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Abstract: Several equivalent formulations of the additivity conjecture for constrained
channels, which formally is substantially stronger than the unconstrained additivity, are
given. To this end a characteristic property of the optimal ensemble for such a channel
is derived, generalizing the maximal distance property. It is shown that the additivity
conjecture for constrained channels holds true for certain nontrivial classes of channels.
After giving an algebraic formulation for Shor’s channel extension, its main asymptotic
property is proved. It is then used to show that additivity for two constrained channels
can be reduced to the same problem for unconstrained channels, and hence, “global”
additivity for channels with arbitrary constraints is equivalent to additivity without con-
straints.

1. Introduction

In the recent paper [14] Shor gave arguments which show that conjectured additivity
properties for several quantum information quantities, such as the minimal output entropy,
the Holevo capacity (in what follows χ -capacity) and the entanglement of formation are
in fact equivalent. An important new tool in these arguments is the construction of a
special extension �̂ for an arbitrary channel � which has desired properties lacking for
the initial channel. In this paper we show that this extension allows us to deal with the
additivity conjecture for quantum channels with constrained inputs. Introducing input
constraints provides greater flexibility in the treatment of the additivity conjecture. In a
sense, Shor’s channel extension plays a role of the Lagrange function in optimization for
the additivity questions. On the other hand, while [14] deals with the “global” additivity,
i.e. properties valid for all possible channels, in this paper we make emphasis on results
valid for individual channels.

We start with giving several equivalent formulations of the additivity conjecture for
constrained channels (Theorem 1), which formally is substantially stronger than the
unconstrained additivity. To this end a characteristic property of the optimal ensemble
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for such a channel is derived (Proposition 1), generalizing the maximal distance property
[11]. It is shown that the additivity conjecture for constrained channels holds true for
certain nontrivial classes of channels (Proposition 2). After giving an algebraic formu-
lation for Shor’s channel extension [14], its main property (Proposition 3) is proved. It
is then used to show that additivity for two constrained channels can be reduced to the
same problem for unconstrained channels, and hence, global additivity for channels with
arbitrary constraints is equivalent to global additivity without constraints (Theorem 2
and corollaries).

Further results in this direction can be found in [4], on which the present paper is
based.

2. Basic Quantities

Let H, H′ be finite dimensional Hilbert spaces and let � : S(H) �→ S(H′) be a channel,
where S(H) denotes the set of states (density operators) in H. Let {πi} be a finite prob-
ability distribution and {ρi} a collection of states in S(H), then the collection {πi, ρi}
is called an ensemble, and ρav = ∑

i πiρi is its average.
An important entropic characteristic of the ensemble is defined by

χ� ({πi, ρi}) = H

(
∑

i

πi� (ρi)

)

−
∑

i

πiH (� (ρi)) , (1)

where H (·) is the von Neumann entropy. Following [6], we denote

χ�(ρ) = max
ρav=ρ

χ�({πi, ρi}).

Notice that

χ�(ρ) = H (� (ρ)) − Ĥ� (ρ) , (2)

where

Ĥ� (ρ) = min
ρav=ρ

∑

i

πiH (� (ρi)) .

The function Ĥ� (ρ) is the convex closure [5, 1] (or the convex roof, cf. [15]) of the
output entropy H (� (ρ)) , which is a continuous concave function. The function Ĥ� (ρ)

is a natural generalization of the entanglement of formation and coincides with it when
the channel � is a partial trace. The continuity of Ĥ� (ρ) follows from the MSW corre-
spondence [6] and the continuity of the entanglement of formation [7]. Thus the function
χ�(ρ) (briefly χ -function) is itself continuous and concave on S(H).

Consider the constraint on the ensemble {πi, ρi} defined by the requirement ρav ∈ A,
where A is a closed subset of S(H). A particular case is linear constraint, where the
subset Al is defined by the inequality TrAρav ≤ α for some positive operator A and a
number α ≥ 0. Define the χ -capacity of the A-constrained channel � by

C̄(�; A) = max
ρ∈A

χ�(ρ) = max
ρav∈A

χ�({πi, ρi}). (3)

In case of the linear constraint Al we also use the notation C̄(�; A, α). Note that the
χ -capacity for the unconstrained channel is C̄(�) = C̄(�; S(H)).
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Lemma 1. For arbitrary channel � : S(H) �→ S(H′) and arbitrary density opera-
tor ρ0 of full rank there exists a positive operator A ≤ IH in B(H) such that ρ0 is the
maximum point of the function χ�(ρ) under the condition TrAρ ≤ α, where α = TrAρ0.

The statement of the lemma is intuitively clear, but its proof (seeAppendix, I) requires
an argument from the convex analysis due to the fact that the function χ�(ρ) may not
be smooth.

