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Abstract: We propose examples of low dimensional quantum channels demonstrating
different forms of superactivation of one-shot zero-error capacities, in particular, the
extreme superactivation (this complements the recent result of Cubitt and Smith). We also
describe classes of quantum channels whose zero-error classical and quantum capacities
cannot be superactivated. We consider implications of the superactivation of one-shot
zero-error capacities to analysis of reversibility of a tensor-product channel with respect
to families of pure states. Our approach based on the notions of complementary channel
and of transitive subspace of operators makes it possible to study the superactivation
effects for infinite-dimensional channels as well.

1. Introduction

The effect of superactivation of quantum channel capacities is one of the main recent
discoveries in quantum information theory. It means that the particular capacity of a
tensor product of two quantum channels may be positive despite the fact that same
capacity of each of these channels is zero.

This effect was originally observed by Smith and Yard in [24], who gave examples
of two channels � and � with zero quantum capacity such that the channel �⊗� has
positive quantum capacity.

The same phenomenon for the (one shot and asymptotic) zero-error classical capac-
ities was established by Cubitt et al. in [3]. Simultaneously and independently, Duan
presented an example of low dimensional channels demonstrating superactivation of the
one-shot zero-error classical capacity [8].

The extreme form of superactivation of zero-error capacities was observed by Cubitt
and Smith in [4], who proved the existence of two channels� and� with zero (asymp-
totic) zero-error classical capacity such that the channel �⊗� has positive zero-error
quantum capacity.
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In this paper we present examples of low dimensional quantum channels, which
demonstrate different forms of superactivation of one-shot zero-error capacities. In par-
ticular, in Corollary 2 we give a symmetric example of superactivation of one-shot zero-
error classical capacity with the minimal possible input dimension dim HA = 4 and the
minimal Choi rank dim HE = 3 so that dim HB ≤ 12 (this answers the question stated
after Theorem 1 in [8]). As to the extreme form of superactivation of one-shot zero-error
capacities, the existence of such channels in high dimensions follows from the results
in [4]. However, nothing was known about their minimal dimensions. Here (Corollary
3) we give an explicit example with dim HA = 8, dim HE = 5 and dim HB ≤ 40.

The aim of this paper is also to point out the relation between the superactivation
of one-shot zero-error capacities and results on transitive and reflexive subspaces of
operators [6,20]. In fact, the notion of transitive subspace is very close to the notion of
unextendible subspace traditionally used in analysis of the superactivation (one can easily
show that in finite dimensions they are related by the natural isomorphism between the
tensor product H⊗K of two Hilbert spaces and the space of all operators from H to K).
Nevertheless, the recent results concerning transitive subspaces of operators (presented
in [6]) seem to be unknown for specialists in quantum information theory. It is also
essential that these results can be used for analysis of superactivation effects for infinite
dimensional quantum channels.

Some results concerning transitive and reflexive subspaces of operators can also be
applied for showing that channels of certain type cannot be superactivated by any other
channels. A result in this direction was obtained recently by Park and Lee in [22]. They
showed that superactivation of one-shot zero-error classical capacity is not possible if
one of two channels is a qubit channel. Our approach gives a very simple proof of this
result and also allows us to prove similar statements for some other important classes of
channels (Proposition 3, Corollary 6). We also describe classes of channels for which
the superactivation of one-shot and asymptotic zero-error quantum capacities does not
hold (Proposition 4, Corollary 8).

In this paper we also consider the relations between positivity of one-shot classical
and quantum zero-error capacities of a quantum channel and reversibility properties of
this channel with respect to families of pure states. These relations show that the su-
peractivation of one-shot classical (correspondingly, quantum) zero-error capacities is
equivalent to “superactivation” of reversibility of a channel with respect to orthogonal
(correspondingly, non-orthogonal) families of pure states. It is observed that such super-
activation of reversibility with respect to complete families of pure states is not possible
(Proposition 5).

2. On Positivity of Classical and Quantum Zero-Error Capacities
of a Quantum Channel

Let H be a separable1 Hilbert space, B(H) and T(H)—the Banach spaces of all bounded
operators in H and of all trace-class operators in H correspondingly, S(H) – the closed
convex subset of T(H) consisting of positive operators with unit trace called states
[12,21]. If dim H = n < +∞ we may identify B(H) and T(H) with the space Mn of
all n × n matrices (equipped with the appropriate norm).

1 In the main part of the paper we may assume that these spaces are finite-dimensional, although all the
results are valid in infinite dimensions if we accept the value “+∞” for C̄0(�), Q̄0(�), etc. The case of
infinite-dimensional quantum channels is included because of our intension to study reversibility properties
of a tensor product channel (Sect. 5).
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Let � : T(HA) → T(HB) be a quantum channel, i.e. a completely positive trace-
preserving linear map [12,21]. The dual channel �∗ : B(HB) → B(HA) (defined by
the relation Tr�(ρ)B = Trρ �∗(B), ρ ∈ T(HA), B ∈ B(HB)) is a completely positive
map such that �∗(IHB ) = IHA .

The Stinespring theorem implies the existence of a Hilbert space HE and of an
isometry V : HA → HB ⊗ HE such that

�(ρ) = TrHE VρV ∗, ρ ∈ T(HA). (1)

The quantum channel

T(HA) � ρ 	→ ̂�(ρ) = TrHB VρV ∗ ∈ T(HE ) (2)

is called complementary to the channel� [12,13]. The complementary channel is defined
uniquely up to isometrical equivalence [13, the Appendix].

The Stinespring representation (1) generates the Kraus representation

�(ρ) =
dim HE
∑

k=1

VkρV ∗
k , ρ ∈ T(HA), (3)

in which {Vk} is a set of linear operators from HA into HB such that
∑

k V ∗
k Vk = IHA .

The operators Vk are defined by the relation

〈ϕ|Vkψ〉 = 〈ϕ ⊗ k|Vψ〉, ϕ ∈ HB, ψ ∈ HA,

where {|k〉} is an orthonormal basis in the space HE . The complementary channel (2)
can be expressed via these operators as follows

̂�(ρ) =
dim HE
∑

k,l=1

Tr
[

VkρV ∗
l

] |k〉〈l|, ρ ∈ T(HA). (4)

Among different Stinespring representations (1) of a given channel� there are represen-
tations with the environment space HE of minimal dimension (such representations are
called minimal [13]). They generate Kraus representations (3) with the minimal number
of nonzero summands called Choi rank of the channel � [12,21]. We assume in what
follows that (1) is a minimal Stinespring representation, so that dim HE is the Choi rank
of �.

The one-shot zero-error classical capacity C̄0(�) of a channel � can be defined as
supS∈c0(�)

log �(S), where c0(�) is the set of all families {ρi } of input states such that
supp�(ρi ) ⊥ supp�(ρ j ) for all i 
= j .2 The (asymptotic) zero-error classical capacity
is defined by regularization: C0(�) = supn n−1C̄0(�

⊗n) [3,4,8,10,19,22].
Let ϕ,ψ ∈ HA. It follows from (1), (2) and the Schmidt decomposition of the vectors

Vϕ and Vψ in HB ⊗ HE that

supp�(|ϕ〉〈ϕ|) ⊥ supp�(|ψ〉〈ψ |) ⇔ ̂�(|ϕ〉〈ψ |) = 0. (5)

This observation implies the following lemma.

