УДК 519.722

М.Е. Широков

Энтропийные характеристики подмножеств состояний. І

Изучаются свойства квантовой энтропии и χ -емкости, рассматриваемой как функция множества квантовых состояний, в бесконечномерном случае. Получены условия ограниченности и непрерывности сужения квантовой энтропии на подмножество квантовых состояний, а также условия существования состояния с максимальной энтропией для некоторых подмножеств. Рассмотрено понятие χ -емкости произвольного подмножества квантовых состояний. Показано существование оптимального среднего для любого подмножества с конечной χ -емкостью. Получено достаточное условие существования оптимальной меры и доказано обобщенное свойство максимальной равноудаленности.

Библиография: 20 наименований.

§ 1. Введение

Настоящая статья посвящена изучению свойств квантовой энтропии и χ -емкости 1 , рассматриваемой как функция множества квантовых состояний, в бесконечномерном случае.

Квантовая энтропия — это вогнутая полунепрерывная снизу функция на множестве всех квантовых состояний с областью значений $[0,+\infty]$, однако она может иметь ограниченные и даже непрерывные сужения на некоторые нетривиальные замкнутые подмножества состояний [10], [20]. Проблема описания таких подмножеств состояний возникает в различных приложениях, в частности при определении условий существования оптимальной меры для квантового канала с ограничениями [19]. Также представляет интерес вопрос об условиях существования состояния с максимальной энтропией для множества квантовых состояний с ограниченной энтропией. В настоящей статье рассматриваются эти и некоторые другие вопросы, связанные с понятием квантовой энтропии.

В силу теоремы Холево–Шумахера–Вестморленда [13], [17] χ -емкость множества состояний определяет максимальную скорость безошибочной передачи классической информации, которую можно достичь, используя состояния из этого подмножества в качестве алфавита, при несцепленном кодировании в передатчике и произвольном измерении – декодировании в приемнике. Обычно понятие χ -емкости связывается с понятием квантового канала и носит название χ -пропускной способности. Но легко видеть, что χ -пропускная способность канала однозначно определяется выходным множеством этого канала

¹Эта величина, называемая в зарубежной литературе the Holevo capacity, обычно связывается с понятием квантового канала связи (см., например, [17]). В настоящей статье эта величина рассматривается как функция множества квантовых состояний и поэтому называется χ -емкостью.

Работа выполнена при поддержке научной программы Отделения математики РАН "Современные проблемы теоретической математики" и РФФИ (проект № 06-01-00164-а).

и поэтому может рассматриваться как функция множества состояний, которую естественно называть χ -емкостью множества [14]. Этот подход является удобным, поскольку рассмотрение χ -емкости как функции множества состояний дает определенную гибкость при изучении ее свойств: можно говорить о χ -емкости произвольного множества состояний, не обязательно являющегося выходным множеством некоторого канала. С этой точки зрения χ -емкость – это неаддитивная функция множества ("неаддитивная мера"), обладающая многими интересными свойствами, детальное изучение которых представляется полезным для квантовой теории информации.

В § 3 рассмотрены условия ограниченности и непрерывности сужения квантовой энтропии на множества квантовых состояний, а также условия существования состояния с максимальной энтропией для этих множеств (предложения 1, 3, 4, 6 и следствия 1–3). Показано, что квантовая энтропия непрерывна в некотором состоянии по отношению к сходимости, определяемой относительной энтропией, тогда и только тогда, когда это состояние имеет достаточно быстро убывающие собственные значения (предложение 2). Рассмотрены связи между некоторыми свойствами множеств квантовых состояний и соответствующими свойствами так называемых "классических проекций" этих множеств (предложение 5). Полученные результаты показывают, в частности, что разрывность и неограниченность квантовой энтропии в бесконечномерном случае имеют чисто классическую природу (см. замечание 5).

В §4 рассмотрены определение и основные свойства х-емкости произвольного множества квантовых состояний. В п. 4.1 вводится понятие оптимального среднего произвольного множества состояний как однозначно определенного состояния, обладающего основными свойствами среднего оптимального ансамбля для множества состояний в конечномерном гильбертовом пространстве (теорема 1 и следствие 4). Свойства оптимального среднего позволили показать, что всякое множество с конечной χ -емкостью предкомпактно (следствие 5) и содержится в максимальном множестве с той же самой χ -емкостью. Из этого наблюдения следует важный результат, связанный с χ -пропускной способностью квантовых каналов: если χ -пропускная способность бесконечномерного канала с ограничением, задаваемым некоторым множеством, конечна, то это множество отображается каналом в предкомпактное множество; в частности, необходимым условием конечности χ -пропускной способности канала без ограничений является предкомпактность его выходного множества (следствие 6). Из полученных результатов, связанных с χ -емкостью, вытекает важное наблюдение о свойствах квантовой энтропии (следствие 7). В п. 4.2 вводится понятие оптимальной меры множества состояний и обобщается на бесконечномерный случай свойство максимальной равноудаленности [14] (предложение 7), из которого следует необходимое условие существования оптимальной меры (следствие 8). Получено достаточное условие существования оптимальной меры (теорема 2).

§ 2. Предварительные сведения

Пусть \mathcal{H} — сепарабельное гильбертово пространство, $\mathfrak{B}(\mathcal{H})$ — алгебра всех ограниченных операторов в \mathcal{H} , $\mathfrak{T}(\mathcal{H})$ — банахово пространство всех ядерных операторов со следовой нормой $\|\cdot\|_1$. Состоянием далее называется положительный ядерный оператор ρ в \mathcal{H} с единичным следом: $\rho \geqslant 0$, $\operatorname{Tr} \rho = 1$. Алгебра

 $\mathfrak{B}(\mathcal{H})$ обычно называется алгеброй наблюдаемых квантовой системы, а состояние задает функционал математического ожидания $A \mapsto \operatorname{Tr} \rho A, \quad A \in \mathfrak{B}(\mathcal{H}),$ т. е. нормальное состояние в смысле теории операторных алгебр [1]. Множество всех состояний $\mathfrak{S}(\mathcal{H})$ – выпуклое замкнутое подмножество пространства $\mathfrak{T}(\mathcal{H}),$ которое является полным сепарабельным метрическим пространством с метрикой, определяемой следовой нормой. Отметим, что сходимость последовательности состояний к состоянию в слабой операторной топологии равносильна сходимости этой последовательности к данному состоянию по следовой норме [2]. Мы будем использовать следующий критерий компактности множеств состояний: замкнутое множество $\mathcal K$ состояний компактно тогда и только тогда, когда для любого $\varepsilon > 0$ существует проектор P_{ε} конечного ранга такой, что $\operatorname{Tr} \rho P_{\varepsilon} \geqslant 1 - \varepsilon$ для всех $\rho \in \mathcal K$ [12], [19].

Пусть A и B — положительные операторы из $\mathfrak{T}(\mathcal{H})$. Энтропия фон Неймана оператора A и относительная энтропия операторов A и B определяются соответственно выражениями

$$H(A) = -\sum_{i} \langle i | A \log A | i \rangle, \qquad H(A \parallel B) = \sum_{i} \langle i | A \log A - A \log B + B - A | i \rangle,$$

в которых $\{|i\rangle\}$ — базис из собственных векторов оператора A (см. [8], [20]). Энтропия и относительная энтропия являются полунепрерывными снизу функциями своих аргументов со значениями в $[0, +\infty]$, первая из которых вогнута, а вторая выпукла по совокупности аргументов [8], [20]. Отметим также следующее неравенство:

$$H(\rho \parallel \sigma) \geqslant \frac{1}{2} \parallel \rho - \sigma \parallel_1^2, \tag{1}$$

которое имеет место для произвольных состояний ρ и σ из $\mathfrak{S}(\mathcal{H})$ [10].

Относительную энтропию $H(\rho \parallel \sigma)$ двух состояний ρ и σ можно рассматривать как меру различия этих состояний, классический аналог которой называется расстоянием Kyлбака-Лейблера. Несмотря на то, что эта мера не является метрикой (она не симметрична и не удовлетворяет аксиоме треугольника), можно ввести понятие сходимости последовательности состояний $\{\rho_n\}$ к некоторому состоянию ρ_* , определяемую условием $\lim_{n\to+\infty} H(\rho_n \parallel \rho_*) = 0$. Топология на пространстве состояний, связанная с такой сходимостью, в классическом случае подробно изучалась в [5], где была названа сильной информационной топологией. Этот вид сходимости играет важную роль в настоящей статье и будет называться H-сходимостью.

Из неравенства (1) следует, что H-сходимость сильнее, чем сходимость, определенная следовой нормой.

Для произвольного множества \mathcal{A} обозначим $\operatorname{co}(\mathcal{A})$ и $\overline{\operatorname{co}}(\mathcal{A})$ его выпуклую оболочку и его выпуклое замыкание соответственно. Множество всех крайних точек множества \mathcal{A} обозначим $\operatorname{Ext}(\mathcal{A})$ [6].

Говоря о непрерывности какой-либо функции на некотором множестве состояний, мы будем иметь в виду непрерывность сужения этой функции на данное множество.

Конечный набор состояний $\{\rho_i\}$ с соответствующими вероятностями $\{\pi_i\}$, далее обозначаемый $\{\pi_i, \rho_i\}$, называется (конечным) ансамблем, а состояние $\bar{\rho} = \sum_i \pi_i \rho_i - cped$ ним этого ансамбля. В [19] введено понятие обобщенного ансамбля как произвольной вероятностной борелевской меры μ на $\mathfrak{S}(\mathcal{H})$.

 $\it Cpedhum$ обобщенного ансамбля (меры) μ называется состояние 2 , определяемое интегралом Бохнера:

$$\bar{\rho}(\mu) = \int_{\mathfrak{S}(\mathcal{H})} \rho \mu(d\rho).$$

Обычное понятие ансамбля соответствует мерам с конечным носителем.

Множество всех вероятностных мер на замкнутом множестве состояний \mathcal{A} обозначим $\mathcal{P}(\mathcal{A})$ [11].

Далее в статье произвольный ансамбль $\{\pi_i, \rho_i\}$ будем рассматривать как частный случай вероятностной меры. В частности, под выпуклой комбинацией ансамблей будем понимать выпуклую комбинацию соответствующих этим ансамблям мер.

Рассмотрим функционалы

$$\chi(\mu) = \int_{\mathfrak{S}(\mathcal{H})} H(\rho \| \bar{\rho}(\mu)) \mu(d\rho), \qquad \widehat{H}(\mu) = \int_{\mathfrak{S}(\mathcal{H})} H(\rho) \mu(d\rho).$$

В [19, предложение 1 и доказательство теоремы] показано, что оба эти функционала корректно определены и полунепрерывны снизу на $\mathcal{P}(\mathfrak{S}(\mathcal{H}))$, причем

$$\chi(\mu) = H(\bar{\rho}(\mu)) - \hat{H}(\mu) \tag{2}$$

для любой меры μ такой, что $H(\bar{\rho}(\mu)) < +\infty$.

Если $\mu = \{\pi_i, \rho_i\}$, то

$$\chi(\{\pi_i, \rho_i\}) = \sum_{i=1}^n \pi_i H(\rho_i \| \bar{\rho}), \qquad \widehat{H}(\{\pi_i, \rho_i\}) = \sum_{i=1}^n \pi_i H(\rho_i).$$

Мы будем использовать тождество Дональда [3], [10]

$$\sum_{i=1}^{n} \pi_{i} H(\rho_{i} \| \hat{\rho}) = \sum_{i=1}^{n} \pi_{i} H(\rho_{i} \| \bar{\rho}) + H(\bar{\rho} \| \hat{\rho}), \tag{3}$$

которое имеет место для любого ансамбля $\{\pi_i, \rho_i\}$ из n состояний со средним $\bar{\rho}$ и произвольного состояния $\hat{\rho}$.

Мы также будем использовать обобщенную интегральную версию тождества Дональда [19]

$$\int_{\mathfrak{S}(\mathcal{H})} H(\rho \parallel \hat{\rho}) \mu(d\rho) = \int_{\mathfrak{S}(\mathcal{H})} H(\rho \parallel \bar{\rho}(\mu)) \mu(d\rho) + H(\bar{\rho}(\mu) \parallel \hat{\rho}), \tag{4}$$

которая имеет место для любой вероятностной меры μ с барицентром $\bar{\rho}(\mu)$ и произвольного состояния $\hat{\rho}$.

Используя обобщенное тождество Дональда (4), нетрудно доказать следующее свойство функционала $\chi(\mu)$.

ЛЕММА 1. Пусть $\{\mu_k\}_{k=1}^m$ — конечное множество вероятностных мер на $\mathfrak{S}(\mathcal{H})$ и $\{\lambda_k\}_{k=1}^m$ — распределение вероятностей. Тогда

$$\chi\left(\sum_{k=1}^{m} \lambda_k \mu_k\right) = \sum_{k=1}^{m} \lambda_k \chi(\mu_k) + \chi\left(\left\{\lambda_k, \bar{\rho}(\mu_k)\right\}_{k=1}^{m}\right).$$

²Такое состояние также называется барицентром меры μ .

В случае m=2 для любого $\lambda \in [0,1]$ имеет место следующее неравенство:

$$\chi(\lambda\mu_1 + (1-\lambda)\mu_2) \geqslant \lambda\chi(\mu_1) + (1-\lambda)\chi(\mu_2) + \frac{\lambda(1-\lambda)}{2} \|\bar{\rho}(\mu_2) - \bar{\rho}(\mu_1)\|_1^2$$

Доказательство. Пусть $\mu = \sum_{k=1}^m \lambda_k \mu_k$. По определению

$$\chi(\mu) = \sum_{k=1}^{m} \lambda_k \int_{\mathfrak{S}(\mathcal{H})} H(\rho \| \bar{\rho}(\mu)) \mu_k(d\rho).$$

Применяя обобщенное тождество Дональда (4) к каждому интегралу в правой части данного выражения, получаем основное тождество леммы.

Для доказательства неравенства в случае m=2 достаточно использовать неравенство (1) для оценки снизу последнего слагаемого в правой части основного тождества леммы:

$$\begin{split} \lambda H \big(\bar{\rho}(\mu_1) \, \| \, \lambda \bar{\rho}(\mu_1) + (1 - \lambda) \bar{\rho}(\mu_2) \big) + (1 - \lambda) H \big(\bar{\rho}(\mu_2) \, \| \, \lambda \bar{\rho}(\mu_1) + (1 - \lambda) \bar{\rho}(\mu_2) \big) \\ \geqslant \frac{1}{2} \, \lambda \big\| \big(1 - \lambda \big) \big(\bar{\rho}(\mu_2) - \bar{\rho}(\mu_1) \big) \big\|_1^2 + \frac{1}{2} \, \big(1 - \lambda \big) \big\| \lambda \big(\bar{\rho}(\mu_2) - \bar{\rho}(\mu_1) \big) \big\|_1^2 \\ = \frac{1}{2} \, \lambda \big(1 - \lambda \big) \big\| \bar{\rho}(\mu_2) - \bar{\rho}(\mu_1) \big\|_1^2. \end{split}$$

Заметим, что из леммы 1 следует важное неравенство

$$H(\lambda \rho_1 + (1 - \lambda)\rho_2) \geqslant \lambda H(\rho_1) + (1 - \lambda)H(\rho_2) + \frac{\lambda(1 - \lambda)}{2} \|\rho_2 - \rho_1\|_1^2,$$
 (5)

которое имеет место для любых состояний ρ_1 и ρ_2 . Для его доказательства достаточно рассмотреть спектральные разложения этих состояний как вероятностные меры на $\mathfrak{S}(\mathcal{H})$ и применить лемму 1.

