π{|k〉}(A) is also contained in KH,h and hence
the entropy is continuous on Π{|k〉}(A) by Proposition 1.
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Remark 4. In contrast to assertion 2), one cannot replace the expression “for at
least one” by “for any” in assertions 4) and 6) of Proposition 5. Indeed, for every
pure state ρ there is a basis

{
|k〉

}
such that H

(
Π{|k〉}(ρ)

)
= +∞.

Let σ be a state with basis of eigenvectors
{
|k〉

}
. We consider the set Π−1

{|k〉}(σ)
of all states whose diagonal entries in the basis

{
|k〉

}
coincide with those of σ. The

set Π−1
{|k〉}(σ) is called the layer 7 corresponding to σ and is denoted by L(σ). In a

sense, one can regard layers as the simplest purely quantum sets of states.
By (21), we have

H(ρ) 6 H(σ) ∀ ρ ∈ L(σ). (22)

Hence the entropy is bounded on the layer corresponding to σ if and only if
H(σ) < +∞. The following proposition shows that boundedness of the entropy
on a layer guarantees its continuity.

Proposition 6. Let σ be an arbitrary state in S(H).
1) The set L(σ) is a compact convex subset of S(H).
2) The entropy H(ρ) is continuous on L(σ) if and only if supρ∈L(σ) H(ρ) =

H(σ) < +∞.
3) If H(σ) < +∞, then H(ρ ‖σ) = H(σ)−H(ρ) for any state ρ in L(σ).
4) If H(σ) = +∞, then H(ρ ‖σ) = +∞ for every pure state ρ in L(σ).

Proof. Assertions 1) and 2) follow from assertions 1) and 5) (respectively) of Propo-
sition 5 because Π{|k〉}

(
L(σ)

)
= {σ} if

{
|k〉

}
is a basis of eigenvectors of σ.

The expression for the relative entropy in the case H(σ) < +∞ is a restatement
of the identity (21).

Suppose that H(σ) = +∞ and ρ is an arbitrary pure state in L(σ). We consider
the sequences of states

{
σn =(TrPnσ)−1Pnσ

}
and

{
ρn =(TrPnρ)−1PnρPn

}
, where

Pn is the spectral projector of σ that corresponds to its n maximal eigenvalues.
Since the pure state ρn lies in L(σn) for every n, we see from (21) that

H(ρn ‖σn) = H(σn)−H(ρn) = H(σn).

By Lemma 4 of [8], the left- and right-hand sides of this equation tend to H(ρ ‖σ)
and H(σ) = +∞ (respectively) as n → +∞.

Remark 5. Propositions 5 and 6 enable us to make the following observation: dis-
continuity and unboundedness of the quantum entropy in the infinite-dimensional
case are of a purely classical nature. Indeed, the set of all quantum states may
be regarded as the union of the layers corresponding to all states that are diag-
onalizable in some basis. The set of these states can be identified with the set
of all classical states, and every layer can be identified with a set of purely quan-
tum states. Proposition 6 shows that the entropy is continuous on the whole layer
if it is finite on the corresponding classical state. By Proposition 5, the possible
discontinuity of the quantum entropy is connected with transitions between layers
corresponding to a set of classical states on which the entropy is discontinuous.

7If σ has distinct eigenvalues, then the basis
˘
|k〉

¯
is essentially unique, and the set L(σ)

depends only on σ. If σ has multiple eigenvalues, then L(σ) depends on the choice of the
basis

˘
|k〉

¯
. In the latter case, all the “variants” of the set L(σ) are isomorphic to each other, and

so we shall assume that one of them has been chosen.
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§ 4. χ-capacity

4.1. The optimal average state. Let A be an arbitrary subset of S(H). The
χ-capacity of A is defined by

C(A) = sup
{πi,ρi}

χ
(
{πi, ρi}

)
, (23)

where the supremum is taken over all ensembles {πi, ρi} of states in A.
If the entropy is bounded on the set co(A), then

C(A) = sup
{πi,ρi}

(
H

(∑
i

πiρi

)
−

∑
i

πiH(ρi)
)

6 sup
ρ∈co(A)

H(ρ) < +∞.