3. Optimal Ensembles

An ensemble {πi, ρi} on which the maximum in (3) is achieved is called an optimal
ensemble for the A -constrained channel �. The following proposition generalizes the
maximal distance property of optimal ensembles for unconstrained channels [11].

Proposition 1. Let A be a closed convex set. The ensemble {πi, ρi} with the average
state ρav ∈ A is optimal for the A -constrained channel � if and only if

∑

j

µjH(�(ωj )‖�(ρav)) ≤ χ�({πi, ρi})

for any ensemble {µj , ωj } with the average ωav ∈ A, where H(·‖·) is the relative
entropy.

Proof. The proof generalizes the argument in [11] by considering variations of the initial
ensemble involving not a single component but the whole ensemble.

Let {πi, ρi}ni=1 and {µj , ωj }mj=1 be two ensembles with the averages ρav and ωav

contained in A. Consider the variation of the first ensemble by mixing it with the second
one with the weight coefficient η. The modified ensemble

�η = {(1 − η)π1ρ1, ..., (1 − η)πnρn, ηµ1ω1, ..., ηµmωm}
has the average ρ

η
av = (1−η)ρav +ηωav ∈ A (by convexity). Using the relative entropy

expression for the quantity (1), we have

χ�

(
�η
) = (1 − η)

n∑

i=1

πiH(�(ρi)‖�(ρη
av)) + η

m∑

j=1

µjH(�(ωj )‖�(ρη
av)). (4)

Applying Donald’s identity [11, 12] to the original ensemble we obtain

n∑

i=1

πiH(�(ρi)‖�(ρη
av)) = χ�(�0) + H(�(ρav)‖�(ρη

av)).

Substitution of the above expression into (4) gives

χ�

(
�η
) = χ�(�0) + (1 − η)H(�(ρav)‖�(ρη

av))

+η





m∑

j=1

µjH(�(ωj )‖�(ρη
av)) − χ�(�0)



 . (5)
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Applying Donald’s identity to the modified ensemble we obtain

(1 − η)

n∑

i=1

πiH(�(ρi)‖�(ρav)) + η

m∑

j=1

µjH(�(ωj )‖�(ρav))

= χ�

(
�η
)+ H(�(ρη

av)‖�(ρav)),

and hence

χ�

(
�η
) = χ�

(

�0
)

− H(�(ρη
av)‖�(ρav))

+η





m∑

j=1

µjH(�(ωj )‖�(ρav)) − χ�

(

�0
)


 . (6)

Since the relative entropy is nonnegative, the expressions (5) and (6) imply the following
inequalities for the quantity 	χ� = χ� (�η) − χ�

(
�0
)
:

η

[
m∑

j=1
µjH(�(ωj )‖�(ρ

η
av)) − χ�

(
�0
)
]

≤ 	χ� ≤
η

[
m∑

j=1
µjH(�(ωj )‖�(ρav)) − χ�

(
�0
)
]

.

(7)

Now the proof of the proposition is straightforward. If

∑

j

µjH(�(ωj )‖�(ρav)) ≤ χ�

(

�0
)

for any ensemble {µj , ωj } of states in S( H) with the average ωav ∈ A, then by the
second inequality in (7) with η = 1 we have

χ�({µj , ωj }) = χ�(�1) ≤ χ�

(

�0
)

= χ�({πi, ρi}),

which means optimality of the ensemble {πi, ρi}.
To prove the converse, suppose {πi, ρi} is an optimal ensemble and there exists an

ensemble {µj , ωj } such that

∑

j

µjH(�(ωj )‖�(ρav)) > χ�

(

�0
)

.

By continuity of the relative entropy, there is η > 0 such that

∑

j

µjH(�(ωj )‖�(ρη
av)) > χ�

(

�0
)

.

By the first inequality in (7), this means that χ� (�η) > χ�

(
�0
)

in contradiction with
the optimality of the ensemble {πi, ρi} �	
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Corollary 1. Let ρav be the average of an optimal ensemble for the A-constrained chan-
nel �, then

C̄(�; A) = χ�(ρav) ≥ χ�(ρ) + H(�(ρ)‖�(ρav)), ∀ρ ∈ A.

Proof. Let {πi, ρi} be an arbitrary ensemble such that
∑

i πiρi=ρ ∈A. By Proposition 1
∑

i

πiH(�(ρi)‖�(ρav)) ≤ χ�(ρav).