2 The support suppρ of a state ρ is the orthogonal complement to its kernel.
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Lemma 1. A channel � : T(HA) → T(HB) has positive one-shot zero-error classical
capacity if and only if ker ̂� contains a 1-rank operator.

The assertion of Lemma 1 agrees with Lemma 1 in [8], since representation (4)
shows that the subspace ̂�∗(B(HE )) is precisely the noncommutative graph G(�) of
the channel � which is defined as the subspace of B(HA) spanned by the family of
operators {V ∗

j Vk}k j , where {Vk}k is the family of operators from the Kraus representation
(3) of the channel � [10, Lemma 1].

Definition 1. [6] A subspace L ⊆ B(H) is (topologically) transitive if for any vector
ϕ ∈ H the set L|ϕ〉 .= {A|ϕ〉 | A ∈ L} is dense in H.

If H is a finite-dimensional space then “is dense in” in the above definition may be
replaced by “coincides with”.

The following lemma is our basic tool for studying the one-shot zero-error classical
capacity.

Lemma 2. A channel � : T(HA) → T(HB) has positive one-shot zero-error classical
capacity if and only if the noncommutative graph G(�) .= ̂�∗(B(HE )) is not transitive.

Proof. It is easy to check that a subspace L of B(H) is transitive if and only if the
subspace L⊥ = {A ∈ T(H) | Tr AB = 0 ∀B ∈ L} does not contain any 1-rank operator
(this was first noticed by Azoff [1], see also [6]). Now the statement follows from
Lemma 1. ��

The one-shot zero-error quantum capacity Q̄0(�) of a channel � can be defined
as supH∈q0(�)

log dim H, where q0(�) is the set of all subspaces H0 of HA on which
the channel � is perfectly reversible (in the sense that there is a channel � such that
�(�(ρ)) = ρ for all states ρ supported by H0, see [12, Chap. 10]). The (asymptotic)
zero-error quantum capacity is defined by regularization: Q0(�) = supn n−1 Q̄0(�

⊗n)

[3,4,8,10,19,22].
Hence the one-shot zero-error quantum capacity Q̄0(�) is positive if and only if

there exists a nontrivial subspace H0 of HA such that the restriction of the channel ̂� to
the subset S(H0) is completely depolarizing [12, Chap. 10], i.e. ̂�(ρ1) = ̂�(ρ2) for all
states ρ1 and ρ2 supported by H0.

These arguments imply the following modification of Lemma 1 in [4].

Lemma 3. A channel � : T(HA) → T(HB) has positive one-shot zero-error quantum
capacity if and only if there are unit vectors ϕ and ψ in HA such that

̂�(|ϕ〉〈ψ |) = 0 and ̂�(|ϕ〉〈ϕ|) = ̂�(|ψ〉〈ψ |) (6)

or, equivalently,

〈ψ |A|ϕ〉 = 0 and 〈ϕ|A|ϕ〉 = 〈ψ |A|ψ〉 ∀A ∈ G(�) .= ̂�∗(B(HE )). (7)

Proof. It is easy to see that ̂�(|ϕ〉〈ψ |) = 0 if and only if

̂�(ρ) = 〈ϕ|ρ|ϕ〉̂�(|ϕ〉〈ϕ|) + 〈ψ |ρ|ψ〉̂�(|ψ〉〈ψ |)
for all statesρ supported by the subspace Hϕ,ψ spanned by the vectorsϕ andψ . Hence (6)
holds if and only if the restriction of the channel ̂� to the subset S(Hϕ,ψ) is completely
depolarizing. ��
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Lemmas 2 and 3 imply the following conditions for positivity of the one-shot classical
and quantum zero-error capacities.

Proposition 1. Let � : T(HA) → T(HB) be a quantum channel and G(�) .=
̂�∗(B(HE )) its noncommutative graph. Then

[G(�)]′ is non-trivial ( 
= {λI }) ⇒ C̄0(�) > 0, (8)

[G(�)]′ is noncommutative ⇒ Q̄0(�) > 0. (9)

If G(�) is an algebra then “⇔” holds in the above implications.

Remark 1. In general “⇔” does not hold in (8) and (9). There exists a channel � with
Q̄0(�) > 0 for which [G(�)]′ = {λI }. Indeed, since the subspace of M4 consisting of
the matrices

[

λI2 A
B C

]

, A, B,C ∈ M2,

is symmetric and contains the unit matrix I4, Proposition 2 below (or Lemma 2 in [8])
shows that this subspace is the noncommutative graph of some channel �. It follows
from Lemma 3 that Q̄0(�) > 0, but it is easy to see that the commutant of this subspace
is trivial.

Proof. If the algebra [G(�)]′ is non-trivial, then it contains a non-trivial projection P .
Then G(�)P(HA) ⊆ P(HA) and hence G(�) is not transitive. The first implication
follows now from Lemma 2.

If the algebra [G(�)]′ is noncommutative, then, by Lemma 4 below, there exists a
partial isometry W ∈ [G(�)]′ such that the projections P = W ∗W and Q = W W ∗ are
orthogonal. Let |ϕ〉 be an arbitrary vector in P(HA) and |ψ〉 = W |ϕ〉 ∈ Q(HA). Then
it is easy to see that (7) holds and by Lemma 3 the second implication follows.

By Lemma 2 C̄0(�) > 0 implies the existence of a non-zero vector ϕ such that
Hϕ = {A|ϕ〉, A ∈ G(�)} 
= HA. If G(�) is an algebra then Hϕ is an invariant subspace
for G(�). Since the algebra G(�) is symmetric, it implies that the orthogonal projection
onto Hϕ commutes with G(�).

Suppose G(�) is an algebra and Q̄0(�) > 0. We will show that [G(�)]′ contains two
orthogonal equivalent projections and hence is noncommutative. By Lemma 3 there are
vectors ϕ and ψ in HA such that (7) holds. Let Hϕ = {A|ϕ〉 | A ∈ G(�)} and Hψ =
{A|ψ〉 | A ∈ G(�)}. It follows from (7) that Hϕ ⊥ Hψ and that ‖A|ϕ〉‖ = ‖A|ψ〉‖ for
all A ∈ G(�). Hence the operator W defined by the relations

W A|ϕ〉 = A|ψ〉 ∀A ∈ G(�) and W |φ〉 = 0 ∀φ ∈ H⊥
ϕ

is a partial isometry for which Hϕ and Hψ are initial and final subspaces. Since these
subspaces are invariant for all operators in G(�), it is easy to see that W ∈ [G(�)]′.
Thus, the algebra [G(�)]′ contains the orthogonal equivalent projections W ∗W and
W W ∗ (onto Hϕ and Hψ respectively). ��
Lemma 4. 3 A von Neumann algebra M is noncommutative if and only if it contains
two orthogonal equivalent projections.4

3 We are grateful to Victor Shulman for this observation.
4 Two projections P and Q are said to be equivalent relative to a von Neumann algebra Mwhen P = W∗W

and Q = W W∗ for some W ∈ M [18, Definition 6.1.4].
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Proof. If M is noncommutative then it contains a noncentral projection P . Let P̄ =
I − P . By the Comparison Theorem [18, Theorem 6.2.7.] there exists a central projection
E such that P E � P̄ E and P̄ Ē � P Ē , where Ē = I − E and “ �” denotes the
projection ordering (relative to M) [18]. Since P is noncentral, either P E 
= 0 or
P̄ Ē 
= 0 (otherwise P = Ē).

