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Entropy characteristics of subsets of states. II

M. E. Shirokov

Abstract. We study properties of the χ-capacity (regarded as a function

of sets of quantum states) in the infinite-dimensional case. We consider var-

ious subsets of states and determine their χ-capacity and optimal average.

We construct counterexamples that illustrate general results. The possibil-

ity of “finite-dimensional approximations” of the χ-capacity and optimal

average is shown for an arbitrary set of quantum states.

§ 1. Introduction

This paper is devoted to a systematic study of properties of the quantum entropy
and χ-capacity.1 It is a continuation of [11].

In § 2 we study general properties of the χ-capacity as a function of sets of states
(Theorem 1 and Corollaries 1, 4, 5). In particular, we consider the question of the
continuity of the χ-capacity with respect to monotone families of sets and the prob-
lem of the existence of a minimal closed set of a given χ-capacity. We prove that
the χ-capacity and optimal average are stable with respect to quantum noise. We
obtain lower and upper bounds for the χ-capacity of finite unions (Proposition 1,
Remark 3). The results related to χ-capacity enable us to make several observa-
tions on general properties of sets of states and quantum entropy (Corollaries 2, 3,
Remark 2, and the observation after Corollary 4).

In § 3 we apply general results of [11] and § 2 of this paper to study various
sets of states. This yields conditions for the boundedness and continuity of the
restriction of the quantum entropy to various sets of states (Propositions 2, 8, 10
and Corollary 6). We determine the χ-capacity and optimal average of several sets
of states and study related questions, such as the existence of an optimal measure
and regularity (Propositions 3–7, 9, 10). The following examples of sets of finite
χ-capacity are constructed in §§ 3.1–3.3 and 3.5 respectively:

i) a closed countable set having no optimal measure,
ii) a closed set having no minimal closed subset of the same χ-capacity,
iii) a decreasing sequence of closed sets of the same positive χ-capacity whose

intersection has χ-capacity zero,
iv) a closed set that has an optimal measure but no atomic optimal measure.
1This notion is referred to as the Holevo capacity in the Western literature and is usually

associated with the notion of a quantum channel (see, for example, [9]).
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In § 4 we consider a “constructive” approach to the definition of χ-capacity and
optimal average for an arbitrary set of quantum states. We show that one can
define these notions for sets of states in a finite-dimensional Hilbert space and
then extend them to sets of states in an infinite-dimensional Hilbert space by a
limiting procedure, as in the case of entropy and relative entropy (Theorem 2).
This definition leads in principle to the possibility of numerical approximations for
the χ-capacity and optimal average of any set of quantum states.

The notation in this paper corresponds to that used in [11].

§ 2. Properties of the χ-capacity

In this section we consider general properties of the χ-capacity regarded as a
function of sets of quantum states and the special role of the optimal average. A
sufficient condition for the existence of an optimal measure for a closed set of states
is obtained in [11] (Theorem 2). It requires one of two continuity conditions to
hold. We shall see that these conditions also guarantee other properties related
to χ-capacity. It is thus convenient to introduce the following notion.

Definition 1. An arbitrary set A of finite χ-capacity is said to be regular if one
of the following conditions holds.

1) H
(
Ω(A)

)
< +∞ and limn→+∞H(ρn) = H

(
Ω(A)

)
for any sequence {ρn} of

states in co(A) that H-converges 2 to the state Ω(A).
2) The function ρ 7→ H

(
ρ ‖Ω(A)

)
is continuous 3 on the set A.

Note that the continuity of the entropy on the set co(A) guarantees the reg-
ularity of A, but this requirement is very restrictive. In a sense, the conditions
of the definition are the minimal continuity requirements that guarantee “good”
properties of the χ-capacity. In particular, these conditions imply that an optimal
measure exists by Theorem 2 of [11]. The two conditions are different: there are
sets such that the first condition holds but the second does not, and vice versa. In
the examples in § 3, most sets of finite χ-capacity are regular. Examples of irreg-
ular sets of finite χ-capacity and consequences of their irregularity are considered
in §§ 3.1–3.3.

The following theorem summarizes the properties of the χ-capacity and optimal
average to be used later.

Theorem 1. The following properties hold.4

1) C(A) > 0 for any set A, and equality holds if and only if A consists of a
single point.

2) C(A) = C
(
co(A)

)
and Ω(A) = Ω

(
co(A)

)
for any set A.

3) If A ⊆ B, then C(A) 6 C(B), and equality 5 implies that Ω(A) = Ω(B).
4) If C(A) < +∞, then A is relatively compact and hence C(A) = C

(
Ext(A)

)
.

2This means that limn→+∞ H
`
ρn ‖Ω(A)

´
= 0.

3Here and below we mean continuity with respect to the trace norm topology.
4In all statements concerning the optimal average state of any particular set it is assumed that

this set has finite χ-capacity.
5Note that A  B does not imply that C(A) < C(B), even when A and B are closed and

convex (see the examples in § 3).
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5) If d
(
Ω(A)

)
<1, then the set A is regular and the entropy is bounded on co(A).

If d
(
Ω(A)

)
= 0, then the entropy is continuous on co(A).

6) Let {An} be a sequence of sets such that An ⊆ An+1 for all n. Then

lim
n→+∞

C(An) = C

( ⋃
n

An

)
, lim

n→+∞
Ω(An) = Ω

( ⋃
n

An

)
.

7) Let {An} be a sequence of closed sets such that An ⊇ An+1 for all n. Then

lim
n→+∞

C(An) = C

( ⋂
n

An

)
, lim

n→+∞
Ω(An) = Ω

( ⋂
n

An

)
provided that one of the following conditions holds.6

a) The set A1 is regular and Ω(An) = Ω(A1) for all n.
b) The restriction of the entropy H(ρ) to the set co(A1) is continuous at some

limit point 7 ω of the sequence {Ω(An)}.
c) The function ρ 7→ H(ρ ‖ω) is continuous on A1 for some limit point ω of

the sequence {Ω(An)}.
8) Every set A of finite χ-capacity is contained in a maximal set VΩ(A),C(A) of

the same χ-capacity.8

9) Every regular closed set A of finite χ-capacity contains a minimal closed
subset of the same χ-capacity.9

10) If C(A) < +∞ and C(B) < +∞, then C(A ∪ B) < +∞. In particular, we
have C(A ∪ B) = max

(
C(A), C(B)

)
when Ω(A) = Ω(B).

11) If Φ: S(H) 7→ S(H′) is an arbitrary channel, then C
(
Φ(A)

)
6 C(A), and

C
(
Φ(A)

)
= C(A) implies that Ω

(
Φ(A)

)
= Φ

(
Ω(A)

)
.

12) If {Φt}t∈R+ is an arbitrary family of channels from S(H) to S(H) such
that limt→+0 Φt(ρ) = ρ for all states ρ in A, then 10

lim
t→+0

C
(
Φt(A)

)
= C(A), lim

t→+0
Ω

(
Φt(A)

)
= Ω(A).

Remark 1. The regularity and continuity requirements are essential in assertions
7) and 9) of Theorem 1. There are sequences of sets for which assertion 7) does
not hold (see the example at the end of § 3.3). In § 3.2 we consider an example
of a closed set of finite χ-capacity having no minimal closed subset of the same
χ-capacity.

Proof. Assertions 1), 2) and the first part of 3) follow directly from the definition
of χ-capacity since the relative entropy is lower semicontinuous and convex. The
second part of 3) is proved as follows. Suppose that A ⊆ B and C(A) = C(B).

6These conditions are essential (see Remark 1 below).
7The set of limit points of {Ω(An)} is non-empty by assertion 4).
8A set is called a maximal set of a given χ-capacity if it is not a proper subset of a set of the

same χ-capacity.
9A set is called a minimal closed set of a given χ-capacity if it has no proper closed subsets of

the same χ-capacity.
10This assertion may be regarded as a stability property of the χ-capacity and optimal average

state with respect to quantum noise.
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By Theorem 1 of [11], the inequality H
(
ρ ‖Ω(B)

)
6 C(B) = C(A) holds for all

states ρ in B. Since A ⊆ B, this inequality holds for all states ρ in A. Thus the
uniqueness assertion of Theorem 1 in [11] yields that Ω(A) = Ω(B).

The first part of 4) is obtained in [11], Corollary 5. The second part follows from
assertion 2) and the Krein–Mil’man theorem.

Theorem 1 of [11] implies that co(A) ⊆ VΩ(A),C(A). Therefore assertion 5) follows
from Propositions 2 and 3 of [11].

To prove 6), we note that 3) yields the existence of the limit and the inequality

lim
n→+∞

C(An) 6 C

( ⋃
n

An

)
. (1)

Let {{πk
i , ρ

k
i }}k be an arbitrary approximating sequence of ensembles for the

set
⋃

nAn. This means that

lim
k→+∞

χ({πk
i , ρ

k
i }) = C

( ⋃
n

An

)
. (2)

Since each ensemble is a finite set of states, we see that for every k there is an
n(k) such that ρk

i ∈ An(k) for all i and, therefore, C(An(k)) > χ({πk
i , ρ

k
i }). This

and (2) imply that an equality holds in (1).
Suppose that C

( ⋃
nAn

)
= C

(
co

( ⋃
nAn

))
< +∞. The set co

( ⋃
nAn

)
is

compact by assertion 4). Hence the sequence {Ω(An)} has limit points. Let
ω = limk→+∞ Ω(Ank

) for some subsequence nk.
By Theorem 1 of [11], for every n there is an ensemble {πn

i , ρ
n
i } of states in An

with average state ρn such that

χ({πn
i , ρ

n
i }) > C(An)− 1

n
, ‖ρn − Ω(An)‖1 6

1
n
. (3)

Using the fact that (1) is an equality (already proved) and the first inequality
in (3), the sequence {{πn

i , ρ
n
i }}n is approximating for the set

⋃
nAn. Hence The-

orem 1 of [11] shows that the sequence {ρn}n converges to the state Ω
( ⋃

nAn

)
as n → +∞. By the second inequality in (3), the subsequence {ρnk

}k converges
to the state ω. Therefore ω = Ω

( ⋃
nAn

)
. Thus every limit point of the sequence

{Ω(An)} coincides with Ω
( ⋃

nAn

)
.

To prove 7), we note that 3) implies the existence of the limit and the inequality

lim
n→+∞

C(An) > C

( ⋂
n

An

)
. (4)

We claim that the additional conditions in 7) provide different ways of proving that
equality holds in (4).

We first consider conditions b) and c). Without loss of generality, we may assume
that the limit

lim
n→+∞

Ω(An) = ω (5)

exists.
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Theorem 1 of [11] yields that for every positive integer n there is a measure µn

finitely supported by An such that

χ(µn) > C(An)− 1
n
, ‖ρ(µn)− Ω(An)‖1 6

1
n
. (6)

The supports of all the measures in {µn} lie in the set A1, which is compact by
assertion 4). Hence the sequence {µn} is compact in the weak topology and contains
a subsequence {µnk

} weakly converging to some measure µ∗. Since the map µ 7→
ρ(µ) is continuous, relations (5) and (6) imply that ω = ρ(µ∗) = limk→+∞ ρ(µnk

).
Using Theorem 6.1 of [7], we easily see that suppµ∗ ⊆

⋂
nAn.

Suppose that condition b) holds in 7). Then the limit

lim
k→+∞

H
(
ρ(µnk

)
)

= H
(
ρ(µ∗)

)
= H(ω) < +∞ (7)

exists. Using formula (2) of [11], we get

χ(µnk
) = H

(
ρ(µnk

)
)
− Ĥ(µnk

)

for all sufficiently large k. Using (7) and the lower semicontinuity of the functional
Ĥ(µ), we get

lim
n→+∞

C(An) = lim sup
k→+∞

χ(µnk
) = lim

k→+∞
H

(
ρ(µnk

)
)
− lim inf

k→+∞
Ĥ(µnk

)

6 H
(
ρ(µ∗)

)
− Ĥ(µ∗) = χ(µ∗) 6 C

( ⋂
n

An

)
,

which guarantees that equality holds in (4).
Suppose that condition c) holds in 7). Since this condition means that the

function H(ρ ‖ω) is continuous on the compact set A1, the definition of weak
convergence yields that

lim
k→+∞

∫
H(ρ ‖ω)µnk

(dρ) =
∫
H(ρ ‖ω)µ∗(dρ) = χ(µ∗) 6 C

( ⋂
n

An

)
.

Using the generalized Donald identity (formula (4) of [11]), we have∫
H(ρ ‖ω)µnk

(dρ) = χ(µnk
) +H(ρ(µnk

) ‖ω) > χ(µnk
)

and the above inequality yields that

C

( ⋂
n

An

)
> lim

k→+∞

∫
H(ρ ‖ω)µnk

(dρ) > lim
k→+∞

χ(µnk
) = lim

n→+∞
C(An),

which implies equality in (4).
To complete the consideration of conditions b) and c) in assertion 7), it suffices

to show that the limit state ω in (5) is the optimal average state of the set
⋂

nAn.
By Theorem 1 in [11] we have H

(
ρ ‖Ω(An)

)
6 C(An) for any state ρ in

⋂
nAn
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and arbitrary n. Using (5), the equality in (4) (already proved) and the lower
semicontinuity of the relative entropy, we get

H(ρ ‖ω) 6 lim inf
n→+∞

H
(
ρ ‖Ω(An)

)
6 lim inf

n→+∞
C(An) = C

( ⋂
n

An

)
for all such ρ. Theorem 1 of [11] implies that ω = Ω

( ⋂
nAn

)
.