This inequality and Donald’s identity,
∑

i

πiH(�(ρi)‖�(ρav)) = χ�({πi, ρi}) + H(�(ρ)‖�(ρav)),

complete the proof. �	

4. Additivity for Constrained Channels

Let 
 : S(K) �→ S(K′) be another channel with the constraint, defined by a closed
subset B ⊂ S(K). For the channel � ⊗ 
 we consider the constraint defined by the
requirements σ�

av := TrKσav ∈ A and σ

av := TrHσav ∈ B, where σav is the average

state of an input ensemble {µi, σi}. The closed subset of S(H⊗K) defined by the above
requirements will be denoted A ⊗ B.

We conjecture the following additivity property for constrained channels

C̄ (� ⊗ 
; A ⊗ B) = C̄(�; A) + C̄(
; B). (8)

The usual additivity conjecture for unconstrained channels is obtained by setting A =
S(H), B =S(K).

Theorem 1. Let � and 
 be fixed channels. The following properties are equivalent:

(i) equality (8) holds for arbitrary closed A and B;
(ii) equality (8) holds for arbitrary linear constraints Al and Bl;

(iii) for arbitrary σ ∈ S(H ⊗ K)

χ�⊗
(σ) ≤ χ�(σ�) + χ
(σ
); (9)

(iv) for arbitrary σ ∈ S(H ⊗ K)

Ĥ�⊗
(σ) ≥ Ĥ�(σ�) + Ĥ
(σ
). (10)

These are also equivalent to the corresponding additivity properties of χ� and Ĥ�

for tensor product states. By using the MSW correspondence, the case of Ĥ� can be
reduced to entanglement of formation, for which this was established in [14, 10].

Proof. (i) ⇒ (ii) is obvious. (ii) ⇒ (i) can be proved by double application of the
following lemma.

Lemma 2. The equality (8) holds for fixed closed B and arbitrary closed A if it holds for
the set B and an arbitrary linear constraint Al , defined by the inequality TrAρ ≤ α with
a positive operator A and a number α such that there exists a state ρ′ with TrAρ′ < α.
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Proof. Assume that the equality (8) holds for the set B and arbitrary set Al , satisfying
the above condition. It is sufficient to prove that

χ�⊗
(σ) ≤ χ�(σ�) + C̄(
; B) (11)

for any σ ∈ S(H ⊗ K) such that σ
 ∈ B. Due to continuity of the χ -function, it
is sufficient to prove (11) for a state σ with partial trace σ� of full rank. For the state
σ� we can choose a positive operator A in B(H) in accordance with Lemma 1. Let
Al = {ρ ∈ S(H) | TrAρ ≤ α = TrAσ�}. The full rank of σ� guarantees the existence
of a state ρ′ such that TrAρ′ < α = TrAσ�. Let ω be the average state of the optimal
ensemble for the B-constrained channel 
. Due to the above assumption the state σ�⊗ω

is the average state of the optimal ensemble for the Al ⊗B-constrained channel �⊗
.
But it is clear that this ensemble will also be optimal for {σ�} ⊗ B-constrained channel
� ⊗ 
 and, hence, (11) is true. �	

(i) ⇒ (iv). Fix the states ρ and ω and take A = {ρ}, B = {ω}, then (8) becomes

C̄ (� ⊗ 
; {ρ} ⊗ {ω}) = C̄(�; {ρ}) + C̄(
; {ω}). (12)

This implies existence of unentangled ensemble with the average ρ⊗ω, which is optimal
for the {ρ} ⊗ {ω} -constrained channel � ⊗ 
. By Corollary 1 we have

χ�⊗
(ρ ⊗ ω) = χ�(ρ) + χ
(ω)≥χ�⊗
(σ) + H((� ⊗ 
)(σ)‖�(ρ) ⊗ 
(ω))

(13)

for any state σ ∈ S(H) ⊗ S(K) such that σ� = ρ and σ
 = ω. Note that

H((� ⊗ 
)(σ)‖�(ρ) ⊗ 
(ω)) = H(�(ρ)) + H(
(ω)) − H((� ⊗ 
)(σ)). (14)

The inequality (13) together with (14) and (2) implies (10).
(iv) ⇒ (iii) obviously follows from the definition of the χ -function and subaddi-

tivity of the (output) entropy.
(iii) ⇒ (i). From the definition of the χ -capacity and (9),

C̄ (� ⊗ 
; A ⊗ B) ≤ C̄(�; A) + C̄(
; B).

Since the converse inequality is obvious, there is equality here.

Remark 1. The additivity of the χ−capacity for arbitrarily constrained channels is for-
mally substantially stronger than the usual unconstrained additivity. Indeed, the latter
holds trivially for channels that are (unconstrained) partial traces, but the additivity for
constrained partial traces, by the MSW correspondence, would imply validity of the
global additivity conjecture.

