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Stability of convex sets and applications

M. E. Shirokov

Abstract. We briefly review the results related to the notion of stability

of convex sets and consider some of their applications. We prove a corol-

lary of the stability property which enables us to develop an approximation

technique for concave functions on a wide class of convex sets. This tech-

nique yields necessary and sufficient conditions for the local continuity of

concave functions. We describe some examples of their applications.

Keywords: stable convex set, concave function, weak convergence of prob-
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§ 1. Introduction

The notion of stability of convex sets arose in the late 1970s out of the study
of questions of the continuity of convex hulls1 of continuous functions and concave
continuous functions defined on convex compact sets. The key results of that study
were due to Vesterstrøm and O’Brien. In [3], these questions were related to the
openness of the barycentric map, and the equivalence of the continuity of the convex
hull of any continuous concave function (called the CE-property in [4]) and that of
the convex hull of any continuous function was conjectured. This conjecture was
proved in [5], where these properties were shown to be equivalent to the openness of
the convex mixture map (x, y) 7→ λx+(1−λ)y. The last property of (not necessarily
compact) convex sets has been studied in many papers under the name of stability,
and convex sets possessing this property were called stable convex sets [6]. Relations
have been established between the stability and other properties of convex sets (see
[7]–[9] and the references therein).

The main result of Vesterstrøm and O’Brien does not hold for arbitrary non-
compact convex sets. Nevertheless it extends to the class of so-called µ-compact
convex sets, which includes many of the non-compact convex sets arising in appli-
cations [10].

An important example of a convex µ-compact set is the set of quantum states
(density operators on a separable Hilbert space) [11]. The stability of this set is
an efficient tool for studying the analytic properties of various characteristics of
quantum systems (see § 4 in [10] and the references therein).

1The convex hull of a function f is the maximal convex function not exceeding f [1], [2].
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It was shown in [12] that the set of quantum states possesses a property which
is formally stronger than stability. This property is called strong stability and
enables us to develop an approximation technique for concave lower semicontinuous
functions on the set of quantum states and obtain a criterion for the local continuity
of the von Neumann entropy (one of the basic characteristics of a quantum state).
Since the proof of strong stability uses a specific structure of the set of quantum
states (the purifying procedure), it is not clear how to prove this property for general
stable convex sets. This is an obstacle to the direct generalization of the results
in [12].

We shall prove a general property of stable convex sets (Theorem 1) which,
in particular, enables us to overcome that obstacle and use the approximation
technique for concave functions on µ-compact convex sets to derive necessary and
sufficient conditions for the local continuity of such functions (Theorem 2).

§ 2. Preliminaries

In what follows we assume that A is a closed bounded convex subset of a locally
convex space which is a complete separable metric space.2 We shall write extrA for
the set of extreme points of A, C(A) for the set of continuous bounded functions
on A, and cl(B), co(B), σ-co(B) and co(B) for the closure, convex hull, σ-convex
hull3 and convex closure respectively of a subset B ⊂ A ([1], [2]).

Let M(B) be the set of all Borel probability measures on a closed subset B ⊆ A
endowed with the topology of weak convergence ([13], [14]). With an arbitrary
measure µ ∈ M(B) we associate its barycentre (average) b(µ) ∈ co(B), which is
defined by the Pettis integral (see [15], [16]):

b(µ) =
∫
B

xµ(dx).

The barycentric map

M(B) 3 µ 7→ b(µ) ∈ co(B)

is continuous (this can easily be proved using Prokhorov’s theorem [13]).
Let Mx(B) be the convex closed subset of M(B) consisting of all measures µ

such that b(µ) = x ∈ co(B).
We write δ(x) for the measure in M(A) concentrated at a point x ∈ A. The

discrete measure with finitely or countably many atoms {xi} of weights {πi} will
correspondingly be denoted by

∑
i πiδ(xi) or, briefly, {πi, xi}. For such a measure,

b(µ) =
∑

i πixi. Given an arbitrary (not necessarily closed) subset B ⊆ A, we
write Ma(B) (resp. Ma

x (B)) for the set of all discrete measures with atoms in B
(resp. the subset consisting of all such measures with barycentre x).

2This means that the topology on A is defined by a countable subset of the family of seminorms
defining the topology of the whole locally convex space, and A is separable and complete in the
metric defined by this subset of seminorms.

3σ-co(B) is the set of all countable convex combinations of points in B.
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Following [6], we introduce the main definition.

Definition 1. A convex set A is said to be stable if the map A × A 3 (x, y) 7→
x+y

2 ∈ A is open.