Now consider condition a) in 7). Since we are assuming that A1 is regular
and Ω(An) = Ω(A1) for all n, it follows that the sets An are regular for all n. By
Theorem 2 of [11], for every n there is an optimal measure µn supported by An such
that χ(µn) = C(An) and ρ(µn) = Ω(An). If condition 1) in Definition 1 holds, then
formula (7) holds trivially and the proof is completed by repeating the arguments
used in the case of condition b) in assertion 7). If condition 2) in Definition 1 holds,
then the arguments used in the case of condition c) in assertion 7) can be applied
directly.

Assertion 8) follows from Theorem 1 of [11].
To prove assertion 9), we consider the non-empty set A of all closed subsets of A

whose χ-capacity equals that of A. We define a partial order ≺ on A by

B ≺ C ⇐⇒ B ⊇ C.

Clearly, assertion 9) implies the existence of a maximal element in A. By Zorn’s
lemma, 9) will be proved if we can show that any chain in A has a maximal element.
The role of this maximal element will be played by the intersection of all elements
of the chain provided that this intersection is an element of A. Since A is compact
by assertion 4), the intersection of an arbitrary decreasing family of subsets of A
coincides with the intersection of some countable subfamily. Hence it suffices to
show that

C

( ⋂
n

Bn

)
= C(A)

for any decreasing sequence {Bn} of closed subsets of A such that C(Bn) =C(A) for
all n. But this property follows from the regularity of A and assertion 7) with the
first condition (because assertion 3) guarantees that Ω(Bn) = Ω(A) for all n).

The first part of assertion 10) follows from Proposition 1 below. The second part
is a corollary of assertion 3) and Theorem 1 in [11] since

H
(
ρ ‖Ω(A)

)
6 max

(
C(A), C(B)

)
, Ω(A) = Ω(B)

for all ρ in A ∪ B.
The first part of assertion 11) follows directly from the definition of χ-capacity

and the monotonicity property of the relative entropy. To prove the second part
of 11), we suppose that C

(
Φ(A)

)
= C(A). Using the monotonicity of the relative

entropy and Theorem 1 of [11], we obtain that

H
(
Φ(ρ) ‖Φ

(
Ω(A)

))
6 H

(
ρ ‖Ω(A)

)
6 C(A) = C

(
Φ(A)

)
for any state ρ in A. By Theorem 1 of [11] it follows that Ω

(
Φ(A)

)
= Φ

(
Ω(A)

)
.

Assertion 12) follows from the first part of assertion 11) and Lemma 1 below.
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Assertion 4) of Theorem 1 and Definition 1 yield the following modification of
Theorem 2 in [11].

Corollary 1. Let A be a closed set of finite χ-capacity. If the set Ext(A) is regular,
then there is an optimal measure for A.

Assertion 5) of Theorem 1 yields the following observation.

Corollary 2. Let A be a closed convex set of finite χ-capacity.
1) If d(ρ) < 1 for all ρ in A, then A is regular and the entropy is bounded on A.
2) If d(ρ) = 0 for all ρ in A, then the entropy is continuous on A.

Remark 2. Corollary 2 shows that boundedness of the entropy on a closed convex
set of states with zero coefficient of decrease (such as Gaussian states) implies that
the entropy is continuous on this set.

Assertions 4) and 6) of Theorem 1 provide a sufficient condition for a union of
subsets of states to be compact.

Corollary 3. If {An} is a sequence of sets such that An ⊆ An+1 and C(An) 6
M < +∞ for all n, then the set

⋃
nAn is relatively compact.

Assertion 11) of Theorem 1 yields the following property of optimal average
states.

Corollary 4. Let A be a set of finite χ-capacity C(A). Then Ω(A) is an invariant
state for any channel Φ such that Φ(A) ⊆ co(A) and C

(
Φ(A)

)
= C(A). In

particular, Ω(A) is an invariant state for any automorphism 11 α of S(H) such
that α(A) ⊆ co(A).

Let F(A) be the set of all channels Φ from S(H) to S(H) such that Φ(A) ⊆ co(A)
and C

(
Φ(A)

)
= C(A). This set is non-empty and contains all automorphisms α

of S(H) such that α(A) ⊆ co(A).
Corollary 4 yields the following observation. Let A be any set of finite χ-capacity.

Then the set co(A) contains at least one common invariant state for all channels
in F(A).

Using Theorem 1 of [11] and Corollary 4, we get the following result.

Corollary 5. Let A be an arbitrary set of states, F0 an arbitrary subset of F(A)
and Inv F0 the set of all invariant states common to all channels in F0. Then the
χ-capacity of A is given by

C(A) = inf
σ∈Inv F0∩ co(A)

sup
ρ∈A

H(ρ ‖σ),

where we take C(A) = +∞ if Inv F0 ∩ co(A) = ∅.
In particular, if co(A) contains a unique state σ0 which is invariant for all

channels in F0, then C(A) = supρ∈AH(ρ ‖σ0). Moreover, if C(A) < +∞, then
Ω(A) = σ0.

11By Wigner’s theorem, every automorphism of S(H) is given by U( · ) U∗, where U is either
a unitary or an anti-unitary operator in H [10].
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Corollaries 4 and 5 enable us to determine (or at least localize) the optimal
average state and calculate the χ-capacity for any set A of states by finding a
sufficiently large family F0 of channels in F(A). This will be used in the next
section.

We consider bounds for the χ-capacity of a finite union of sets.

Proposition 1. Let {Ak}n
k=1 be a finite family of sets. Then

max
{λk}

( n∑
k=1

λkC(Ak) + χ
(
{λk,Ω(Ak)}

))
6 C

( n⋃
k=1

Ak

)
6 max

16k6n
C(Ak) + log n,

where the first maximum is taken over all probability distributions with n outcomes.
If C(Ak) = C for all k = 1, . . . , n, then we have

C + C
(
{Ω(A1), . . . ,Ω(An)}

)
6 C

( n⋃
k=1

Ak

)
6 C + log n.

Proof. By Theorem 1 of [11], for each positive integer m and every k = 1, . . . , n
there is an ensemble µm

k such that

χ(µm
k ) > C(Ak)− 1

m
,

∥∥ρ(µm
k )− Ω(Ak)

∥∥
1

6
1
m
. (8)

We take an arbitrary probability distribution {λk}n
k=1 and consider the ensem-

ble µm =
∑n

k=1 λkµ
m
k of states in

⋃n
k=1Ak. Using Lemma 1 of [11], the lower

semicontinuity of the relative entropy and the inequality (8), we get

C

( n⋃
k=1

Ak

)
> lim inf

m→+∞
χ(µm) = lim inf

m→+∞

( n∑
k=1

λkχ(µm
k ) + χ

(
{λk, ρ(µm

k )}
))

=
n∑

k=1

λkC(Ak) + lim inf
m→+∞

χ
(
{λk, ρ(µm

k )}
)

>
n∑

k=1

λkC(Ak) + χ
(
{λk,Ω(Ak)}

)
.

This yields the lower bound for the χ-capacity of the union.
To prove the upper bound, we note that any ensemble µ of states in

⋃n
k=1Ak

can be represented as
∑n

k=1 λkµk, where µk is an ensemble of states in Ak for each
k = 1, . . . , n and {λk}n

k=1 is a probability distribution. Using Lemma 1 of [11] and
Proposition 3 from the next section, we obtain that

χ(µ) =
n∑

k=1

λkχ(µk) + χ
(
{λk, ρ(µk)}

)
6 max

16k6n
C(Ak) + log n.

Remark 3. Proposition 1 shows that the χ-capacity of a union of sets with given
χ-capacities depends on the relative positions of their optimal average states. By
assertion 10) of Theorem 1, if all optimal average states coincide, then the χ-capacity
of the union is minimal: it equals the maximal χ-capacity of the sets being united.
The greater the diversity of the optimal average states, the higher the χ-capacity
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of the union. This is most obvious for the union of two sets since Proposition 1 and
the lower bound for the relative entropy (see [11], inequality (1)) imply that

C(A ∪ B) > max
λ∈[0,1]

(
λC(A) + (1− λ)C(B) +

1
2
λ(1− λ)‖Ω(A)− Ω(B)‖21

)
.

We also note that the lower and upper bounds in Proposition 1 coincide if and
only if C(Ai) = C(Aj) and⋃

ρ∈Ai

supp ρ ⊥
⋃

ρ∈Aj

supp ρ for all i 6= j.

The following result is used in the proof of Theorem 1 as well as in the proof of
Theorem 2 in § 4.

Lemma 1. Let {Ψλ}λ∈Λ be a family of continuous maps from S(H) to itself, where
Λ is an ordered set. Suppose that limλ Ψλ(ρ) = ρ for all states ρ in some set A.
Then the following assertions hold.

1) lim infλ C
(
Ψλ(A)

)
> C(A).

2) If limλ C
(
Ψλ(A)

)
= C(A) < +∞, then limλ Ω

(
Ψλ(A)

)
= Ω(A).

Proof. Assertion 1) of the lemma follows from the lower semicontinuity of the rel-
ative entropy. Indeed, for every ε > 0 there is an ensemble {πi, ρi} such that

χ({πi, ρi}) > C(ε) =

{
C(A)− ε, C(A) < +∞,

ε, C(A) = +∞.

Using the lower semicontinuity of the relative entropy, we obtain that

lim inf
λ

C
(
Ψλ(A)

)
> lim inf

λ
χ
(
{πi,Ψλ(ρi)}

)
> χ({πi, ρi}) > C(ε).

Since ε can be arbitrary, this proves assertion 1) of the lemma.
Suppose that limλ C

(
Ψλ(A)

)
= C(A) < +∞. By Theorem 1 of [11], for every

ε > 0 there is an ensemble {πi, ρi} such that

χ
(
{πi, ρi}

)
> C(A)− ε,

∥∥∥∥∑
i

πiρi − Ω(A)
∥∥∥∥

1

< ε. (9)

Arguments from the first part of the proof show that there is a λ1
ε such that

χ
(
{πi,Ψλ(ρi)}

)
> χ

(
{πi, ρi}

)
− ε ∀λ > λ1

ε.

By assumption, there is a λ2
ε such that

C
(
Ψλ(A)

)
6 C(A) + ε ∀λ > λ2

ε.

Thus for all λ > max(λ1
ε, λ

2
ε) we have

0 6 C
(
Ψλ(A)

)
− χ

(
{πi,Ψλ(ρi)}

)
6 C(A)− χ

(
{πi, ρi}

)
+ 2ε 6 3ε.
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Using Corollary 4 of [11], we obtain that

1
2

∥∥∥∥∑
i

πiΨλ(ρi)− Ω
(
Ψλ(A)

)∥∥∥∥2

1

6 H

( ∑
i

πiΨλ(ρi) ‖Ω
(
Ψλ(A)

))
6 C

(
Ψλ(A)

)
− χ

(
{πi,Ψλ(ρi)}

)
6 3ε. (10)

The continuity property of the family {Ψλ} implies the existence of a λ3
ε such

that ∥∥∥∥∑
i

πiΨλ(ρi)−
∑

i

πiρi

∥∥∥∥
1

6 ε ∀λ > λ3
ε. (11)

Using (9)–(11), we obtain that

∥∥Ω
(
Ψλ(A)

)
− Ω(A)

∥∥
1

6

∥∥∥∥Ω
(
Ψλ(A)

)
−

∑
i

πiΨλ(ρi)
∥∥∥∥

1

+
∥∥∥∥∑

i

πiΨλ(ρi)−
∑

i

πiρi

∥∥∥∥
1

+
∥∥∥∥∑

i

πiρi − Ω(A)
∥∥∥∥

1

6 2ε+
√

6ε

for all λ > max(λ1
ε, λ

2
ε, λ

3
ε). Since ε is arbitrary, this inequality proves assertion 2)

of the lemma.

§ 3. Examples

In this section we study some types of sets of states using the general results
obtained in [11] and the previous section.

3.1. Finite sets of states and convergent sequences. By assertion 4) of The-
orem 1, every set of finite χ-capacity is relatively compact. Consider the following
elementary examples of relatively compact sets:

1) a finite set of states {ρn}N
n=1,

2) a sequence of states {ρn}+∞n=1 converging to some state ρ∗,
3) a sequence of states {ρn}+∞n=1 H-converging 12 to some state ρ∗.
In the following proposition we consider properties of the entropy restricted to

the convex closures of these sets.