The following proposition implies that the set of quantum channels satisfying the
properties in Theorem 1 is nonempty. We shall use the following obvious statement

Lemma 3. Let {�j }nj=1 be a collection of channels from S(H) into S(Hj ), and let

{qj }nj=1 be a probability distribution. Then for the channel � = ⊕n
j=1 qj�j from

S(H) into S(
⊕n

j=1 Hj ) one has

χ� ({ρi, πi}) =
n∑

j=1

qjχ�j ({ρi, πi}) .
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We shall call � the direct sum mixture of the channels {�j }nj=1.

Proposition 2. Let 
 be an arbitrary channel. The inequality (9) holds in each of the
following cases:

(i) � is a noiseless channel;
(ii) � is an entanglement breaking channel;

(iii) � is a direct sum mixture of a noiseless channel and a channel �0 such that (9)
holds for �0 and 
 (in particular, an entanglement breaking channel).

An obvious example of a channel of the type (iii) is the erasure channel.

Proof. (i)The proof is a modification of the proof in [3] of the “unconstrained” additivity
for two channels with one of them noiseless, based on the Groenevold-Lindblad-Ozawa
inequality [9]

H(σ) ≥
∑

j

pjH(σj ), (15)

where σ is a state of a quantum system before von Neumann measurement, σj — the
posterior state with the outcome j and pj is the probability of this outcome.

Let � = Id be the noiseless channel and let ρ be an arbitrary state in S(H). We want
to prove that

C̄(Id ⊗ 
, {ρ} ⊗ {ω}) = C̄(Id, {ρ}) + C̄(
, {ω}) = H(ρ) + χ
(ω). (16)

Let {µi, σi} be an ensemble of states in S(H ⊗ K) with
∑

i µiσ
�
i = ρ,

∑

i µiσ


i = ω.

By subadditivity of quantum entropy

χId⊗
({µi, σi}) = H(Id ⊗ 
(
∑

i

µiσi)) −
∑

i

µiH(Id ⊗ 
(σi))

≤ H(ρ) + H(
(ω)) −
∑

i

µiH(Id ⊗ 
(σi)). (17)

Consider the measurement, defined by the observable {|ej 〉〈ej | ⊗ IK}, where {|ej 〉} is
an orthonormal basis in H. By (15) we obtain

H(Id ⊗ 
(σi)) ≥
∑

j

pijH(
(σ

ij )), for all i,

where pij = 〈ej |σi |ej 〉 and σ

ij = p−1

ij |ej 〉〈ej | ⊗ IK · σi · |ej 〉〈ej | ⊗ IK. Note that
∑

j pij σ


ij = σ


i and
∑

ij µipij σ


ij = ω. This and the previous inequality show that

the last two terms in (17) do not exceed χ
({µipij , σ


ij }) and, hence, χ
(ω). With this

observation (17) implies (16) and hence the proof is complete.
(ii) See [13] where the additivity conjecture for two unconstrained channels with one

of them entanglement breaking was proved. In the proof of this theorem the subadditivity
property of the χ -function was in fact established. We can also deduce the subadditivity
of the χ -function from the unconstrained additivity with the help of Corollary 2 (see
Sect. 5 below). One should only verify that entanglement breaking property of a channel
implies a similar property of Shor’s extension for that channel.



424 A.S. Holevo, M.E. Shirokov

(iii) Let �q = qId ⊕ (1 − q)�0. For an arbitrary channel 
 we have �q ⊗ 
 =
q(Id ⊗ 
) ⊕ (1 − q)(�0 ⊗ 
). By using Lemma 3 and subadditivity of the functions
χId⊗
 and χ�0⊗
 ,

χ�q⊗
(σ) ≤ qχId⊗
(σ) + (1 − q)χ�0⊗
(σ)

≤ qχId(σ
�) + qχ
(σ
) + (1 − q)χ�0(σ

�) + (1 − q)χ
(σ
)

= qH(σ�) + (1 − q)χ�0(σ
�) + χ
(σ
) = χ�q (σ

�) + χ
(σ
),

where the last equality follows from the existence of a pure state ensemble on which the
maximum in the definition of χ�0(σ

�) is achieved. �	

5. Shor’s Channel Extension

Let � be a channel from S(H) to S(H′), and let E be an operator in B(H), 0 ≤ E ≤ I .
Let q ∈ [0; 1] and d ∈ N = {1, 2, . . . }. Shor’s channel extension �̂ with probability
1 − q acts as the channel � and with probability q makes a measurement in H with
the outcomes {0, 1} corresponding to the resolution of the identity

{
E⊥, E

}
, where we

denote E⊥ = I −E. If the outcome is 1, then log d classical bits are sent to the receiver,
otherwise – a failure signal [14]. Later q will tend to zero while d – to infinity, such that
q log d = λ will be constant. The channel �̂ will then mostly act on input states ρ as �,

at the same time rarely sending a lot of classical information at the rate proportional to
the value TrρE, which to some extent explains its relation to the capacity of the channel
� with constrained inputs to be explored in this section.