This property is easily seen to be equivalent to the openness of the map A×A 3
(x, y) 7→ λx + (1− λ)y ∈ A for every λ ∈ (0, 1) [7].

Every convex compact set in R2 is stable. The stability of a convex compact
subset of R3 is equivalent to the closedness of the set of its extreme points, while
in Rn, n > 3, stability is stronger than the latter property [5]. A complete charac-
terization of the stability property in Rn is obtained in [6]. In infinite dimensions,
stability is proved for the unit balls in some Banach spaces and for the positive part
of the unit ball in Banach lattices whose unit ball is stable [8]. From a physical
point of view, it is essential that the set of quantum states (density operators on
a separable Hilbert space) is stable [12].

A basic result about stability says that the following properties of a convex
compact set A are equivalent.

(i) A is stable.
(ii) The map M(A) 3 µ 7→ b(µ) ∈ A is open.
(iii) The map M

(
cl(extrA)

)
3 µ 7→ b(µ) ∈ A is open.4

(iv) The convex hull of any continuous function on A is continuous.
(v) The convex hull of any concave continuous function on A is continuous.
An essential part of this assertion was obtained by Vesterstrøm [3], and the

complete version was proved by O’Brien [5]. In what follows this result is referred
to as the Vesterstrøm–O’Brien theorem. It does not hold for general non-compact
convex sets, but it does hold for convex µ-compact sets ([10], Theorem 1), which
are defined as follows.

Definition 2. A convex set A is said to be µ-compact if the pre-image of any
compact subset of A under the map µ 7→ b(µ) is a compact subset of M(A).

Every compact set is µ-compact since the compactness of A implies that
of M(A) [14]. The property of µ-compactness is not purely topological: it reflects
a particular relation between the topology and linear structure of a convex set.
See [10] for a simple criterion for µ-compactness and further properties and exam-
ples of µ-compact sets.

The simplest examples of non-compact µ-compact stable convex sets are given
by the simplex of all probability distributions with a countable set of outcomes
(regarded as a subset of the Banach space `1) and its non-commutative analogue, the
set of quantum states in a separable Hilbert space [11]. A more general example is
the convex set of all Borel probability measures on an arbitrary complete separable
metric space endowed with the topology of weak convergence (the µ-compactness
and stability of this set are proved in [10], Corollary 4 and [17], Theorem 2.4
respectively).

4It follows from (i)–(v) that cl(extrA) = extrA.
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We also use a weakened version of µ-compactness.

Definition 3. A convex set A is said to be pointwise µ-compact if the pre-image
of any point in A under the map µ 7→ b(µ) is a compact subset of M(A).

The simplest example of a pointwise µ-compact set which is not µ-compact is
the positive part of the unit ball in `1 endowed with the topology of `p, p > 1 [10].
In contrast to µ-compactness, pointwise µ-compactness is preserved under the
weakening of the topology (if the set remains closed). Although some results
about the properties of convex compact sets can also be proved for convex point-
wise µ-compact sets (for example, Choquet’s theorem; see [10], Proposition 5),
the Vesterstrøm–O’Brien theorem holds for µ-compact sets but not for pointwise
µ-compact sets ([10], Proposition 18).

Remark 1. Defining a metric d( · , · ) on A by the formula

d(x, y) =
∞∑

k=1

2−k ‖x− y‖k

1 + ‖x− y‖k
, x, y ∈ A,

where {‖ · ‖k}∞k=1 is a countable family of seminorms defining the topology on A,
we easily obtain the estimate

d(αx + (1− α)y, α′x′ + (1− α′)y′) 6 2δ + Cx,y(ε)

for all x, y, x′, y′ in A and α, α′ in [0, 1] such that

d(x, x′) < δ, d(y, y′) < δ, |α− α′| < ε,

where Cx,y(ε) =
∑∞

k=1 2−k ε‖x−y‖k

1+ε‖x−y‖k
is a function with limε→+0 Cx,y(ε) = 0.

Remark 2. In what follows, the continuity of a function f on a subset B ⊂ A means
that the restriction f

∣∣
B of f to B is continuous and, in particular, finite (in contrast

to the case of lower or upper semicontinuity).

§ 3. Some auxiliary results

In this section we list some results concerning µ-compact and pointwise µ-
compact sets which will be used below.

Lemma 1. Let B be a closed subset of a convex µ-compact set A. Then for
every x0 in co(B) there is a measure µ0 in M(B) such that x0 = b(µ0).