Proposition 2. 1) Let {ρn}N
n=1 be a finite set of states in S(H). The entropy is

continuous on the (closed) set co({ρn}N
n=1) if and only if

H(ρn) < +∞ for all n = 1, 2, . . . , N.

2) Let {ρn}+∞n=1 be a sequence of states converging to a state ρ∗. The entropy
is bounded on the set co({ρn}+∞n=1) if and only if there is an H-operator H with
g(H) < +∞ such that

sup
n

Tr ρnH < +∞.

12This means that limn→+∞ H(ρn ‖ ρ∗) = 0.
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The entropy is continuous on co ({ρn}+∞n=1) if one of the following equivalent
conditions holds.

(i) H(ρn) < +∞ for all n, limn→+∞H(ρn) = H(ρ∗) < +∞ and there is a
state σ such that H(ρn ‖σ) < +∞ for all n and

lim
n→+∞

H(ρn ‖σ) = H(ρ∗ ‖σ) < +∞.

(ii) There is an H-operator H with g(H) = 0 such that

sup
n

Tr ρnH < +∞.

(iii) There is an H-operator H with g(H) < +∞ such that Tr ρnH < +∞ for
all n and

lim
n→+∞

Tr ρnH = Tr ρ∗H < +∞.

3) Let {ρn}+∞n=1 be a sequence of states H-converging to a state ρ∗. The entropy
is bounded on the set co({ρn}+∞n=1) if and only if

sup
n
H(ρn) < +∞.

The entropy is continuous on the set co({ρn}+∞n=1) if and only if H(ρn) < +∞ for
all n and

lim
n→+∞

H(ρn) = H(ρ∗) < +∞.

Remark 4. It is interesting to compare the boundedness and continuity condi-
tions for convergent and H-convergent sequences. The conditions for H-convergent
sequences look like natural generalizations of the corresponding conditions for finite
sets while the conditions for convergent sequences include additional requirements.
These requirements are essential since there is a convergent sequence {ρn}+∞n=1 of
states such that H(ρn) is finite for all n and

lim
n→+∞

H(ρn) = H
(

lim
n→+∞

ρn

)
< +∞

but the entropy is unbounded on the set co({ρn}+∞n=1) (see the example at the end
of this subsection).

Proof. 1) Let A = {ρi}N
i=1. The necessity of the continuity condition is obvi-

ous. To show its sufficiency, we note that this condition and general properties
of entropy [14] imply that the entropy is bounded on the closed set co(A) and,
therefore, the χ-capacity of this set is finite. By Theorem 1 of [11] there is a unique
state Ω(A) such that

H
(
ρn ‖Ω(A)

)
= Tr ρn

(
− log Ω(A)

)
−H(ρn) 6 C(A) < +∞.

Hence Tr ρn

(
− log Ω(A)

)
6 C(A) + maxnH(ρn) < +∞ for all n = 1, . . . , N . Thus

the linear function Tr ρ
(
− log Ω(A)

)
is finite (and hence continuous) on the finite

set A. By Proposition 4 of [11], this means that the entropy is continuous on
the set co(A).
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2) The boundedness condition in this case follows from Proposition 1 of [11]
while the continuity condition follows from Proposition 4 of [11].

3) Let A = {ρi}+∞i=1 . In this case, the necessity of the boundedness and continuity
conditions is obvious. To prove the sufficiency of the boundedness condition, we
note that the χ-capacity of A is finite (see Proposition 3 below). By Theorem 1
of [11] there is a unique state Ω(A) such that

H
(
ρn ‖Ω(A)

)
= Tr ρn

(
− log Ω(A)

)
−H(ρn) 6 C(A) < +∞

for all n. Hence,

sup
n

Tr ρn

(
− log Ω(A)

)
6 C(A) + sup

n
H(ρn) < +∞.

By Proposition 1 of [11], it follows that the entropy is bounded on co(A). The
sufficiency of the continuity condition follows from the first continuity condition in
case 2) with σ = ρ∗.

In the following proposition we consider questions concerning the χ-capacity of
finite sets and convergent sequences.

Proposition 3. 1) Let {ρn}N
n=1 be a finite set of states in S(H). Then the set

{ρn}N
n=1 is regular,

C({ρn}N
n=1) 6 logN,

and there is an optimal ensemble µ∗ = {πn, ρn}N
n=1 for the set {ρn}N

n=1.
2) Let {ρn}+∞n=1 be a sequence of states converging to a state ρ∗. The χ-capacity

of the set {ρn}+∞n=1 is finite if and only if there is a state σ such that 13

sup
n
H(ρn ‖σ) < +∞.

3) Let {ρn}+∞n=1 be a sequence of states H-converging to a state ρ∗. Then the
χ-capacity of the set {ρn}+∞n=1 is finite and

C({ρn}+∞n=1) 6 inf
m

max
(

sup
n>m

H(ρn ‖ ρ∗), logm
)

+ log 2.

In cases 1)–3), the existence of an optimal measure (an optimal ensemble µ∗ =
{πn, ρn}) for the set {ρn} is equivalent to the existence of a probability distribution
{πn} and a positive number C satisfying the system

H

(
ρn

∥∥ ∑
k

πkρk

)
= C, πn > 0,

H

(
ρn

∥∥ ∑
k

πkρk

)
6 C, πn = 0.

(12)

If this system has a solution, then C({ρn}) = C and Ω({ρn}) =
∑

n πnρn.

13An example below shows that the χ-capacity of a convergent sequence can be infinite.
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Proof. 1) To prove the upper bound for the χ-capacity of A = {ρn}N
n=1, it suffices

to note that co(A) is an output set for the channel σ 7→
∑N

n=1〈n|σ|n〉ρn from the
state space in the N -dimensional Hilbert space with an orthonormal basis {|n〉}N

n=1

and then use the monotonicity property of the relative entropy [5]. By Theorem 1
of [11], the finiteness of the χ-capacity implies that of H

(
ρn ‖Ω(A)

)
for all n, and

hence the regularity of A. The existence of an optimal measure (optimal ensemble)
follows from Theorem 2 of [11].

2) This assertion follows directly from Theorem 1 of [11].
3) To prove the upper bound for the χ-capacity of A = {ρn}+∞n=1, we write A

as the union of the finite set A1 = {ρn}m
n=1 and the set A2 = {ρn}+∞n=m+1. Using

Theorem 1 of [11], Proposition 1 and assertion 1) of the present proposition, we
obtain that

C(A) = C(A1 ∪ A2) 6 max
(
C(A1), C(A2)

)
+ log 2

6 max
(

sup
n>m

H(ρn ‖ ρ∗), logm
)

+ log 2.

If {πn} is an optimal probability distribution, then it satisfies (12) with C =
C({ρn}) by Proposition 7 of [11]. Conversely, let ({πn}, C) be a solution of (12).
Using the second part of Theorem 1 of [11], we easily see that the ensemble {πn, ρn}
is optimal for the set {ρn} and C = C({ρn}).

Consider the case of finite sets of states.
If N = 2, then Ω({ρ1, ρ2}) = πρ1 + (1 − π)ρ2, where the number π is uniquely

determined by the equation

H
(
ρ1 ‖πρ1 + (1− π)ρ2

)
= H

(
ρ2 ‖πρ1 + (1− π)ρ2

)
.

Both sides of this equation are equal to C({ρ1, ρ2}). If N > 2, then the situa-
tion can be more complicated. The set {ρ1, . . . , ρN} may contain a proper subset
{ρn1 , . . . , ρnN′}, N ′ < N , such that C({ρn1 , . . . , ρnN′}) = C({ρ1, . . . , ρN}). This
means that some elements of the optimal probability distribution {πn} are equal to
zero. Indeed, this situation holds if we add to the set {ρ1, ρ2} an arbitrary state ρ3

with H
(
ρ3 ‖Ω({ρ1, ρ2})

)
6 C({ρ1, ρ2}). Using Theorem 1 of [11], we easily see that

Ω({ρ1, ρ2}) = Ω({ρ1, ρ2, ρ3}) and C({ρ1, ρ2}) = C({ρ1, ρ2, ρ3}) in this case. This
is the simplest example showing that A  B does not imply C(A) < C(B).

There are two cases when the optimal average state coincides with the uniform
average:

Ω
(
{ρn}N

n=1

)
= N−1

N∑
n=1

ρn.

The first case is when the states ρ1, . . . , ρN form an orbit of some group of auto-
morphisms of S(H) (see § 3.5). The second is when the supports of ρ1, . . . , ρN are
orthogonal to each other. It is this case in which the χ-capacity attains its maximal
value logN independently of the types of the states ρ1, . . . , ρN and the values of
their entropies. Indeed, this follows from the equation

H

(
ρn

∥∥ N−1
N∑

k=1

ρk

)
= H(ρn ‖N−1ρn) + 1−N−1 = logN, n = 1, . . . , N,

which is obtained using general properties of the relative entropy [6], [14].
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The following example illustrates the case of a convergent sequence. It shows
that there are non-trivial cases when one can solve the system (12) directly, which
determines the optimal probability distribution and the value of the χ-capacity.

Example 1 (a convergent sequence of states). Let {|n〉} be an orthonormal basis
in H and {qn} a sequence of numbers in [0, 1] converging to zero. Given ε ∈ [0, 1],
we consider the countable set Sε

{qn} consisting of the states

ρ±n = (1− qn)|1〉〈1|+ qn|n〉〈n| ± ηn(qn, ε)
√

(1− qn)qn (|1〉〈n|+ |n〉〈1|), n > 2,

where the parameter ηn(qn, ε) ∈ [0, 1] is defined by the condition

H(ρ±n ) = (1− ε)h2(qn) = −(1− ε)
(
(1− qn) log(1− qn) + qn log qn

)
.

Thus εmay be regarded as a purity parameter of the states in the sequence. If ε = 0,
then ηn(qn, ε) = 0 and all the states ρ+

n = ρ−n , n > 2, are diagonal in the basis {|n〉}
and have maximal entropy. If ε = 1, then ηn(qn, ε) = 1 and all the states ρ±n with
n > 2 are pure.

The set Sε
{qn} may be regarded as a sequence converging to the state ρ1 = |1〉〈1|.

Proposition 4. 1) The χ-capacity of Sε
{qn} is finite if and only if there is a positive

number λ such that ∑
n

exp
(
− λ

qn

)
< +∞. (13)

2) If condition (13) holds, then a necessary and sufficient condition for the exis-
tence of an optimal measure (optimal ensemble µ∗ = {π±n , ρ±n }) for the set Sε

{qn} is
given by the inequality

∑
n>1

q−ε
n (1− qn)1+

(1−qn)(1−ε)
qn exp

(
−
λ∗{qn}

qn

)
> 1, (14)

where

λ∗{qn} = inf
{
λ :

∑
n

exp
(
− λ

qn

)
< +∞

}
.

3) If the sequence {qn} satisfies conditions (13) and (14) with a given ε, then
the following assertions hold.

(i) The χ-capacity of Sε
{qn} is given by

C
(
Sε
{qn}

)
= λε

{qn} − log πε
{qn}.

(ii) The optimal average state Ω
(
Sε
{qn}

)
of the set Sε

{qn} is given by

πε
{qn}|1〉〈1|+ πε

{qn}

∑
n>1

(
qn(1− qn)

(1−qn)
qn

)(1−ε)

exp
(
−
λε
{qn}

qn

)
|n〉〈n|.
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(iii) The optimal probability distribution {π±n } is given by

π±1 = 0, π±n =
1
2
πε
{qn}q

−ε
n (1− qn)

(1−qn)(1−ε)
qn exp

(
−
λε
{qn}

qn

)
, n > 2,

where λε
{qn} is the unique solution of the equation∑

n>1

q−ε
n (1− qn)1+

(1−qn)(1−ε)
qn exp

(
− λ

qn

)
= 1,

and πε
{qn} =

(∑
n>1 q

−ε
n (1− qn)

(1−qn)(1−ε)
qn exp

(
−λε

{qn}
qn

))−1

∈ [0, 1].

4) Condition (13) is equivalent to boundedness of the entropy on the set co
(
Sε
{qn}

)
for an arbitrary ε.

5) The maximal entropy state of the set co
(
Sε
{qn}

)
exists for some ε (and hence

for every ε) if and only if the sequence {qn} satisfies conditions (13) and (14) with
ε = 1. Then we have

Γ
(
co

(
Sε
{qn}

))
= π1

{qn}|1〉〈1|+ π1
{qn}

∑
n>1

exp
(
−
λ1
{qn}

qn

)
|n〉〈n|

for every ε, where π1
{qn} and λ1

{qn} are the parameters defined above.14

6) If condition (13) holds for every λ > 0, then the entropy is continuous on the
set co

(
Sε
{qn}

)
for every ε.

Fig. 1 shows the results of a numerical calculation of the χ-capacity of Sε
{qn} as

a function of ε for various sequences {qn}.