§ 3. О свойствах квантовой энтропии

В настоящем параграфе рассмотрены свойства сужения квантовой энтропии на множества квантовых состояний.

Пусть \mathcal{A} – множество квантовых состояний такое, что $\sup_{\rho \in \mathcal{A}} H(\rho) < +\infty$. Если существует состояние, на котором достигается данная точная верхняя грань, то такое состояние будем называть состоянием с максимальной энтропией для множества \mathcal{A} . Обозначим это состояние $\Gamma(\mathcal{A})$. Из неравенства (5) вытекает следующее простое наблюдение.

ЛЕММА 2. Пусть \mathcal{A} – произвольное выпуклое замкнутое множество состояний такое, что $\sup_{\rho \in \mathcal{A}} H(\rho) < +\infty$. Любая последовательность $\{\rho_n\}$ состояний из \mathcal{A} такая, что

$$\lim_{n \to +\infty} H(\rho_n) = \sup_{\rho \in \mathcal{A}} H(\rho),$$

 $cxodumcs^3$ к однозначно определенному cocmoshuю $ho_*(\mathcal{A})$ из \mathcal{A} .

³Используя [16, предложение 1 и лемма 1] для случая тождественного канала Φ , можно получить более сильную версию леммы 2, а именно доказать H-сходимость последовательности $\{\rho_n\}$ к состоянию $\rho_*(\mathcal{A}) = \Omega(\Phi, \mathcal{A})$, которая вместе с приведенным ниже предложением 2 показывает, что $\rho_*(\mathcal{A}) = \Gamma(\mathcal{A})$, если существует $\lambda < 1$ такое, что $\mathrm{Tr}\big(\rho_*(\mathcal{A})\big)^{\lambda} < +\infty$.

Если состояние с максимальной энтропией $\Gamma(A)$ существует, то оно совпадает с состоянием $\rho_*(A)$, а сужение энтропии на множество A непрерывно в состоянии $\Gamma(A)$.

ДОКАЗАТЕЛЬСТВО. По предположению для произвольного $\varepsilon > 0$ существует N_{ε} такое, что $H(\rho_n) > \sup_{\rho \in \mathcal{A}} H(\rho) - \varepsilon$ для всех $n \geqslant N_{\varepsilon}$. Используя неравенство (5) при $\lambda = 1/2$, получаем

$$\begin{split} \sup_{\rho \in \mathcal{A}} H(\rho) - \varepsilon &\leqslant \frac{1}{2} H(\rho_{n_1}) + \frac{1}{2} H(\rho_{n_2}) \\ &\leqslant H\left(\frac{1}{2} \rho_{n_1} + \frac{1}{2} \rho_{n_2}\right) - \frac{1}{8} \|\rho_{n_2} - \rho_{n_1}\|_1^2 \leqslant \sup_{\rho \in \mathcal{A}} H(\rho) - \frac{1}{8} \|\rho_{n_2} - \rho_{n_1}\|_1^2 \end{split}$$

и, следовательно, $\|\rho_{n_2} - \rho_{n_1}\|_1 < \sqrt{8\varepsilon}$ для всех $n_1 \geqslant N_\varepsilon$ и $n_2 \geqslant N_\varepsilon$. Таким образом, последовательность $\{\rho_n\}$ является фундаментальной и, следовательно, сходится к некоторому состоянию ρ_* из \mathcal{A} . Нетрудно видеть, что это состояние ρ_* не зависит от выбора последовательности $\{\rho_n\}$, а определяется только множеством \mathcal{A} . Обозначим это состояние $\rho_*(\mathcal{A})$.

Если состояние с максимальной энтропией $\Gamma(\mathcal{A})$ существует, то в силу приведенных выше рассуждений оно совпадает с состоянием $\rho_*(\mathcal{A})$. Из определения состояния $\Gamma(\mathcal{A})$ и полунепрерывности снизу квантовой энтропии следует утверждение о непрерывности. Лемма доказана.

Из полунепрерывности снизу энтропии следует, что

$$H(\rho_*(\mathcal{A})) \leqslant \sup_{\rho \in \mathcal{A}} H(\rho),$$

причем существование состояния с максимальной энтропией равносильно выполнению равенства в этом неравенстве. Примеры множеств, для которых это равенство не выполнено, рассмотрены в предложениях 1 и 3. Возможное отсутствие равенства в данном неравенстве в классическом случае и его следствия подробно рассматривались в [4], где такая ситуация названа эффектом "потери энтропии" ("entropy loss").

Следуя работе [19], неограниченный оператор H в \mathcal{H} с дискретным спектром конечной кратности будем называть \mathfrak{H} -оператором. Пусть Q_n – спектральный проектор оператора H, соответствующий его n наименьшим собственным значениям. Следуя работе [18], обозначим

$$\operatorname{Tr} \rho H = \lim_{n \to \infty} \operatorname{Tr} \rho Q_n H, \tag{6}$$

где последовательность в правой части является неубывающей. В работах [18], [19] показано, что любое компактное множество состояний $\mathcal K$ содержится в выпуклом компактном множестве $\mathcal K_{H,h}=\left\{\rho\in\mathfrak S(\mathcal H)\mid \mathrm{Tr}\,\rho H\leqslant h\right\}$, определяемом некоторым $\mathfrak H$ -оператором H и положительным числом h. Пусть $h_{\mathrm m}(H)$ – минимальное собственное значение H, а $\mathcal H_{\mathrm m}(H)$ – соответствующее (конечномерное) собственное подпространство.

Заметим, что $\mathcal{K}_{H,h}$ есть пустое множество, если $h < h_{\mathrm{m}}(H)$, $\mathcal{K}_{H,h} = \mathfrak{S}(\mathcal{H}_{\mathrm{m}}(H))$, если $h = h_{\mathrm{m}}(H)$, и $\mathcal{K}_{H,h}$ содержит состояния бесконечного ранга, если $h > h_{\mathrm{m}}(H)$.

Как показано в следующем предложении, свойства сужения квантовой энтропии на множество $\mathcal{K}_{H,h}$ зависят от коэффициента роста g(H) \mathfrak{H} -оператора H, определяемого следующим образом:

$$g(H) = \inf\{\lambda > 0 \mid \operatorname{Tr} \exp(-\lambda H) < +\infty\},\$$

причем предполагается, что $g(H)=+\infty,$ если $\mathrm{Tr}\exp(-\lambda H)=+\infty$ для всех $\lambda>0.$

Известно [10], [20], что при условии g(H)=0 энтропия непрерывна на компактном множестве $\mathcal{K}_{H,h}$ и достигает своего (конечного) максимума в состоянии $\Gamma(\mathcal{K}_{H,h})$ вида $\left(\operatorname{Tr}\exp(-\lambda H)\right)^{-1}\exp(-\lambda H)$. Следующее предложение обобщает это наблюдение и дает необходимое и достаточное условие существования состояния с максимальной энтропией для множества $\mathcal{K}_{H,h}$.

Пусть $h_*(H) = \frac{\operatorname{Tr} H \exp(-\operatorname{g}(H)H)}{\operatorname{Tr} \exp(-\operatorname{g}(H)H)}$, если $\operatorname{Tr} \exp\left(-\operatorname{g}(H)H\right) < +\infty$, и $h_*(H) = +\infty$ в противном случае.

ПРЕДЛОЖЕНИЕ 1. Пусть H – \mathfrak{H} -оператор в гильбертовом пространстве \mathcal{H} и h – положительное число такое, что $h > h_{\mathrm{m}}(H)$.

- 1) Квантовая энтропия ограничена на множестве $\mathcal{K}_{H,h}$ тогда и только тогда, когда $g(H) < +\infty$.
- 2) Квантовая энтропия непрерывна на множестве $\mathcal{K}_{H,h}$ тогда и только тогда, когда g(H)=0.
- 3) Ecau $h \leqslant h_*(H)$, mo $\sup_{\rho \in \mathcal{K}_{H,h}} H(\rho) = \lambda^* h + \log \operatorname{Tr} \exp(-\lambda^* H)$, ede $\lambda^* = \lambda^*(H,h) \geqslant \operatorname{g}(H) \operatorname{eduncmsehhoe}$ pemenue ypashehus

$$\operatorname{Tr} H \exp(-\lambda H) = h \operatorname{Tr} \exp(-\lambda H),$$

и существует состояние с максимальной энтропией

$$\Gamma(\mathcal{K}_{H,h}) = \left(\operatorname{Tr} \exp(-\lambda^* H)\right)^{-1} \exp(-\lambda^* H).$$

Если $h > h_*(H)$, то $\sup_{\rho \in \mathcal{K}_{H,h}} H(\rho) = \operatorname{g}(H)h + \operatorname{log}\operatorname{Tr}\exp\left(-\operatorname{g}(H)H\right)$ и в $\mathcal{K}_{H,h}$ не существует состояния с максимальной энтропией. В обоих случаях $\sup_{\rho \in \mathcal{K}_{H,h}} H(\rho) = \inf_{\lambda \in (\operatorname{g}(H),+\infty)} \left(\lambda h + \operatorname{log}\operatorname{Tr}\exp(-\lambda H)\right)$.

 Φ ункция $F_H(h) = \sup_{
ho \in \mathcal{K}_{H,h}} H(
ho)$ обладает следующими свойствами:

- і) является непрерывной возрастающей функцией на $[h_{\rm m}, +\infty)$ такой, что $F_H(h_{\rm m}) = \log \dim \mathcal{H}_{\rm m}(H) \ u \lim_{h \to +\infty} F_H(h) = +\infty;$
 - ii) имеет непрерывную производную на $(h_{\rm m}, +\infty)$:

$$\frac{dF_H(h)}{dh} = \begin{cases} \lambda^*(H,h), & h \in (h_{\mathrm{m}}(H),h_*(H)), \\ \mathrm{g}(H), & h \in [h_*(H),+\infty), \end{cases}$$

$$\frac{dF_H(h)}{dh} \bigg|_{h=h_{\mathrm{m}}+0} = \lim_{h \to h_{\mathrm{m}}(H)+0} \frac{dF_H(h)}{dh} = +\infty, \quad \lim_{h \to +\infty} \frac{dF_H(h)}{dh} = \mathrm{g}(H);$$

ііі) строго вогнута на $\left[h_{\mathrm{m}}(H),h_{*}(H)\right)$ и линейна на $\left[h_{*}(H),+\infty\right),$ если $h_{*}(H)<+\infty.$

В ч. II настоящей работы, которая будет опубликована в следующем номере журнала, на рис. 2 представлены, наряду с другими характеристиками, результаты вычисления $\sup_{\rho \in \mathcal{K}_{H,h}} H(\rho)$ как функции параметра h = c для \mathfrak{H} -оператора $H = -\log \sigma$ с конечным $h_*(H)$.

Доказательство. Пусть $H=\sum_{k=1}^{+\infty}h_k|k\rangle\langle k|$, где $\{|k\rangle\}_{k\in\mathbb{N}}$ — ортонормированный базис пространства \mathcal{H} и $\{h_k\}$ – неубывающая последовательность положительных чисел, стремящаяся к $+\infty$. Пусть $d = \dim \mathcal{H}_{\mathrm{m}}(H)$; тогда $h_k = h_{\mathrm{m}}$, $k=\overline{1,d}$, и $\left\{|k
angle
ight\}_{k=1}^d$ – базис подпространства $\mathcal{H}_{\mathrm{m}}(H)$. Докажем утверждение 1) предложения.

Предположим, что $g(H) < +\infty$. Тогда существует $\lambda > 0$ такое, что

$$\sigma = (\operatorname{Tr} \exp(-\lambda H))^{-1} \exp(-\lambda H)$$

- состояние. Используя неотрицательность относительной энтропии и определение множества $\mathcal{K}_{H,h}$, получаем

$$H(\rho) = \lambda \operatorname{Tr} \rho H + \log \operatorname{Tr} \exp(-\lambda H) - H(\rho \| \sigma) \leq \lambda h + \log \operatorname{Tr} \exp(-\lambda H) < +\infty$$

для всех ρ из $\mathcal{K}_{H,h}$, т. е. ограниченность энтропии на $\mathcal{K}_{H,h}$.

Предположим, что $\sup_{\rho \in \mathcal{K}_{H,h}} H(\rho) < +\infty$. Покажем, что уравнение

$$\sum_{k=1}^{n} h_k \exp(-\lambda h_k) = h \sum_{k=1}^{n} \exp(-\lambda h_k)$$
 (7)

имеет единственное положительное решение λ_n для всех достаточно больших nи что последовательность $\{\lambda_n\}$ является возрастающей. Уравнение (7) равносильно уравнению $f_n(\lambda) = 0$, где $f_n(\lambda) = \sum_{k=1}^n (h_k - h) \exp(-\lambda(h_k - h))$. Поскольку

$$f'_n(\lambda) = -\sum_{k=1}^n (h_k - h)^2 \exp(-\lambda(h_k - h)) < 0,$$

функция $f_n(\lambda)$ строго убывает на $[0, +\infty)$. Нетрудно видеть, что

$$f_n(0) = \sum_{k=1}^n h_k - nh, \qquad \lim_{\lambda \to +\infty} f_n(\lambda) = -\infty, \qquad h > h_{\rm m}.$$

Поскольку последовательность $\{h_k\}$ неубывающая и неограниченная, для всех достаточно больших n имеет место неравенство $\sum_{k=1}^n h_k > nh$, и из сказанного выше следует существование единственного решения λ_n уравнения $f_n(\lambda) = 0$. Для доказательства того, что $\lambda_{n+1} > \lambda_n$, достаточно заметить, что $f_{n+1}(\lambda) >$ $f_n(\lambda)$ для всех λ из $[0, +\infty)$ и для всех n таких, что $h_n > h$.