Proof. Take x0 ∈ co(B) and let {xn} ⊂ co(B) be a sequence converging to x0.
For every n ∈ N there is a measure µn ∈ M(B) with finite support such that
xn = b(µn). By the µ-compactness of A, the sequence {µn} has a limit point
µ0 ∈ M(B). Since the map µ 7→ b(µ) is continuous, we have b(µ0) = x0. �

Lemma 2. Let A be a convex pointwise µ-compact set such that cl(extrA) = extrA
and A = σ-co(extrA). Then any measure µ0 in M(extrA) can be approximated by
a sequence {µn} of measures in Ma(extrA) such that b(µn) = b(µ0) for all n.
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Proof. Consider the Choquet ordering on M(A): µ � ν means that∫
A

f(x) µ(dx) >
∫
A

f(x) ν(dx)

for all convex continuous bounded functions f on A (see [18]).
For any given measure µ0 in M(extrA) it is easy to construct a sequence {µn}

of finitely supported measures in M(A) converging to µ0 and satisfying b(µn) =
b(µ0) for all n. Decomposing every atom of µn into a convex combination of
extreme points, we obtain a measure µ̂n in Ma(extrA) with the same barycentre.
Clearly, µ̂n � µn. By the pointwise µ-compactness of A, the sequence {µ̂n}n>0 is
relatively compact. Hence there is a subsequence {µ̂nk

} converging to a measure µ̂0

in M(extrA). Since µ̂nk
� µnk

for all k, it follows from the definition of weak
convergence that µ̂0 � µ0. Hence µ̂0 = µ0 by the maximality of µ0 with respect to
the Choquet ordering, which follows from the coincidence of this ordering with the
dilation ordering [18]. �

Lemma 3. Let A be a convex µ-compact set, and let {{πn
i , xn

i }m
i=1}n be a sequ-

ence of measures in Ma(A) having no more than m < ∞ atoms such that the
sequence

{ ∑m
i=1 πn

i xn
i

}
n

of their barycentres converges to x0 ∈ A. Then there
is a subsequence {{πnk

i , xnk
i }m

i=1}k converging to some measure5 {π0
i , x0

i }m
i=1 with

barycentre x0 in the following sense:

lim
k→+∞

πnk
i = π0

i , π0
i > 0 ⇒ lim

k→+∞
xnk

i = x0
i , i = 1, . . . ,m.

Proof. It suffices to note that the µ-compactness of A implies the relative compact-
ness of the sequence {{πn

i , xn
i }m

i=1}n and that the set of measures with no more
than m atoms is a closed subset of M(A). �

The following proposition describes an important property of µ-compact sets.

Proposition 1. Let A be a convex µ-compact set, and let f be an upper-
semicontinuous upper-bounded function on a closed subset B ⊂ A. Then the func-
tion

f̂µ
B (x) = sup

µ∈Mx(B)

∫
B

f(y) µ(dy) (1)

is upper-semicontinuous on co(B). For every x ∈ co(B) the supremum in the
definition of f̂µ

B (x) is achieved at some measure in Mx(B).

This property yields µ-compact generalizations of several results concerning con-
vex compact sets ([10], Proposition 6, Corollary 2). It does not hold if we relax the
µ-compactness to pointwise µ-compactness ([10], Proposition 7). One can show that
the upper boundedness of f is essential in Proposition 1. A proof of Proposition 1
is given in the Appendix.

Another important technical result is described in the following proposition.

5It is not asserted that x0
i 6= x0

j for all i 6= j.
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Proposition 2. Let A be a convex µ-compact set,6 and let f be a lower-
semicontinuous lower-bounded function on a closed subset B ⊆ A.

A) If the map M(B) 3 µ 7→ b(µ) ∈ co(B) is open, then the function f̂µ
B defined

in (1) is lower-semicontinuous on co(B).
B) If the map Ma(B) 3 µ 7→ b(µ) ∈ σ-co(B) is open, then the function

f̂σ
B (x) = sup

µ∈Ma
x (B)

∫
B

f(y) µ(dy) = sup
{πi,xi}∈Ma

x (B)

∑
i

πif(xi)

is lower-semicontinuous on σ-co(B). If, in addition, σ-co(B) = co(B), then f̂σ
B

coincides with the function f̂µ
B defined in (1).

A proof of Proposition 2 is given in the Appendix.

Remark 3. One can show that f̂σ
B and f̂µ

B may not coincide for a bounded upper-
semicontinuous function f on a closed subset B of a convex µ-compact set A with
σ-co(B) = co(B), and that Proposition 1 does not hold for the function f̂σ

B .