Proof. By Theorem 1 of [11], the finiteness of the χ-capacity of Sε
{qn} means the

existence of an optimal average state Ω
(
Sε
{qn}

)
in co

(
Sε
{qn}

)
such that

sup
n>1

H
(
ρ±n ‖Ω

(
Sε
{qn}

))
< +∞. (15)

By Lemma 1 of [1], the optimal average state can be represented as

Ω
(
Sε
{qn}

)
= π1ρ1 +

∑
n>1,±

π±n ρ
±
n . (16)

Since the set Sε
{qn} is invariant under the action of the automorphism U( · )U∗,

where U is a unitary operator diagonal in the basis {|n〉} and having eigenval-
ues ±1, Corollary 4 implies that the state Ω

(
Sε
{qn}

)
is invariant under the action

of this automorphism. Hence this state is diagonal in the basis {|n〉}. This means
that π+

n = π−n = 1
2πn for all n > 1 in (16), where {πn}+∞n=1 is some probability

distribution. Thus we have

Ω
(
Sε
{qn}

)
= π|1〉〈1|+

∑
n>1

πnqn|n〉〈n|, (17)

14It is interesting to compare this observation with the results of Proposition 1 in [11] for the

H-operator H =
P+∞

n=2 q−1
n |n〉〈n|.
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Figure 1. The χ-capacity of the set Sε
{qn} as a function of ε for the

sequences {qn = n−α}n>2, α = 1/2, 1, 2

where π = π1 +
∑

n>1(1− qn)πn. Thus,

H
(
ρ1 ‖Ω

(
Sε
{qn}

))
= − log π, (18)

H
(
ρ±n ‖Ω

(
Sε
{qn}

))
= −(1− qn) log π − qn log(πnqn)

+ (1− ε)
(
(1− qn) log(1− qn) + qn log qn

)
= −(1− qn) log π

− qn log πn − εqn log qn + (1− ε)(1− qn) log(1− qn), n > 1. (19)

Since qn → 0 as n → +∞, condition (15) means that supn>1 qn(− log πn)
is finite. It is easy to see that the existence of a probability distribution {πn}
satisfying this condition is equivalent to the existence of a positive number λ such
that

∑
n exp

(
− λ

qn

)
< +∞.

We note that (15) and (19) imply that πn > 0 for all n > 1. Using this along
with (18) and (19), we can rewrite the system (12) as

− log π 6 C, π1(C + log π) = 0,

(1− qn)
(
(1− ε) log(1− qn)− log π

)
− qn log πn − εqn log qn = C.

(20)

The second part of the system (20) implies that

πn = πq−ε
n (1− qn)

(1−qn)(1−ε)
qn exp

(
−C + log π

qn

)
, n > 2. (21)
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Since the sequence {πn} must converge to zero as n → +∞, we conclude that
− log π < C. Hence the first part of the system (20) implies that π1 = 0.

It is easy to see that if there is a probability distribution {πn} satisfying (20),
then π =

∑
n>1(1− qn)πn and C form a solution of the system

∑
n>1

q−ε
n (1− qn)1+

(1−qn)(1−ε)
qn exp

(
−C + log π

qn

)
= 1,

∑
n>1

q−ε
n (1− qn)

(1−qn)(1−ε)
qn exp

(
−C + log π

qn

)
= π−1.

(22)

Conversely, any solution (π,C) of (22) determines (by formula (21)) a probability
distribution {πn} that satisfies (20).

We claim that the system (22) has a solution (π,C) if and only if the inequal-
ity (14) holds. Indeed, consider the functions

F (x) =
∑
n>1

q−ε
n (1− qn)1+

(1−qn)(1−ε)
qn exp

(
− x

qn

)
,

G(x) =
∑
n>1

q−ε
n (1− qn)

(1−qn)(1−ε)
qn exp

(
− x

qn

)
.

They are continuous and strictly decreasing on
(
λ∗{qn},+∞

)
. Moreover, F (x) does

not exceed G(x). Hence there are the inverse functions F−1(y) and G−1(y), which
are continuous and strictly decreasing on F

((
λ∗{qn},+∞

))
and G

((
λ∗{qn},+∞

))
respectively. Using these functions, we can rewrite the system (22) as

F (C + log π) = 1

G(C + log π) = π−1.

The inequality (14) is equivalent to the inequality limx→λ∗{qn}
+0 F (x) > 1. By

the previous observation, this means that F−1(1) is well defined. Thus, if the
inequality (14) holds, then C + log π = F−1(1). Hence π =

(
G(F−1(1))

)−1
6(

F (F−1(1))
)−1 = 1 and C = F−1(1) + logG

(
F−1(1)

)
form a unique solution

of (22). Denoting F−1(1) and π by λε
{qn} and πε

{qn} respectively, we obtain all the
assertions concerning the χ-capacity of Sε

{qn}. If the inequality (14) does not hold,15

then the system (22) has no solution and hence there is no optimal probability
distribution {πn}. Thus the set Sε

{qn} is irregular in this case.
Since the boundedness of the entropy on the set co

(
Sε
{qn}

)
implies that the

χ-capacity of Sε
{qn} is finite, it also implies that (13) holds by the observation

above. The converse assertion follows from the boundedness condition in asser-
tion 2) of Proposition 2 with the H-operator

∑+∞
n=2 q

−1
n |n〉〈n|. Thus condition (13)

is equivalent to the boundedness of the entropy on the set co
(
Sε
{qn}

)
.

15It is easy to construct a sequence {qn} for which (13) holds but (14) does not (see the end
of this subsection).
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Suppose that the sequence {qn} satisfies condition (14) with ε = 1. Since the
closed set S1

{qn} consists of pure states, the existence of an optimal measure for
this set (which is guaranteed by the condition) implies that the optimal average
state Ω

(
S1
{qn}

)
coincides with the maximal entropy state Γ

(
co

(
S1
{qn}

))
. Noting that

Ω
(
S1
{qn}

)
lies in co

(
S0
{qn}

)
and that co

(
S0
{qn}

)
⊆ co

(
Sε
{qn}

)
for every ε, we conclude

that
Γ
(
co

(
Sε
{qn}

))
= Ω

(
S1
{qn}

)
for every ε in this case.

Suppose that the maximal entropy state Γ
(
co

(
Sε
{qn}

))
exists for some ε. Using

the observation at the end of § 3 of [11], we easily see that this yields the existence of
a maximal entropy state Γ

(
co

(
Sε
{qn}

))
for all ε, including ε = 1. Since the set S1

{qn}
consists of pure states, the state Γ

(
co

(
S1
{qn}

))
coincides with the state Ω

(
S1
{qn}

)
.

By Lemma 2 of [11], the restriction of the entropy to the set co
(
S1
{qn}

)
is continuous

at Ω
(
S1
{qn}

)
= Γ

(
co

(
S1
{qn}

))
. It follows that the set S1

{qn} is regular. By Theorem 2
of [11] there is an optimal measure for the set S1

{qn}. Hence the observation above
shows that the sequence {qn} satisfies condition (14) with ε = 1.

By the second continuity condition in assertion 2) of Proposition 2 with the
H-operator

∑+∞
n=2 q

−1
n |n〉〈n|, the finiteness of the series in (13) for arbitrary λ implies

that the entropy is continuous on the set co
(
Sε
{qn}

)
for arbitrary ε.

To conclude this subsection, we give an example of a sequence {qn} for which
condition (13) holds while condition (14) with arbitrary ε does not. Put qn =
1/ log

(
n log3(2n + 1)

)
for n > 2. Then λ∗{qn} = 1 and the left-hand side of (14)

with ε = 1 is approximately equal to 0.89. It follows that condition (14) does not
hold with arbitrary ε. The observation above shows that the entropy is bounded
on co

(
Sε
{qn}

)
and the χ-capacity of Sε

{qn} is finite for every ε, but there is neither
a maximal entropy state for co

(
Sε
{qn}

)
nor an optimal measure µ∗ = {π±n , ρ±n }

for Sε
{qn}.

3.2. The sets L(σ) and KH,h. Let σ =
∑

k λk|k〉〈k| be an arbitrary state.
In [11] we defined the set L(σ) of all states whose diagonal elements in the basis
{|k〉} coincide with those of σ. By Proposition 6 of [11], the entropy is continuous
on the set L(σ) if and only if supρ∈L(σ)H(ρ) = H(σ) < +∞. In the following
proposition we study questions concerning the χ-capacity of the set L(σ).

Proposition 5. Let σ be an arbitrary state in S(H). Then the following assertions
hold.

1) The χ-capacity of L(σ) is equal to H(σ).
2) If C

(
L(σ)

)
= H(σ) < +∞, then the set L(σ) is regular and admits an

optimal measure with barycentre Ω
(
L(σ)

)
= σ and support in the set of pure states

in L(σ).

Proof. Suppose that the χ-capacity C
(
L(σ)

)
is finite. Let G be the group of all

unitary operators on H that are diagonal in the basis {|k〉}. Since L(σ) is invariant
under the action of the automorphism U( · )U∗ for every U ∈ G, Corollary 5 implies
that Ω

(
L(σ)

)
= σ. Let ρ be an arbitrary pure state in L(σ), for example, the state
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corresponding to the vector
∑

k

√
λk |k〉. Theorem 1 of [11] and Proposition 6 of [11]

imply that
C

(
L(σ)

)
> H

(
ρ ‖Ω(L(σ))

)
= H(ρ ‖σ) = H(σ).

Since supρ∈L(σ)H(ρ) = H(σ), this inequality is an equation. To complete the
proof of assertion 1), we note that C

(
L(σ)

)
= +∞ implies that H(σ) = +∞ by

Proposition 6 of [11].
The regularity assertion follows from Proposition 6 in [11].
Since C

(
L(σ)

)
= H

(
Ω(L(σ))

)
, the assertion on the existence of an optimal

measure follows from Theorem 2 of [11] and Propositions 6, 7 of [11].

The set KH,h was introduced in [11]. It is defined by the inequality Tr ρH 6 h,
where H is an H-operator and h is a positive number. Proposition 1 in [11]
gives necessary and sufficient conditions for the boundedness and continuity of the
entropy on KH,h in terms of the coefficient g(H) of increase of the H-operator H.
This proposition also shows that the maximal entropy state exists for KH,h if and
only if h 6 h∗(H). (The parameters g(H) and h∗(H) are defined in [11] before
Proposition 1.) In the following proposition we consider questions concerning the
χ-capacity of the set KH,h.

Proposition 6. Let H be an H-operator on the Hilbert space H and h a positive
number such that h > hm(H). Then the following assertions hold.

1) The χ-capacity of the set KH,h coincides with supρ∈KH,h
H(ρ). Hence it is

finite if and only if g(H) < +∞. If this condition holds, then

Ω(KH,h) =

{
Γ(KH,h) =

(
Tr exp(−λ∗H)

)−1 exp(−λ∗H), h 6 h∗(H),(
Tr exp(− g(H)H)

)−1 exp(− g(H)H), h > h∗(H),

where λ∗ = λ∗(H,h) is uniquely determined by the equation

TrH exp(−λH) = hTr exp(−λH).

2) The following statements are equivalent.
(i) The inequality h 6 h∗(H) holds.
(ii) The set KH,h is regular.
(iii) C(KH,h) 6 H

(
Ω(KH,h)

)
or, equivalently, C(KH,h) = H

(
Ω(KH,h)

)
.

(iv) C(KH,h) = C
(
KH,h ∩ L(Ω(KH,h))

)
.

(v) There is an optimal measure for the set KH,h.

Fig. 2 shows the results of a numerical calculation of the χ-capacity of KH,h as
a function of h = c for the H-operator H = − log σ with h∗(H) < +∞.

Proof. Write H =
∑

k hk|k〉〈k| and let Kc
H,h be the subset of KH,h consisting of

states that are diagonal in the basis {|k〉}. Then KH,h =
⋃

ρ∈Kc
H,h

L(ρ) and, there-
fore,

C(KH,h) > sup
ρ∈Kc

H,h

C
(
L(ρ)

)
= sup

ρ∈Kc
H,h

H(ρ) = sup
ρ∈KH,h

H(ρ),

where the last equation follows from inequality (22) of [11]. This proves the first
part of assertion 1) since the reverse inequality is obvious.
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In the proof of Proposition 1 in [11], we constructed a sequence {ρn} of states
in Kc

H,h such that limn→∞H(ρn) = supρ∈KH,h
H(ρ) and limn→∞ ρn = ρ∗(KH,h).

By Proposition 5, for every n there is an optimal measure µn for the set L(ρn) such
that ρ(µn) = ρn and χ(µn) = H(ρn). The first part of assertion 1) of the proposition
shows that the sequence {µn} of measures is an approximating sequence for the set
KH,h. By Theorem 1 in [11], the limit ρ∗(KH,h) of the corresponding sequence of
barycentres {ρn} is the optimal average state of KH,h. Assertion 1) is proved.

The equivalence of statements (i)–(v) will be proved in the following order:
(i) =⇒ (ii) =⇒ (v) =⇒ (iii) =⇒ (iv) =⇒ (i).

(i) =⇒ (ii). By the observation above, (i) implies that Ω(KH,h) = Γ(KH,h).
By Lemma 2 in [11], the restriction of the entropy to KH,h is continuous at the
state Ω(KH,h). This guarantees that the set KH,h is regular.