If P E 
= 0 then P E is equivalent to some projection Q ≤ P̄ E . It is clear that the
projections P E and Q are orthogonal.

If P̄ Ē 
= 0 then the similar arguments shows the existence of a projection Q′ ≤ P Ē
equivalent to P̄ Ē . ��
Example 1. An important class of channels for which “⇔” holds in (8) and in (9) consists
of Bosonic Gaussian channels defined as follows.

Let HX (X = A, B) be the space of irreducible representation of the Canonical
Commutation Relations (CCR)

WX (z)WX (z
′) = exp

(− i
2 
X (z, z′)

)

WX (z
′ + z), z, z′ ∈ Z X ,

where (Z X ,
X ) is a symplectic space and WX (z) are the Weyl operators [2,11],[12,
Chap. 12]. Denote by sX the number of modes of the system X , i.e. 2sX = dim Z X . A
Bosonic Gaussian channel �K ,l,α : T(HA) → T(HB) is defined via the action of its
dual �∗

K ,l,α : B(HB) → B(HA) on the Weyl operators:

�∗
K ,l,α(WB(z)) = WA(K z) exp

[

i l z − 1
2 z�α z

]

, z ∈ Z B,

where K : Z B → Z A is a linear operator, l is a 2sB-dimensional real row and α is a real
symmetric (2sB) × (2sB) matrix satisfying the inequality α ≥ ± i

2

[


B − K �
A K
]

[2,11,12].
Any Bosonic Gaussian channel�K ,l,α is unitary equivalent to the channel�K ,0,α for

which Bosonic unitary dilation always exists [2,12]. So, Lemma 2 in [23] shows that the
noncommutative graph of the channel �K ,0,α coincides with the algebra generated by
the family {WA(z)}z∈[K (ker α)]c of Weyl operators in HA, where [K (ker α)]c is the skew-
orthogonal complement to the subspace K (ker α) ⊆ Z A. It follows that [G(�K ,0,α)]′ =
[{WA(z)}z∈K (ker α)

]′′.
Since ker K ∩ ker α = {0} and 
A(K z1, K z2) = 
B(z1, z2) for all z1, z2 in ker α

(see [12, Chap. 12] or [23, Lemma 2]), the algebra
[{WA(z)}z∈K (ker α)

]′′ is nontrivial if
and only if ker α 
= {0} and it is noncommutative if and only if 
B |ker α 
= 0. Thus,
Proposition 1 shows that

{ C̄0(�K ,l,α) > 0 } ⇔ { ker α 
= {0} },
{ Q̄0(�K ,l,α) > 0 } ⇔ { ∃ z1, z2 ∈ ker α such that 
B(z1, z2) 
= 0 }. (10)

In fact, positivity of these capacities means that they are equal to +∞.5

Since the tensor product of two Gaussian channels �K1,l1,α1 and �K2,l2,α2 is a
Gaussian channel �K ,l,α with α = α1 ⊕ α2, it is easy to see that equivalence rela-
tions (10) are valid for the asymptotic zero-error capacities as well, i.e. for C0(�K ,l,α)

and Q0(�K ,l,α) instead of C̄0(�K ,l,α) and Q̄0(�K ,l,α).

5 This follows from the observations in [23, Section 4C].
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3. Superactivation of One-Shot Zero-Error Capacities

3.1. The case of zero-error classical capacities. The superactivation of one-shot zero-
error classical capacity means that

C̄0(�1) = C̄0(�2) = 0, but C̄0(�1 ⊗�2) > 0. (11)

for some channels�1 and�2. The existence of such channels was shown independently
in [3,8]. In particular, in [8] an example of two channels�1 
= �2 having input dimension
dim HA = 4 such that (11) holds was constructed and it was mentioned that this is the
minimal input dimension for which superactivation (11) may take place. Then by using
these two channels and a direct sum construction a symmetric example of superactivation
(i.e. (11) with �1 = �2) with input dimension dim HA = 8 was obtained [8, Theorem
1]. In this section we will construct a symmetric example of superactivation (11) with
the minimal input dimension dim HA = 4 and the minimal Choi rank dim HE = 3.

Since a subspace L of the algebra Mn of n × n-matrices is a noncommutative graph
of a particular channel if and only if

L is symmetric (L = L∗) and contains the unit matrix (12)

(see Lemma 2 in [8] and Proposition 2 below), Lemma 2 reduces the problem of finding
channels for which (11) holds to the problem of finding transitive subspaces L1 and L2
satisfying (12) such that L1 ⊗ L2 is not transitive. It is this way that was used in [8] to
construct the channels �1 and �2 mentioned above.

It is interesting that the non-preserving of transitivity under tensor product was known
in the theory of operator subspaces: a transitive subspace L0 ⊂ M4 such that L0 ⊗ L0
is not transitive was constructed in [6, Example 3.10]. Moreover, the subspace L⊥

0
.=

{A | Tr AB = 0 ∀B ∈ L0} in this example also has the same property. The above
subspaces L0 and L⊥

0 consist respectively of the matrices

⎡

⎢

⎣

a b h 2g
c d f e
e f a b
g h c d

⎤

⎥

⎦,

⎡

⎢

⎣

a b −h −g
c d − f −e
e f −a −b
g/2 h −c −d

⎤

⎥

⎦, a, b, c, d, e, f, g, h ∈ C.

This example does not give an example of superactivation of one-shot zero-error
classical capacity, since the subspaces L0 and L⊥

0 are not symmetric. Nevertheless,
using a similar approach one can construct a symmetric example.

Theorem 1. There exists a symmetric transitive subspace L ⊆ M4 with dim L = 8
containing the unit matrix such that L ⊗ L is not transitive.

We will need two lemmas. The first one is similar to Lemma 2.1 in [6].

Lemma 5. Let � : Mn → Mn be a linear isomorphism with n2 different eigenvalues
and such that all eigenvectors of�∗ have rank more than or equal to 2. Then the subspace

L =
{[

A �(B)
B A

]

| A, B ∈ Mn

}

is transitive.
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Proof. Given z1, z2, x, y ∈ C
n with ‖x‖2 + ‖y‖2 
= 0, we need to find A and B in Mn

such that
[

A �(B)
B A

] [

x
y

]

=
[

z1
z2

]

.

Case 1: x, y 
= 0, x 
= λy. Take B = 0, A such that Ax = z1, Ay = z2.

Case 2: x = 0, y 
= 0. Take A such that Ay = z2 and B such that �(B)y = z1 (this
is possible, since � is an isomorphism).

Case 3: x 
= 0, y = 0. It is similar to the case 2.
Case 4: x, y 
= 0, x = λy. We need to find A, B such that

λAy +�(B)y = z1, λBy + Ay = z2.