Propositions 1, 2 have an obvious corollary.

Corollary 1. Let B be a closed subset of a convex µ-compact set A.
A) If A = co(B) and the map M(B) 3 µ 7→ b(µ) ∈ A is open, then f̂µ

B ∈ C(A)
for any function f ∈ C(B).

B) If A = σ-co(B) and the map Ma(B) 3 µ 7→ b(µ) ∈ A is open, then f̂σ
B =

f̂µ
B ∈ C(A) for any function f ∈ C(B).

If A is a convex stable µ-compact set, then the set extrA is closed and the sur-
jection M(extrA) 3 µ 7→ b(µ) ∈ A is open by the generalized Vesterstrøm–O’Brien
theorem (Theorem 1 in [10]). Hence Corollary 1, A) shows that an arbitrary func-
tion f in C(extrA) has a continuous bounded concave extension f̂µ

extrA to the
set A. This property does not hold if we relax the µ-compactness to pointwise
µ-compactness (this can be shown by modifying Example 1 in [10]).

§ 4. On a property of stable sets

Given an arbitrary subset A1 of a convex set A, we consider a monotone family
of subsets

Ak =
{ k∑

i=1

πixi | {πi} ∈ Pk, {xi} ⊂ A1

}
, k ∈ N, (2)

where Pk is the simplex of all probability distributions with k outcomes.
The following property of stable sets plays an essential role in this paper.

Theorem 1. Let A1 be a subset of a stable convex set A such that A = σ-co(A1),
and let {Ak} be the family of subsets defined in (2). If the map

Ma(Ak) 3 µ 7→ b(µ) ∈ A (3)

is open for k = 1, then it is open for every k ∈ N.

6The µ-compactness is used only to guarantee that b(M(B)) = co(B) (by Lemma 1).
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Note that the condition A = σ-co(A1) means that (3) is surjective for every k.

Proof of Theorem 1. The proof consists of two steps.
1. We fix any k, an arbitrary finitely supported measure µ0 =

∑m
i=1 πiδ(xi),

where {xi}m
i=1 ⊂ Ak, {πi}m

i=1 ∈ Pm, m ∈ N, and any sequence {xn} ⊂ A converging
to x0 =

∑m
i=1 πixi. We claim that one can find a subsequence {xnl} and a sequence

{µl} ⊂ Ma(Ak) such that liml→+∞ µl = µ0 and b(µl) = xnl for all l.
For k = 1 this follows from the openness of the map Ma(A1) 3 µ 7→ b(µ). We

assume that the assertion holds for some k and show that it holds for k + 1.
Write µ0 =

∑m
i=1 πiδ(xi) ∈ Ma(Ak+1), where πi > 0 for all i and {xi}m

i=1 * Ak,
and let {xn} be a sequence converging to x0 =

∑m
i=1 πixi. There is no loss of

generality in assuming that xi = αiyi + (1 − αi)zi for every i = 1, . . . ,m, where
yi ∈ Ak, zi ∈ A1 and αi ∈ (0, 1). Hence x0 = ηy0 + (1− η)z0, where

η =
m∑

i=1

αiπi ∈ (0, 1), y0 = η−1
m∑

i=1

αiπiyi ∈ A,

z0 = (1− η)−1
m∑

i=1

(1− αi)πizi ∈ A.

Since A is stable, the sequence {xn} can be replaced by a subsequence with the
property that xn = ηyn + (1 − η)zn for some sequences {yn} ⊂ A and {zn} ⊂ A
converging to y0 and z0 respectively. By the inductive hypothesis we can assume
(again passing to subsequences) that there are sequences {νn} ⊂ Ma(Ak) and
{ζn} ⊂ Ma(A1) converging respectively to the measures

ν0
.= η−1

m∑
i=1

αiπiδ(yi), ζ0
.= (1− η)−1

m∑
i=1

(1− αi)πiδ(zi)

such that b(νn) = yn and b(ζn) = zn for all n.
By the definition of weak convergence, for every N and any sufficiently small7

ε > 0, δ > 0 there is an n̄ > N such that

νn̄ =
m∑

i=1

νi
n̄ + νr

n̄, ζn̄ =
m∑

i=1

ζi
n̄ + ζr

n̄, (4)

where νi
n̄ and ζi

n̄ are non-zero measures with finite supports lying in Uδ(yi) and
Uδ(zi) respectively such that

|νi
n̄(A)− η−1αiπi| < η−1επi, |ζi

n̄(A)− (1− η)−1(1− αi)πi| < (1− η)−1επi, (5)

all the atoms of the measures νi
n̄ and ζi

n̄ have rational weights, and

νr
n̄(A) < η−1ε, ζr

n̄(A) < (1− η)−1ε. (6)