(ii) =⇒ (v). This follows directly from Theorem 2 in [11].
(v) =⇒ (iii). This follows directly from Corollary 8 in [11].
(iii) =⇒ (iv). This follows from Proposition 5 and assertion 1).
(iv) =⇒ (i). If h > h∗(H), then Proposition 1 in [11] and Proposition 5 show

that
C

(
L(Ω(KH,h))

)
= H

(
Ω(KH,h)

)
< sup

ρ∈KH,h

H(ρ) = C(KH,h).

The constructions in the proofs of Proposition 1 in [11] and Proposition 6 enable
us to construct the following example, which shows that the regularity condition in
assertion 9) of Theorem 1 is essential.

Example 2 (a closed set of finite χ-capacity having no minimal closed subset of
the same χ-capacity). Let H be an H-operator such that

h∗(H) =
TrH exp(− g(H)H)
Tr exp(− g(H)H)

< +∞.

For example, take

H =
+∞∑
k=1

log
(
(k + 1) log3(k + 1)

)
|k〉〈k|.

As observed in the proof of Proposition 1 in [11], for every given h > h∗(H) there is
a positive integer n0 such that the state ρn is well defined by formula (8) in [11] for
all n > n0 and the sequence {ρn}n>n0 converges to the state ρ∗(KH,h) defined by
formula (13) in [11]. We put A0 =

⋃
n>n0

L(ρn) and A = A0 = A0 ∪L
(
ρ∗(KH,h)

)
.

The proof of Proposition 1 in [11] and Proposition 6 in [11] yield that

C(A) = lim
n→+∞

H(ρn) > H
(
ρ∗(KH,h)

)
= sup

ρ∈L(ρ∗(KH,h))

H(ρ).

We claim that the closed set A has no minimal closed subset of the same
χ-capacity. Indeed, let B be a minimal subset of A. Since C

(
L(ρ∗(KH,h))

)
is

smaller than C(A) = C(B), the set B has non-empty intersection with L(ρn∗) for
some n∗ > n0. We shall show that the closed set B \ L(ρn∗)  B has the same
χ-capacity as B, contrary to the assumed minimality of B.
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Since supρ∈L(ρ∗(KH,h))H(ρ) < C(B), there is an approximating sequence of
ensembles {{πk

i , ρ
k
i }}k for the set B such that the corresponding sequence {ρk}k

of average states is disjoint from L
(
ρ∗(KH,h)

)
and, therefore, Π{|k〉}(ρk) = ρnk

for some sequence {nk} of positive integers. Since supρ∈L(ρn)H(ρ) < C(B) for
every n > n0, the sequence {nk} tends to +∞. We note that for every ρ in B
the state Π{|k〉}(ρ) coincides with either ρ∗(KH,h) or ρn for some n. Moreover,
if ρk =

∑
i π

k
i ρ

k
i , then Π{|k〉}(ρk) =

∑
i π

k
i Π|k〉(ρk

i ) for every k. Using this obser-
vation and definitions (8), (13) of [11], we conclude that Π{|k〉}(ρk

i ) = ρnk
for all

i and k. Thus the states {πk
i , ρ

k
i } are not contained in L(ρn∗) for all sufficiently

large k and, therefore, the “tail” of the sequence {{πk
i , ρ

k
i }}k is an approximating

sequence of the set B \ L(ρn∗). It follows that C(B) = C
(
B \ L(ρn∗)

)
.

3.3. The set Vσ,c. The set Vσ,c was introduced in [11]. It is defined by the
inequality H(ρ ‖σ) 6 c, where σ is a state and c is a non-negative number. If σ
is a state of infinite rank, then the family {Vσ,c}c∈R+ of non-empty sets is strictly
increasing and Vσ,0 = {σ}.

By Theorem 1 of [11], every set A of finite χ-capacity is contained in the compact
convex set VΩ(A),C(A) such that Ω

(
VΩ(A),C(A)

)
= Ω(A) and C

(
VΩ(A),C(A)

)
= C(A).

Below we shall find the χ-capacity and optimal average state for the set Vσ,c for
arbitrary σ and c.

Proposition 3 of [11] gives necessary and sufficient conditions for the boundedness
and continuity of the entropy on the set Vσ,c in terms of the coefficient d(σ) of
decrease of the state σ. This proposition also shows that the maximal entropy
state exists for Vσ,c if and only if c 6 c∗(σ). (The parameters d(σ) and c∗(σ)
are defined before Proposition 3 in [11].) In the following proposition we consider
questions concerning the χ-capacity of the set Vσ,c. We put

c∗(σ) =
Trσd(σ)(− log σ)

Trσd(σ)

if Trσd(σ) < +∞, and c∗(σ) = +∞ otherwise. Note that

c∗(σ) =
c∗(σ) + log Trσd(σ)

1− d(σ)
> c∗(σ)

if d(σ) < 1, and c∗(σ) = H(σ) if d(σ) = 1.

Proposition 7. Let σ be a state of infinite rank in S(H).
1) If c 6 H(σ) 6 +∞, then C(Vσ,c) = c and Ω(Vσ,c) = σ.
2) If H(σ) < c 6 c∗(σ), then

C(Vσ,c) = λ∗c+ log Trσλ∗ , Ω(Vσ,c) =
(
Trσλ∗

)−1
σλ∗ ,

where λ∗ = λ∗(σ, c) is uniquely determined by the equation Trσλ(− log σ) = cTrσλ.
3) If c∗(σ) < +∞ and c > c∗(σ), then

C(Vσ,c) = d(σ)c+ log Trσd(σ), Ω(Vσ,c) =
(
Trσd(σ)

)−1
σd(σ).
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Figure 2. The least upper bound for the entropy and

χ-capacity of the sets K− log σ,c and Vσ,c as functions of c for

the state σ ∼
P+∞

k=1
|k〉〈k|

(k+100) log3(k+100)
with d(σ) = 1/2

In cases 1)–3) we have

C(Vσ,c) = inf
λ∈[d(σ),1]

(
λc+ log Trσλ

)
.

4) The following statements are equivalent.
(i) The inequality c 6 c∗(σ) holds.
(ii) C(Vσ,c) 6 H

(
Ω(Vσ,c)

)
.

(iii) C(Vσ,c) = C
(
Vσ,c ∩ L

(
Ω(Vσ,c)

))
.

(iv) There is an optimal measure for the set Vσ,c.
5) The set Vσ,c is regular if and only if d(σ) < 1 and c < c∗(σ).

Fig. 2 shows the results of numerical calculations of the χ-capacity of Vσ,c as a
function of c for a state σ with c∗(σ) < +∞.

Proof. Let σ =
∑

k λk|k〉〈k| be a state of full rank. Then − log σis an H-operator.
Theorem 1, 2) of [11] implies that

C(Vσ,c) 6 c. (23)
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Let c 6 H(σ) 6 +∞. We consider the subset T = Vσ,c ∩L(σ) of Vσ,c. Since the
χ-capacity is monotone, we see from (23) that C(T ) 6 C(Vσ,c) 6 c < +∞. Thus,
to prove the equation C(Vσ,c) = c, it suffices to show that C(T ) > c.

Let G be the group of all unitary operators on H that are diagonal in the
basis {|k〉}. Since the set T is invariant under the action of the automorphism
U( · )U∗ for each U ∈ G, Corollary 5 implies that Ω(T ) = σ. By Theorem 1, 2)
of [11], to prove the inequality C(T ) > c, it suffices to find a state σc in the set T
such that H

(
σc ‖Ω(T )

)
= H(σc ‖σ) = c.

In the case H(σ) < +∞, the relative entropy H(ρ ‖σ) is a continuous function
on L(σ) with range [0,H(σ)] by Proposition 6 of [11]. This guarantees the existence
of a state σc with the desired properties.

In the case H(σ) = +∞, the existence of σc follows from Lemma 2 below (with
n = 1).

Thus C(Vσ,c) = C(T ) = c, and assertion 3) of Theorem 1 implies that Ω(Vσ,c) =
Ω(T ) = σ.

Let c > H(σ). Since K− log σ,c ⊂ Vσ,c and the χ-capacity is monotone, we have

C(K− log σ,c) 6 C(Vσ,c). (24)

We note that c∗(σ) = h∗(− log σ). By Proposition 6, to prove all assertions
concerning the cases H(σ) < c 6 c∗(σ) and c > c∗(σ), it suffices to show that

C(Vσ,c) = C(K− log σ,c) (25)

since this equation implies that Ω(Vσ,c) = Ω(K− log σ,c) by assertion 3) of Theorem 1.
Suppose that d(σ) = g(− log σ) = 1. Then c∗(σ) = h∗(− log σ) = H(σ). We

have C(K− log σ,c) = c for all c > H(σ) by Proposition 6. Thus inequalities (23)
and (24) yield equation (25).

Suppose that d(σ) = g(− log σ) < 1. Then Lemma 3 of [11] implies that

H
(
ρ ‖

(
Trσλ

)−1
σλ

)
6 λH(ρ ‖σ) + log Trσλ 6 λc+ log Trσλ

for all ρ in Vσ,c and all λ ∈ (d(σ), 1]. Using Theorem 1, 2) of [11], we obtain that

C(Vσ,c) 6 inf
λ∈(d(σ),1]

sup
ρ∈Vσ,c

H
(
ρ ‖

(
Trσλ

)−1
σλ

)
6 inf

λ∈(d(σ),1]

(
λc+ log Trσλ

)
.

By Proposition 1 in [11] and Proposition 6 we have

C(K− log σ,c) = inf
λ∈(d(σ),+∞)

(
λc+ log Trσλ

)
.

We easily see from the condition c > H(σ) that this infimum is attained at
some λ∗ 6 1. Hence this infimum coincides with the previous one and equation (25)
holds in this case.

The equivalence of statements (i)–(iv) will be established by proving the following
implications: (i) =⇒ (iv) =⇒ (ii) =⇒ (i) and (i) =⇒ (iii) =⇒ (i).

(i) =⇒ (iv). In the case H(σ) < +∞ we prove the existence of an optimal
measure for Vσ,c (provided that c 6 c∗(σ)) separately for c 6 H(σ) and H(σ) <
c 6 c∗(σ).
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If c 6 H(σ), then the observation above shows that C(Vσ,c) = C(T ), where
T =Vσ,c∩L(σ). By Proposition 6 of [11], the entropy is continuous on T . Hence T
is regular. Combining this with Theorem 2 of [11], we see that there is an opti-
mal measure for T . Since C(Vσ,c) = C(T ) and T ⊂ Vσ,c, this measure is also an
optimal measure for Vσ,c.

If d(σ) < 1 and H(σ) < c 6 c∗(σ), then the observation above shows that
C(Vσ,c) = C(K− log σ,c) and c∗(σ) = h∗(− log σ). By Proposition 6 there is an
optimal measure for K− log σ,c. Since C(Vσ,c) = C(K− log σ,c) and K− log σ,c ⊂ Vσ,c,
this measure is also an optimal measure for Vσ,c.

In the case H(σ) = +∞ we prove the existence of an optimal measure by the
following direct construction.

Given c, we consider the positive integer m and the state ρc,1,m that are provided
by Lemma 2 below. We put Pm =

∑m
k=1 |k〉〈k|. Let Gm be the compact group

of all unitary operators in B
(
Pm(H)

)
that are diagonal in the basis {|k〉}m

k=1 of
the subspace Pm(H). For arbitrary U in Gm we consider the unitary operator
Û = U ⊕ IH	Pm(H) on H. Using the properties of ρc,1,m, we easily see that∫

Gm

Ûρc,1,mÛ
∗µH(dU) = σ,

where µH is the Haar measure on Gm. Since

H
(
Ûρc,1,mÛ

∗ ‖σ
)

= H
(
ρc,1,m ‖ Û∗σÛ

)
= H(ρc,1,m ‖σ) = c,

the image of µH under the map U 7→ Ûρc,1,mÛ
∗ is an optimal measure for Vσ,c.

The support of this measure lies in L(σ) by construction.
(iv) =⇒ (ii). This follows directly from Corollary 8 in [11].
(ii) =⇒ (i). If c∗(σ) < +∞ and c > c∗(σ), then the proof of assertion 3) along

with Proposition 1 of [11] and Proposition 6 yields that

C(Vσ,c) = C(K− log σ,c) > H
(
Ω(K− log σ,c)

)
, Ω(Vσ,c) = Ω(K− log σ,c). (26)

(i) =⇒ (iii). If c 6 H(σ), then the observation above shows that C(Vσ,c) = C(T )
and Ω(Vσ,c) = σ, where T = Vσ,c ∩ L(σ). If H(σ) < c 6 c∗(σ), then the proof of
assertion 2) along with Propositions 5, 6 yields that

C(Vσ,c) = C(K− log σ,c) = H
(
Ω(K− log σ,c)

)
= C

(
L(Ω(K− log σ,c))

)
. (27)

Since L
(
Ω(K−log σ,c)

)
⊂K−log σ,c⊂Vσ,c and Ω(Vσ,c)=Ω(K−log σ,c), we obtain (iii).