Для каждого достаточно большого n рассмотрим состояние

$$\rho_n = \left(\sum_{k=1}^n \exp(-\lambda_n h_k)\right)^{-1} \sum_{k=1}^n \exp(-\lambda_n h_k) |k\rangle\langle k|$$
 (8)

из $\mathcal{K}_{H,h}$. Это состояние есть точка максимума функции $H(\rho)$ на подмножестве $\mathcal{K}^n_{H,h}$ множества $\mathcal{K}_{H,h}$, состоящего из состояний, носитель которых лежит внутри линейной оболочки векторов $\left\{|k\rangle\right\}_{k=1}^n$. Действительно, используя неотрицательность относительной энтропии и определение состояния ρ_n , легко видеть, что

$$H(\rho) = \lambda_n \operatorname{Tr} \rho H + \log \sum_{k=1}^n \exp(-\lambda_n h_k) - H(\rho \parallel \rho_n) \leqslant \lambda_n h + \log \sum_{k=1}^n \exp(-\lambda_n h_k)$$

для всех ρ из $\mathcal{K}^n_{H,h}$ и что выполнение равенства в этом неравенстве имеет место тогда и только тогда, когда $\rho=\rho_n$. Используя это наблюдение и монотонность логарифма, получаем

$$H(\rho_n) = \lambda_n h + \log \sum_{k=1}^n \exp(-\lambda_n h_k) \geqslant \lambda_n (h - h_m).$$
 (9)

Поскольку $h > h_{\rm m}$, предположение $\sup_{\rho \in \mathcal{K}_{H,h}} H(\rho) < +\infty$ гарантирует ограниченность последовательности $\{\lambda_n\}$, а значит, в силу упомянутой выше монотонности этой последовательности существует $\lim_{n \to +\infty} \lambda_n = \lambda^* < +\infty$. Поскольку $\lambda_n \leq \lambda^*$ для всех n, из равенства в (9) следует, что

$$\sum_{k=1}^{n} \exp(-\lambda^* h_k) \leqslant \sum_{k=1}^{n} \exp(-\lambda_n h_k) < \exp\left(\sup_{\rho \in \mathcal{K}_{H,h}} H(\rho)\right) < +\infty$$
 (10)

для всех n, и поэтому

$$\sum_{k=1}^{+\infty} \exp(-\lambda^* h_k) < +\infty. \tag{11}$$

Таким образом, доказано, что $\mathbf{g}(H) \leqslant \lambda^* < +\infty$.

Поскольку $\mathcal{K}_{H,h} = \overline{\bigcup_n \mathcal{K}_{H,h}^n}$ и $\sup_{\rho \in \mathcal{K}_{H,h}^n} H(\rho) = H(\rho_n)$, из полунепрерывности снизу энтропии следует, что

$$\sup_{\rho \in \mathcal{K}_{H,h}} H(\rho) = \lim_{n \to +\infty} H(\rho_n).$$

В силу леммы 2 последовательность состояний $\{\rho_n\}$ сходится к состоянию $\rho_*(\mathcal{K}_{H,h})$. Поскольку $\lim_{n\to+\infty}\lambda_n=\lambda^*$, последовательность

$$\left\{ A_n = \sum_{k=1}^n \exp(-\lambda_n h_k) |k\rangle\langle k| \right\}_n$$

операторов из $\mathfrak{T}(\mathcal{H})$ сходится к оператору $A_* = \sum_{k=1}^\infty \exp(-\lambda^* h_k) |k\rangle\langle k|$ в $\mathfrak{T}(\mathcal{H})$ в слабой операторной топологии. Комбинируя эти наблюдения, нетрудно показать, что

$$\lim_{n \to +\infty} \operatorname{Tr} A_n = \lim_{n \to +\infty} \sum_{k=1}^n \exp(-\lambda_n h_k) = \sum_{k=1}^{+\infty} \exp(-\lambda^* h_k) = \operatorname{Tr} A_*, \quad (12)$$

$$\rho_*(\mathcal{K}_{H,h}) = \lim_{n \to +\infty} \rho_n = \left(\sum_{k=1}^{+\infty} \exp(-\lambda^* h_k)\right)^{-1} \sum_{k=1}^{+\infty} \exp(-\lambda^* h_k) |k\rangle\langle k|.$$
 (13)

Используя (9) и (12), получаем

$$\sup_{\rho \in \mathcal{K}_{H,h}} H(\rho) = \lim_{n \to +\infty} H(\rho_n) = h\lambda^* + \log \sum_{k=1}^{+\infty} \exp(-\lambda^* h_k). \tag{14}$$

Из полунепрерывности снизу энтропии следует, что

$$H(\rho_*(\mathcal{K}_{H,h})) = \lambda^* \frac{\sum_{k=1}^{+\infty} h_k \exp(-\lambda^* h_k)}{\sum_{k=1}^{+\infty} \exp(-\lambda^* h_k)} + \log \sum_{k=1}^{+\infty} \exp(-\lambda^* h_k) \leqslant \lim_{n \to +\infty} H(\rho_n).$$

Учитывая (14), заключаем, что это неравенство равносильно неравенству

$$\sum_{k=1}^{+\infty} h_k \exp(-\lambda^* h_k) \leqslant h \sum_{k=1}^{+\infty} \exp(-\lambda^* h_k)$$
 (15)

и что в случае выполнения равенства в этих неравенствах $\rho_*(\mathcal{K}_{H,h}) = \Gamma(\mathcal{K}_{H,h})$. Обратно, если существует состояние $\Gamma(\mathcal{K}_{H,h})$, то оно в силу леммы 2 совпадает с $\rho_*(\mathcal{K}_{H,h})$ и, следовательно, имеет место равенство в (15). Таким образом, существование состояния $\Gamma(\mathcal{K}_{H,h})$ равносильно выполнению равенства в (15). Поэтому для завершения доказательства утверждения 1) предложения достаточно показать, что неравенство $h \leq h_*(H)$ равносильно равенству в (15).

Покажем сначала, что из неравенства $\lambda^* > \mathrm{g}(H)$ следует равенство в (15). Рассмотрим функцию

$$f(\lambda) = \lim_{n \to +\infty} f_n(\lambda) = \sum_{k=1}^{+\infty} (h_k - h) \exp(-\lambda(h_k - h)).$$

Поскольку ряд $\sum_{k=1}^{+\infty} h_k^p \exp(-\lambda h_k)$ сходится равномерно на $[g(H)+\varepsilon,+\infty)$ для любого $p\in\mathbb{N}$ и $\varepsilon>0$, функция $f(\lambda)$ имеет непрерывную производную $f'(\lambda)=-\sum_{k=1}^{+\infty}(h_k-h)^2\exp(-\lambda(h_k-h))<0$ на интервале $(g(H),+\infty)$. По построению $f(\lambda_n)>f_n(\lambda_n)=0$ для всех достаточно больших n. Поэтому из непрерывности функции $f(\lambda)$ в точке $\lambda^*\in (g(H),+\infty)$ следует, что $f(\lambda^*)\geqslant 0$. Поскольку (15) равносильно обратному неравенству, получаем $f(\lambda^*)=0$, т.е. выполнено равенство в (15).

Если $h < h_*(H)$, то f(g(H)) > 0 (допуская случай $f(g(H)) = +\infty$). Поскольку (15) означает, что $f(\lambda^*) \leq 0$, получаем $\lambda^* > g(H)$ и в силу приведенного выше наблюдения имеем $f(\lambda^*) = 0$.

Если $h=h_*(H)$, то f(g(H))=0 и, следовательно, $\lambda^*=g(H)$. Действительно, если $\lambda^*>g(H)$, то из приведенного выше наблюдения вытекает, что $f(\lambda^*)=0=f(g(H))$ вопреки строгому убыванию функции $f(\lambda)$.

Если $h > h_*(H)$, то f(g(H)) < 0. Поскольку функция $f(\lambda)$ убывающая, то $f(\lambda^*) < 0$ и, следовательно, имеет место строгое неравенство в (15).

Докажем утверждение 2) предложения. Если g(H)=0, то энтропия непрерывна на множестве $\mathcal{K}_{H,h}$ в силу наблюдения из [20]. Это также следует из импликации (i) \Rightarrow (ii) в приведенном ниже предложении 4.

Для доказательства обратного утверждения рассмотрим последовательность состояний

$$\sigma_n = (1 - q_n)|1\rangle\langle 1| + \frac{q_n}{n} \sum_{k=-2}^{n+1} |k\rangle\langle k|,$$

определяемую сходящейся к нулю последовательностью положительных чисел

$$q_n = (h - h_m) \left(n^{-1} \sum_{k=2}^{n+1} h_k - h_m \right)^{-1}.$$

Здесь предполагается, что n настолько большое, что $q_n \leqslant 1$. Поскольку последовательность $\{\sigma_n\}$ лежит в $\mathcal{K}_{H,h}$ и сходится к чистому состоянию $|1\rangle\langle 1|$, из предполагаемой непрерывности энтропии на множестве $\mathcal{K}_{H,h}$ следует сходимость к нулю последовательности положительных чисел

$$H(\sigma_n) = h_2(q_n) + q_n \log n = h_2(q_n) + \frac{(h - h_m) \log n}{n^{-1} \sum_{k=2}^{n+1} h_k - h_m}.$$

В силу очевидной оценки $n^{-1}\sum_{k=2}^{n+1}h_k\leqslant h_{n+1}$ заключаем, что последовательность $\{\nu_n=h_{n+1}^{-1}\log n\}$ сходится к нулю. Поэтому для любого $\lambda>0$ имеем

$$\operatorname{Tr} \exp(-\lambda H) = \sum_{n=0}^{+\infty} \exp(-\lambda h_{n+1}) = \sum_{n=1}^{+\infty} n^{-\frac{\lambda}{\nu_n}} < +\infty$$

и, следовательно, g(H) = 0.

Общее выражение для $\sup_{\rho \in \mathcal{K}_{H,h}} H(\rho)$ выводится из предыдущих наблюдений и замечания, что нижняя грань в этом выражении достигается при $\lambda = \lambda^*$, если $h \leqslant h_*(H)$, и при $\lambda = \mathrm{g}(H)$, если $h \geqslant h_*(H)$.

Доказательство свойств функции $F_H(\rho)$ основано на теореме о неявной функции и представлено в § 5.

Пусть σ – произвольное состояние. Далее существенную роль будет играть коэффициент убывания $d(\sigma)$ состояния σ , определяемый следующим образом:

$$d(\sigma) = \inf\{\lambda > 0 \mid \operatorname{Tr} \sigma^{\lambda} < +\infty\} \in [0, 1].$$

Если σ – состояние полного ранга, то $-\log \sigma$ – \mathfrak{H} -оператор и $d(\sigma) = g(-\log \sigma)$.

Нетрудно видеть, что из $\mathrm{d}(\sigma) < 1$ следует $H(\sigma) < +\infty$, но существуют состояния σ с конечной энтропией такие, что $\mathrm{d}(\sigma) = 1$ (например, состояние со спектром $\left\{a\left((k+1)\log^3(k+1)\right)^{-1}\right\}$, где a – нормировочный коэффициент). Особая роль этих состояний показана в следующем предложении, которое является некоммутативным обобщением теоремы 21 из работы [5], где классическое состояние – распределение вероятностей σ – называется гиперболическим, если $\mathrm{d}(\sigma) = 1$, и power dominated, если $\mathrm{d}(\sigma) < 1$.

ПРЕДЛОЖЕНИЕ 2. Пусть σ – состояние с конечной энтропией.

1) $Ecnu \ d(\sigma) < 1, mo$

$$\lim_{n \to +\infty} H(\rho_n) = H(\sigma)$$

для любой последовательности состояний $\{\rho_n\}$, H-сходящейся 4 κ состоянию σ .

2) Если $d(\sigma) = 1$, то для любого $h \geqslant H(\sigma)$ существует последовательность $\{\rho_n\}$ состояний конечного ранга, H-сходящаяся κ состоянию σ , такая, что

$$\lim_{n \to +\infty} H(\rho_n) = h.$$

Замечание 1. Предложение 2 показывает, что выпуклое множество состояний $\{\sigma \in \mathfrak{S}(\mathcal{H}) \mid d(\sigma) < 1\}$ является максимальным множеством непрерывности энтропии по отношению к H-сходимости.

Доказательство предложения 2 основано на следующей лемме.

ЛЕММА 3. Если σ – состояние $c\ d(\sigma) < 1$, то для любого состояния ρ такого, что $H(\rho \parallel \sigma) < +\infty$, энтропия $H(\rho)$ конечна и для любого $\lambda > d(\sigma)$ справедливо следующее равенство:

$$H(\rho \| (\operatorname{Tr} \sigma^{\lambda})^{-1} \sigma^{\lambda}) = \lambda H(\rho \| \sigma) + \log \operatorname{Tr} \sigma^{\lambda} - (1 - \lambda) H(\rho).$$

 $\mathit{Ecnu}\ \mathrm{Tr}\ \sigma^{\mathrm{d}(\sigma)}<+\infty,\ mo\ \mathit{это}\ \mathit{paseнство}\ \mathit{cnpasedливо}\ \mathit{u}\ \mathit{для}\ \lambda=\mathrm{d}(\sigma).$

⁴Это значит, что $\lim_{n\to+\infty} H(\rho_n \parallel \sigma) = 0$.

Доказательство. Пусть $\{P_n\}$ – возрастающая последовательность спектральных проекторов состояния σ . При каждом n для положительных ядерных операторов $A_n = P_n \rho P_n$ и $B_n = P_n \sigma$ имеет место равенство

$$H(A_n \parallel B_n^{\lambda}) = \operatorname{Tr}(A_n \log A_n - A_n \log B_n^{\lambda} + B_n^{\lambda} - A_n)$$

$$= \operatorname{Tr}((\lambda + (1 - \lambda))A_n \log A_n - \lambda A_n \log B_n + B_n^{\lambda} - A_n)$$

$$= \lambda H(A_n \parallel B_n) + \operatorname{Tr} B_n^{\lambda} - \lambda \operatorname{Tr} B_n - (1 - \lambda) \operatorname{Tr} A_n - (1 - \lambda) \operatorname{Tr} A_n(-\log A_n).$$

Поскольку $B_n^{\lambda} = P_n \sigma^{\lambda}$, из [8, лемма 4] следует, что

$$\lim_{n \to +\infty} \operatorname{Tr} A_n(-\log A_n) = H(\rho), \qquad \lim_{n \to +\infty} H(A_n \parallel B_n^{\lambda}) = H(\rho \parallel \sigma^{\lambda})$$

для всех $\lambda > \mathrm{d}(\sigma)$. Поэтому, переходя к пределу при $n \to +\infty$ в предыдущем равенстве, получаем

$$H(\rho \parallel \sigma^{\lambda}) = \lambda H(\rho \parallel \sigma) + \operatorname{Tr} \sigma^{\lambda} - 1 - (1 - \lambda)H(\rho).$$

Таким образом, из конечности $H(\rho \| \sigma)$ следует конечность $H(\rho)$ и $H(\rho \| \sigma^{\lambda})$ для всех $\lambda > \mathrm{d}(\sigma)$. Замечая, что

$$H(\rho \| (\operatorname{Tr} \sigma^{\lambda})^{-1} \sigma^{\lambda}) = H(\rho \| \sigma^{\lambda}) + \log \operatorname{Tr} \sigma^{\lambda} - \operatorname{Tr} \sigma^{\lambda} + 1,$$

получаем равенство леммы.