7Here δ is assumed to be so small that the δ-neighbourhoods of distinct points of the
sets {yi}m

i=1 and {zi}m
i=1 are disjoint.
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The existence of a representation (4) is obvious when the sets {yi}m
i=1 and {zi}m

i=1

consist of distinct points. If these sets have coinciding points, then the existence of
such a representation can be shown by ‘splitting’ the atoms of νn̄ and ζn̄ as follows.
Assume, for example, that y1 = y2 = · · · = yp = y. Then the component

∑
t λtδ(yt)

of the measure νn̄ whose atoms lie in Uδ(y) can be ‘represented’ in the form∑
t

λtδ(yt) =
∑

t

γ1λtδ(yt) + · · ·+
∑

t

γpλtδ(yt),

where γi = αiπi/(α1π1 + · · ·+ αpπp) and the measure νi
n̄ is ‘constructed’ using the

measure γi

∑
t λtδ(yt).

For given i let

νi
n̄ =

ny
i∑

j=1

py
ij

qi
δ(yij), ζi

n̄ =
nz

i∑
j=1

pz
ij

qi
δ(zij),

where p∗∗ and q∗ are positive integers. There are positive integers Pi, Qy
i and Qz

i

such that

νi
n̄(A) =

ny
i∑

j=1

py
ij

qi
=

Pi

Qy
i

, ζi
n̄(A) =

nz
i∑

j=1

pz
ij

qi
=

Pi

Qz
i

.

Let dy
i = (qiQ

y
i )−1 and dz

i = (qiQ
z
i )
−1. Using the ‘decomposition’

py
ij

qi
δ(yij) = dy

i δ(yij) + · · ·+ dy
i δ(yij)︸ ︷︷ ︸

py
ijQy

i

,

we obtain a representation νi
n̄ =

∑Piqi

l=1 dy
i δ(ȳl

i), where {ȳl
i}l is a set of Piqi points

(possibly, coinciding) belonging to Uδ(yi)∩Ak. We similarly obtain a representation
ζi
n̄ =

∑Piqi

l=1 dz
i δ(z̄

l
i), where {z̄l

i}l is a set of Piqi points belonging to Uδ(zi) ∩ A1.
Consider the measure

µn̄ =
m∑

i=1

Piqi∑
l=1

(ηdy
i +(1−η)dz

i )δ(x̄
l
i)+ηνr

n̄ +(1−η)ζr
n̄, x̄l

i =
ηdy

i ȳl
i + (1− η)dz

i z̄
l
i

ηdy
i + (1− η)dz

i

,

having barycentre ηyn̄ + (1− η)zn̄ = xn̄ and belonging to Ma(Ak+1). Since

ᾱi =
ηdy

i

ηdy
i + (1− η)dz

i

=
ηPi

Qy
i πi

ηPi

Qy
i πi

+ (1−η)Pi

Qz
i πi

and
∣∣ ηPi

Qy
i πi

−αi

∣∣ <ε and
∣∣ (1−η)Pi

Qz
i πi

−(1−αi)
∣∣ <ε by (5), we easily see that |ᾱi−αi|< 6ε

(if ε < min
{

1
4 , αi, 1−αi

}
for all i). Hence x̄l

i = ᾱiȳ
l
i + (1− ᾱi)z̄l

i ∈ Uδ(i)(xi) for all
i = 1, . . . ,m and l = 1, . . . , Piqi, where δ(i) = 2δ +Cyi,zi

(6ε) (see Remark 1). Since
Piqi(ηdy

i + (1 − η)dz
i ) = η Pi

Qy
i

+ (1 − η) Pi

Qz
i
, we easily deduce from (5) and (6) that

|µn̄(Uδ(i)(xi))− πi| 6 4ε (7)

provided that Uδ(i)(xi) ∩ Uδ(i′)(xi′) = ∅ for all i 6= i′.
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For every positive integer l we put nl = n̄ and µl = µn̄, where n̄ and µn̄ are
obtained by the above construction with N = l and ε = δ = 1

l . Then b(µl) = xnl

and the weak convergence of the sequence {µl} to µ0 follows from (7).