(iii) =⇒ (i). If c∗(σ) < +∞ and c > c∗(σ), then inequality (26) holds. This
contradicts (iii) by Proposition 5.

If d(σ) < 1 and c < c∗(σ), then d
(
Ω(Vσ,c)

)
< 1 by the observation above. Hence

the regularity of Vσ,c follows from assertion 5) of Theorem 1.
To prove the converse assertion, we note that Lemma 3 below and the part of

the proposition already proved imply that the second regularity condition does not
hold for Vσ,c for any state σ of infinite rank and any c > 0. Thus it suffices to
show that the first regularity condition does not hold for Vσ,c if either d(σ) = 1
or c > c∗(σ).
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If d(σ) = 1, then the observation above shows that Ω(Vσ,c) = σ for all c. In the
case H(σ) < +∞, Proposition 2 of [11] implies that there is a sequence {ρn} of
states such that

lim
n→+∞

H(ρn ‖σ) = 0, lim
n→+∞

H(ρn) > H(σ).

Thus the state ρn belongs to Vσ,c for all sufficiently large n and, therefore, the first
regularity condition does not hold. In the case H(σ) = +∞, it is clear that the
first regularity condition does not hold.

If d(σ) < 1 and c > c∗(σ), then Ω(Vσ,c) =
(
Trσd(σ)

)−1
σd(σ) by the observation

above. As shown in the proof of Proposition 3 in [11], for everym there is a sequence
{ρm

n }n of states that satisfy formulae (19) in [11] and lie in Vσ,c for all sufficiently
large n. Thus the first regularity condition does not hold in this case.

The set Vσ,c with H(σ) = +∞ is a non-trivial example of an irregular set of finite
χ-capacity containing states with infinite entropy and having an optimal measure.

Lemma 2. Let σ =
∑∞

k=1 λk|k〉〈k| be a state with infinite entropy. For every
positive integer n let Ln(σ) be the closed convex subset of L(σ) consisting of all
states ρ such that 〈i|ρ|j〉 = 0 if i 6= j and either i < n or j < n. Then for every
c > 0 and every n ∈ N one can find a positive integer m and a state ρc,n,m in Ln(σ)
such that

H(ρc,n,m ‖σ) = c

and 〈i|ρc,n,m|j〉 = 0 if i 6= j and either i > m or j > m.

Proof. Let c > 0 and n ∈ N be arbitrary numbers. We consider the state

σn = µ−1
n

+∞∑
k=n

λk|k〉〈k|,

where µn =
∑+∞

k=n λk. Consider the sequence of states{
ρm

n = µ−1
n

∑
n6i,j6m

√
λi

√
λj |i〉〈j|+ µ−1

n

∑
k>m

λk|k〉〈k|
}

m

converging to the pure state ρ∗n = µ−1
n

∑
i,j>n

√
λi

√
λj |i〉〈j| as m → +∞. Since

H(σn) = +∞, it follows from Proposition 6 in [11] that H(ρ∗n ‖σn) = +∞. Using
this and general properties of the relative entropy, we obtain

H(ρm
n ‖σn) < +∞ ∀m ∈ N, lim

m→+∞
H(ρm

n ‖σn) = +∞.

Thus there is a positive integer m(c) such that

cµ−1
n 6 H(ρm(c)

n ‖σn) < +∞.

The convex lower semicontinuous function f(λ) = H
(
λρ

m(c)
n + (1 − λ)σn ‖σn

)
does not exceed λH

(
ρ

m(c)
n ‖σn

)
on [0, 1]. Hence it is continuous on [0, 1] (see [2]).
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Since f(0) = 0 and f(1) = H
(
ρ

m(c)
n ‖σn

)
> cµ−1

n , there is a λ∗ ∈ [0, 1] such that
f(λ∗) = cµ−1

n .
Put m = m(c) and ρc,n,m =

∑n−1
k=1 λk|k〉〈k| + µn

(
λ∗ρm

n + (1 − λ∗)σn

)
. It is

easy to see that H(ρc,n,m ‖σ) = µnH
(
λ∗ρ

m(c)
n + (1 − λ∗)σn ‖σn

)
= c and that

ρc,n,m ∈ Ln(σ). By construction, 〈i|ρc,n,m|j〉 = 0 if i 6= j and either i > m
or j > m.

Lemma 3. Suppose that σ is a state of infinite rank. Then the relative entropy
H

(
ρ ‖

(
Trσλ

)−1
σλ

)
is a discontinuous function of ρ on the set Vσ,c for every c > 0

and every λ such that Trσλ < +∞.

Proof. We may assume without loss of generality that σ is a full rank state. Let % be
a pure state with H(% ‖σ) = +∞ and Pn the spectral projector of σ corresponding
to its maximal n eigenvalues. Then the sequence %n = (TrPn%)−1Pn%Pn of pure
states converges to the pure state %. Using general properties of the relative entropy,
we see that H(%n ‖σ) < +∞ for all n and limn→+∞H(%n ‖σ) = +∞.

Consider the sequence
{
ηn = c

(
H(%n ‖σ)

)−1}
n>n0

, where we choose n0 to be
such that H(%n ‖σ) > c for all n > n0. Put ρn = ηn%n + (1− ηn)σ for all n > n0.
Using general properties of the relative entropy, we get

c− h2(ηn) = ηnH(%n ‖σ)− h2(ηn) 6 H(ρn ‖σ) 6 ηnH(%n ‖σ) = c,

where h2(x) = −x log x− (1− x) log(1− x).
Since ηn → 0 as n→ 0, this inequality implies that

ρn ∈ Vσ,c for all n and lim
n→+∞

H(ρn ‖σ) = c. (28)

Let λ be an arbitrary positive number such that Trσλ < +∞. By Lemma 3 of [11]
we have

H
(
ρn ‖

(
Trσλ

)−1
σλ

)
= λH(ρn ‖σ) + log Trσλ − (1− λ)H(ρn). (29)

Using general properties of the entropy, we obtain

(1− ηn)H(σ) 6 H(ρn) 6 (1− ηn)H(σ) + h2(ηn)

for all n > n0. Hence limn→+∞H(ρn) = H(σ).
Thus (28) and (29) imply that

lim
n→+∞

H
(
ρn ‖

(
Trσλ

)−1
σλ

)
= cλ+ log Trσλ − (1− λ)H(σ).

By construction, the sequence {ρn} of states in Vσ,c converges to σ. Since

H
(
σ ‖

(
Trσλ

)−1
σλ

)
= log Trσλ − (1− λ)H(σ),

the above equation means that

lim
n→+∞

H
(
ρn ‖

(
Trσλ

)−1
σλ

)
= H

(
σ ‖

(
Trσλ

)−1
σλ

)
+ cλ.

Hence the function H
(
ρ ‖

(
Trσλ

)−1
σλ

)
is discontinuous on Vσ,c.
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The irregularity of the set Vσ,c for every state σ with infinite entropy leads to the
discontinuity of the χ-capacity with respect to monotone decreasing sequences of
subsets of this set (assertion 7) of Theorem 1). We illustrate this by the following
example.

Example 3 (a decreasing sequence of closed sets of the same positive χ-capacity
such that their intersection has χ-capacity zero). Let σ be a state with infinite
entropy. For arbitrary positive integer n let Ln(σ) be the convex closed subset
of S(H) introduced in Lemma 2. For any given c > 0 we consider the decreasing
sequence of closed convex sets An = Ln(σ) ∩ Vσ,c. Since σ is the only state in An

invariant under the action of all automorphisms in F(An), Corollary 5 implies
that Ω(An) = σ. For every n, Lemma 2 shows that there is a state ρc,n,m in An

such that H
(
ρc,n,m ‖Ω(An)

)
= H(ρc,n,m ‖σ) = c. By Theorem 1 of [11] it follows

that C(An) > c. By assertion 3) of Theorem 1 we have C(An) 6 C(Vσ,c) = c
and, therefore, C(An) = c for all n. On the other hand, C

( ⋂
nAn

)
= 0 because⋂

nAn = {σ}.

3.4. The set A ⊗ B. Let H and K be separable Hilbert spaces. Given arbitrary
subsets A ⊆ S(H) and B ⊆ S(K), we consider the set

A⊗ B = {ω ∈ S(H⊗K) | ωH ∈ A, ωK ∈ B},

where ωH = TrK ω and ωK = TrH ω.
The following lemma is proved in [12].

Lemma 4. The set A⊗B is a convex subset of S(H⊗K) if and only if A and B
are convex subsets of S(H) and S(K) respectively.

The set A ⊗ B is a compact subset of S(H ⊗ K) if and only if A and B are
compact subsets of S(H) and S(K) respectively.

The properties of the restriction of the entropy to A⊗B are also determined by
the properties of the restrictions of the entropy to A and B.

Proposition 8. Let A and B be arbitrary subsets of S(H) and S(K) respectively.

1) The entropy is bounded on A⊗ B if and only if it is bounded on A and B.
2) The entropy is continuous on A ⊗ B if and only if it is continuous on A

and B.

Proof. If the entropy is bounded (continuous) on A ⊗ B, then it is bounded (con-
tinuous) on A and B since the state ρ⊗ σ lies in A⊗ B for every state ρ in A and
every state σ in B and we have H(ρ⊗ σ) = H(ρ) +H(σ).

If the entropy is bounded on A and B, then it is bounded on A ⊗ B by the
subadditivity property.

Suppose that the entropy is continuous on A and B. Let ω0 be a state in A⊗B
and {ωn} a sequence of states in A⊗ B converging to ω0. Since

H(ωn) = H
(
ωHn

)
+H

(
ωKn

)
−H

(
ωn ‖ωHn ⊗ ωKn

)
, n = 0, 1, 2, . . . ,
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the assumption of continuity and the lower semicontinuity of the relative entropy
yield that

lim sup
n→+∞

H(ωn) = lim
n→+∞

H
(
ωHn

)
+ lim

n→+∞
H

(
ωKn

)
− lim inf

n→+∞
H

(
ωn ‖ωHn ⊗ ωKn

)
6 H

(
ωH0

)
+H

(
ωK0

)
−H

(
ω0 ‖ωH0 ⊗ ωK0

)
= H(ω0).

Using this inequality and the lower semicontinuity of the entropy, we see that
limn→+∞H(ωn) = H(ω0).

An important example of the set A ⊗ B is the set of all states ω in S(H ⊗ K)
with given partial traces ωH = ρ and ωK = σ. Following [8], we denote this set
by C(ρ, σ). Lemma 4 shows that C(ρ, σ) is convex and compact for all ρ and σ. It
follows from the subadditivity of the entropy that supω∈C(ρ,σ)H(ω) = H(ρ)+H(σ).
As in the case of the set L(σ), the finiteness of the entropy on C(ρ, σ) guarantees
that it is continuous.

Corollary 6. The entropy is continuous on the set C(ρ, σ) if and only if H(ρ)<+∞
and H(σ) < +∞.

Let {πi, ρi} and {λj , σj} be arbitrary ensembles of states in A and B respectively.
Their tensor product is the ensemble {πiλj , ρi⊗σj} of states in A⊗B. Considering
the tensor products of all possible ensembles of states in A and B, we easily see
that

C(A⊗ B) > C(A) + C(B). (30)

There are examples of setsA and B for which equality holds in (30). For instance,
if A and B are the sets considered in § 3.2, then (30) is an equation by the subad-
ditivity of the entropy. There are also examples of sets for which strict inequality
holds in (30). Moreover, if A = {ρ} and B = {σ}, where ρ and σ are isomorphic
states with infinite entropy in S(H) and S(K) respectively, then the left-hand side
of (30) equals +∞ by Proposition 9 below while the right-hand side is obviously
equal to zero.16

We note that equality in (30) yields

Ω(A⊗ B) = Ω(A)⊗ Ω(B). (31)

Indeed, if {{πn
i , ρ

n
i }}n and {{λn

j , σ
n
j }}n are approximating sequences of ensem-

bles for A and B respectively, then equality in (30) implies that the sequence of
ensembles {{πn

i λ
n
j , ρ

n
i ⊗ σn

j }}n is an approximating sequence for A⊗B. By Theo-
rem 1 of [11], the sequences {ρn} and {σn} converge to the optimal average states
Ω(A) and Ω(B) respectively. Hence the sequence {ρn ⊗ σn} converges to the state
Ω(A) ⊗ Ω(B) and, therefore, this state is the optimal average state Ω(A ⊗ B) for
A⊗B by Theorem 1 of [11]. Proposition 9 below shows that (31) does not guarantee
equality in (30).