Expressing Ay from the second equation and substituting into the first one, we get:

Ay = z2 − λBy, (13)

and λz2 − λ2 By +�(B)y = z1, whence (�(B)− λ2 B)y = z1 − λz2. It has a solution

if Ran(� − λ2) is transitive or, equivalently, Ker(�∗ − λ
2
) does not contain a 1-rank

operator. If λ2 is not an eigenvalue of � then it holds. If it is an eigenvalue, then this
kernel is a 1-dimensional subspace generated by a matrix of rank ≥ 2, so it again holds.
And now one finds A from (13). ��
Lemma 6. Let L be a subspace of Mn. The subspace L ⊗ L is transitive if and only if
the subspace LAL� .= {∑i Xi AY �

i | Xi ,Yi ∈ L} coincides with Mn for each A ∈ Mn.

Proof. We may identify C
n ⊗C

n with Mn by the linear isomorphism U : x ⊗y 	→ x ·y�
(we assume that x, y are columns).

There exists a linear isomorphism� : B(Cn ⊗C
n) → B(Mn) given by�(T ⊗S) =

LT RS� (left multiplication by T and right multiplication by S�), which agrees with U
in the sense that

U [T ⊗ S]z = �(T ⊗ S)U z ∀z ∈ C
n ⊗ C

n .

This implies the assertion of the lemma. ��
Proof of Theorem 1. Let

C1 =
[

0 i
1 0

]

, C2 =
[

0 −i
1 0

]

, C3 =
[

1 0
0 1

]

, C4 =
[

1 0
0 −1

]

.

These matrices form an orthogonal basis in M2. Let λ1 = i, λ2 = −i, λ3 = 1, λ4 = −1.
We define an unitary map � : M2 → M2 by �(Ci ) = λi Ci .

LetL =
{[

A �(B)
B A

]

| A, B ∈ M2

}

be a subspace ofM4. Since�

([

a b
c d

])

=
[

d −c
b a

]

, the subspace L consists of the matrices

⎡

⎢

⎣

a b h −g
c d f e
e f a b
g h c d

⎤

⎥

⎦ , a, b, c, d, e, f, g, h ∈ C.
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It is clear that dim L = dim M2 + dim M2 = 8 and that the subspace L is symmetric.
Transitivity of L follows from Lemma 5.
To prove that L ⊗ L is not transitive it suffices, by Lemma 6, to show that

L

[

1 0
0 −1

]

L� 
= M4. We have

L

[

1 0
0 −1

]

L�

=
{

∑

i

[

A1
i �(B1

i )

B1
i A1

i

][

1 0
0 −1

][

A2
i B2�

i
�(B2

i )
� A2

i

]

| A1,2
i , B1,2

i ∈ M2

}

=
{

∑

i

[

A1
i −�(B1

i )

B1
i −A1

i

][

A2
i B2�

i
�(B2

i )
� A2

i

]

| A1,2
i , B1,2

i ∈ M2

}

=
{[∑

i (A
1
i A2

i −�(B1
i )�(B

2
i )

�) . . .

. . .
∑

i (B
1
i B2�

i − A1
i A2

i )

]

| A1,2
i , B1,2

i ∈ M2

}

(14)

Let B1, B2 ∈ M2. We can write them as B1 = ∑

i ti Ci , B2 = ∑

i si Ci . Since
TrCi C�

j 
= 0 only in the cases: a) i = 1, j = 2, b) i = 2, j = 1, c) i = j = 3,
d) i = j = 4, we obtain

Tr(B1 B2� −�(B1)�(B2)�)

= Tr

⎛

⎝

∑

i, j

ti s j Ci C
�
j −

∑

i, j

λi tiλ j s j Ci C
�
j

⎞

⎠

=
∑

i, j

Tr(1 − λiλ j )ti s j Ci C
�
j

= Tr(1 − λ1λ2)t1s2C1C�
2 + Tr(1 − λ2λ1)t2s1C2C�

1

+ Tr(1 − λ2
3)t3s3C3C�

3 + Tr(1 − λ2
4)t4s4C4C�

4 = 0.

(15)

It follows from (14) and (15) that for any T ∈ L

[

1 0
0 −1

]

L� we have

Tr(T11 + T22) = 0.

Thus L

[

1 0
0 −1

]

L� 
= M4. ��

To derive from Theorem 1 an example of superactivation of one-shot zero-error
classical capacity with smallest possible dimension we need the following observation
(which is a strengthened version of Lemma 2 in [8]).

Proposition 2. Let L be a subspace of Mn, n ≥ 2, and m the minimal natural number
such that dim L ≤ m2. The following statements are equivalent:
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(i) L is symmetric (L∗ = L) and contains the unit matrix;
(ii) there exists an entanglement-breaking channel � : Mn → Mm such that L =

�∗(Mm) (�∗ : Mm → Mn is a dual map to the channel �).
(iii) there exists a pseudo-diagonal6 channel � : Mn → Mnm with the Choi rank m

such that L = G(�) (the noncommutative graph of �).

Proof. (ii) ⇒ (i) is obvious.

(i) ⇒ (ii). We will show first that there is a basis {Ai }d
i=1 of L with all Ai ’s being

positive such that
∑d

i=1 Ai = In (the unit matrix in Mn). It is sufficient to show that
such a basis exists in the real space Lsa = {A ∈ L | A = A∗}, since it will also be a
basis for L over C (by symmetricity of L). Since any ball generates the whole space,
we can find a basis In, Ã2, . . . , Ãd with all Ãi belonging to a ball in Lsa with centrum
In and of radius, say, 1/2. Since for any A = A∗ ∈ Mn , ‖In − A‖ < 1 implies that
A ≥ 0, we conclude that Ãi ≥ 0. Now let M be a sufficiently large number such that
In −∑d

i=2 Ãi/M ≥ 0. Let A1 = In −∑d
i=2 Ãi/M. It is easy to see that A1, Ã2, . . . , Ãn

form a basis and

In = A1 +
d

∑

i=2

Ãi/M.

Now take Ai = Ãi/M, i = 2, . . . , d.
Let {Bi }d

i=1, d = dim L, be a set of positive linearly independent matrices in Mm
with unit trace. Consider the unital completely positive map

Mm � X 	→ �∗(X) =
d

∑

i=1

[TrBi X ]Ai ∈ Mn

Apparently Ran�∗ ⊆ L. To see that it is exactly L, we will show that each Ai is in
the range. For that we just take any X ∈ Mm such that TrB j X = 0 for all j 
= i and
TrBi X 
= 0, which exists since Bi ’s are linearly independent.

Since the map �∗ has the Kraus representation consisting of 1-rank operators, the
predual map � : Mn → Mm is an entanglement-breaking quantum channel.
(ii) ⇔ (iii) It suffices to note that a pseudo-diagonal channel is complementary to an

entanglement-breaking channel and vice versa [5]. ��
The proof of Proposition 2 can be used to obtain an explicit formula for a channel�

with given noncommutative graph.