Translating the definition into algebraic language, consider the following channel
�̂(E, q, d), which maps states on B(H) ⊗ Cd into states on B(H′) ⊕ Cd+1, where Cd

is the commutative algebra of complex d-dimensional vectors describing a classical sys-
tem. By using the isomorphism of B(H)⊗Cd with the direct sum of d copies of B(H),
any state in B(H) ⊗ Cd can be represented as an array {ρj }dj=1 of positive operators

in B(H) such that Tr
∑d

j=1 ρj = 1. The action of the channel �̂(E, q, d) on the state

ρ̂ = {ρj }dj=1 with ρ = ∑d
j=1 ρj is defined by

�̂(E, q, d)(ρ̂) = (1 − q)�0(ρ̂) ⊕ q�1(ρ̂),

where �0(ρ̂) = �(ρ) ∈ S(H′) and �1(ρ̂) = [TrρE⊥, Trρ1E, ..., TrρdE] ∈ Cd+1.

Note that �0 and �1 are channels from B(H) ⊗ Cd to B(H′) and to Cd+1 correspond-
ingly. The input state space of the channel �̂(E, q, d) will be denoted S�̂.

Remark 2. More precisely, since in this paper channel means a map defined on the
algebra of all operators in the input Hilbert space, the action of �̂(E, q, d) should
be extended correspondingly. Then Cd is considered as the algebra of diagonal matri-
ces acting in d−dimensional Hilbert space Hd , and the input algebra of the channel
B(H)⊗Cd ⊂ B(H⊗Hd), while the output algebra B(H′)⊕Cd+1 ⊂ B(H′ ⊕Hd+1).

The action of �̂(E, q, d) can then be naturally extended to the whole of B(H ⊗ Hd)

by letting �̂ vanish on the elements A ⊗ B, where A ∈ B(H) and B is any matrix with
zeroes on the diagonal, acting in Hd . This is described in [14] by saying that the first
action of �̂(E, q, d) is to make a measurement in the canonical basis of Hd .
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Proposition 3. Let 
 : S(K) �→ S(K′) be an arbitrary B-constrained channel. Con-
sider the channel �̂(E, q, d) ⊗ 
. Then
∣
∣
∣
∣C̄
(
�̂(E, q, d) ⊗ 
, S�̂ ⊗ B)− max

σ :TrHσ∈B
[
(1 − q)χ�⊗
(σ)+q log dTr σ(E ⊗ IK)

]
∣
∣
∣
∣

≤ q(log dim K′ + 1).

Proof. Due to the representation

�̂(E, q, d) ⊗ 
 = (1 − q) (�0 ⊗ 
) ⊕ q (�1 ⊗ 
) , (18)

Lemma 3 reduces the calculation of the quantity χ�̂(E,q,d)⊗
 for any ensemble of input
states to the calculation of the quantities χ�0⊗
 and χ�1⊗
 for this ensemble.

Note that any state σ̂ in B(H) ⊗ Cd ⊗ B(K) can be represented as an array {σj }dj=1

of positive operators in B(H⊗K) such that Tr
∑d

j=1 σj = 1. Denote by δj (σ ) the array

σ̂ with the state σ in the j th position and with zeroes in other places.
It is known that for any channel there exists a pure state optimal ensemble [11] and

that the image of the average state of any optimal ensemble is the same (this follows
from Corollary 1). These facts and symmetry arguments imply existence of an optimal
ensemble for the channel �̂(E, q, d)⊗
 consisting of the states σ̂i,j = δj (σi) with the
probabilities µ̂i,j = d−1µi , where {µi, σi} is an ensemble of states in S(H ⊗ K) (cf.
[14]). Let σ̂av = ∑

i,j µ̂i,j σ̂i,j and σav = ∑

i µiσi be the averages of these ensembles.

Note that σ̂av = [d−1σav, ..., d
−1σav].

The action of the channel �0 ⊗ 
 on the state σ̂ = [
σj

]d
j=1 with σ = ∑d

i=1 σi is

�0 ⊗ 
(̂σ) = � ⊗ 
(σ).