16Strict inequality in (30) does not contradict the additivity conjecture for the χ-capacity of
quantum channels. Indeed, if A and B are the output sets of channels Φ and Ψ respectively, then
the output set of Φ⊗Ψ is a proper subset of A⊗ B.
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We consider the set C(ρ, σ). Write ρ =
∑

i πi|ei〉〈ei| and σ =
∑

j λj |fj〉〈fj |,
where {|ei〉} and {|fj〉} are orthonormal systems of vectors in H and K respectively.
Let Eij = |ei〉〈ej | and Fkl = |fk〉〈fl| be the operators of rank 1 in B(H) and B(K)
respectively. Given any probability distributions {πi} and {λj}, let C({πi}, {λj}) be
the set of all probability distributions {ωij} such that

∑
j ωij = πi and

∑
i ωij = λj .

Hence C({πi}, {λj}) is a classical analogue of the set C(ρ, σ). Let Cs(ρ, σ) be the
closed convex subset of C(ρ, σ) consisting of all states of the form

∑
i,j ωijEii⊗Fjj ,

where {ωij} ∈ C({πi}, {λj}). The set Cs(ρ, σ) can be identified with the classical
analogue C({πi}, {λj}) of the set C(ρ, σ).

Let G be the group of all unitary operators on H ⊗ K that are diagonal in the
basis {|ei ⊗ fj〉}. We shall use the following simple observation.

Lemma 5. Let ρ =
∑

i πi|ei〉〈ei| and σ =
∑

j λj |fj〉〈fj | be states in S(H) and
S(K) respectively.

1) Any state ω in C(ρ, σ) may be represented as

ω =
∑
i,j

ωijEii ⊗ Fjj +
∑

i 6=j, k 6=l

ηijklEij ⊗ Fkl,

where {ωij} ∈ C({πi}, {λj}).
2) The set C(ρ, σ) is invariant under the automorphism group {U( · )U∗}U∈G.

The set Cs(ρ, σ) consists of all invariant states for this group that are contained
in C(ρ, σ).

Proof. Any state ω in C(ρ, σ) may be represented as

ω =
∑

i,j,k,l

ηijklEij ⊗ Fkl.

The requirements TrK ω = ρ =
∑

i πiEii and TrH ω = σ =
∑

j λjFjj yield asser-
tion 1) of the lemma.

Any operator U in G is determined by the set {ϕij(U)}i,j of numbers in [0, 2π)
via the formula

U =
∑
i,j

exp
(
iϕij(U)

)
Eii ⊗ Fjj .

Therefore we have UEii ⊗ FjjU
∗ = Eii ⊗ Fjj and UEij ⊗ FklU

∗ = exp
(
i(ϕik −

ϕjl)
)
Eij ⊗ Fkl. Thus, given ω ∈ C(ρ, σ) and U as above, we obtain

UωU∗ =
∑
i,j

ωijEii ⊗ Fjj +
∑

i 6=j, k 6=l

ηijkl exp
(
i(ϕik − ϕjl)

)
Eij ⊗ Fkl.

This proves assertion 2) of the lemma.

The following proposition shows that the problems of calculating the χ-capacity
and finding the optimal average state of C(ρ, σ) are non-trivial even in the symmetric
case ρ ∼= σ.

Proposition 9. Let ρ =
∑

i λi|ei〉〈ei| and σ =
∑

j λj |fj〉〈fj | be isomorphic states
with H(ρ) = H(σ) = −

∑
i λi log λi = h 6 +∞. Then the following assertions

hold.
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1) We have h 6 C
(
C(ρ, σ)

)
6 2h. Equality on the left holds if and only if ρ

and σ are pure states.
2) In the case h < +∞, there is an optimal measure µ∗(ρ, σ) with barycentre

Ω
(
C(ρ, σ)

)
in Cs(ρ, σ) such that suppΩ

(
C(ρ, σ)

)
= supp ρ⊗suppσ and the following

statements are equivalent.
(i) C

(
C(ρ, σ)

)
= 2h.

(ii) Ω
(
C(ρ, σ)

)
= ρ⊗ σ.

(iii) The states ρ and σ are multiples of projectors of the same finite rank.
(iv) The measure µ∗(ρ, σ) is supported by pure states.

Proof. Since the entropy is subadditive, we have H(ω) 6 H(ρ) +H(σ) = 2h for all
ω in C(ρ, σ). This yields the upper bound for C

(
C(ρ, σ)

)
.

Suppose that C
(
C(ρ, σ)

)
< +∞. By Theorem 1 of [11], there is a unique state

Ω
(
C(ρ, σ)

)
in C(ρ, σ) such that

H
(
ω ‖Ω(C(ρ, σ))

)
6 C

(
C(ρ, σ)

)
∀ω ∈ C(ρ, σ). (32)

By Corollary 4, Ω
(
C(ρ, σ)

)
is invariant under the automorphism U( · )U∗ for

every U in G. Using Lemma 5, we obtain

Ω
(
C(ρ, σ)

)
=

∑
i,j

ωijEii ⊗ Fjj (33)

for some probability distribution {ωij} in C({λi}, {λj}). All the probabilities ωij

in this distribution must be positive since otherwise one can easily find a state
ω in C(ρ, σ) such that H

(
ω ‖Ω(C(ρ, σ))

)
= +∞, contrary to (32).

Let ω =
∑

i,j

√
λi

√
λj Eij ⊗Fij be a pure state in C(ρ, σ). Using (32) and (33),

we obtain

C
(
C(ρ, σ)

)
> H

(
ω ‖Ω(C(ρ, σ))

)
= −Trω log

(
Ω(C(ρ, σ))

)
= −Tr

∑
i,j

√
λi

√
λj (logωjj)Eij ⊗ Fij = −

∑
i

λi logωii. (34)

If the states ρ and σ are not pure, then the right-hand side of (34) is greater than
−

∑
i λi log λi = h since ωii +

∑
j 6=i ωij = λi and ωij > 0 for all i and j.

The existence of an optimal measure in the case h < +∞ follows from Theorem 2
in [11] and Corollary 6.

The equivalence of statements (i)–(iv) will be proved in the following order:
(ii) =⇒ (i) =⇒ (iv) =⇒ (iii) =⇒ (ii).

(ii) =⇒ (i). Suppose that

Ω
(
C(ρ, σ)

)
= ρ⊗ σ =

∑
i,j

λiλjEii ⊗ Fjj .

Let ω be the pure state introduced above. Using (34) with ωij = λiλj , we obtain

C
(
C(ρ, σ)

)
> H

(
ω ‖Ω(C(ρ, σ))

)
= −

∑
i

λi log λ2
i = 2h.

Since the reverse inequality has already been proved, we have C
(
C(ρ, σ)

)
= 2h.
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(i) =⇒ (iv). Suppose that C
(
C(ρ, σ)

)
= 2h = H(ρ⊗ σ). Let µ∗ be an arbitrary

optimal measure for C(ρ, σ). Since χ(µ∗) = 2h is the maximal value of the entropy
on C(ρ, σ), we see from formula (2) of [11] that

Ĥ(µ∗) =
∫
H(ω)µ∗(dω) = 0.

Hence the measure µ∗ is supported by pure states.
(iv) =⇒ (iii). Suppose that µ∗ is an optimal measure for C(ρ, σ) and µ∗ is sup-

ported by pure states. This means that the barycentre Ω
(
C(ρ, σ)

)
of this measure

belongs to the convex closure of the set of pure states in C(ρ, σ). By the observation
above, Ω

(
C(ρ, σ)

)
is a state in Cs(ρ, σ) supported by supp ρ ⊗ suppσ. Therefore

Lemma 6 (see below) yields that ρ and σ are multiples of projectors of the same
finite rank.

(iii) =⇒ (ii). Suppose that ρ and σ are multiples of projectors of finite rank. By
Lemma 6 below, there is an ensemble of pure states in C(ρ, σ) with average state
ρ⊗σ. This ensemble is clearly optimal for C(ρ, σ). Hence its average state coincides
with Ω

(
C(ρ, σ)

)
.

Lemma 6. Let ρ and σ be states in S(H) and S(K) respectively. Then the fol-
lowing statements are equivalent.

(i) The set Cs(ρ, σ) contains a state which is supported by supp ρ⊗ suppσ and
belongs to the convex closure of the set of all pure states in C(ρ, σ).

(ii) The states ρ and σ are multiples of projectors of the same finite rank.
(iii) The state ρ⊗ σ is a finite convex combination of pure states in C(ρ, σ).

Proof. Each of the statements in the lemma implies that the states ρ and σ are
isomorphic, for otherwise the set C(ρ, σ) contains no pure states.

It suffices to show that (i) =⇒ (ii) and (ii) =⇒ (iii).
(i) =⇒ (ii). Let ω̂ =

∑
i,j ωijEii ⊗ Fjj be a state in Cs(ρ, σ) that belongs to the

convex closure of the set of pure states in C(ρ, σ). By Lemma 1 of [1], there is a
measure µ supported by pure states in C(ρ, σ) such that

ω̂ =
∫
C(ρ,σ)

ωµ(dω).

It suffices to prove that the state ρ has no distinct positive eigenvalues. Suppose
that λi and λj are such eigenvalues. Using the Schmidt decomposition for any pure
state ω in C(ρ, σ), it is easy to see that Eii ⊗ Fjjω = 0. Thus,

ωijEii ⊗ Fjj = Eii ⊗ Fjjω̂ =
∫
C(ρ,σ)

Eii ⊗ Fjjωµ(dω) = 0.

Hence the support of ω̂ does not coincide with supp ρ⊗ suppσ.
(ii) =⇒ (iii). Suppose that ρ = d−1P and σ = d−1Q, where P and Q are

d-dimensional projectors in B(H) and B(K) respectively. Let {|ϕi〉} be a basis of
maximally entangled vectors in P (H)⊗Q(K). Then ρ⊗ σ = d−2

∑
i |ϕi〉〈ϕi|.
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Remark 5. It is interesting to compare the χ-capacity of C(ρ, σ) with that of the
set Cs(ρ, σ), which can be identified with the classical analogue C({πi}, {λj}) of
the set C(ρ, σ). Let ρ and σ be multiples of d-dimensional projectors. Then the
set C({πi}, {λj}) consists of all probability distributions {ωij}d

i,j=1 such that

d∑
i=1

ωij = d−1 =
d∑

j=1

ωij .

The optimal ensemble for the set Cs(ρ, σ) ∼= C({πi}, {λj}) consists of d states having
one non-zero element d−1 in each row and each column, with equal probabili-
ties d−1. Hence its average state is the uniform distribution {ωij = d−2}. Thus,

C
(
Cs(ρ, σ)

)
= log d2 − log d = log d = h =

1
2
C

(
C(ρ, σ)

)
,

where the last equality follows from Proposition 9. Thus the existence of entangled
states in C(ρ, σ) doubles the χ-capacity.

3.5. Orbits of compact automorphism groups. Let G be a compact group,
{Ug}g∈G a unitary (projective) representation of G on the Hilbert space H and σ
an arbitrary state in S(H). We consider the set OG,Ug,σ = {UgσU

∗
g }g∈G. Being the

image of the compact set G under the continuous map g 7→ UgσU
∗
g , it is compact.

Its convex closure co(OG,Ug,σ) is also compact. Let ω(G,Ug, σ) =
∫

G
UgσU

∗
gµH(dg)

be a state in co(OG,Ug,σ), where µH is the Haar measure on G.

Proposition 10. The entropy is bounded on the set co(OG,Ug,σ) if and only if
H

(
ω(G,Ug, σ)

)
<+∞. In this case the entropy is continuous on the set co(OG,Ug,σ)

and attains its maximum at the state

Γ
(
co(OG,Ug,σ)

)
= ω(G,Ug, σ).

The χ-capacity C(OG,Ug,σ) of the set OG,Ug,σ is equal to H
(
σ ‖ω(G,Ug, σ)

)
. If

C(OG,Ug,σ) < +∞, then the set OG,Ug,σ is regular and the image of the Haar
measure µH under the map g 7→ UgσU

∗
g is an optimal measure for the set OG,Ug,σ

with barycentre
Ω(OG,Ug,σ) = ω(G,Ug, σ).

Proof. Since
∫

G
UgρU

∗
gµH(dg) = ω(G,Ug, σ) for every state ρ in co(OG,Ug,σ),

the boundedness assertion follows from the concavity of the entropy and Jensen’s
inequality.17 The continuity assertion follows from Corollary 3 of [11] since

Trσ
(
− logω(G,Ug, σ)

)
= H

(
ω(G,Ug, σ)

)
.

The set OG,Ug,σ is invariant under the action of the automorphism group
{Ug( · )U∗g }g∈G, and ω(G,Ug, σ) is the unique invariant state in co(OG,Ug,σ) for

17Jensen’s inequality is applicable in this case since the entropy can be represented as the
pointwise limit of a monotone increasing sequence of concave continuous functions [4].
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this group. It follows from Corollary 5 that C(OG,Ug,σ) = H
(
σ ‖ω(G,Ug, σ)

)
and

Ω(OG,Ug,σ) = ω(G,Ug, σ).
The assertion on the existence of an optimal measure for OG,Ug,σ is obvious.
The regularity assertion follows from the above observations since we have

H
(
ρ ‖ω(G,Ug, σ)

)
= H

(
σ ‖ω(G,Ug, σ)

)
for all ρ in OG,Ug,σ.