But boundedness of the entropy is not necessary for finiteness of the χ-capacity.
This is shown by examples in part II of this paper.

Let
{
{πn

i , ρn
i }

}
n

be a sequence of ensembles of states in A such that

lim
n→+∞

χ
(
{πn

i , ρn
i }

)
= C(A).

In accordance with [15], such a sequence is called an approximating sequence for A.
If A is a set of states (density operators) in a finite-dimensional Hilbert space,

then the supremum in definition (23) of χ-capacity is attained at some ensemble
{πi, ρi} (the optimal ensemble for A), whose average state possesses some special
properties [14]. If A is a set of states (density operators) in an infinite-dimensional
Hilbert space, then the optimal ensemble generally does not exist. However, one
can prove the existence of a unique state that possesses the properties of the average
state of the optimal ensemble in the finite-dimensional case.

Theorem 1. Let A be a set with finite χ-capacity C(A).
1) There is a unique state Ω(A) in S(H) such that

H
(
ρ ‖Ω(A)

)
6 C(A) ∀ ρ ∈ A.

The state Ω(A) belongs to co(A). If
{
{πn

i , ρn
i }

}
n

is any approximating sequence
for A, then the corresponding sequence {ρ̄n} of average states H-converges 8 to the
state Ω(A).

2) The χ-capacity of A satisfies

C(A) = inf
σ∈S(H)

sup
ρ∈A

H(ρ ‖σ) = inf
σ∈co(A)

sup
ρ∈A

H(ρ ‖σ) = sup
ρ∈A

H
(
ρ ‖Ω(A)

)
, (24)

where the first two equalities remain valid in the case C(A) = +∞.

Proof. 1) Let
{
µn = {πn

i , ρn
i }

N(n)
i=1

}
be any approximating sequence of ensembles

for A. We claim that the corresponding sequence {ρ̄n} of average states converges
to some state in S(H). Indeed, by the definition of an approximating sequence,

8This means that limn→+∞H
`
ρ̄n ‖Ω(A)

´
= 0.
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for every ε > 0 there is an Nε such that χ(µn) > C(A) − ε for all n > Nε. By
Lemma 1 with m = 2 and λ = 1/2, we have

C(A)− ε 6
1
2

χ(µn1) +
1
2

χ(µn2)

6 χ

(
1
2

µn1 +
1
2

µn2

)
− 1

8
‖ρ̄n2 − ρ̄n1‖21 6 C(A)− 1

8
‖ρ̄n2 − ρ̄n1‖21,

whence ‖ρ̄n2 − ρ̄n1‖1 <
√

8ε for all n1 > Nε and n2 > Nε. Therefore {ρ̄n} is a
Cauchy sequence. Thus it converges to some state ρ∗ in S(H).

Let σ be an arbitrary state in A. Given any positive integer n and any η
in [0, 1], we consider the ensemble 9 µη

n that consists of states
{
ρn
1 , . . . , ρn

N(n), σ
}

with corresponding probability distribution
{
(1 − η)πn

1 , . . . , (1 − η)πn
N(n), η

}
. We

obtain the sequence of ensembles {µη
n} with corresponding sequence of average

states
{
ρ̄ η

n = (1 − η)ρ̄n + ησ
}

n
that converges to the state ρ̄η = (1 − η)ρ∗ + ησ

as n → +∞.
For any positive integer n, we have

χ(µη
n) = (1− η)

∑
i

πn
i H(ρn

i ‖ ρ̄ η
n ) + ηH(σ ‖ ρ̄ η

n ). (25)

Both summands on the right-hand side of (25) are finite because C(A) is finite by
hypothesis. Applying Donald’s identity (3) to the first of them, we get∑

i

πn
i H(ρn

i ‖ ρ̄ η
n ) = χ(µ0

n) + H(ρ̄n ‖ ρ̄ η
n ).