Hence �0 ⊗ 
(̂σi,j ) = � ⊗ 
(σi) and

χ�0⊗
({µ̂i,j , σ̂i,j }) = χ�⊗
({µi, σi}). (19)

Let us prove that

χ�1⊗
({µ̂i,j , σ̂i,j }) = log dTrσav(E ⊗ IK) + f E

 ({µi, σi}), (20)

where 0 ≤ f E

 ({µi, σi}) ≤ log dim K′ +1. It is easy to see that the action of the channel

�1 ⊗ 
 on the state σ̂ = [
σj

]d
j=1 with σ = ∑d

i=1 σi is

�1 ⊗ 
(̂σ) = [
E⊥(σ ), 
E(σ1), ..., 
E(σd)],

where 
A(·) = TrH(A ⊗ IK)(Id ⊗ 
)(·) is a completely positive trace-nonincreasing
map from B(H ⊗ K) into B( K′), (A = E, E⊥, and Id is the identity map on S(H)).

Therefore,

H(�1 ⊗ 
(̂σi,j )) = H(
E⊥(σi)) + H(
E(σi)), (21)

and

�1 ⊗ 
(̂σav) =
∑

i,j

µ̂i,j�1 ⊗ 
(̂σi,j )

= [
E⊥(σav), d
−1
E(σav), ..., d

−1
E(σav)].
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Due to this

H(�1 ⊗ 
(̂σav)) = log d Tr
E(σav) + H(
E(σav)) + H(
E⊥(σav)). (22)

Using (21), (22) and Tr
E(σ) = Trσ(E ⊗ IK), we obtain

χ�1⊗
({µ̂i,j , σ̂i,j }) = log d Trσav(E ⊗ IK) + H(
E(σav)) + H(
E⊥(σav))

−
∑

i

µi(H(
E(σi)) + H(
E⊥(σi)))

= log dTrσav(E ⊗ IK) + χ
E
({µi, σi}) + χ


E⊥ ({µi, σi}). (23)

Using the inequalities 0 ≤ H(S) ≤ TrS(log dim H − log TrS) for any positive operator
S ∈ B(H), and h2(x) = x log x + (1 − x) log(1 − x) ≤ 1, it is possible to show that

f E

 ({µi, σi}) := χ
E

({µi, σi}) + χ

E⊥ ({µi, σi}) ≤ log dim K′ + 1, (24)

hence we obtain (20).
Lemma 3 with (19) and (20) imply

χ�̂(E,q,d)⊗
({µ̂i,j , σ̂i,j })
= (1 − q)χ�0⊗
({µ̂i,j , σ̂i,j }) + qχ�1⊗
({µ̂i,j , σ̂i,j })
= (1 − q)χ�⊗
({µi, σi}) + q log dTrσav(E ⊗ IK) + qf E


 ({µi, σi}).
The last equality with (24) completes the proof. �	
Theorem 2. Let � : S(H) �→ S(H′) and 
 : S(K) �→ S(K′) be arbitrary channels
with the fixed constraint on the second one defined by a closed set B. The following
statements are equivalent:

(i) The additivity (8) holds for the A-constrained channel � with arbitrary closed
A ∈ S(H) and the B-constrained channel 
;

(ii) The additivity holds asymptotically for the sequence of the channels {�̂(E, λ/ log d,
d)}d∈N with arbitrary operator 0 ≤ E ≤ I and arbitrary nonnegative number λ

(without constraints) and the B-constrained channel 
, in the sense that

lim
d→+∞

C̄(�̂(E, λ/ log d, d) ⊗ 
, S�̂ ⊗ B)

= lim
d→+∞

C̄(�̂(E, λ/ log d, d)) + C̄(
, B).

Proof. Note, first of all, that for an operator 0 ≤ E ≤ I and a number λ ≥ 0 Proposition
3 implies

lim
d→+∞

C̄(�̂(E, λ/ log d, d)) = max
ρ

[χ�(ρ) + λTrρE] (25)

and

lim
d→+∞

C̄(�̂(E, λ/ log d, d) ⊗ 
, S�̂ ⊗ B) = max
σ :TrHσ∈B

[
χ�⊗
(σ) + λ Tr σ(E ⊗ IK)

]

(26)

correspondingly.
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Begin with (i) ⇒ (ii). Suppose that there exist an operator 0 ≤ E ≤ I and a number
λ ≥ 0 such that (ii) does not hold for the sequence �̂(E, λ/ log d, d) and the channel

. Due to (25) and (26) this means that

max
σ : σ
∈B

[
χ�⊗
(σ) + λTr σ(E ⊗ IK)

]
> max

ρ
[χ�(ρ) + λTrρE] + C̄(
, B). (27)