Example 4 (a closed set that has an optimal measure but no atomic optimal
measure). Let G = T be the one-dimensional rotation group represented as the
interval [−π, π). Then the Haar measure is the normalized Lebesgue measure dx

2π .
Put H = L2

(
[−π, π)

)
. The elements of L2

(
[−π, π)

)
may be regarded as 2π-periodic

functions on R. We define a unitary representation {Uλ}λ∈T of the group T by

Uλ

(
ψ(x)

)
= ψ(x− λ), ψ(x) ∈ L2

(
[−π, π)

)
.

Given an element |ϕ0〉 in L2

(
[π, π)

)
, we consider the set OT,Uλ,|ϕ0〉〈ϕ0|. In this case,

ω(T, Uλ, |ϕ0〉〈ϕ0|) =
1
2π

∫ +π

−π

|ϕλ〉〈ϕλ|dλ,

where |ϕλ〉 = Uλ|ϕ0〉. Note that co(OT,Uλ,|ϕ0〉〈ϕ0|) is the closure of the output set
of the channel Φ considered in [1]. It is shown in [1] that

C(OT,Uλ,|ϕ0〉〈ϕ0|) = H
(
ω(T, Uλ, |ϕ0〉〈ϕ0|)

)
= −

+∞∑
n=−∞

c2n(ϕ0) log c2n(ϕ0), (35)

where {cn(ϕ0)}n∈Z is the set of Fourier coefficients of the function ϕ0(x) with respect
to the trigonometric orthonormal system {exp(inx)}n∈Z. By Proposition 10, the
finiteness of this series means that the entropy is continuous on co(OT,Uλ,|ϕ0〉〈ϕ0|).
Proposition 10 also implies that the image of the normalized Lebesgue measure dx

2π

under the map λ 7→ Uλ|ϕ0〉〈ϕ0|U∗λ is an optimal measure for the set OT,Uλ,|ϕ0〉〈ϕ0|.
This measure is non-atomic. However, its existence does not automatically mean
that there is no purely atomic optimal measure in this case. We now show that there
is a function ϕ0(x) such that the set OT,Uλ,|ϕ0〉〈ϕ0| has no purely atomic optimal
measure.

Put

ϕ0(x) =

{
0, x ∈ [−π, 0),√

2 , x ∈ [0,+π).

Then cn(ϕ0) ∼ n−1 and, therefore, the sum in (35) is finite.
To prove the absence of an atomic optimal measure, it suffices to show that the

state Ω(OT,Uλ,|ϕ0〉〈ϕ0|) = ω(T, Uλ, |ϕ0〉〈ϕ0|) cannot be represented as a countable
convex combination of states in OT,Uλ,|ϕ0〉〈ϕ0|.

Suppose that

ω(T, Uλ, |ϕ0〉〈ϕ0|) =
+∞∑
i=1

πi|ϕλi〉〈ϕλi |.
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We may assume without loss of generality that π1 > πi for all i > 1 and that
λ1 = 0. For arbitrary η we have

+∞∑
i=1

πi〈ϕη|ϕλi〉2 =
〈
ϕη|ω(T, Uλ, |ϕ0〉〈ϕ0|)|ϕη

〉
=

1
2π

∫ +π

−π

〈ϕη|ϕλ〉2 dλ =
1
2π

∫ +π

−π

〈ϕ0|ϕλ〉2 dλ. (36)

Let θ(x) be the 2π-periodic function that equals (1−π−1|x|)2 on [−π,+π]. Then
〈ϕη|ϕλ〉2 = θ(η− λ) for all λ and η. Since the function θλ(x) = θ0(x− λ) is locally
integrable for each λ, it generates an element θ̃λ of the space D′ of generalized func-
tions. (Here D′ is the linear space of all continuous linear functionals on the space D

of smooth compactly supported functions [3].) Let θ̃ ′λ ∈ D′ be the derivative of the
generalized function θ̃λ ∈ D′. Then (36) implies that

D′ − lim
n→+∞

n∑
i=1

πiθ̃
′
λi

= 0. (37)

The function

ωδ(x) =

{
exp

(
−(1− (x/δ)2)−1

)
, x ∈ [−δ,+δ],

0, x ∈ R \ [−δ,+δ],

belongs to D for every δ > 0. Direct integration shows that

θ̃ ′λ(ω′δ) =
∫ +∞

−∞
θ ′λ(x)ω′δ(x) dx =

2
π

∫ λ

−δ

(
1 +

x− λ

π

)
ω′δ(x) dx

+
2
π

∫ +δ

λ

(
x− λ

π
− 1

)
ω′δ(x) dx =

4ωδ(λ)
π

− 2δI
π2

,

if λ ∈ [−δ,+δ], and

θ̃ ′λ(ω′δ) =
∫ +∞

−∞
θ ′λ(x)ω′δ(x) dx =

2
π2

∫ +δ

−δ

xω′δ(x) dx = −2δI
π2

if λ ∈ R \ [−δ,+δ], where

I = δ−1

∫ +δ

−δ

ωδ(x) dx =
∫ +1

−1

exp
(
−(1− x2)−1

)
dx

is a positive number.
Put N (δ) = {i ∈ N | λi ∈ [−δ,+δ]} and Kn = {2, 3, . . . , n}. Using the previous

formula, we get
n∑

i=1

πiθ̃
′
λi

(ω′δ) = π1θ̃
′
0(ω

′
δ) +

∑
i∈N (δ)∩Kn

πiθ̃
′
λi

(ω′δ) +
∑

i∈(N\N (δ))∩Kn

πiθ̃
′
λi

(ω′δ)

> π1

(
4
eπ

− 2δI
π2

)
−

(
4
eπ

− 2δI
π2

) ∑
i∈N (δ), i>1

πi −
2δI
π2

∀n.
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Since
∑

i∈N (δ), i>1 πi tends to zero with δ, this inequality implies that

lim inf
n→+∞

n∑
i=1

πiθ̃
′
λi

(ω′δ) > 0

for all sufficiently small δ. This contradicts (37).

§ 4. Another definition of C(A) and Ω(A)

It is known that the entropy and relative entropy of general quantum states can
be introduced via their definitions for states of finite rank and a limiting procedure.
To show this, we consider the non-linear map

ΘP (ρ) = (TrPρ)−1PρP

determined by an arbitrary projector P and having the domain D(ΘP ) = {ρ ∈
S(H) | Pρ 6= 0}. By Lemma 4 in [4], the entropy H(ρ) of an arbitrary state ρ can
be defined by

H(ρ) = lim
n→+∞

H
(
ΘPn

(ρ)
)

and the relative entropy H(ρ ‖σ) can be defined for any states ρ and σ by

H(ρ ‖σ) = lim
n→+∞

H
(
ΘPn

(ρ) ‖ΘPn
(σ)

)
,

where {Pn} is an arbitrary increasing sequence of finite-rank projectors strongly
converging to the identity operator IH. (Here we assume that n is so large that ρ
and σ lie in D(ΘPn

).) This means that both limits (finite or infinite) exist and are
independent of the choice of the sequence {Pn}. Since the states ΘPn(ρ) and ΘPn(σ)
are supported by the finite-dimensional subspace Pn(H) for each n, this observation
reduces the definition of the entropy and relative entropy to the finite-dimensional
case.

In this section we obtain analogous results for the χ-capacity and optimal average
of any set of states. Given any closed set of states in the d-dimensional Hilbert space,
one can take the supremum in the definition of χ-capacity over all ensembles of d2

states. Hence the χ-capacity and optimal average of this set can be determined by
the methods of linear programming [13]. Thus the results of this section provide a
constructive definition of the χ-capacity and optimal average state for an arbitrary
set of infinite-dimensional states. In principle, one can use this for the numerical
approximation of these quantities.

For any projector P it is clear that the corresponding map ΘP is continuous at
every point of its domain. Although this map is non-linear, we have the following
result.

Lemma 7. 1) For any convex set A ⊆ D(ΘP ), its image ΘP (A) under ΘP is a
convex subset of S(H).

2) For every ensemble {πi, ρi}m
i=1 of states in ΘP (A), there is an ensemble

{λi, σi}m
i=1 of states in A such that

ΘP (σi) = ρi, λi TrPσi = πi

m∑
j=1

λj TrPσj , i = 1, . . . ,m.
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Proof. It suffices to prove assertion 2) of the lemma since it implies that

ΘP

( ∑
i

λiσi

)
=

∑
i

πiρi.

For every i, the state ρi in ΘP (A) is the image of some state σi in A. Let
ηi = πi(TrPσi)−1 be a positive number for each i = 1, . . . ,m, and let

{
λi =

ηi

( ∑m
j=1 ηj

)−1}m

i=1
be a probability distribution. Adding the equations λi TrPσi =

πi

( ∑m
j=1 ηj

)−1, we get
∑m

i=1 λi TrPσi =
( ∑m

j=1 ηj

)−1.

Lemma 8. Let A be a set of finite χ-capacity and P a projector such that η(A, P ) =
infρ∈A TrPρ > 0. Then

η(A, P )C
(
ΘP (A)

)
6 C(A).

Proof. For any ensemble {πi, ρi} of states in ΘP (A), let {λi, σi} be the correspond-
ing ensemble of states in A provided by Lemma 7. It follows that η =

∑
i λiηi,

where ηi = TrPσi and η = TrP σ.
Consider the channel

Φ(ρ) = PρP +
(
Tr(I − P )ρ

)
τ,

where τ is the pure state corresponding to an arbitrary unit vector in H 	 P (H).
Using general properties of the relative entropy, we obtain

χ
(
{λi,Φ(σi)}

)
=

∑
i

λiH(PσiP ‖P σP )

+
∑

i

λiH
(
(Tr(I − P )σi)τ ‖ (Tr(I − P )σ)τ

)
>

∑
i

λiH(PσiP ‖P σP )

=
∑

i

λiH(ηiρi ‖ ηρ) >
∑

i

λiηiH(ρi ‖ ρ) = η
∑

i

πiH(ρi ‖ ρ) > η(A, P )χ({πi, ρi}).

Since the relative entropy is monotone, we have

χ
(
{λi,Φ(σi)}

)
6 χ({λi, σi}).

The lemma follows from the last two inequalities.

Remark 6. One cannot replace the coefficient η(A, P ) by 1 in Lemma 8. (See the
example in Remark 7 below.)

Theorem 2. Let A be an arbitrary subset of S(H).
1) If the χ-capacity of A is finite, then

lim
n→+∞

C
(
ΘPn

(A)
)

= C(A), lim
n→+∞

Ω
(
ΘPn

(A)
)

= Ω(A)

for every sequence {Pn} of projectors strongly converging to IH.
2) If there is a sequence {Pn} of projectors strongly converging to IH such that

all maps {ΘPn} are well defined on A and the sequence
{
C

(
ΘPn(A)

)}
is bounded,

then the χ-capacity C(A) is finite.
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Proof. Suppose that C(A)<+∞ and let {Pn} be an arbitrary sequence of projectors
strongly converging to IH. The set A is relatively compact by assertion 4) of
Theorem 1. The compactness criterion yields that limn→+∞ η(A, Pn) = 1, where
η(A, Pn) = infρ∈A TrPnρ. Thus A ⊆ D(ΘPn

) for all sufficiently large n. Using
Lemma 8, we obtain

lim sup
n→+∞

C
(
ΘPn

(A)
)

6 C(A).

Since ΘPn
(ρ) → ρ as n→ +∞, assertion 1) of Lemma 1 implies that

lim inf
n→+∞

C
(
ΘPn

(A)
)

> C(A).

Using the last two inequalities, we obtain the first limit formula of the theorem.
The second follows from assertion 2) of Lemma 1.

Suppose that C(A) = +∞ and let {Pn} be a sequence of finite-rank projectors
strongly converging to IH and such that A ⊆ D(ΘPn

) for all sufficiently large n.
Then assertion 1) of Lemma 1 implies that

lim
n→+∞

C
(
ΘPn(A)

)
= +∞.

Remark 7. The convergence of the sequence
{
C

(
ΘPn(A)

)}
to C(A) may be of a

different nature, depending on the choice of the sequence {Pn}. It is interesting
to note that one can find a set A and a sequence {Pn} such that

{
C

(
ΘPn

(A)
)}

converges to C(A) in a strictly decreasing way. Indeed, let A be the set consisting
of two states

{
1
2ρ + 1

2σi

}
i=1,2

. Here ρ is a state with infinite-dimensional sup-
port Hρ such that the subspace H 	 Hρ is two-dimensional, and σ1, σ2 are the
states corresponding to orthogonal unit vectors in H	Hρ. Let {Pn} be a sequence
of finite-rank projectors such that Pn(H) ⊇ H	Hρ and the sequence {ηn = TrPnρ}
strictly increases to 1. We easily see that

C
(
ΘPn

(A)
)

=
1

1 + ηn
log 2 ↘ 1

2
log 2 = C(A), n→ +∞.

The author is grateful to A. S. Holevo for his help in preparing this paper.
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