Substituting this expression in (25), we obtain

χ(µη
n) = χ(µ0

n) + (1− η)H(ρ̄n ‖ ρ̄ η
n ) + η

(
H(σ ‖ ρ̄ η

n )− χ(µ0
n)

)
.

Since the relative entropy is non-negative, it follows that

H(σ ‖ ρ̄ η
n ) 6 η−1

(
χ(µη

n)− χ(µ0
n)

)
+ χ(µ0

n), η 6= 0. (26)

By the definition of an approximating sequence, we have

lim
n→+∞

χ(µ0
n) = C(A) > χ(µη

n) (27)

for all n and η > 0. It follows that

lim inf
η→+0

lim inf
n→+∞

η−1
[
χ(µη

n)− χ(µ0
n)

]
6 0. (28)

Since the relative entropy is lower semicontinuous, inequalities (26)–(28) imply
that

H(σ ‖ ρ∗) 6 lim inf
η→+0

lim inf
n→+∞

H(σ ‖ ρ̄ η
n ) 6 C(A).

9This extension of an ensemble by “inserting” an additional state was first used in [14] in the
finite-dimensional case.
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Thus we have proved that

sup
σ∈A

H(σ ‖ ρ∗) 6 C(A). (29)

Let
{
{λn

j , σn
j }

}
n

be an arbitrary approximating sequence of ensembles. By
inequality (29), we have ∑

j

λn
j H(σn

j ‖ ρ∗) 6 C(A).

Applying Donald’s identity (3), we obtain∑
j

λn
j H(σn

j ‖ ρ∗) =
∑

j

λn
j H(σn

j ‖ σ̄n) + H(σ̄n ‖ ρ∗). (30)

The last two expressions show that

H(σ̄n ‖ ρ∗) 6 C(A)−
∑

j

λn
j H(σn

j ‖ σ̄n).

By the approximating property of the sequence
{
{λn

j , σn
j }

}
n
, the right-hand side of

this inequality tends to zero as n → +∞. Hence the sequence {σ̄n}n H-converges
to ρ∗ and, therefore, converges to this state in the trace-norm topology. Thus
the state ρ∗ is independent of the choice of the approximating sequence and is
determined by A alone. We denote this state by Ω(A). The observation above
implies that ρ∗ = Ω(A) is the unique state in S(H) such that inequality (29) holds.

2) To prove (24), we start by showing that inequality (29) is actually an equa-
tion. Indeed, since (30) holds for any approximating sequence

{
{λn

j , σn
j }

}
n

and the
relative entropy is non-negative, we see that∑

j

λn
j H(σn

j ‖ σ̄n) 6
∑

j

λn
j H(σn

j ‖ ρ∗) 6 sup
σ∈A

H(σ ‖ ρ∗).

By the approximating property of the sequence
{
{λn

j , σn
j }

}
n
, the left-hand side of

this inequality tends to C(A) as n → +∞. This proves that (29) is an equation.
Consider the function F (σ) = supρ∈A H(ρ ‖σ) on S(H). Equality in (29) means

that F
(
Ω(A)

)
= C(A). Hence the state Ω(A) is the unique minimum point of the

function F (σ) on S(H). Indeed, let σ0 be a state in S(H) such that

sup
ρ∈A

H(ρ ‖σ0) = F (σ0) 6 F
(
Ω(A)

)
= C(A).

By assertion 1) of the theorem, it follows that σ0 = Ω(A).
If C(A) = +∞, then the right-hand side of (24) also equals +∞. Indeed, let σ0

be a state in S(H) such that supρ∈A H(ρ ‖σ0) = c < +∞. Using Donald’s identity
and the fact that the relative entropy is non-negative, we get∑

i

πiH(ρi ‖ ρ̄) 6
∑

i

πiH(ρi ‖σ0)−H(ρ̄ ‖σ0) 6 c

for an arbitrary ensemble {πi, ρi} of states in A. Hence C(A) 6 c < +∞.
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Definition 1. The state Ω(A) introduced in Theorem 1 is called the optimal
average state of the set A.