Доказательство предложения 2. Пусть $d(\sigma) < 1$. В силу леммы 3

$$\frac{H(\rho_n \parallel (\operatorname{Tr} \sigma^{\lambda})^{-1} \sigma^{\lambda}) - \lambda H(\rho_n \parallel \sigma)}{1 - \lambda} = \frac{\log \operatorname{Tr} \sigma^{\lambda}}{1 - \lambda} - H(\rho_n)$$
 (16)

для всех $\lambda > \mathrm{d}(\sigma)$. Предположим, что $\liminf_{n \to +\infty} H(\rho_n) - H(\sigma) = \Delta > 0$. Поскольку первое слагаемое в правой части (16) стремится к $H(\sigma)$ при $\lambda \to 1$, существует $\lambda' < 1$ такое, что правая часть (16) меньше, чем $-\Delta/2$, при $\lambda = \lambda'$ и всех достаточно больших n, в то время как левая часть (16) в силу неотрицательности относительной энтропии не меньше выражения $-\frac{\lambda' H(\rho_n \parallel \sigma)}{1-\lambda'}$, которое стремится к нулю при $n \to +\infty$.

Пусть $d(\sigma)=1$ и $h>H(\sigma)$. Без ограничения общности можно считать, что σ – состояние полного ранга такое, что $-\log\sigma$ – \mathfrak{H} -оператор с $g(-\log\sigma)=d(\sigma)=1$ и $h_*(-\log\sigma)=H(\sigma)<+\infty$. Из предложения 1 следует, что $\sup_{\rho\in\mathcal{K}_{-\log\sigma,h}}H(\rho)=h$ для всех $h>h_*(-\log\sigma)$. Для данного $h>h_*(-\log\sigma)$ в доказательстве предложения 1 построена последовательность $\{\rho_n\}$ состояний, определенных формулой (8), которая сходится к состоянию $\rho_*(\mathcal{K}_{-\log\sigma,h})=\sigma$, определенному формулой (13). По построению

$$\lim_{n \to +\infty} H(\rho_n) = \sup_{\rho \in \mathcal{K}_{-\log \sigma, h}} H(\rho) = h, \qquad \lim_{n \to +\infty} H(\rho_n \parallel \sigma) = 0.$$

Предложение доказано.

Рассмотрим множество $\mathcal{V}_{\sigma,c} = \{ \rho \in \mathfrak{S}(\mathcal{H}) \mid H(\rho \parallel \sigma) \leqslant c \}$, определяемое состоянием σ и неотрицательным числом c. В силу свойств относительной энтропии множество $\mathcal{V}_{\sigma,c}$ является непустым замкнутым и выпуклым подмножеством множества $\mathfrak{S}(\mathcal{H})$ для любых σ и c. Множество $\mathcal{V}_{\sigma,c}$ можно рассматривать как

c-псевдоокрестность состояния σ относительно псевдометрики, определяемой относительной энтропией. В следующем параграфе будет показано, что это множество играет особую роль в вопросах, связанных с понятием χ -емкости множества состояний.

Пусть $c_*(\sigma) = H((\operatorname{Tr} \sigma^{\operatorname{d}(\sigma)})^{-1} \sigma^{\operatorname{d}(\sigma)} \| \sigma)$, если $\operatorname{Tr} \sigma^{\operatorname{d}(\sigma)} < +\infty$, и $c_*(\sigma) = +\infty$ в противном случае. Свойства сужения энтропии на множество $\mathcal{V}_{\sigma,c}$, а также необходимые и достаточные условия существования состояния с максимальной энтропией для этого множества рассмотрены в следующем предложении.

ПРЕДЛОЖЕНИЕ 3. Пусть σ – произвольное состояние $\mathfrak{S}(\mathcal{H})$ и c – положительное число.

- 1) Множество $V_{\sigma,c}$ является компактным выпуклым подмножеством множества $\mathfrak{S}(\mathcal{H})$.
- 2) Квантовая энтропия ограничена на множестве $\mathcal{V}_{\sigma,c}$ тогда и только тогда, когда $\mathrm{d}(\sigma) < 1$.
- 3) Квантовая энтропия непрерывна на множестве $V_{\sigma,c}$ тогда и только тогда, когда $d(\sigma) = 0$.
- 4) Если $d(\sigma) < 1$ и $c \leq c_*(\sigma)$, то $\sup_{\rho \in \mathcal{V}_{\sigma,c}} H(\rho) = \frac{\lambda^* c + \log \operatorname{Tr} \sigma^{\lambda^*}}{1 \lambda^*}$, где $\lambda^* = \lambda^*(\sigma, c) \geq d(\sigma)$ единственное решение уравнения ⁵

$$(\lambda - 1) \operatorname{Tr}(\sigma^{\lambda} \log \sigma) = (c + \log \operatorname{Tr} \sigma^{\lambda}) \operatorname{Tr} \sigma^{\lambda},$$

и существует состояние с максимальной энтропией $\Gamma(\mathcal{V}_{\sigma,c}) = (\operatorname{Tr} \sigma^{\lambda^*})^{-1} \sigma^{\lambda^*}$. Eсли $d(\sigma) < 1$ и $c > c_*(\sigma)$, то $\sup_{\rho \in \mathcal{V}_{\sigma,c}} H(\rho) = \frac{d(\sigma)c + \log \operatorname{Tr} \sigma^{d(\sigma)}}{1 - d(\sigma)}$ и в $\mathcal{V}_{\sigma,c}$ не существует состояния с максимальной энтропией. В обоих случаях при $d(\sigma) < 1$ имеет место равенство

$$\sup_{\rho \in \mathcal{V}_{\sigma,c}} H(\rho) = \inf_{\lambda \in (\mathrm{d}(\sigma),1)} \frac{\lambda c + \log \mathrm{Tr} \, \sigma^{\lambda}}{1 - \lambda} \,.$$

В § 3 ч. II настоящей работы на рис. 2 представлены, наряду с другими характеристиками, результаты вычисления $\sup_{\rho \in \mathcal{V}_{\sigma,c}} H(\rho)$ как функции параметра c для состояния σ , у которого $\mathrm{d}(\sigma) < 1$ и $c_*(\sigma) < +\infty$.

ДОКАЗАТЕЛЬСТВО. Без ограничения общности можно считать, что σ – состояние полного ранга такое, что — $\log \sigma$ – \mathfrak{H} -оператор 6 .

1) Утверждение о компактности доказывается при помощи критерия компактности, рассмотренного в § 2, и неравенства

$$H(\rho \parallel \sigma) \geqslant H(P\rho P \parallel P\sigma P) \geqslant \text{Tr}(P\rho) \log \frac{\text{Tr}(P\rho)}{\text{Tr}(P\sigma)} + \text{Tr}(P\sigma) - \text{Tr}(P\rho),$$
 (17)

которое справедливо для любых состояний ρ , σ и произвольного проектора P. Это неравенство следует из [8, лемма 3] и свойства монотонности относительной энтропии [9], примененного к вполне положительному сохраняющему след отображению $\Phi(A) = (\operatorname{Tr} A)\tau$, где τ – произвольное состояние.

⁵Это значит, что $H((\operatorname{Tr} \sigma^{\lambda^*})^{-1} \sigma^{\lambda^*} \| \sigma) = c.$

 $^{^6}$ Это предположение и используемая в доказательстве бесконечномерность пространства \mathcal{H} подразумевают бесконечный ранг состояния σ . Однако можно показать, что все утверждения предложения $_3$ справедливы и для состояния σ конечного ранга.

Пусть $\{P_n\}$ – последовательность проекторов конечного ранга, выбранная по данному состоянию σ , такая, что ${\rm Tr}\, P_n \sigma > 1 - n^{-1}$. Предположим, что множество $\mathcal{V}_{\sigma,c}$ не компактно. В силу критерия компактности для каждого n существует состояние ρ_n из $\mathcal{V}_{\sigma,c}$ такое, что ${\rm Tr}(I_{\mathcal{H}} - P_n)\rho_n > \varepsilon$ для некоторого положительного ε . Используя неравенство (17) с $P = I_{\mathcal{H}} - P_n$, получаем

$$H(\rho_n \parallel \sigma) \geqslant \operatorname{Tr}((I_{\mathcal{H}} - P_n)\rho_n) \log \frac{\operatorname{Tr}((I_{\mathcal{H}} - P_n)\rho_n)}{\operatorname{Tr}((I_{\mathcal{H}} - P_n)\sigma)} + \operatorname{Tr}((I_{\mathcal{H}} - P_n)\sigma) - \operatorname{Tr}((I_{\mathcal{H}} - P_n)\rho_n) \geqslant \varepsilon \log(\varepsilon n) - 1$$

для достаточно больших n, следовательно, $H(\rho_n \parallel \sigma)$ стремится $\kappa + \infty$ при $n \to +\infty$, что противоречит определению множества $\mathcal{V}_{\sigma,c}$.

2) Если $d(\sigma) = 1$, то в силу утверждения 2) предложения 2 энтропия не ограничена на множестве $\mathcal{V}_{\sigma,c}$.

Если $d(\sigma) < 1$, то из леммы 3 следует, что

$$H(\rho) = \frac{\lambda H(\rho \parallel \sigma) + \log \operatorname{Tr} \sigma^{\lambda} - H(\rho \parallel \sigma_{\lambda})}{1 - \lambda} \leqslant \frac{c\lambda + \log \operatorname{Tr} \sigma^{\lambda}}{1 - \lambda}$$
(18)

для всех λ из $(\mathrm{d}(\sigma),1)$ и всех ρ из $\mathcal{V}_{\sigma,c}$. Поэтому $\sup_{\rho\in\mathcal{V}_{\sigma,c}}H(\rho)<+\infty$.

3) Если $d(\sigma) > 0$, то в силу предложения 1 энтропия не является непрерывной на множестве $\mathcal{K}_{-\log \sigma,c}$, которое содержится в $\mathcal{V}_{\sigma,c}$.

Если $d(\sigma) = 0$, то, как показано выше, $\sup_{\rho \in \mathcal{V}_{\sigma,c}} H(\rho) = d < +\infty$ и, следовательно, множество $\mathcal{V}_{\sigma,c}$ содержится в $\mathcal{K}_{-\log \sigma,c+d}$. В силу предложения 1 энтропия непрерывна на множестве $\mathcal{K}_{-\log \sigma,c+d}$.

4) Обозначим через σ_{λ} состояние $(\operatorname{Tr} \sigma^{\lambda})^{-1} \sigma^{\lambda}$ и заметим, что непрерывная функция $f(\lambda) = H(\sigma_{\lambda} \parallel \sigma)$ является убывающей на интервале $(d(\sigma), 1)$. Действительно, нетрудно показать, что эта функция имеет производную

$$f'(\lambda) = -(1 - \lambda) \left(\operatorname{Tr} \sigma_{\lambda} \log^2 \sigma - (\operatorname{Tr} \sigma_{\lambda} \log \sigma)^2 \right) < 0$$

для каждого λ из $(d(\sigma), 1)$. Заметим также, что

$$\lim_{\lambda \to d(\sigma) + 0} f(\lambda) = c_* \leqslant +\infty, \qquad f(1) = 0.$$

Предположим, что $c\leqslant c_*$. Из приведенного выше наблюдения следует существование единственного решения λ^* уравнения $f(\lambda)=c$. Таким образом, $H(\sigma_{\lambda^*}\parallel\sigma)=c$, следовательно,

$$H(\sigma_{\lambda^*}) = \frac{c\lambda^* + \log \operatorname{Tr} \sigma^{\lambda^*}}{1 - \lambda^*}.$$

Из неравенства (18) следует, что $H(\rho) \leqslant H(\sigma_{\lambda^*})$ для всех ρ из $\mathcal{V}_{\sigma,c}$. Предположим, что $c_* < +\infty$ и $c > c_*$. В этом случае

$$h = \frac{\mathrm{d}(\sigma)c + \log \mathrm{Tr}\,\sigma^{\mathrm{d}(\sigma)}}{1 - \mathrm{d}(\sigma)} > \frac{\mathrm{d}(\sigma)c_* + \log \mathrm{Tr}\,\sigma^{\mathrm{d}(\sigma)}}{1 - \mathrm{d}(\sigma)} = H(\sigma_{\mathrm{d}(\sigma)}).$$

Поскольку $d(\sigma_{d(\sigma)})=1$, из предложения 2 следует, что для каждого достаточно большого m существует последовательность состояний $\{\rho_n^m\}_n$ такая, что

$$\lim_{n \to +\infty} H(\rho_n^m \parallel \sigma_{\mathrm{d}(\sigma)}) = 0, \qquad \lim_{n \to +\infty} H(\rho_n^m) = h - \frac{1}{m}.$$
 (19)

Используя лемму 3, получаем

$$\begin{split} \lim_{n \to +\infty} H(\rho_n^m \parallel \sigma) &= \lim_{n \to +\infty} \frac{H(\rho_n^m \parallel \sigma_{\operatorname{d}(\sigma)}) - \log \operatorname{Tr} \sigma^{\operatorname{d}(\sigma)} + \left(1 - \operatorname{d}(\sigma)\right) H(\rho_n^m)}{\operatorname{d}(\sigma)} \\ &= \frac{\left(1 - \operatorname{d}(\sigma)\right) h - \log \operatorname{Tr} \sigma^{\operatorname{d}(\sigma)}}{\operatorname{d}(\sigma)} - \frac{1 - \operatorname{d}(\sigma)}{\operatorname{d}(\sigma) m} = c - \frac{1 - \operatorname{d}(\sigma)}{\operatorname{d}(\sigma) m} \,. \end{split}$$

Таким образом, для каждого m существует N(m) такое, что ρ_n^m лежит в $\mathcal{V}_{\sigma,c}$ для всех $n\geqslant N(m)$. С учетом этого из (19) следует, что из семейства $\{\rho_n^m\}_{n,m}$ можно выбрать последовательность $\{\hat{\rho}_n\}_n$ состояний из $\mathcal{V}_{\sigma,c}$, сходящуюся к состоянию $\sigma_{\mathrm{d}(\sigma)}$, такую, что $\lim_{n\to+\infty}H(\hat{\rho}_n)=h$. Поэтому $\sup_{\rho\in\mathcal{V}_{\sigma,c}}H(\rho)\geqslant h$. Поскольку обратное неравенство следует из (18), получаем $\sup_{\rho\in\mathcal{V}_{\sigma,c}}H(\rho)=h>H(\sigma_{\mathrm{d}(\sigma)})$. В силу леммы 2 множество $\mathcal{V}_{\sigma,c}$ не содержит состояния с максимальной энтропией.