Corollary 1. Let L be a subspace of Mn, n ≥ 2, satisfying (12) and m the minimal
natural number such that d = dim L ≤ m2. There is a pseudo-diagonal channel� with

6 A channel � : T(HA) → T(HB ) is called pseudo-diagonal if it has the representation

�(ρ) =
∑

i, j

ci j 〈ψi |ρ|ψ j 〉|i〉〈 j |, ρ ∈ T(HA),

where {ci j } is a Gram matrix of a collection of unit vectors, {|ψi 〉} is a collection of vectors in HA such that
∑

i |ψi 〉〈ψi | = IHA
and {|i〉} is an orthonormal basis in HB [5].
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dim HA = n, dim HE = m and dim HB ≤ mn such that G(�) = L represented as
follows

Mn � ρ 	→ �(ρ) =
d

∑

i, j=1

ci j A1/2
i ρA1/2

j ⊗ |i〉〈 j | ∈ Mn ⊗ Md , (16)

where {Ai }d
i=1 is a basis of L such that

∑d
i=1 Ai = In and Ai ≥ 0 for all i , {ci j } is the

Gram matrix of a set {|ψi 〉}d
i=1 of unit vectors in C

m such that the set {|ψi 〉〈ψi |}d
i=1 is

linearly independent and {|i〉} is the canonical basis in C
d .

By representation (16) the channel � maps a state ρ ∈ Mn into the d × d matrix
[

ci j A1/2
i ρA1/2

j

]

with entries in Mn . Its formal output dimension nd may be greater than

mn, but the real output dimension is ≤ mn (since� is complementary to a channel from
Mn into Mm , see the proof). If d > m this means that all the states �(ρ) in (16) are
supported by a proper subspace H0 ⊂ C

n ⊗ C
d such that dim H0 ≤ mn.

Proof. The proof of Proposition 2 shows that a channel�with the stated properties can
be constructed as the complementary channel to the channel

�(ρ) =
d

∑

i=1

[Tr Aiρ]Bi ,

where {Ai } ⊂ Mn is a basis of L determined in that proof and {Bi } ⊂ Mm is any
linearly independent set of positive matrices with unit trace. We may assume that Bi =
|ψi 〉〈ψi | for all i = 1, d , where {|ψi 〉}d

i=1 is a set of unit vectors in C
m such that the set

{|ψi 〉〈ψi |}d
i=1 is linearly independent. Consider the linear operator

V : |ϕ〉 	→
d

∑

i=1

A1/2
i |ϕ〉 ⊗ |i〉 ⊗ |ψi 〉

from C
n into C

n ⊗ C
d ⊗ C

m , where {|i〉} is the canonical basis in C
d .

Since
∑d

i=1 Ai = In and ‖ψi‖ = 1 for all i , V is an isometry. It is easy to see that

TrCn⊗Cd V |ϕ〉〈ϕ|V ∗ =
d

∑

i=1

[Tr Ai |ϕ〉〈ϕ|]|ψi 〉〈ψi |, ϕ ∈ C
n .

So, �(ρ) = TrCn⊗Cd VρV ∗ and hence

�(ρ) = ̂�(ρ) = TrCm VρV ∗ =
d

∑

i, j=1

〈ψ j |ψi 〉A1/2
i ρA1/2

j ⊗ |i〉〈 j |, ρ ∈ Mn .

��
Using the subspace L from Theorem 1 and applying Proposition 2 we obtain the

following corollary.
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Corollary 2. There is a pseudo-diagonal channel� : T(HA) → T(HB)with dim HA =
4, dim HE = 3 and dim HB ≤ 12, for which the following symmetric form of superac-
tivation of one-shot zero-error classical capacity holds:

C̄0(�) = 0, but C̄0(�⊗�) > 0. (17)

By finding a basis {Ai }8
i=1 of L such that

∑8
i=1 Ai = I4 and Ai ≥ 0 for all i and applying

Corollary 1 one can obtain an explicit expression for a channel � having the properties
stated in Corollary 2.

In [8, Theorem 1] the same statement was established with dim HA = 8 and it was
mentioned that (17) does not hold for any channel� with dim HA < 4. So, Corollary 2
gives a symmetric example of superactivation of one-shot zero-error classical capacity
with minimal input dimension dim HA and minimal Choi rank dim HE . Minimality of
dim HE = 3 follows from the fact that any transitive subspace of M4 has dimension
≥ 7 [6].

3.2. The extreme form of superactivation. According to the notations in [4], the extreme
form of superactivation of one-shot zero-error capacity means the existence of two
channels �1 and �2 such that

C̄0(�1) = C̄0(�2) = 0, but Q̄0(�1 ⊗�2) > 0. (18)

Since Q̄0 is less than or equal to C̄0, the channels�1 and�2 demonstrate superactivation
of both classical and quantum one-shot zero-error capacities simultaneously, i.e. (11)
and

Q̄0(�1) = Q̄0(�2) = 0, but Q̄0(�1 ⊗�2) > 0. (19)

In [4] a very sophisticated method is used to show the existence of two channels �1
and �2 of sufficiently high dimensions (dim HA = 48, dim HE = 1140, dim HB =
54720) for which the extreme form of superactivation of asymptotic zero-error capacity
holds (which means validity of (18) with C̄0 and Q̄0 replaced by C0 and Q0).

This result directly implies the existence of two channels �1 and �2 for which (18)
holds, but it neither gives an explicit form of these channels, nor says anything about
their minimal dimensions.

We want to fill this gap and present a low-dimensional example of such channels
expressed in terms of their noncommutative graphs.

By Lemmas 2 and 3 (with Proposition 2) the problem of finding channels for which
(18) holds is reduced to the problem of finding transitive subspaces L1 ⊂ Mn1 and
L2 ⊂ Mn2 satisfying (12) such that

〈ψ |A|ϕ〉 = 0 and 〈ϕ|A|ϕ〉 = 〈ψ |A|ψ〉 ∀A ∈ L1 ⊗ L2 (20)

for some unit vectors ϕ and ψ in C
n1 ⊗ C

n2 .
Let A 	→ ̂A be the linear isomorphism of M4 corresponding to the Schur multipli-

cation by the matrix

T = [ti j ] =
⎡

⎢

⎣

1 1 −i −i
1 1 −i −i
+i +i 1 1
+i +i 1 1

⎤

⎥

⎦ ,
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i.e. {âi j } = {ai j ti j }, and L0 the subspace of M4 constructed in Example 3.10 in [6] (L0

and L⊥
0 are described in Subsect. 3.1). Consider the subspaces

L1 =
{

M1 =
[

A1 B1
C1 ̂A1

]

, A1 ∈ M, B1,C∗
1 ∈ L⊥

0

}

and

L2 =
{

M2 =
[

̂A2 B2
C2 A2

]

, A2 ∈ M, B2,C∗
2 ∈ L⊥

0

}

,

of M8, where M is a subspace of M4 having the properties stated in Lemma 7 below.
Since dim L⊥

0 = 8, dim L1 = dim L2 = 8 + 8 + 7 = 23.

Since [̂A ]∗ = [̂A∗] and ̂I4 = I4, the subspaces L1 and L2 are symmetric and contain
the unit matrix I8. It is easy to see that they are transitive (since L⊥

0 , [L⊥
0 ]∗,M and

̂M
.= {̂A | A ∈ M} are transitive subspaces of M4).

Theorem 2. There exist unit vectors ϕ and ψ in C
8 ⊗ C

8 such that (20) holds for the
above transitive subspaces L1 and L2 of M8.