Using Theorem 1, Donald’s identity (3) and inequality (1), we get the following
useful inequality.

Corollary 4. Let A be a set with finite χ-capacity. The following inequality holds
for any ensemble {πi, ρi} of states in A with average state ρ̄:

C(A)− χ
(
{πi, ρi}

)
> H

(
ρ̄ ‖Ω(A)

)
>

1
2

∥∥ρ̄− Ω(A)
∥∥2

1
.

Theorem 1 and Proposition 3 yield the following important result.

Corollary 5. Any set of states with finite χ-capacity is relatively compact.

We note that the converse does not hold. There are compact sets of infinite
χ-capacity (for example, convergent sequences of states; see § 3 in part II of this
paper).

Corollary 5 enables us to make an important observation related to the χ-capacity
of constrained quantum channels [18], [19], [15].

Corollary 6. Let Φ: S(H) 7→ S(H′) be an arbitrary quantum channel and let A
be a subset of S(H). If C(Φ,A) < +∞, then Φ(A) is a relatively compact subset
of S(H′).

Proof. It is easy to see from the definitions that

C
(
Φ(A)

)
6 C(Φ,A).

The corollary is proved.

This observation shows that the χ-capacity of an unconstrained quantum channel
can be finite only if the output set of the channel is relatively compact.

Theorem 1 and Proposition 1 enable us to make the following observation on
properties of the entropy.

Corollary 7. The entropy is bounded on a convex set A if and only if A is relatively
compact and is contained in KH,h for some H-operator H with g(H) < +∞ and
some positive h.

Proof. If A is contained in KH,h with g(H)<+∞, then we have supρ∈AH(ρ)<+∞
by Proposition 1.

If supρ∈A H(ρ) < +∞, then C(A) < +∞. By Theorem 1, we have

H
(
ρ ‖Ω(A)

)
= Tr ρ

(
− log Ω(A)

)
−H(ρ) 6 C(A)

for all ρ in A. It follows that

Tr ρ
(
− log Ω(A)

)
6 C(A) + sup

ρ∈A
H(ρ)

for all ρ in A. Hence we have A ⊆ KH,h, where H = − log Ω(A) and h = C(A) +
supρ∈A H(ρ).
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By Corollary 7, boundedness of the entropy on a convex set A means that A
is contained in KH,h for some H-operator H with finite g(H). By Theorem 1,
finiteness of the χ-capacity of an arbitrary set A means that A is contained in the
set VΩ(A),C(A), which has the same χ-capacity and the same optimal average state.

4.2. Optimal measures. Let A be a closed set with finite χ-capacity. By Corol-
lary 5, A is compact. Hence the set P(A) of all probability measures supported
by A is compact in the topology of weak convergence (the Prokhorov topology) [11].
Since an arbitrary measure in P(A) can be weakly approximated by a sequence of
finitely supported measures and the functional χ(µ) is lower semicontinuous, it
follows that

C(A) = sup
µ∈P(A)

χ(µ). (31)

In other words, the supremum over all measures in P(A) coincides with the supre-
mum over all finitely supported measures.

Definition 2. A measure µ∗ in P(A) such that

C(A) = χ(µ∗) =
∫
A

H
(
ρ ‖ ρ̄(µ∗)

)
µ∗(dρ)

is called an optimal measure for the set A.

Using Theorem 1 and the generalized Donald’s identity (4), we easily obtain the
following generalization of Corollary 4. If A is an arbitrary closed set with finite
χ-capacity and µ is an arbitrary measure in P(A), then

C(A)− χ(µ) > H
(
ρ̄(µ) ‖Ω(A)

)
>

1
2

∥∥ρ̄(µ)− Ω(A)
∥∥2

1
.