Общее выражение для $\sup_{\rho \in \mathcal{V}_{\sigma,c}} H(\rho)$ выводится из предыдущих наблюдений и замечания, что нижняя грань в этом выражении достигается при $\lambda = \lambda^*$, если $c \leqslant c_*(\sigma)$, и при $\lambda = \mathrm{d}(\sigma)$, если $c \geqslant c_*(\sigma)$.

Следующее предложение посвящено рассмотрению вопроса о непрерывности энтропии на произвольных множествах состояний.

ПРЕДЛОЖЕНИЕ 4. Пусть \mathcal{A} – произвольное замкнутое подмножество множества $\mathfrak{S}(\mathcal{H})$. Следующие свойства равносильны:

- (i) $\mathcal{A} \subseteq \mathcal{K}_{H,h}$ для некоторого \mathfrak{H} -оператора H c g(H)=0 u положительного числа h:
- (ii) энтропия непрерывна на множестве \mathcal{A} и существует состояние σ из $\mathfrak{S}(\mathcal{H})$ такое, что относительная энтропия $H(\rho \parallel \sigma)$ непрерывна и ограничена на множестве \mathcal{A} ;
- (iii) существует \mathfrak{H} -оператор \widetilde{H} с $\mathrm{g}(\widetilde{H})<+\infty$ такой, что линейная функция $\mathrm{Tr}\ \rho\widetilde{H}$ непрерывна и ограничена на множестве \mathcal{A} .

Если равносильные свойства (i)-(iii) имеют место для множества \mathcal{A} , то \mathfrak{H} -операторы H, \widetilde{H} и состояние σ можно выбрать таким образом, что $\operatorname{Tr} \sigma H < +\infty$, $\widetilde{H} = -\log \sigma$ и $H(\sigma) < +\infty$.

Замечание 2. Из последнего утверждения предложения 4 следует, что если свойства (i)–(iii) имеют место для множества \mathcal{A} , то эти свойства имеют место и для множества $\overline{\operatorname{co}}\{\mathcal{A},\sigma\}$.

Доказательство предложения 4. (ii) \Rightarrow (iii). Поскольку (ii) гарантирует конечность энтропии на \mathcal{A} , имеем

$$H(\rho \parallel \sigma) = -H(\rho) + \operatorname{Tr} \rho(-\log \sigma) \quad \forall \rho \in \mathcal{A}.$$
 (20)

В силу предложения 3 множество \mathcal{A} компактно и, следовательно, энтропия ограничена на \mathcal{A} . Таким образом, из (ii) и (20) следует непрерывность и ограниченность функции $\operatorname{Tr} \rho(-\log \sigma)$ на множестве \mathcal{A} . Поэтому (iii) имеет место с $\widetilde{H} = -\log \sigma$.

(iii) \Rightarrow (ii). Пусть $\lambda > g(\widetilde{H})$ и $\sigma = \left({\rm Tr} \exp(-\lambda \widetilde{H}) \right)^{-1} \exp(-\lambda \widetilde{H})$ — состояние из $\mathfrak{S}(\mathcal{H})$ с конечной энтропией. Свойство (iii) означает непрерывность и ограниченность функции ${\rm Tr} \, \rho(-\log \sigma)$ на множестве \mathcal{A} . Поэтому из (20) следует, в силу полунепрерывности снизу энтропии и относительной энтропии, непрерывность и ограниченность функций $H(\rho)$ и $H(\rho \parallel \sigma)$ на множестве \mathcal{A} .

(i) \Rightarrow (iii). Пусть $H = \sum_k h_k |k\rangle\langle k|$, где $\{|k\rangle\}$ — ортонормированный базис в \mathcal{H} . В силу предположения имеем $\sum_k \exp(-\lambda h_k) < +\infty$ для всех $\lambda > 0$ и, следовательно, $\sum_k h_k \exp(-\lambda h_k) < +\infty$ для всех $\lambda > 0$. Это гарантирует существование последовательности $\{\lambda_k\}$ положительных чисел, монотонно сходящейся к нулю, такой, что $\sum_k h_k \exp(-\lambda_k h_k) < +\infty$. Такую последовательность можно построить следующим образом. Для произвольного натурального m пусть N(m) — минимальное натуральное число такое, что $\sum_{k=N(m)}^{+\infty} h_k \exp(-h_k/m) < 2^{-m}$. Нетрудно видеть, что последовательность

$$\lambda_k = \begin{cases} 1, & k < N(2), \\ \frac{1}{m}, & N(m) \leqslant k < N(m+1), & m \geqslant 2, \end{cases}$$

обладает указанным свойством. Поскольку ${\rm Tr}\, \rho H = \sum_k h_k \langle k|\rho|k\rangle \leqslant h$ для всех ρ из \mathcal{A} , ряд $\sum_k \lambda_k h_k \langle k|\rho|k\rangle$ сходится равномерно на \mathcal{A} . Это гарантирует непрерывность на \mathcal{A} функции ${\rm Tr}\, \rho(-\log\sigma)$, где

$$\sigma = \left(\sum_{k} \exp(-\lambda_k h_k)\right)^{-1} \sum_{k} \exp(-\lambda_k h_k) |k\rangle\langle k|.$$

Заметим, что из условия $\sum_k h_k \exp(-\lambda_k h_k) < +\infty$ следует $\operatorname{Tr} \sigma H < +\infty$ и $H(\sigma) < +\infty$. Таким образом, (iii) имеет место с $\widetilde{H} = -\log \sigma$.

(iii) \Rightarrow (i). Пусть $\widetilde{H} = \sum_k \tilde{h}_k |k\rangle\langle k|$, где $\{|k\rangle\}$ – ортонормированный базис в \mathcal{H} . Поскольку (iii) равносильно (ii), из предложения 3 следует компактность множества \mathcal{A} . В соответствии с (iii) ряд $\sum_k \tilde{h}_k \langle k| \rho |k\rangle$ сходится на компактном множестве \mathcal{A} к непрерывной функции $\mathrm{Tr}\,\rho\widetilde{H}$. В силу леммы Дини этот ряд сходится равномерно на \mathcal{A} , что гарантирует существование последовательности $\{\lambda_k\}$ положительных чисел, монотонно сходящейся к $+\infty$, такой, что $\sum_k \lambda_k \tilde{h}_k \langle k| \rho |k\rangle \leqslant h < +\infty$ для всех ρ из \mathcal{A} . Нетрудно видеть, что (i) имеет место с $H = \sum_k \lambda_k \tilde{h}_k |k\rangle\langle k|$.

Последнее утверждение предложения следует из приведенного выше построения.

Из предложений 1 и 4 вытекает следующее наблюдение.

Следствие 1. Если H – \mathfrak{H} -onepamop c g(H)=0, то существуют состояние σ из $\mathfrak{S}(\mathcal{H})$ и \mathfrak{H} -onepamop \widetilde{H} c $g(\widetilde{H})<+\infty$ такие, что относительная энтропия $H(\rho \parallel \sigma)$ и линейная функция $\mathrm{Tr}\ \rho \widetilde{H}$ непрерывны на множестве $\mathcal{K}_{H,h}$.

Поскольку множество $\mathcal{K}_{H,h}$ является выпуклым, из предложений 1 и 4 получаем следующий результат.

Следствие 2. Если энтропия непрерывна на замкнутом множестве \mathcal{A} и существует состояние σ из $\mathfrak{S}(\mathcal{H})$ такое, что относительная энтропия $H(\rho \| \sigma)$ непрерывна и ограничена на множестве \mathcal{A} , то энтропия непрерывна на множестве $\overline{\text{co}}(\mathcal{A})$.

Замечание 3. Предположение о существовании состояния σ в п. (ii) предложения 4 и в следствии 2 существенно. Действительно, пусть \mathcal{A} – замкнутое множество всех чистых состояний из $\mathfrak{S}(\mathcal{H})$. Энтропия тождественно равна нулю на этом множестве и, следовательно, непрерывна. Но она не является

непрерывной функцией на $\overline{\text{co}}(\mathcal{A}) = \mathfrak{S}(\mathcal{H})$. Существует *компактное* множество \mathcal{A} чистых состояний (сходящаяся последовательность) такое, что энтропия не ограничена на множестве $\overline{\text{co}}(\mathcal{A})$ (см. пример 1 в ч. II настоящей работы).

Предложение 4 и следствие 2 позволяют показать непрерывность энтропии и относительной энтропии на некоторых нетривиальных множествах состояний. В ч. II настоящей работы нам потребуется следующий результат.

СЛЕДСТВИЕ 3. Пусть $\{U_{\lambda}\}_{\lambda\in\Lambda}$ – замкнутое семейство унитарных (антиунитарных) операторов в пространстве \mathcal{H} , и пусть ω – состояние из $\mathfrak{S}(\mathcal{H})$ такое, что $U_{\lambda}\omega U_{\lambda}^* = \omega$ для всех $\lambda \in \Lambda$. Тогда для любого состояния σ такого, что $\mathrm{Tr}\,\sigma(-\log\omega) < +\infty$, функции $H(\rho)$ и $H(\rho\|\omega)$ непрерывны на множестве $\overline{\mathrm{co}}(\{U_{\lambda}\sigma U_{\lambda}^*\}_{\lambda\in\Lambda})$.

Для произвольного ортонормированного базиса $\{|k\rangle\}\subset \mathcal{H}$ рассмотрим вполне положительное сохраняющее след отображение

$$\Pi_{\{|k\rangle\}} : \rho \mapsto \sum_{k} \langle k|\rho|k\rangle |k\rangle \langle k|.$$

Заметим, что множество выходных состояний отображения $\Pi_{\{|k\rangle\}}$ можно рассматривать как множество классических состояний (распределений вероятностей). Поэтому множество $\Pi_{\{|k\rangle\}}(\mathcal{A})$ можно назвать *классической проекцией* множества \mathcal{A} , соответствующей базису $\{|k\rangle\}$.

Следующее предложение показывает, что некоторые свойства множеств квантовых состояний тесно связаны со свойствами классических проекций этих множеств.

ПРЕДЛОЖЕНИЕ 5. Пусть \mathcal{A} – произвольное замкнутое подмножество множества $\mathfrak{S}(\mathcal{H})$.

- 1) Множество \mathcal{A} компактно, если множество $\Pi_{\{|k\rangle\}}(\mathcal{A})$ компактно хотя бы для одного базиса $\{|k\rangle\}$.
- 2) Если множество \mathcal{A} компактно, то множество $\Pi_{\{|k\rangle\}}(\mathcal{A})$ компактно для любого базиса $\{|k\rangle\}$.
- 3) Энтропия ограничена на множестве A, если энтропия ограничена на множестве $\Pi_{\{|k\rangle\}}(A)$ хотя бы для одного базиса $\{|k\rangle\}$.
- 4) Если энтропия ограничена на выпуклом множестве A, то энтропия ограничена на множестве $\Pi_{\{|k\rangle\}}(A)$ по крайней мере для одного базиса $\{|k\rangle\}$.
- 5) Энтропия непрерывна на множестве \mathcal{A} , если энтропия непрерывна на множестве $\Pi_{\{|k\rangle\}}(\mathcal{A})$ хотя бы для одного базиса $\{|k\rangle\}$.
- 6) Если энтропия непрерывна на множестве A и существует состояние σ в $\mathfrak{S}(\mathcal{H})$ такое, что относительная энтропия $H(\rho \| \sigma)$ непрерывна и ограничена на множестве A, то энтропия непрерывна на множестве $\Pi_{\{|k\rangle\}}(A)$ по крайней мере для одного базиса $\{|k\rangle\}$.

Доказательство. Если множество $\Pi_{\{|k\rangle\}}(\mathcal{A})$ компактно, то, в силу критерия компактности для подмножеств классических состояний, для любого $\varepsilon>0$ существует N_{ε} такое, что

$$\operatorname{Tr} P_{\varepsilon} \rho = \sum_{k=1}^{N_{\varepsilon}} \langle k | \rho | k \rangle \geqslant 1 - \varepsilon \quad \forall \, \rho \in \mathcal{A},$$

где $P_{\varepsilon}=\sum_{k=1}^{N_{\varepsilon}}|k\rangle\langle k|$ – проектор конечного ранга. Это в силу критерия компактности для подмножеств $\mathfrak{S}(\mathcal{H})$ гарантирует компактность множества \mathcal{A} .

Если множество \mathcal{A} компактно, то для любого базиса $\{|k\rangle\}$ множество $\Pi_{\{|k\rangle\}}(\mathcal{A})$ компактно как образ компактного множества при непрерывном отображении.

В доказательстве следующих утверждений будет использовано тождество

$$H(\rho \parallel \Pi_{\{|k\rangle\}}(\rho)) = H(\Pi_{\{|k\rangle\}}(\rho)) - H(\rho), \tag{21}$$

справедливое для любого состояния ρ такого, что $H(\Pi_{\{|k\}\}}(\rho)) < +\infty$.

Если энтропия ограничена на множестве $\Pi_{\{|k\rangle\}}(\mathcal{A})$, то она ограничена и на множестве \mathcal{A} , поскольку из (21) и неотрицательности относительной энтропии следует, что $H(\rho) \leqslant H(\Pi_{\{|k\rangle\}}(\rho))$ для любого ρ из \mathcal{A} .

Если энтропия ограничена на выпуклом множестве \mathcal{A} , то в силу приведенного далее следствия 7 множество \mathcal{A} содержится в множестве $\mathcal{K}_{H,h}$, определенном некоторым \mathfrak{H} -оператором H с $g(H) < +\infty$. Пусть $\{|k\rangle\}$ – базис из собственных векторов \mathfrak{H} -оператора H. Множество $\Pi_{\{|k\rangle\}}(\mathcal{A})$ также содержится в $\mathcal{K}_{H,h}$, и, следовательно, энтропия ограничена на $\Pi_{\{|k\rangle\}}(\mathcal{A})$ в силу предложения 1.

Предположим, что энтропия непрерывна на множестве $\Pi_{\{|k\rangle\}}(\mathcal{A})$. Тогда энтропия конечна на этом множестве и в силу (21) энтропия конечна на множестве \mathcal{A} . Пусть ρ_0 – состояние из \mathcal{A} и $\{\rho_n\}$ – последовательность состояний из \mathcal{A} , сходящаяся к состоянию ρ_0 . Используя предположение о непрерывности энтропии на множестве $\Pi_{\{|k\rangle\}}(\mathcal{A})$, получепрерывность снизу относительной энтропии и тождество (21), получаем

$$\limsup_{n \to +\infty} H(\rho_n) = \lim_{n \to +\infty} H(\Pi_{\{|k\rangle\}}(\rho_n)) - \liminf_{n \to +\infty} H(\rho_n \parallel \Pi_{\{|k\rangle\}}(\rho_n))$$

$$\leq H(\Pi_{\{|k\rangle\}}(\rho_0)) - H(\rho_0 \parallel \Pi_{\{|k\rangle\}}(\rho_0)) = H(\rho_0).$$

Из этого неравенства и полунепрерывности снизу энтропии следует, что $\lim_{n\to+\infty} H(\rho_n) = H(\rho_0)$.