Proof. We have to show the existence of two orthogonal unit vectors ϕ,ψ in [C4 ⊕
C

4] ⊗ [C4 ⊕ C
4] such that

〈ψ |M1 ⊗ M2|ϕ〉 = 0 ∀M1 ∈ L1,M2 ∈ L2 (21)

and

〈ψ |M1 ⊗ M2|ψ〉 = 〈ϕ|M1 ⊗ M2|ϕ〉 ∀M1 ∈ L1,M2 ∈ L2. (22)

Let |u〉 = ∑4
i=1 |xi 〉 ⊗ |yi 〉 and |v〉 = ∑4

i=1 si |xi 〉 ⊗ |yi 〉 be the vectors in C
4 ⊗ C

4,
where |xi 〉 = |ei 〉, |yi 〉 = |e5−i 〉 ({|ei 〉} is the canonical basis in C

4) and s1 = s2 =
1, s3 = s4 = −1. It is shown in [6] that |u〉〈v| ∈ [L⊥

0 ⊗ L⊥
0 ]⊥, which means that

0 = 〈v|B1 ⊗ B2|u〉 =
4

∑

i, j=1

si 〈xi ⊗ yi |B1 ⊗ B2| x j ⊗ y j 〉 ∀B1, B2 ∈ L⊥
0 . (23)

Let |ϕ〉 = 1
2

∑4
i=1 |0, xi 〉 ⊗ |0, yi 〉 and |ψ〉 = 1

2

∑4
i=1 si |xi , 0〉 ⊗ |yi , 0〉. Then we

have

M1 ⊗ M2|ϕ〉 = 1

2

4
∑

i=1

|B1xi , ̂A1xi 〉 ⊗ |B2 yi , A2 yi 〉 (24)

and hence

〈ψ |M1 ⊗ M2|ϕ〉 = 1

4

4
∑

i, j=1

si 〈xi , 0| ⊗ 〈yi , 0| · |B1x j , ̂A1x j 〉 ⊗ |B2 y j , A2 y j 〉

= 1

4

4
∑

i, j=1

si 〈xi |B1|x j 〉〈yi |B2|y j 〉 = 0,
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where the last equality follows from (23). Thus (21) is valid. It follows from (24) that

〈ϕ|M1 ⊗ M2|ϕ〉 = 1

4

4
∑

i, j=1

〈0, xi | ⊗ 〈0, yi | · |B1x j , ̂A1x j 〉 ⊗ |B2 y j , A2 y j 〉

= 1

4

4
∑

i, j=1

〈xi |̂A1|x j 〉〈yi |A2|y j 〉= 1

4

4
∑

i, j=1

ti j a
1
i j a

2
k(i)k( j), k(i)=5 − i,

(25)

where an
i j are elements of the matrix An, n = 1, 2. Since

M1 ⊗ M2|ψ〉 = 1

2

4
∑

i=1

si |A1xi ,C1xi 〉 ⊗ |̂A2 yi ,C2 yi 〉,

we have

〈ψ |M1 ⊗ M2|ψ〉 = 1

4

4
∑

i, j=1

si s j 〈xi , 0| ⊗ 〈yi , 0| · |A1x j ,C1x j 〉 ⊗ |̂A2 y j ,C2 y j 〉

= 1

4

4
∑

i, j=1

si s j 〈xi |A1|x j 〉〈yi |̂A2|y j 〉

= 1

4

4
∑

i, j=1

si s j tk(i)k( j)a
1
i j a

2
k(i)k( j), k(i) = 5 − i.

The right hand side of this equality coincides with the right hand side of (25), since it is
easy to verify that ti j = si s j tk(i)k( j). Hence (22) is valid. ��
Lemma 7. There exists a transitive subspace M of M4 with dim M = 7 satisfying
(12) such that the subspace ̂M

.= {̂A | A ∈ M}, where A 	→ ̂A is the above-defined
isomorphism, is transitive (and satisfies (12)).

Proof. The proof below is essentially based on the arguments from the proof of Theorem
1.2 in [6].

Consider the subspace N ⊂ M4 consisting of the matrices

⎡

⎢

⎣

a + b + c f + g i 0
d + e −a 2 f + g i
h 2d + e −b 3 f + g
0 h 3d + e −c

⎤

⎥

⎦
,

where a, b, c, d, e, f, g, h, i are complex numbers.

This subspace does not contain 1-rank matrices. Indeed, a non-zero matrix N of N
is non-zero on some diagonal. Consider the square submatrix containing the shortest
non-zero diagonal of N as its main diagonal. This submatrix is triangular, and hence its
rank is not less than the rank of its diagonal, which is at least 2. Hence rankN ≥ 2.

Let M = N⊥ .= {A | Tr AB = 0 ∀B ∈ N}. Since the subspace N is symmetric
and consists of traceless matrices of rank 
= 1, M is a symmetric transitive subspace
containing the unit matrix. Since dim N = 9, dim M = 16 − 9 = 7.
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To complete the proof it suffices to show that the subspace ̂M is transitive. This can be
done by checking that Tr ̂ÂB = Tr AB for any A, B ∈ M4, which implies ̂M = [̂N]⊥,
and by verifying that the subspace ̂N does not contain 1-rank matrices (in the same way
as for N). ��

Theorem 2 and Proposition 2 immediately imply the following result.

Corollary 3. There exists a pair of pseudo-diagonal channels �i : T(HAi ) → T(HBi )

with dim HAi = 8, dim HEi = 5 and dim HBi ≤ 40, i = 1, 2, for which extreme
superactivation (18) holds.

By using Corollary 1 one can obtain explicit expressions for channels �1 and �2
having the properties stated in Corollary 3.

Since the subspaces L1 and L2 are not unitary equivalent, the above example of
extreme superactivation is essentially nonsymmetric:�1 
= �2. But they can be used to
construct a symmetric example by applying the direct sum construction (see the proof
of Theorem 1 in [8]).

Corollary 4. There exists a quantum channel� : T(HA) → T(HB)with dim HA = 16,
dim HE = 10 and dim HB ≤ 40, for which the following symmetric form of the extreme
superactivation holds:

C̄0(�) = 0, but Q̄0(�⊗�) > 0.

This means that the channel � has vanishing one-shot classical zero-error capacity
but positive two-shot quantum zero-error capacity.

4. On Channels Which Cannot be Superactivated

Park and Lee showed in [22] that superactivation of one-shot zero-error classical capacity
(11) does not hold if either �1 or �2 is a qubit channel.7 Now we will show how
to substantially extend this observation by using some results from [6] and [20], in
particular, the following lemma (which is a reformulation of Corollary 6.13 in [6]).

Lemma 8. Let L1 be a transitive subspace of B(H1) which is contained in the weak-
operator-topology closed linear span of its 1-rank elements. Then the spatial tensor
product L1 ⊗ L2 is a transitive subspace of B(H1 ⊗ H2) for any transitive subspace
L2 of B(H2).

This observation is a strengthened infinite-dimensional version of the well known
fact that the tensor product of any two unextendible product base is an unextendible
product base [7].