Using this inequality and Theorem 1, we can generalize the “maximal distance
property” of optimal ensembles [14] to the infinite-dimensional case.

Proposition 7. Let µ∗ be an optimal measure for a closed set A with finite
χ-capacity. Then its barycentre ρ̄(µ∗) coincides with the optimal average state
Ω(A), and we have H

(
ρ ‖Ω(A)

)
= C(A) for µ∗-almost all ρ.

In particular, if the infimum in the definition (23) of χ-capacity is attained
on some finite or countable ensemble {πi, ρi} (an optimal ensemble for A), then
its average state ρ̄ coincides with the optimal average state Ω(A) and we have
H

(
ρi ‖Ω(A)

)
= C(A) for all i such that πi > 0.

Corollary 8. Let A be a closed set with finite χ-capacity. Then the existence of
an optimal measure for A implies that C(A) 6 H

(
Ω(A)

)
.

Proof. It suffices to consider the case when H
(
Ω(A)

)
< +∞. Using (2), the defi-

nition of an optimal measure µ∗ and Proposition 7, we get

C(A) = χ(µ∗) = H
(
ρ̄(µ∗)

)
− Ĥ(µ∗) 6 H

(
ρ̄(µ∗)

)
= H

(
Ω(A)

)
.

The corollary is proved.
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This corollary provides a simple way of proving the non-existence of optimal
measures for some sets of states. This will be used in part II of this paper.

The following theorem provides a sufficient condition for the existence of an
optimal measure.

Theorem 2. Let A be a closed set with finite χ-capacity. If one of the following
conditions holds, then there is an optimal measure for A.

1) H
(
Ω(A)

)
< +∞ and limn→+∞ H(ρn) = H

(
Ω(A)

)
for any sequence {ρn} of

states in co(A) that H-converges 10 to the state Ω(A).
2) The function ρ 7→ H

(
ρ ‖Ω(A)

)
is continuous on A.

The proof of this theorem is based on the following lemma.

Lemma 4. Let A be a closed set with finite χ-capacity. Then there is a sequence
{µn} of finitely supported measures in P(A) that weakly converges to some measure
µ∗ in P(A) with barycentre Ω(A) and satisfies

lim
n→+∞

H
(
ρ(µn) ‖Ω(A)

)
= 0, lim

n→+∞
χ(µn) = C(A).

Proof. Let µn =
{
{πn

i , ρn
i }

}
n

be an approximating sequence of ensembles for A and
let

{
ρ̄n(µn)

}
be the corresponding sequence of average states. Theorem 1 implies

that
lim

n→+∞
H

(
ρ̄(µn) ‖Ω(A)

)
= 0.

Since A is compact by Corollary 5, the set P(A) is weakly compact. Hence the
sequence {µn} contains a subsequence weakly convergent to some measure µ∗
in P(A). Since the map µ 7→ ρ̄(µ) is continuous, we have ρ̄(µ∗) = Ω(A). Thus
this subsequence has the required properties.

Proof of Theorem 2. The two conditions of the theorem provide two different ways
of showing that the limit measure µ∗ (introduced in Lemma 4) is an optimal measure
for A.

Let {µn} be a sequence given by Lemma 4.
Condition 1) implies that

lim
n→+∞

H
(
ρ̄(µn)

)
= H

(
ρ̄(µ∗)

)
= H

(
Ω(A)

)
< +∞.

Using (2) and the lower semicontinuity of the functional Ĥ(µ), we get

lim sup
n→+∞

χ(µn) = lim sup
n→+∞

(
H

(
ρ̄(µn)

)
− Ĥ(µn)

)
6 H

(
ρ̄(µ∗)

)
− Ĥ(µ∗) = χ(µ∗).