Если энтропия непрерывна на множестве \mathcal{A} и существует состояние σ из $\mathfrak{S}(\mathcal{H})$ такое, что относительная энтропия $H(\rho \parallel \sigma)$ непрерывна и ограничена на множестве \mathcal{A} , то в силу предложения 4 множество \mathcal{A} содержится в множестве $\mathcal{K}_{H,h}$, определенном некоторым \mathfrak{H} -оператором H с g(H)=0. Пусть $\left\{|k\rangle\right\}$ – базис из собственных векторов H. Тогда множество $\Pi_{\{|k\rangle\}}(\mathcal{A})$ также содержится в $\mathcal{K}_{H,h}$ и в силу предложения 1 энтропия непрерывна на $\Pi_{\{|k\rangle\}}(\mathcal{A})$.

Замечание 4. Выражение "по крайней мере для одного" в пп. 4) и 6) предложения 5 нельзя, в отличие от п. 2), заменить на выражение "для любого". Действительно, для любого чистого состояния ρ существует базис $\{|k\rangle\}$ такой, что $H(\Pi_{\{|k\rangle\}}(\rho)) = +\infty$.

Пусть σ – состояние с базисом из собственных векторов $\{|k\rangle\}$. Множество $\Pi_{\{|k\rangle\}}^{-1}(\sigma)$, состоящее из всех состояний, имеющих такие же диагональные значения в базисе $\{|k\rangle\}$, что и состояние σ , назовем *слоем*⁷, *соответствующим*

⁷Если состояние σ имеет различные собственные значения, то базис из собственных векторов $\{|k\rangle\}$ по существу единствен и множество $\mathcal{L}(\sigma)$ определяется только состоянием σ . Если состояние σ имеет кратные собственные значения, то множество $\mathcal{L}(\sigma)$ также зависит от выбора базиса $\{|k\rangle\}$. Поскольку в последнем случае все "варианты" множества $\mathcal{L}(\sigma)$ изоморфны друг другу, будем предполагать, что выбран один из этих вариантов.

cocmoshupo σ , и обозначим $\mathcal{L}(\sigma)$. В некотором смысле слой можно рассматривать как простейшее чисто квантовое множество состояний.

Используя (21), получаем

$$H(\rho) \leqslant H(\sigma) \quad \forall \rho \in \mathcal{L}(\sigma),$$
 (22)

и, следовательно, энтропия ограничена на слое, соответствующем состоянию σ , тогда и только тогда, когда $H(\sigma) < +\infty$. Следующее предложение показывает, что ограниченность энтропии на слое гарантирует ее непрерывность.

ПРЕДЛОЖЕНИЕ 6. Пусть σ – произвольное состояние из $\mathfrak{S}(\mathcal{H})$.

- 1) Множество $\mathcal{L}(\sigma)$ является компактным выпуклым подмножеством $\mathfrak{S}(\mathcal{H}).$
- 2) Энтропия $H(\rho)$ непрерывна на множестве $\mathcal{L}(\sigma)$ тогда и только тогда, когда $\sup_{\rho \in \mathcal{L}(\sigma)} H(\rho) = H(\sigma) < +\infty$.
- 3) Если $H(\sigma)<+\infty,\ mo\ H(\rho\,\|\,\sigma)=H(\sigma)-H(\rho)$ для любого состояния ρ из $\mathcal{L}(\sigma).$
- 4) Если $H(\sigma)=+\infty,$ то $H(\rho \parallel \sigma)=+\infty$ для произвольного чистого состояния ρ из $\mathcal{L}(\sigma)$.

ДОКАЗАТЕЛЬСТВО. Утверждения 1) и 2) следуют из пп. 1) и 5) предложения 5 соответственно, поскольку $\Pi_{\{|k\rangle\}}\big(\mathcal{L}(\sigma)\big)=\{\sigma\},$ если $\{|k\rangle\}$ – базис из собственных векторов состояния σ .

Выражение для относительной энтропии в случае $H(\sigma) < +\infty$ есть просто переформулировка тождества (21).

Пусть $H(\sigma) = +\infty$ и ρ – произвольное чистое состояние из $\mathcal{L}(\sigma)$. Рассмотрим последовательности состояний $\{\sigma_n = (\operatorname{Tr} P_n \sigma)^{-1} P_n \sigma\}$ и $\{\rho_n = (\operatorname{Tr} P_n \rho)^{-1} P_n \rho P_n\}$, где P_n – спектральный проектор состояния σ , соответствующий его n максимальным собственным значениям.

Поскольку для каждого n чистое состояние ρ_n лежит в $\mathcal{L}(\sigma_n)$, используя (21), получаем

$$H(\rho_n \parallel \sigma_n) = H(\sigma_n) - H(\rho_n) = H(\sigma_n).$$

В силу [8, лемма 4] левая и правая части этого равенства сходятся к $H(\rho \parallel \sigma)$ и к $H(\sigma) = +\infty$ соответственно при $n \to +\infty$.

ЗАМЕЧАНИЕ 5. Предложения 5 и 6 приводят к следующему наблюдению: разрывность и неограниченность квантовой энтропии в бесконечномерном случае имеют чисто классическую природу. Действительно, множество всех квантовых состояний можно представить как совокупность слоев, соответствующих всем состояниям, диагонализируемым в некотором базисе. Множество таких состояний можно отождествить с множеством классических состояний – распределений вероятностей, в то время как отдельный слой – с множеством чисто квантовых состояний. Предложение 6 показывает, что энтропия непрерывна на целом слое, если она конечна на соответствующем классическом состоянии. В силу предложения 5 разрывность энтропии связана с переходом между слоями, соответствующими множеству классических состояний, на которых энтропия разрывна.

§ 4. γ -емкость

4.1. Оптимальное среднее. Пусть \mathcal{A} — произвольное подмножество множества $\mathfrak{S}(\mathcal{H})$. χ -емкость множества \mathcal{A} определяется выражением

$$\overline{C}(\mathcal{A}) = \sup_{\{\pi_i, \rho_i\}} \chi(\{\pi_i, \rho_i\}), \tag{23}$$

в котором точная верхняя грань берется по всем ансамблям $\{\pi_i, \rho_i\}$ состояний из \mathcal{A} .

Если энтропия ограничена на множестве $\overline{\mathrm{co}}(\mathcal{A})$, то

$$\overline{C}(\mathcal{A}) = \sup_{\{\pi_i, \rho_i\}} \left(H\left(\sum_i \pi_i \rho_i\right) - \sum_i \pi_i H(\rho_i) \right) \leqslant \sup_{\rho \in \overline{\text{co}}(\mathcal{A})} H(\rho) < +\infty.$$

Однако ограниченность энтропии не является необходимым условием конечности χ -емкости, как это следует из примеров, рассмотренных в ч. II настоящей работы.

В соответствии с [15] последовательность $\left\{\{\pi_i^n,\rho_i^n\}\right\}_n$ ансамблей состояний из $\mathcal A$ такая, что

$$\lim_{n \to +\infty} \chi(\{\pi_i^n, \rho_i^n\}) = \overline{C}(\mathcal{A}),$$

называется аппроксимирующей последовательностью для множества А.

Если \mathcal{A} — множество состояний (операторов плотности) в конечномерном гильбертовом пространстве, то существует ансамбль $\{\pi_i, \rho_i\}$, являющийся оптимальным ансамблем для множества \mathcal{A} , на котором достигается точная верхняя грань в определении χ -емкости (23) и среднее состояние которого обладает рядом особых свойств [14]. Если \mathcal{A} — множество состояний (операторов плотности) в бесконечномерном гильбертовом пространстве, то оптимальный ансамбль, в общем случае, не существует, но можно доказать существование единственного состояния, обладающего свойствами среднего состояния оптимального ансамбля в конечномерном случае.

ТЕОРЕМА 1. Пусть \mathcal{A} – множество с конечной χ -емкостью $\overline{C}(\mathcal{A})$.

1) Существует единственное состояние $\Omega(\mathcal{A})$ в $\mathfrak{S}(\mathcal{H})$ такое, что

$$H(\rho \parallel \Omega(\mathcal{A})) \leqslant \overline{C}(\mathcal{A}) \quad \forall \rho \in \mathcal{A}.$$

Состояние $\Omega(\mathcal{A})$ лежит в $\overline{\operatorname{co}}(\mathcal{A})$. Для любой аппроксимирующей последовательности ансамблей $\left\{\left\{\pi_i^n, \rho_i^n\right\}\right\}_n$ для множества \mathcal{A} соответствующая последовательность средних состояний $\left\{\bar{\rho}_n\right\}$ H-сходится 8 κ состоянию $\Omega(\mathcal{A})$.

2) χ -емкость множества $\mathcal A$ определяется выражением

$$\overline{C}(\mathcal{A}) = \inf_{\sigma \in \mathfrak{S}(\mathcal{H})} \sup_{\rho \in \mathcal{A}} H(\rho \parallel \sigma) = \inf_{\sigma \in \overline{co}(\mathcal{A})} \sup_{\rho \in \mathcal{A}} H(\rho \parallel \sigma) = \sup_{\rho \in \mathcal{A}} H(\rho \parallel \Omega(\mathcal{A})), \quad (24)$$

где первые два равенства выполняются u в случае $\overline{C}(\mathcal{A})=+\infty$.

ДОКАЗАТЕЛЬСТВО. 1) Покажем сначала, что при любой аппроксимирующей последовательности ансамблей $\{\mu_n=\{\pi_i^n,\rho_i^n\}_{i=1}^{N(n)}\}$ для множества $\mathcal A$ соответствующая последовательность средних состояний $\{\bar\rho_n\}$ сходится к некоторому

⁸Это значит, что $\lim_{n\to+\infty} H(\bar{\rho}_n \parallel \Omega(\mathcal{A})) = 0$.

состоянию из $\mathfrak{S}(\mathcal{H})$. По определению аппроксимирующей последовательности для любого $\varepsilon > 0$ существует N_{ε} такое, что $\chi(\mu_n) > \overline{C}(\mathcal{A}) - \varepsilon$ для всех $n \geqslant N_{\varepsilon}$. В силу леммы 1 при m=2 и $\lambda=1/2$ имеем

$$\overline{C}(\mathcal{A}) - \varepsilon \leqslant \frac{1}{2} \chi(\mu_{n_1}) + \frac{1}{2} \chi(\mu_{n_2})$$

$$\leqslant \chi \left(\frac{1}{2} \mu_{n_1} + \frac{1}{2} \mu_{n_2} \right) - \frac{1}{8} \| \bar{\rho}_{n_2} - \bar{\rho}_{n_1} \|_1^2 \leqslant \overline{C}(\mathcal{A}) - \frac{1}{8} \| \bar{\rho}_{n_2} - \bar{\rho}_{n_1} \|_1^2$$

и, следовательно, $\|\bar{\rho}_{n_2} - \bar{\rho}_{n_1}\|_1 < \sqrt{8\varepsilon}$ для всех $n_1 \geqslant N_\varepsilon$ и $n_2 \geqslant N_\varepsilon$. Таким образом, последовательность $\{\bar{\rho}_n\}$ является фундаментальной и, следовательно, сходится к некоторому состоянию ρ_* из $\mathfrak{S}(\mathcal{H})$.

Пусть σ — произвольное состояние из \mathcal{A} . Для каждого натурального n и произвольного η из [0,1] рассмотрим ансамбль 9 μ_n^η , состоящий из набора состояний $\{\rho_1^n,\ldots,\rho_{N(n)}^n,\sigma\}$ с соответствующим распределением вероятностей $\{(1-\eta)\pi_1^n,\ldots,(1-\eta)\pi_{N(n)}^n,\eta\}$. Получим последовательность ансамблей $\{\mu_n^\eta\}$ с соответствующей последовательностью средних состояний $\{\bar{\rho}_n^\eta=(1-\eta)\bar{\rho}_n+\eta\sigma\}_n$, сходящейся к состоянию $\bar{\rho}_\eta=(1-\eta)\rho_*+\eta\sigma$ при $n\to+\infty$.

Для произвольного n имеем

$$\chi(\mu_n^{\eta}) = (1 - \eta) \sum_i \pi_i^n H(\rho_i^n \parallel \bar{\rho}_n^{\eta}) + \eta H(\sigma \parallel \bar{\rho}_n^{\eta}). \tag{25}$$

В силу предположения конечности $\overline{C}(A)$ обе суммы в правой части выражения (25) конечны. Применяя тождество Дональда (3) к первой сумме в правой части, получаем

$$\sum_{i} \pi_{i}^{n} H(\rho_{i}^{n} \parallel \bar{\rho}_{n}^{\eta}) = \chi(\mu_{n}^{0}) + H(\bar{\rho}_{n} \parallel \bar{\rho}_{n}^{\eta}).$$

Подстановка предыдущего выражения в (25) дает

$$\chi(\mu_n^{\eta}) = \chi(\mu_n^0) + (1 - \eta)H(\bar{\rho}_n \| \bar{\rho}_n^{\eta}) + \eta (H(\sigma \| \bar{\rho}_n^{\eta}) - \chi(\mu_n^0)).$$

Отсюда в силу неотрицательности относительной энтропии получаем

$$H(\sigma \| \bar{\rho}_n^{\eta}) \leqslant \eta^{-1} (\chi(\mu_n^{\eta}) - \chi(\mu_n^{\eta})) + \chi(\mu_n^{\eta}), \qquad \eta \neq 0.$$
 (26)

По определению аппроксимирующей последовательности

$$\lim_{n \to +\infty} \chi(\mu_n^0) = \overline{C}(\mathcal{A}) \geqslant \chi(\mu_n^{\eta}) \tag{27}$$

для всех n и $\eta > 0$. Следовательно,

$$\lim_{n \to +0} \inf_{n \to +\infty} \inf_{n \to +\infty} \eta^{-1} \left[\chi(\mu_n^{\eta}) - \chi(\mu_n^0) \right] \leqslant 0. \tag{28}$$

В силу полунепрерывности снизу относительной энтропии из неравенств (26)–(28) следует, что

$$H(\sigma \parallel \rho_*) \leqslant \liminf_{\eta \to +0} \liminf_{n \to +\infty} H(\sigma \parallel \bar{\rho}_n^{\eta}) \leqslant \overline{C}(\mathcal{A}).$$

 $^{^9}$ Такое расширение ансамбля путем "подмешивания" дополнительного состояния было первоначально использовано в [14] в конечномерном случае.