Proposition 3. Superactivation (11) of one-shot zero-error classical capacity does not
hold for two channels �i : T(HAi ) → T(HBi ), i = 1, 2 if the channel �1 satisfies one
of the following conditions (in which G(�1)

.= ̂�∗
1(B(HE1)) is the non-commutative

graph of �1):

(A) dim G(�1) ≥ [dim HA1 ]2 − 1 (dim HA1 < +∞);

7 In fact, one can prove that superactivation of one-shot zero-error classical capacity (11) does not hold if
either �1 or �2 has input dimension ≤ 3 [9].
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(B) dim HA1 = 2, in particular, �1 is a qubit channel;
(C) G(�1) is an algebra;
(D) �1 is a Bosonic Gaussian channel (described in Example 1);
(E) �1 is a finite-dimensional entanglement-breaking channel;
(F) �1 is an entanglement-breaking channel having Kraus representation (3) such that

rankVk = 1 for all k,8

and the channel �2 is arbitrary.

Proof. (A) If G(�1) = B(HA1) then this assertion follows from assertion C. If
dim G(�1) = [dim HA1]2 − 1 then dim ker ̂�1 = 1. If the one-shot zero-error
classical capacity of the channel �1 is zero then, by Lemma 1, the minimal rank
of all nonzero operators in ker ̂�1 is not less than 2. By [20, Theorem 1.1] this im-
plies that the subspace ker ̂�1 is reflexive, which means that G(�1) = [ker ̂�1]⊥
is spanned by its one rank elements [20, Claim 3.1].
If�2 is an arbitrary channel with zero one-shot zero-error classical capacity then
G(�2) is a transitive subspace (by Lemma 2). Lemma 8 shows that G(�1 ⊗�2) =
G(�1)⊗G(�2) is a transitive subspace and hence the one-shot zero-error classical
capacity of the channel �1 ⊗�2 is zero (by Lemma 2).

(B) If dim HA1 = 2 and C̄0(�1) = 0 then, by Lemma 1, all nonzero operators in
ker ̂�1 have rank = 2, i.e they are invertible. This implies that dim ker ̂�1 ≤ 1.
Indeed, if T, S are invertible operators in ker ̂�1 and λ is an eigenvalue of the
operator T S−1 then

T − λS = (T S−1 − λ)S

is a non-invertible operator in ker ̂�1 and hence T = λS. So, this assertion follows
from the previous one.

(C) If G(�1) is an algebra and C̄0(�1) = 0 then Proposition 1 and basic results of
the von Neumann algebras theory (cf.[18]) imply that G(�1) is dense in B(HA1)

in the weak-operator topology. Hence to prove that C̄0(�1 ⊗ �2) = 0 for any
channel �2 with C̄0(�2) = 0 it suffices, by Lemma 2, to show transitivity of the
subspace B(HA1)⊗ L for any transitive subspace L of B(HA2).
This assertion is obvious if n = dim HA1 < +∞, since in this case the subspace
B(HA1)⊗L can be identified with the subspace of all n ×n matrices with entries
in L (considered as operators in

⊕n
k=1 Hk , where Hk is a copy of HA2 for all k).

Assume that dim HA1 = +∞ and there is a vector |ϕ〉 = ∑+∞
i=1 ci |ei ⊗ fi 〉 in

HA1 ⊗ HA2 (where c1 
= 0, {|ei 〉} and {| fi 〉} are orthonormal base in HA1 and
in HA2 ) such that all the vectors C |ϕ〉, C ∈ B(HA1) ⊗ L, belong to a proper
subspace K of HA1 ⊗ HA2 . Let Hn be the subspace of HA1 spanned by the
vectors |e1〉, . . . , |en〉 and |ϕn〉 = ∑n

i=1 ci |ei ⊗ fi 〉. By the above observation the
set { C |ϕn〉 | C ∈ B(Hn)⊗ L } is dense in Hn ⊗ HA2 . But it is easy to see that

C |ϕn〉 = C |ϕ〉
for any C ∈ B(Hn)⊗ L. Since B(Hn)⊗ L ⊆ B(HA1)⊗ L this implies Hn ⊗
HA2 ⊆ K for any n, that is a contradiction.

(D) This assertion follows from the previous one, since the noncommutative graph of
a Bosonic Gaussian channel is an algebra (see Example 1).

8 This means that �⊗ IdK(ω) is a countably-decomposable separable state in S(HB ⊗ K) for any state
ω ∈ S(HA ⊗ K), see Remark 2 below.
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(E) If �1 is a finite-dimensional entanglement-breaking channel then it has Kraus
representation (3) such that rankVk = 1 for all k [15]. So, this assertion follows
from assertion F.

(F) In this case the noncommutative graph G(�1)
.= ̂�∗

1(B(HE1)) is spanned by
the 1-rank operators V ∗

k Vl (this follows from expression (4)). So, this assertion
follows from Lemmas 2 and 8. ��

Proposition 3 directly implies the following two observations.

Corollary 5. If a quantum channel � satisfies one of conditions A–F from Proposition
3 then C0(�) = 0 if and only if C̄0(�) = 0.

Corollary 6. Superactivation of asymptotic classical zero-error capacity (property (11)
with C̄0 replaced by C0) does not hold for channels �1 and �2, if �1 satisfies one of
conditions A-F from Proposition 3 and �2 is arbitrary.

Remark 2. The question about validity of the assertions of Proposition 3 and Corollar-
ies 5–6 for arbitrary infinite-dimensional entanglement-breaking channel �1 remains
open, since the existence of countably nondecomposable separable states in an infinite-
dimensional bipartite quantum system implies the existence of entanglement-breaking
channels which don’t have Kraus representation (3) with 1-rank operators Vk [14].

Proposition 4. Superactivation (19) of one-shot zero-error quantum capacity does not
hold for two channels �i : T(HAi ) → T(HBi ), i = 1, 2 if one of the following
conditions holds (in which G(�i )

.= ̂�∗
i (B(HEi )) is the noncommutative graph of�i ):

(A) G(�1) contains a maximal commutative ∗-subalgebra of Mn1 , where n1 = dim HA1

< +∞, and �2 is an arbitrary channel;
(B) dim HA1 = 2 ( in particular, when �1 is a qubit channel) and �2 is an arbitrary

channel;
(C) G(�1) and G(�2) are algebras;
(D) �1 and �2 are Bosonic Gaussian channels ( described in Example 1).

Proof. (A) Since a maximal commutative ∗-subalgebra of Mn1 consists of all matri-
ces which are diagonal with respect to some orthonormal basis, the noncommutative
graph G(�1 ⊗ �2) contains the subspace of all block-diagonal matrices of the form
diag(a1 A, . . . , an1 A), where a1, . . . , an1 ∈ C and A ∈ G(�2). So, the assumption
Q̄0(�1⊗�2) > 0 implies, by Lemma 3, the existence of unit vectors |ϕ〉 = (x1, . . . , xn1)

and |ψ〉 = (y1, . . . , yn1), where xk, yk ∈ HA2 , such that

n1
∑

k=1

ak〈yk |A|xk〉 = 0 and
n1
∑

k=1

ak〈xk |A|xk〉 =
n1
∑

k=1

ak〈yk |A|yk〉

for all a1, . . . , an1 ∈ C and all A ∈ G(�2). It follows that

〈yk |A|xk〉 = 0 and 〈xk |A|xk〉 = 〈yk |A|yk〉 (26)

for all k and all A ∈ G(�2). Since G(�2) contains the identity operator, (26) shows that
‖xk‖ = ‖yk‖ for all k and hence there exists k0 such that ‖xk0‖ = ‖yk0‖ 
= 0. Thus,
(26) with k = k0 implies, by Lemma 3, that Q̄0(�2) > 0.