Since limn→+∞ χ(µn) = C(A) and χ(µ∗) 6 C(A), this inequality implies that
χ(µ∗) = C(A). Hence the measure µ∗ is optimal.

Condition 2), the compactness of A and the definition of weak convergence imply
that

χ(µ∗) =
∫
A

H
(
ρ ‖Ω(A)

)
µ∗(dρ) = lim

n→+∞

∫
A

H
(
ρ ‖Ω(A)

)
µn(dρ).

10This means that limn→+∞H
`
ρn ‖Ω(A)

´
= 0.
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Since the relative entropy is non-negative, we see from the generalized Donald
identity (4) that∫

A
H

(
ρ ‖Ω(A)

)
µn(dρ) = χ(µn) + H

(
ρ̄(µn) ‖Ω(A)

)
> χ(µn).

Since limn→+∞ χ(µn) = C(A), the last two expressions imply that χ(µ∗) = C(A).
Hence the measure µ∗ is optimal.

Remark 6. The conditions of Theorem 2 are essential, although not necessary.
There are sets with finite χ-capacity that have no optimal measures. This may
happen even for a countable closed set (a converging sequence of states) with finite
χ-capacity. There are also sets with finite χ-capacity that possess an optimal mea-
sure but do not satisfy the conditions of Theorem 2. All the appropriate examples
will be given in § 3 of part II of this paper.

§ 5. Appendix

Here we give a detailed proof of the properties described in Proposition 1 of the
function FH(h) = supρ∈KH,h

H(ρ).
First of all, the lower semicontinuity of the entropy implies that

lim
h→+∞

FH(h) = sup
ρ∈S(H)

H(ρ) = +∞

for any value of g(H) since
⋃

h∈R+
KH,h = S(H).

We consider the function

g(λ, h) =
+∞∑
k=1

(hk − h) exp(−λhk).

The theorem on series depending on a parameter [7] yields that this function is
differentiable at every point (λ, h) with λ > g(H), and

∂g(λ, h)
∂λ

=
+∞∑
k=1

hk(h− hk) exp(−λhk),
∂g(λ, h)

∂h
= −

+∞∑
k=1

exp(−λhk). (32)

As shown in the proof of Proposition 1, for every h in
(
hm(H), h∗(H)

)
there is a

unique λ∗ = λ∗(h) > g(H) such that g
(
λ∗(h), h

)
= 0. It follows from (32) that

∂g(λ, h)
∂λ

∣∣∣∣
λ=λ∗(h)

= −
+∞∑
k=1

(hk − h)2 exp
(
−λ∗(h)hk

)
< 0.

By the implicit function theorem, the function λ∗(h) is differentiable on the
interval

(
hm(H), h∗(H)

)
and

dλ∗(h)
dh

= −
[
∂g(λ, h)

∂λ

]−1
∂g(λ, h)

∂h

= −
[ +∞∑

k=1

(hk − h)2 exp
(
−λ∗(h)hk

)]−1 +∞∑
k=1

exp
(
−λ∗(h)hk

)
< 0. (33)
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Formula (14) means that

FH(h) = λ∗(h)h + log
+∞∑
k=1

exp
(
−λ∗(h)hk

)
(34)

for all h in
(
hm(H), h∗(H)

)
.

A direct calculation of derivatives using the equation g
(
λ∗(h), h

)
= 0 shows that

dFH(h)
dh

=
d

dh

[
λ∗(h)h + log

+∞∑
k=1

exp
(
−λ∗(h)hk

)]
= λ∗(h). (35)

Thus (33) implies that
d2FH(h)

dh2
=

dλ∗(h)
dh

< 0.

Hence the function FH(h) is strictly concave on
(
hm(H), h∗(H)

)
.

Suppose that h∗(H) < +∞. If h > h∗(H), then the part of Proposition 1 proved
above yields that

FH(h) = g(H)h + log
+∞∑
k=1

exp
(
−g(H)hk

)
(36)

is a linear function and
dFH(h)

dh
= g(H). (37)

If h = h∗(H), then λ∗(h) = g(H) by the observation in the proof of Proposition 1.
Hence the representations (34) and (36) coincide in this case.