Таким образом, доказано, что

$$\sup_{\sigma \in \mathcal{A}} H(\sigma \parallel \rho_*) \leqslant \overline{C}(\mathcal{A}). \tag{29}$$

Пусть $\left\{\{\lambda_j^n,\sigma_j^n\}\right\}_n$ — произвольная аппроксимирующая последовательность ансамблей. В силу неравенства (29) получаем

$$\sum_{j} \lambda_{j}^{n} H(\sigma_{j}^{n} \parallel \rho_{*}) \leqslant \overline{C}(\mathcal{A}).$$

Применяя тождество Дональда (3), получаем

$$\sum_{j} \lambda_{j}^{n} H(\sigma_{j}^{n} \parallel \rho_{*}) = \sum_{j} \lambda_{j}^{n} H(\sigma_{j}^{n} \parallel \bar{\sigma}_{n}) + H(\bar{\sigma}_{n} \parallel \rho_{*}). \tag{30}$$

Из двух предыдущих выражений следует, что

$$H(\bar{\sigma}_n \parallel \rho_*) \leqslant \overline{C}(\mathcal{A}) - \sum_j \lambda_j^n H(\sigma_j^n \parallel \bar{\sigma}_n).$$

Правая часть этого неравенства стремится к нулю при $n \to +\infty$ благодаря аппроксимирующему свойству последовательности $\left\{ \{\lambda_j^n, \sigma_j^n\} \right\}_n$. Таким образом, последовательность $\left\{ \bar{\sigma}_n \right\}_n$ H-сходится к состоянию ρ_* и, следовательно, сходится к этому состоянию в топологии следовой нормы. Поэтому состояние ρ_* не зависит от выбора аппроксимирующей последовательности, а определяется только множеством \mathcal{A} . Обозначим это состояние $\Omega(\mathcal{A})$. Предыдущее наблюдение показывает, что $\rho_* = \Omega(\mathcal{A})$ – единственное состояние из $\mathfrak{S}(\mathcal{H})$, для которого имеет место неравенство (29).

2) Для доказательства выражения (24) покажем сначала, что неравенство (29) на самом деле является равенством. Действительно, из выражения (30), справедливого для любой аппроксимирующей последовательности $\left\{ \left\{ \lambda_{j}^{n},\sigma_{j}^{n}\right\} \right\} _{n}$, с учетом неотрицательности относительной энтропии следует, что

$$\sum_{j} \lambda_{j}^{n} H(\sigma_{j}^{n} \| \bar{\sigma}_{n}) \leqslant \sum_{j} \lambda_{j}^{n} H(\sigma_{j}^{n} \| \rho_{*}) \leqslant \sup_{\sigma \in \mathcal{A}} H(\sigma \| \rho_{*}).$$

В силу аппроксимирующего свойства последовательности $\{\{\lambda_j^n,\sigma_j^n\}\}_n$ левая часть этого неравенства стремится к $\overline{C}(\mathcal{A})$ при $n\to +\infty$. Это доказывает равенство в (29).

Рассмотрим функцию $F(\sigma) = \sup_{\rho \in \mathcal{A}} H(\rho \| \sigma)$ на $\mathfrak{S}(\mathcal{H})$. Равенство в (29) означает, что $F(\Omega(\mathcal{A})) = \overline{C}(\mathcal{A})$. Следовательно, состояние $\Omega(\mathcal{A})$ – единственная точка минимума функции $F(\sigma)$ на $\mathfrak{S}(\mathcal{H})$. Действительно, пусть σ_0 – состояние из $\mathfrak{S}(\mathcal{H})$ такое, что

$$\sup_{\rho \in \mathcal{A}} H(\rho \parallel \sigma_0) = F(\sigma_0) \leqslant F(\Omega(\mathcal{A})) = \overline{C}(\mathcal{A}).$$

В силу утверждения 1) теоремы $\sigma_0 = \Omega(A)$.

Если $C(A) = +\infty$, то правая часть выражения (24) также равна $+\infty$. Действительно, если σ_0 – состояние из $\mathfrak{S}(\mathcal{H})$ такое, что $\sup_{\rho \in \mathcal{A}} H(\rho \| \sigma_0) = c < +\infty$,

то, используя тождество Дональда и неотрицательность относительной энтропии, получаем

$$\sum_{i} \pi_{i} H(\rho_{i} \parallel \bar{\rho}) \leqslant \sum_{i} \pi_{i} H(\rho_{i} \parallel \sigma_{0}) - H(\bar{\rho} \parallel \sigma_{0}) \leqslant c$$

для любого ансамбля $\{\pi_i, \rho_i\}$ состояний из \mathcal{A} , поэтому $\overline{C}(\mathcal{A}) \leqslant c < +\infty$.

Определение 1. Состояние $\Omega(\mathcal{A})$, введенное в теореме 1, называется оптимальным средним состоянием множества \mathcal{A} .

Из теоремы 1, тождества Дональда (3) и неравенства (1) вытекает следующее полезное неравенство.

Следствие 4. Пусть \mathcal{A} – множество с конечной χ -емкостью. Для произвольного ансамбля $\{\pi_i, \rho_i\}$ состояний из \mathcal{A} со средним состоянием $\bar{\rho}$ имеет место неравенство

$$\overline{C}(\mathcal{A}) - \chi(\{\pi_i, \rho_i\}) \geqslant H(\bar{\rho} \| \Omega(\mathcal{A})) \geqslant \frac{1}{2} \|\bar{\rho} - \Omega(\mathcal{A})\|_1^2.$$

Теорема 1 и предложение 3 позволяют получить следующий важный результат.

Следствие 5. Любое множество состояний с конечной χ -емкостью является предкомпактным.

Заметим, что обратное утверждение неверно. Существуют компактные множества, например сходящиеся последовательности состояний, имеющие бесконечную χ -емкость (см. § 3 ч. II настоящей работы).

Следствие 5 приводит к важному наблюдению, связанному с χ -пропускной способностью квантовых каналов с ограничениями [18], [19], [15].

Следствие 6. Пусть $\Phi \colon \mathfrak{S}(\mathcal{H}) \mapsto \mathfrak{S}(\mathcal{H}')$ – произвольный квантовый канал и \mathcal{A} – подмножество $\mathfrak{S}(\mathcal{H})$. Если $\overline{C}(\Phi,\mathcal{A}) < +\infty$, то $\Phi(\mathcal{A})$ – предкомпактное подмножество в $\mathfrak{S}(\mathcal{H}')$.

Доказательство. Из определений χ -пропускной способности канала с ограничениями и χ -емкости следует, что

$$\overline{C}(\Phi(A)) \leqslant \overline{C}(\Phi, A).$$

Следствие доказано.

Данное наблюдение показывает, что χ -пропускная способность квантового канала без ограничений может быть конечной, только если выходное множество состояний этого канала предкомпактно.

Следствие 7. Энтропия ограничена на выпуклом множестве \mathcal{A} тогда и только тогда, когда это множество предкомпактно и содержится в множестве $\mathcal{K}_{H,h}$, определенном некоторым \mathfrak{H} -оператором H c $g(H) < +\infty$ и положительным h.

ДОКАЗАТЕЛЬСТВО. Если множество \mathcal{A} содержится в множестве $\mathcal{K}_{H,h}$ с $g(H)<+\infty,$ то в силу предложения 1 имеем $\sup_{\rho\in\mathcal{A}}H(\rho)<+\infty.$

Если $\sup_{\rho \in \mathcal{A}} H(\rho) < +\infty$, то $\overline{C}(\mathcal{A}) < +\infty$ и в силу теоремы 1 имеем

$$H(\rho \parallel \Omega(\mathcal{A})) = \operatorname{Tr} \rho(-\log \Omega(\mathcal{A})) - H(\rho) \leqslant \overline{C}(\mathcal{A})$$

для всех ρ из \mathcal{A} . Поэтому

$$\operatorname{Tr} \rho \left(-\log \Omega(\mathcal{A}) \right) \leqslant \overline{C}(\mathcal{A}) + \sup_{\rho \in \mathcal{A}} H(\rho)$$

для всех ρ из \mathcal{A} и, следовательно, $\mathcal{A} \subseteq \mathcal{K}_{H,h}$, где $H = -\log \Omega(\mathcal{A})$ и $h = \overline{C}(\mathcal{A}) + \sup_{\rho \in \mathcal{A}} H(\rho)$.

В силу следствия 7 ограниченность энтропии на выпуклом множестве \mathcal{A} означает, что множество \mathcal{A} содержится в множестве $\mathcal{K}_{H,h}$, определенном некоторым \mathfrak{H} -оператором H с конечным g(H). В силу теоремы 1 конечность χ -емкости произвольного множества \mathcal{A} означает, что множество \mathcal{A} содержится в множестве $\mathcal{V}_{\Omega(\mathcal{A}),\overline{C}(\mathcal{A})}$, имеющем такую же χ -емкость и такое же оптимальное среднее состояние.

4.2. Оптимальная мера. Пусть \mathcal{A} — замкнутое множество с конечной χ -емкостью. В силу следствия 5 множество \mathcal{A} компактно. Следовательно, множество $\mathcal{P}(\mathcal{A})$ всех вероятностных мер на \mathcal{A} компактно в топологии слабой сходимости (топологии Прохорова) [11]. Поскольку произвольную меру из $\mathcal{P}(\mathcal{A})$ можно аппроксимировать слабо сходящейся последовательностью мер с конечным носителем, из полунепрерывности снизу функционала $\chi(\mu)$ следует, что

$$\overline{C}(\mathcal{A}) = \sup_{\mu \in \mathcal{P}(\mathcal{A})} \chi(\mu), \tag{31}$$

т. е. точная верхняя грань по всем мерам из $\mathcal{P}(\mathcal{A})$ совпадает с точной верхней гранью по всем мерам с конечным носителем.

Определение 2. Мера μ_* из $\mathcal{P}(\mathcal{A})$ такая, что

$$\overline{C}(A) = \chi(\mu_*) = \int_{\mathcal{A}} H(\rho \| \overline{\rho}(\mu_*)) \mu_*(d\rho),$$

называется *оптимальной мерой для множества* A.

Используя теорему 1 и обобщенное тождество Дональда (4), нетрудно получить следующее обобщение следствия 4: для произвольного замкнутого множества \mathcal{A} с конечной χ -емкостью и произвольной меры μ из $\mathcal{P}(\mathcal{A})$ имеет место следующее неравенство:

$$\overline{C}(\mathcal{A}) - \chi(\mu) \geqslant H(\bar{\rho}(\mu) \| \Omega(\mathcal{A})) \geqslant \frac{1}{2} \| \bar{\rho}(\mu) - \Omega(\mathcal{A}) \|_{1}^{2}.$$

Это неравенство и теорема 1 позволяют обобщить свойство максимальной равноудаленности оптимального ансамбля [14] на бесконечномерный случай.

ПРЕДЛОЖЕНИЕ 7. Пусть μ_* – оптимальная мера для замкнутого множества \mathcal{A} с конечной χ -емкостью. Тогда ее барицентр $\bar{\rho}(\mu_*)$ совпадает с оптимальным средним состоянием $\Omega(\mathcal{A})$ и $H(\rho \parallel \Omega(\mathcal{A})) = \overline{C}(\mathcal{A})$ для μ_* -почти всех ρ .

В частности, если существует конечный или счетный ансамбль $\{\pi_i, \rho_i\}$, на котором достигается точная верхняя грань в определении χ -емкости (23) – оптимальный ансамбль для множества \mathcal{A} , то его среднее состояние $\bar{\rho}$ совпадает с оптимальным средним состоянием $\Omega(\mathcal{A})$ и $H(\rho_i \| \Omega(\mathcal{A})) = \overline{C}(\mathcal{A})$ для всех i таких, что $\pi_i > 0$.

Следствие 8. Пусть \mathcal{A} – замкнутое множество с конечной χ -емкостью. Необходимым условием существования оптимальной меры для множества \mathcal{A} является неравенство $\overline{C}(\mathcal{A}) \leqslant H(\Omega(\mathcal{A}))$.

Доказательство. Достаточно рассмотреть случай $H(\Omega(\mathcal{A})) < +\infty$, для которого из (2), определения оптимальной меры μ_* и предложения 7 следует

$$\overline{C}(\mathcal{A}) = \chi(\mu_*) = H(\bar{\rho}(\mu_*)) - \widehat{H}(\mu_*) \leqslant H(\bar{\rho}(\mu_*)) = H(\Omega(\mathcal{A})).$$

Следствие доказано.

Данное следствие дает простой способ показать отсутствие оптимальной меры для некоторого множества состояний. Этот способ будет использован в ч. II настоящей работы.

Следующая теорема дает достаточное условие существования оптимальной меры.

ТЕОРЕМА 2. Пусть \mathcal{A} – замкнутое множество с конечной χ -емкостью. Оптимальная мера для множества \mathcal{A} существует, если выполнено одно из следующих условий:

- 1) $H(\Omega(A)) < +\infty$ и $\lim_{n \to +\infty} H(\rho_n) = H(\Omega(A))$ для любой последовательности $\{\rho_n\}$ состояний из $\operatorname{co}(A)$, H-сходящейся H0 к состоянию H0 к состоянию H1 к состоянию H2 к состоянию H3 к состоянию H4 к состоянию H5 к состоянию H6 к состоянию H8 к состоянию H9 к состоя
 - 2) функция $\rho \mapsto H(\rho \parallel \Omega(\mathcal{A}))$ непрерывна на множестве \mathcal{A} .

Доказательство теоремы основано на следующей лемме.

ЛЕММА 4. Пусть \mathcal{A} – замкнутое множество с конечной χ -емкостью. Существует последовательность мер $\{\mu_n\}$ из $\mathcal{P}(\mathcal{A})$ с конечным носителем, слабо сходящаяся к некоторой мере μ_* из $\mathcal{P}(\mathcal{A})$ с барицентром $\Omega(\mathcal{A})$, такая, что

$$\lim_{n \to +\infty} H(\overline{\rho}(\mu_n) \| \Omega(\mathcal{A})) = 0, \qquad \lim_{n \to +\infty} \chi(\mu_n) = \overline{C}(\mathcal{A}).$$

ДОКАЗАТЕЛЬСТВО. Пусть $\mu_n = \left\{ \left\{ \pi_i^n, \rho_i^n \right\} \right\}_n$ – аппроксимирующая последовательность ансамблей для множества \mathcal{A} с соответствующей последовательностью средних состояний $\left\{ \bar{\rho}_n(\mu_n) \right\}$. Из теоремы 1 следует, что

$$\lim_{n \to +\infty} H(\bar{\rho}(\mu_n) \| \Omega(\mathcal{A})) = 0.$$

Поскольку в силу следствия 5 множество \mathcal{A} компактно, множество $\mathcal{P}(\mathcal{A})$ слабо компактно. Следовательно, существует подпоследовательность последовательности $\{\mu_n\}$, слабо сходящаяся к некоторой мере μ_* из $\mathcal{P}(\mathcal{A})$. Из непрерывности отображения $\mu \mapsto \bar{\rho}(\mu)$ следует, что $\bar{\rho}(\mu_*) = \Omega(\mathcal{A})$. Таким образом, данная подпоследовательность обладает всеми свойствами, указанными в лемме.