Let σ∗ be a maximum point in the left side of the above inequality and α = Trσ∗(E⊗IK).
By the statement (i) the additivity holds for the channel � with the constraint TrρE⊥ ≤
1 − α and the B -constrained channel 
. So there exist such states ρ and ω ∈ B that
TrρE ≥ α and χ�(ρ) + χ
(ω) ≥ χ�⊗
(σ∗). Hence

max
σ : σ
∈B

[
χ�⊗
(σ) + λTrσ(E ⊗ IK)

] = χ�⊗
(σ∗) + λTr σ∗(E ⊗ IK)

≤ χ�(ρ) + χ
(ω) + λTrρE

≤ max
ρ

[χ�(ρ) + λTrρE] + C̄(
; B)

in contradiction with (27).
The proof of (ii) ⇒ (i) is based on Lemma 2. Let Al be a set defined by the inequality

TrρA ≤ α with an operator 0 ≤ A ≤ I and a positive number α such that there exists
a state ρ′ with Trρ′A < α. Due to Lemma 2 it is sufficient to show that

C̄
(

� ⊗ 
; Al ⊗ B
)

≤ C̄(�; Al ) + C̄(
; B). (28)

Suppose, " > " takes place in (28). Then there exists an ensemble {µi, σi} in S(H⊗K)

with the average σav, such that Trσ�
avA ≤ α, σ


av ∈ B and

χ�⊗
({µi, σi}) > C̄(�; Al ) + C̄(
; B). (29)

Let ρav be the average state of the optimal ensemble for the Al -constrained channel �

so that C̄(�; Al ) = χ�(ρav).

Note that the state ρav is the point of maximum of the concave function χ�(ρ) with
the constraint TrρA ≤ α. By the Kuhn-Tucker theorem (we use the strong version of
this theorem with the Slater condition, which follows from the existence of a state ρ′
such that Trρ′A < α ) [5], there exists a nonnegative number λ, such that ρav is the point
of the global maximum of the function χ�(ρ) − λTrρA and the following condition
holds:

λ(TrAρav − α) = 0. (30)

It is clear that ρav is also the point of the global maximum of the concave function
χ�(ρ) + λTrρE, where E = I − A, so that

χ�(ρ) + λTrρE ≤ χ�(ρav) + λTrρavE, ∀ρ ∈ S(H). (31)

Consider the sequence �̂(E, λ/ log d, d). Assumed asymptotic additivity together with
(25) and (26) implies

max
σ

[
χ�⊗
(σ) + λTr σ(E ⊗ IK)

] = max
ρ

[χ�(ρ) + λTrρE] + C̄(
; B). (32)

Due to (30) and (31) we have

max
ρ

[χ�(ρ) + λTrρE] = χ�(ρav) + λTrρav(I − A) = C̄(�; Al ) + λ(1 − α). (33)
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Noting that

Tr σav(A ⊗ IK) = Trσ�
avA ≤ α,

we have by (29)

max
σ : σ
∈B

[
χ�⊗
(σ) + λTrσ(E ⊗ IK)

]

≥ χ�⊗
(σav) + λTrσav(E ⊗ IK) > C̄(�; Al ) + C̄(
; B) + λ(1 − α).

The contradiction of the last inequality with (32) and (33) completes the proof of (28),
and hence (ii) ⇒ (i). �	
Corollary 2. The additivity of χ -capacity for Shor’s channel extensions �̂(E, q, d)

and 
̂(F, r, e) with arbitrary pairs (E, q, d) and (F, r, e) implies its additivity for the
A-constrained channel � and the B-constrained channel 
 with arbitrary A ⊂ S(H)

and B ⊂ S(K).

Proof. This is obtained by double application of theorem 2. �	
Corollary 3. If the additivity holds for any two unconstrained channels then it holds for
any two channels with arbitrary constraints.

Remark 3. The statement of Corollary 3 could be also deduced by combining results of
[14] and [6], but we gave a direct proof here.

6. Additive Constraints

Let A be a positive operator in H, and let

A(n) = A ⊗ · · · ⊗ IH + · · · + IH ⊗ · · · ⊗ A

be the corresponding operator in H⊗n. The classical capacity of the channel � with
inputs subject to the additive constraint

Trρ(n)A(n) ≤ nα; n = 1, 2, . . .

is shown [2] to be equal to

C(�; A, α) = lim
n→∞ C̄(�⊗n; A(n), nα)/n.

In [6] the following weak additivity property was considered:

C̄(� ⊗ 
; A ⊗ IK + IH ⊗ B, γ ) = max
α+β=γ

[
C̄(�; A, α) + C̄(
; B, β)

]
, (34)

where � and 
 are channels with the input spaces H and K, and the corresponding
linear constraints TrρA ≤ α and TrρB ≤ β. It is easy to see that the additivity for the
two constrained channels in the sense (8) implies the weak additivity (34). The extension
of the latter to n channels implies

C̄(�⊗n; A(n), nα) = nC̄(�; A, α),
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and hence the equality C(�; A, α) = C̄(�; A, α). Indeed, the function f (α) =
C̄(�; A, α) defined by (3) is nondecreasing and concave (see Appendix, II), whence

max
α1+···+αn=nα

[f (α1) + · · · + f (αn)]

is achieved for α1 = · · · = αn = α.