To prove that FH(h) is smooth at the point h∗(H), we note that λ∗(h) → g(H)
as h → h∗(H) − 0. Indeed, the function λ∗(h) is decreasing on

(
hm(H), h∗(H)

)
by (33), and for every λ > g(H) there is an

hλ =
[ +∞∑

k=1

exp(−λhk)
]−1 +∞∑

k=1

hk exp(−λhk)

such that λ = λ∗(hλ).
Then equations (34)–(37) imply that

lim
h→h∗(H)−0

FH(h) = FH

(
h∗(H)

)
, lim

h→h∗(H)−0

dFH(h)
dh

=
dFH(h)

dh

∣∣∣∣
h=h∗(H)+0

.

Hence the function FH(h) has a continuous derivative at the point h∗(H).
To prove that FH(h) is right continuous at the point hm(H), we note that

λ∗(h) → +∞ as h → hm + 0. (38)

Indeed, the function λ∗(h) decreases on
(
hm(H), h∗(H)

)
by (33). Hence λm =

limh→hm(H)+0 λ∗(h) exists. If λm < +∞, then we pass to the limit as h → hm(H)+0
in the identity

+∞∑
k=1

hk exp
(
−λ∗(h)hk

)
≡ h

+∞∑
k=1

exp
(
−λ∗(h)hk

)
,

which holds for all h in
(
hm(H), h∗(H)

)
. We get an obvious contradiction.
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Let d = dimHm(H). It is easy to see that

P (h) = log
+∞∑
k=1

exp
(
−λ∗(h)hk

)
= −λ∗(h)hm(H) + Q(h), (39)

where

Q(h) = log
(

d +
∑
k>d

exp
(
−λ∗(h)

(
hk − hm(H)

)))
is a non-decreasing function on

(
hm(H), h∗(H)

)
tending to log d as h → hm(H)+0.

Since the function FH(h) is non-decreasing on
(
hm(H),+∞

)
, the limit

lim
h→hm(H)+0

FH(h) > FH

(
hm(H)

)
.

exists. Thus (34) and (39) imply the existence of limh→hm(H)+0 λ∗(h)
(
h−hm(H)

)
=

C < +∞ and that

lim
h→hm(H)+0

FH(h) = C + log d = C + FH

(
hm(H)

)
.

Thus, to prove the right continuity of FH(h) at hm(H), it suffices to show that
C = 0. This can be done by proving that∫ h′′

hm(H)

λ∗(h) dh = lim
h′→hm(H)+0

∫ h′′

h′
λ∗(h) dh < +∞ (40)

for some h′′ > hm(H). Indeed, (40) and the assumption C > 0 imply that∫ h′′

hm(H)

(
h− hm(H)

)−1
dh < +∞.

This is a contradiction.
It is easy to see that dP (h)

dh = −hdλ∗(h)
dh and, therefore,

dQ(h)
dh

= −dλ∗(h)
dh

(
h− hm(H)

)
. (41)

Integrating (41), we obtain

Q(h′′)−Q(h′) = λ∗(h′)
(
h′ − hm(H)

)
− λ∗(h′′)

(
h′′ − hm(H)

)
+

∫ h′′

h′
λ∗(h) dh.

Thus (40) follows from the existence of the limits limh′→hm(H)+0 Q(h′) = log d
and limh′→hm(H)+0 λ∗(h′)

(
h′ − hm(H)

)
= C < +∞.

It follows from the previous observation that

FH(h)− FH

(
hm(H)

)
h− hm(H)

> λ∗(h) ∀h > hm(H).

Using (38), we get dFH(h)
dh

∣∣
h=hm(H)+0

= +∞.
The author is grateful to A. S. Holevo for his help in preparing this paper.
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