¹⁰Это значит, что $\lim_{n\to+\infty} H(\rho_n \parallel \Omega(\mathcal{A})) = 0$.

Доказательство теоремы 2. Два условия в теореме приводят к двум различным доказательствам того, что предельная мера μ_* , введенная в лемме 4, является оптимальной мерой для множества \mathcal{A} .

Пусть $\{\mu_n\}$ – последовательность, существующая в силу леммы 4.

Из условия 1) следует, что

$$\lim_{n \to +\infty} H(\bar{\rho}(\mu_n)) = H(\bar{\rho}(\mu_*)) = H(\Omega(\mathcal{A})) < +\infty.$$

Используя (2) и полунепрерывность снизу функционала $\widehat{H}(\mu)$, получаем

$$\limsup_{n \to +\infty} \chi(\mu_n) = \limsup_{n \to +\infty} \left(H(\bar{\rho}(\mu_n)) - \widehat{H}(\mu_n) \right) \leqslant H(\bar{\rho}(\mu_*)) - \widehat{H}(\mu_*) = \chi(\mu_*).$$

Поскольку $\lim_{n\to+\infty}\chi(\mu_n)=\overline{C}(\mathcal{A})$ и $\chi(\mu_*)\leqslant\overline{C}(\mathcal{A})$, это неравенство показывает, что $\chi(\mu_*)=\overline{C}(\mathcal{A})$, т. е. оптимальность меры μ_* .

Из условия 2), компактности множества ${\cal A}$ и определения слабой сходимости следует, что

$$\chi(\mu_*) = \int_{\mathcal{A}} H(\rho \| \Omega(\mathcal{A})) \mu_*(d\rho) = \lim_{n \to +\infty} \int_{\mathcal{A}} H(\rho \| \Omega(\mathcal{A})) \mu_n(d\rho).$$

Используя обобщенное тождество Дональда (4) и неотрицательность относительной энтропии, получаем

$$\int_{\mathcal{A}} H(\rho \| \Omega(\mathcal{A})) \mu_n(d\rho) = \chi(\mu_n) + H(\bar{\rho}(\mu_n) \| \Omega(\mathcal{A})) \geqslant \chi(\mu_n).$$

Поскольку $\lim_{n\to+\infty}\chi(\mu_n)=\overline{C}(\mathcal{A})$, из двух последних выражений следует $\chi(\mu_*)=\overline{C}(\mathcal{A})$, т. е. оптимальность меры μ_* .

Замечание 6. Условия в теореме 2 существенны, хотя и не являются необходимыми. Существуют примеры множеств с конечной χ -емкостью, не имеющих оптимальной меры. Оптимальной меры может не быть даже у счетного замкнутого множества – сходящейся последовательности состояний с конечной χ -емкостью. Существуют также примеры множеств с конечной χ -емкостью, для которых не выполнены условия теоремы 2, но существует оптимальная мера. Все указанные примеры будут рассмотрены в § 3 ч. II настоящей работы.

§ 5. Приложение

Здесь приведено доказательство свойств функции $F_H(h) = \sup_{\rho \in \mathcal{K}_{H,h}} H(\rho)$, представленных в предложении 1.

Заметим прежде всего, что в силу полунепрерывности снизу энтропии имеем

$$\lim_{h \to +\infty} F_H(h) = \sup_{\rho \in \mathfrak{S}(\mathcal{H})} H(\rho) = +\infty$$

при любом значении g(H), поскольку $\overline{\bigcup_{h\in\mathbb{R}_+}\mathcal{K}_{H,h}}=\mathfrak{S}(\mathcal{H}).$

Рассмотрим функцию

$$g(\lambda, h) = \sum_{k=1}^{+\infty} (h_k - h) \exp(-\lambda h_k).$$

По теореме о рядах, зависящих от параметров [7], эта функция дифференцируема в любой точке (λ, h) с $\lambda > g(H)$, причем

$$\frac{\partial g(\lambda, h)}{\partial \lambda} = \sum_{k=1}^{+\infty} h_k (h - h_k) \exp(-\lambda h_k), \qquad \frac{\partial g(\lambda, h)}{\partial h} = -\sum_{k=1}^{+\infty} \exp(-\lambda h_k). \tag{32}$$

Как показано в доказательстве предложения 1, для каждого h из интервала $(h_{\rm m}(H),h_*(H))$ существует единственное $\lambda^*=\lambda^*(h)>{\rm g}(H)$ такое, что $g(\lambda^*(h),h)=0$. Из (32) следует, что

$$\left. \frac{\partial g(\lambda, h)}{\partial \lambda} \right|_{\lambda = \lambda^*(h)} = -\sum_{k=1}^{+\infty} (h_k - h)^2 \exp(-\lambda^*(h) h_k) < 0.$$

По теореме о неявной функции функция $\lambda^*(h)$ дифференцируема на интервале $(h_{\mathrm{m}}(H),h_*(H))$ и

$$\frac{d\lambda^*(h)}{dh} = -\left[\frac{\partial g(\lambda, h)}{\partial \lambda}\right]^{-1} \frac{\partial g(\lambda, h)}{\partial h}$$

$$= -\left[\sum_{k=1}^{+\infty} (h_k - h)^2 \exp(-\lambda^*(h)h_k)\right]^{-1} \sum_{k=1}^{+\infty} \exp(-\lambda^*(h)h_k) < 0.$$
(33)

Выражение (14) означает, что

$$F_H(h) = \lambda^*(h)h + \log \sum_{k=1}^{+\infty} \exp(-\lambda^*(h)h_k)$$
(34)

для всех h из $(h_{\rm m}(H), h_*(H)]$.

Прямое дифференцирование с учетом равенства $g(\lambda^*(h), h) = 0$ дает

$$\frac{dF_H(h)}{dh} = \frac{d}{dh} \left[\lambda^*(h)h + \log \sum_{k=1}^{+\infty} \exp(-\lambda^*(h)h_k) \right] = \lambda^*(h). \tag{35}$$

Поэтому из (33) следует, что

$$\frac{d^2F_H(h)}{dh^2} = \frac{d\lambda^*(h)}{dh} < 0,$$

т. е. что $F_H(h)$ – строго вогнутая функция на интервале $\big(h_{\mathrm{m}}(H),h_*(H)\big).$

Предположим, что $h_*(H) < +\infty$. Если $h > h_*(H)$, то в силу уже доказанной части предложения 1

$$F_H(h) = g(H)h + \log \sum_{k=1}^{+\infty} \exp(-g(H)h_k)$$
(36)

– линейная функция и

$$\frac{dF_H(h)}{dh} = g(H). \tag{37}$$

Если $h = h_*(H)$, то, как показано в доказательстве предложения 1, $\lambda^*(h) = g(H)$ и, следовательно, выражения (34) и (36) в этом случае совпадают.

Для доказательства гладкости функции $F_H(h)$ в точке $h_*(H)$ заметим, что $\lambda^*(h) \to \mathrm{g}(H)$ при $h \to h_*(H) - 0$. Действительно, в силу (33) функция $\lambda^*(h)$ убывает на $(h_\mathrm{m}(H), h_*(H))$ и для любого $\lambda > \mathrm{g}(H)$ существует

$$h_{\lambda} = \left[\sum_{k=1}^{+\infty} \exp(-\lambda h_k)\right]^{-1} \sum_{k=1}^{+\infty} h_k \exp(-\lambda h_k)$$

такое, что $\lambda = \lambda^*(h_{\lambda})$.

Таким образом, из равенств (34)-(37) следует, что

$$\lim_{h \to h_*(H) \to 0} F_H(h) = F_H(h_*(H)), \qquad \lim_{h \to h_*(H) \to 0} \frac{dF_H(h)}{dh} = \frac{dF_H(h)}{dh} \bigg|_{h=h_*(H) \to 0},$$

а значит, функция $F_H(h)$ имеет непрерывную производную в точке $h_*(H)$.

Для доказательства непрерывности справа функции $F_H(h)$ в точке $h_{
m m}(H)$ заметим, что

$$\lambda^*(h) \to +\infty$$
 при $h \to h_{\rm m} + 0.$ (38)

Действительно, в силу (33) функция $\lambda^*(h)$ убывает на $(h_{\rm m}(H),h_*(H))$ и, следовательно, существует $\lambda^{\rm m}=\lim_{h\to h_{\rm m}(H)+0}\lambda^*(h)$. Если $\lambda^{\rm m}<+\infty$, то, переходя к пределу $h\to h_{\rm m}(H)+0$ в равенстве

$$\sum_{k=1}^{+\infty} h_k \exp(-\lambda^*(h)h_k) \equiv h \sum_{k=1}^{+\infty} \exp(-\lambda^*(h)h_k),$$

которое выполнено для всех h из $(h_{\rm m}(H),h_*(H))$, получаем очевидное противоречие.

Пусть $d = \dim \mathcal{H}_{\mathrm{m}}(H)$. Нетрудно видеть, что

$$P(h) = \log \sum_{k=1}^{+\infty} \exp(-\lambda^*(h)h_k) = -\lambda^*(h)h_{\rm m}(H) + Q(h),$$
 (39)

где

$$Q(h) = \log\left(d + \sum_{k>d} \exp\left(-\lambda^*(h)(h_k - h_{\mathrm{m}}(H))\right)\right)$$

— неубывающая функция на интервале $(h_{\rm m}(H),h_*(H))$, стремящаяся к $\log d$ при $h\to h_{\rm m}(H)+0$.

Поскольку функция $F_H(h)$ не убывает на $(h_{\mathrm{m}}(H), +\infty)$, существует

$$\lim_{h \to h_{\mathbf{m}}(H) + 0} F_H(h) \geqslant F_H(h_{\mathbf{m}}(H)).$$

Поэтому в силу (34) и (39) существует $\lim_{h\to h_{\mathrm{m}}(H)+0}\lambda^*(h)\big(h-h_{\mathrm{m}}(H)\big)=C<+\infty$ и

$$\lim_{h \to h_{\mathrm{m}}(H)+0} F_H(h) = C + \log d = C + F_H(h_{\mathrm{m}}(H)).$$

Таким образом, для доказательства непрерывности справа функции $F_H(h)$ в точке $h_{\rm m}(H)$ достаточно показать, что C=0. Это можно сделать, доказав, что

$$\int_{h_{\rm m}(H)}^{h''} \lambda^*(h) \, dh = \lim_{h' \to h_{\rm m}(H) + 0} \int_{h'}^{h''} \lambda^*(h) \, dh < +\infty \tag{40}$$

для некоторого $h'' > h_{\rm m}(H)$. Действительно, из (40) и предположения C > 0 следует

$$\int_{h_{\mathrm{m}}(H)}^{h''} \left(h - h_{\mathrm{m}}(H)\right)^{-1} dh < +\infty.$$

Противоречие.

Нетрудно видеть, что $\frac{dP(h)}{dh} = -h \frac{d\lambda^*(h)}{dh}$ и, следовательно,

$$\frac{dQ(h)}{dh} = -\frac{d\lambda^*(h)}{dh} (h - h_{\rm m}(H)). \tag{41}$$

Интегрируя (41), получим

$$Q(h'') - Q(h') = \lambda^*(h') (h' - h_{\mathbf{m}}(H)) - \lambda^*(h'') (h'' - h_{\mathbf{m}}(H)) + \int_{h'}^{h''} \lambda^*(h) dh.$$

Поэтому из упомянутого выше существования пределов $\lim_{h'\to h_{\mathrm{m}}(H)+0} Q(h') = \log d$ и $\lim_{h'\to h_{\mathrm{m}}(H)+0} \lambda^*(h') (h'-h_{\mathrm{m}}(H)) = C < +\infty$ следует (40).

Из сказанного выше следует

$$\frac{F_H(h) - F_H(h_{\rm m}(H))}{h - h_{\rm m}(H)} \geqslant \lambda^*(h) \quad \forall h > h_{\rm m}(H),$$

и, используя (38), получаем $\frac{dF_H(h)}{dh}\big|_{h=h_{\mathrm{m}}(H)+0}=+\infty.$

Автор благодарен А.С. Холево за помощь в процессе работы над настоящей статьей.

Список литературы

- 1. Браттели У., Робинсон Д., Операторные алгебры и квантовая статистическая механика, Мир, М., 1982.
- Dell'Antonio G.F., "On the limits of sequences of normal states", Commun. Pure Appl. Math., 20 (1967), 413–429.
- 3. Donald M. J., "Further results on the relative entropy", Math. Proc. Camb. Philos. Soc., 101:2 (1987), 363–373.
- Harremoës P., Topsœ F., "Maximum entropy fundamentals", Entropy, 3:3 (2001), 191–226.
- Harremoës P., "Information Topologies with Applications", Accepted for publication in a volume of the Bolyai Studies, Springer, N.Y., 2004.
- 6. Иоффе Ф. Д., Тихомиров В. М., Теория экстремальных задач, Наука, М., 1974.
- 7. Кудрявцев Л. Д., Курс математического анализа, Высшая школа, М., 1988.
- 8. Lindblad G., "Expectations and entropy inequalities for finite quantum systems", Commun. Math. Phys., 39:2 (1974), 111–119.
- 9. Lindblad G., "Completely positive maps and entropy inequalities", *Commun. Math. Phys.*, **40**:2 (1975), 147–151.

- Ohya M., Petz D., Quantum entropy and its use, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1993.
- 11. Parthasarathy K. R., *Probability measures on metric spaces*, Probability and Mathematical Statistics, 3, Academic Press, N. Y.-London, 1967.
- 12. Сарымсаков Т. А., *Введение в квантовую теорию вероятностей*, Ташкент, Фан, 1985.
- 13. Schumacher B., Westmoreland M. D., "Sending classical information via noisy quantum channels", *Phys. Rev. A.*, **56**:1 (1997), 131–138.
- 14. Schumacher B., Westmoreland M., Optimal signal ensembles, E-print quant-ph/9912122.
- 15. Shirokov M. E., "The Holevo capacity of infinite dimensional channels and the additivity problem", Commun. Math. Phys., 262:1 (2006), 137–159.
- 16. Shirokov M. E., On entropic quantities related to the classical capacity of infinite dimensional quantum channels, E-print quant-ph/0411091.
- 17. Холево A. C., "Квантовые теоремы кодирования", УМН, **53**:6 (1998), 193–230.
- 18. Холево А. С., "Классическая пропускная способность квантовых каналов с ограничениями", *Теория вероятностей и ее применения*, **48**:2 (2003), 359–374.
- 19. Холево А. С., Широков М. Е., "Непрерывные ансамбли и классическая пропускная способность квантовых каналов бесконечной размерности", *Теория вероятностей* и ее применения, **50**:1 (2005), 98–114.
- 20. Wehrl A., "General properties of entropy", Rev. Mod. Phys., **50**:2 (1978), 221–260.

М. Е. Широков (М. Е. SHIROKOV) Математический институт им. В. А. Стеклова РАН E-mail: msh@mi .ras .ru Поступило в редакцию 23.12.2005