(B) follows from assertion A, since the noncommutative graph G(�1) of any non-
reversible channel�1 with dim HA1 = 2 contains a maximal commutative ∗-subalgebra
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of M2. Indeed, since G(�1) contains an operator T 
= λI2, it contains a self-adjoint
operator T ′ 
= λI2 which is diagonal in a particular basis. The operators T ′ and I2
generate a maximal commutative ∗-subalgebra of M2 contained in G(�1).

(C) follows from Proposition 1, since

[G(�1 ⊗�2)]′ = [G(�1)]′ ⊗̄ [G(�2)]′,
where ⊗̄ denotes a tensor product of von Neumann algebras [18, Chap. 10].

(D) This assertion follows from the previous one, since the noncommutative graph
of a Bosonic Gaussian channel is an algebra (see Example 1). ��

Proposition 4 and its proof imply the following two observations.

Corollary 7. If a quantum channel � satisfies one of conditions A–D from Proposition
4 then Q0(�) = 0 if and only if Q̄0(�) = 0.

Corollary 8. Superactivation of asymptotic quantum zero-error capacity (property (19)
with Q̄0 replaced by Q0) does not hold for channels �1 and �2 satisfying one of
conditions A–D from Proposition 4.

5. Relations to Reversibility Properties of a Channel

5.1. Reversibility of a single channel and one-shot zero-error capacities. Reversibility
(sufficiency) of a quantum channel� : T(HA) → T(HB) with respect to a family S of
states in S(HA)means the existence of a quantum channel� : T(HB) → T(HA) such
that �(�(ρ)) = ρ for all ρ ∈ S [16,17].

The notion of reversibility of a channel naturally arises in analysis of different general
questions of quantum information theory, in particular, of conditions for preserving
entropic characteristics of quantum states under the action of a channel. In particular,
it follows from Petz’s theorem that the Holevo quantity9 of an ensemble {πi , ρi } of
quantum states is preserved under the action of a quantum channel �, i.e.

χ({πi ,�(ρi )}) = χ({πi , ρi }),
if and only if the channel � is reversible with respect to the family {ρi } [16].

A general criterion for reversibility of a quantum channel (in the von Neumann
algebras theory settings) is obtained in [16]. Several conditions for reversibility expressed
in terms of a complementary channel are derived from this criterion in [23], where a
complete characterization of reversibility with respect to families of pure states is given.
The case of families of pure states is of special interest in quantum information theory,
since many capacity-like characteristics of a quantum channel can be determined as
extremal values of functionals depending on ensembles of pure states [12,21].

To describe reversibility properties of a channel � the reversibility index

ri(�) = [ ri1(�), ri2(�) ]
is introduced in [23], in which the components ri1(�) and ri2(�) take the values 0, 1, 2.
The first component ri1(�) characterizes reversibility of the channel � with respect to
(w.r.t.) complete10 families S of pure states as follows

9 The Holevo quantity provides an upper bound for accessible classical information which can be obtained
by applying a quantum measurement [12,21].

10 A family {|ϕλ〉〈ϕλ|}λ∈� of pure states in S(H) is called complete if the linear hull of the family {|ϕλ〉}λ∈�
is dense in H.
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ri1(�) = 0 if � is not reversible w.r.t. any complete family S;
ri1(�) = 1 if� is reversible w.r.t. a complete orthogonal family S but it is not reversible

w.r.t. any complete nonorthogonal family S;
ri1(�) = 2 if � is reversible w.r.t. a complete nonorthogonal family S.

The second component ri2(�) characterizes reversibility of the channel � with re-
spect to noncomplete families of pure states and is defined similarly to ri1(�) with the
term “complete” replaced by “noncomplete”.

So that ri(�) = 01 means that the channel � is not reversible with respect to any
family of pure states which is either complete or nonorthogonal, but it is reversible with
respect to some noncomplete orthogonal family.

A channel�with given ri(�) can be characterized by properties of the set ker ̂� [23,
Corollary 2]. This characterization and Lemmas 1,3 shows that

ri2(�) = 0 ⇔ C̄0(�) = 0, ri2(�) = 2 ⇔ Q̄0(�) > 0,

while ri2(�) = 1 means that C̄0(�) > 0 but Q̄0(�) = 0.

5.2. On reversibility of a tensor product channel. Let � : T(HA) → T(HB) and � :
T(HC ) → T(HD) be arbitrary quantum channels. It is easy to see that reversibility of
the channels� and� with respect to particular families S� and S� imply reversibility
of the channel�⊗� with respect to the family S�⊗S� = {ρ⊗σ | ρ ∈ S�, σ ∈ S�}.
It follows that

ri1(�⊗�) ≥ min{ri1(�), ri1(�)} (27)

and

ri2(�⊗�) ≥ max{ri2(�), ri2(�)}. (28)

An interesting question concerns the possibility of a strict inequality in (27) and in
(28). This question is nontrivial, since the channel�⊗� may be reversible with respect
to families consisting of entangled pure states in S(HA ⊗ HC ) (and the corresponding
reversing channel may not be of the tensor product form).

As to inequality (27) this question has a simple solution.

Proposition 5. An equality holds in (27) for any channels � and �.

Proof. This follows from Corollary 2 in [23], since it is easy to show that ̂� ⊗ ̂� is a
discrete c-q channel if and only if ̂� and ̂� are discrete c-q channels.11 ��

By the remark at the end of Sect. 5.1 the validity of a strict inequality in (28) means
a particular form of superactivation of one-shot zero-error capacities. For example, the
superactivation of one-shot zero-error classical capacity is equivalent to the existence of
two channels �1 and �2 such that

ri2(�1) = ri1(�2) = 0, but ri2(�1 ⊗�2) = 1,

11 A channel � : T(HA) → T(HB ) is called discrete classical-quantum (discrete c-q) if it has the repre-

sentation �(ρ) = ∑dim HA
i=1 〈i |ρ|i〉σi , where {|i〉} is an orthonormal basis in HA and {σi } is a collection of

states in S(HB ) [12].
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while the extreme form of superactivation means the existence of two channels �1 and
�2 such that

ri2(�1) = ri2(�2) = 0, but ri2(�1 ⊗�2) = 2.

These effects can be also called superactivation of reversibility of a channel.
So, we see that reversibility of a channel with respect to noncomplete families of pure

states can be superactivated by tensor products in contrast to reversibility with respect
to complete families of pure states (this follows from Proposition 5).

Proposition 3 shows that

ri2(�1) = ri2(�2) = 0 ⇒ ri2(�1 ⊗�2) = 0

for any channel �1 satisfying one of the conditions of this proposition and arbitrary
channel �2.

Proposition 4 shows that

max{ri2(�1), ri2(�2)} < 2 ⇒ ri2(�1 ⊗�2) < 2

for any channels �1 and �2 satisfying one of the conditions of this proposition.
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