The weak additivity conjecture for constrained channels becomes equivalent to the
additivity conjecture in the sense of this paper when this weak additivity holds true for
any two channels. Indeed, the latter implies global additivity for channels without con-
straints, from which global additivity for constrained channels follows by Corollary 3.

Needless to say, however, that in applications constraints usually arise when the
channel space is infinite-dimensional and the constraint operators are unbounded. The
finite dimensionality (implying boundedness of the constraint operators) is crucial in
this paper, and relaxing this restriction is both interesting and nontrivial problem.

7. Appendix

I. The main property underlying the proof of Lemma 1 is the concavity of the function
χ�(ρ) on S(H). This function may not be smooth, therefore we will use non-smooth
convex analysis arguments instead of derivatives calculations.

Consider the Banach space Bh(H) of all Hermitian operators on H and the concave
extension χ̂� of the function χ� to Bh(H), defined by:

χ̂�(ρ) =
{

[Trρ] · χ�([Trρ]−1ρ), ρ ∈ B+(H);
−∞, ρ ∈ Bh(H)\B+(H),

where B+(H) is the convex cone of positive operators in H. The function χ̂� is bounded
in a neighborhood of any internal point of B+(H) (and, hence, by the concavity it is
continuous at all internal points of B+(H), which are nondegenerate positive operators,
see [5], 3.2.3).

By the assumption ρ0 is an internal point of the cone B+(H). Hence, the convex
function −χ̂� is continuous at ρ0. Due to the continuity, the subdifferential of the convex
function −χ̂� at the point ρ0 is not empty (see [5], 4.2.1). This means that there exists a
linear function l(ρ) such that ρ0 is the minimum point of the function −χ̂�(ρ) − l(ρ).
Any linear function on Bh(H) has the form l(ρ) = TrAρ for some A ∈ Bh(H).
Hence, ρ0 is also the minimum point of the function −χ̂�(ρ) under the conditions
TrAρ = α = TrAρ0 and Trρ = 1. Introduce the operator A′ = 1

2 [‖A‖−1A+ I ] and the
number α′ = 1

2 [‖A‖−1α+1]. The linear variety defined by the conditions TrρA = α and
Trρ = 1 coincides with that defined by the conditions TrA′ρ = α′ and Trρ = 1. There-
fore, ρ0 is the minimum point of the function −χ̂�(ρ) under the conditions TrA′ρ = α′
and Trρ = 1, and, hence, ρ0 is the maximum point of the function χ�(ρ) under the
condition TrA′ρ = α′. By concavity of the function χ�(ρ) it implies that ρ0 is the max-
imum point of the function χ�(ρ) under the condition either TrA′ρ ≤ α′ or TrA′ρ ≥ α′
(see II below). By noting that 0 ≤ A′ ≤ I and setting A and α to be equal to A′ and α′ in
the first case and to I −A′ and 1 −α′ in the second, we complete the proof of Lemma 1.
II. If F(x) is a concave continuous function and l(x) is a linear function on a compact
convex subset of a finite dimensional vector space, then the function

f (α) = max
x:l(x)=α

F (x)
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is concave. Indeed, assume f (α) is not, then there exist α1, α2 such that f (α1+α2
2 ) <

1
2 [f (α1) + f (α2)] . Let xi be points at which the maxima are achieved, i. e. l(xi) = αi

and f (αi) = F(xi), then l( x1+x2
2 ) = α1+α2

2 and F(x1+x2
2 ) ≤ f (α1+α2

2 ) < 1
2 [F(x1)+

F(x2)], which contradicts the concavity of F.A similar argument applies to the functions
f+(α) = maxx:l(x)≤α F (x) and f−(α) = maxx:l(x)≥α F (x) which are thus also concave.

With the same definitions one has either f (α) = f+(α) or f (α) = f−(α), for
otherwise there exist x1, x2 such that

l(x1) < α; F(x1) > f (α); l(x2) > α; F(x2) > f (α).

Then taking λ = l(x2)−α
l(x2)−l(x1)

one has 0 < λ < 1, l(λx1 + (1 − λ)x2) = α and

F(λx1 + (1 − λ)x2) ≤ f (α) < λF(x1) + (1 − λ)F (x2),

contradicting the concavity of F.
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