2. Let µ0 =
∑∞

i=1 πiδ(xi) be an arbitrary measure in Ma(Ak) and let {xn} ⊂ A
be a sequence converging to x0 =

∑∞
i=1 πixi. For every positive integer m

we put µm
0 = (λm)−1

∑m
i=1 πiδ(xi), where λm =

∑m
i=1 πi. We also put z0

m =
(1− λm)−1

∑
i>m πixi.

Since the sequence {µm
0 }m converges to µ0, for every positive integer l there is8

an ml such that µml
0 ∈ U1/l(µ0) and λml

> 1 − 1
l . We have x0 = λml

b(µml
0 ) +

(1−λml
)z0

ml
. Since A is stable, we can assume (passing from the sequence {xn} to

a subsequence) that there are sequences {yn} ⊂ A and {zn} ⊂ A converging
to b(µml

0 ) and z0
ml

respectively such that xn = λml
yn + (1− λml

)zn.
By the first step of the proof, we can assume (again passing to subsequences) that

there is a sequence {µn} ⊂ Ma(Ak) converging to µml
0 and satisfying b(µn) = yn

for all n. Hence there is an nl > l such that µnl
∈ U1/l(µ

ml
0 ) ⊂ U2/l(µ0). We put

µl = λml
µnl

+ (1− λml
)νnl

,

where νnl
is any measure in Ma(A1) with b(νnl

) = znl .
It is easy to see that the sequence {µl} lies in Ma(Ak) and converges to µ0, while

b(µl) = λml
ynl + (1− λml

)znl = xnl for all l by construction. �

Theorem 1 and the µ-compact version of the Vesterstrøm–O’Brien theorem (The-
orem 1 in [10]) yield the following result.

Corollary 2. Let A be a convex µ-compact set such that A = σ-co(extrA), and
let {Ak} be the family of subsets defined in (2) with A1 = extrA. Then A is stable
if and only if the map (3) is open for every k ∈ N.

Proof. By the Vesterstrøm–O’Brien theorem, the stability of the convex µ-compact
set A is equivalent to the openness of the map M(extrA) 3 µ 7→ b(µ) ∈ A, which
is in its turn equivalent to the openness of the map Ma(extrA) 3 µ 7→ b(µ) ∈ A
by Lemma 2. �

Remark 4. Since the subset A1 = extrA is closed for every µ-compact stable set A,
the family {Ak} consists of closed subsets by Lemma 3. The map

M(Ak) 3 µ 7→ b(µ) ∈ A (8)

is surjective for every k ∈ N by Proposition 5 in [10] and open for k = 1 by the
generalized Vesterstrøm–O’Brien theorem. In [12], the openness of the map (8) for
every k ∈ N is called strong stability and is shown to hold for the set of quantum
states (the proof uses special properties of the set of quantum states such as the
purification procedure). Corollary 2 shows that a stable µ-compact set A with
A = σ-co(extrA) is strongly stable if the set Ma

x (Ak) is dense in Mx(Ak) for every
x ∈ A and all k ∈ N (for k = 1 this property holds by Lemma 2).

8The set M(A) may be regarded as a metric space [14].
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Question 1. Does the stability of an arbitrary µ-compact setA imply the openness
of the map (8) for every k ∈ N?

A positive answer would enable us to generalize the constructions and results of
the next section by removing the condition A = σ-co(A1).

§ 5. The approximation of concave functions
and local continuity conditions

Let A1 be a subset of a convex set A such that A = σ-co(A1) and {Ak} the
family of subsets defined in (2).

For every concave non-negative function f onA we consider a monotone sequence
of concave functions

A 3 x 7→ fk(x) = sup
{πi,xi}∈Ma

x (Ak)

∑
i

πif(xi), k = 1, 2, . . . ,

such that fk 6 f and fk|Ak
= f |Ak

. These relations follow from the discrete Jensen
inequality for f .

Clearly, f∗
.= supk fk is a concave function on A and we have

f∗ 6 f, f∗
∣∣
A∗

= f
∣∣
A∗

, A∗ =
∞⋃

k=1

Ak. (9)

One can show that under certain conditions f and f∗ coincide.

Lemma 4. If a concave non-negative function f is lower semicontinuous on A,
then f∗ = f .

Proof. An arbitrary point x0 ∈ A can be represented in the form x0 =
∑∞

i=1 πiyi,
where {πi} ∈ P+∞ and {yi} ∈ A1. We put xn = λ−1

n

∑n
i=1 πiyi and yn =

(1 − λn)−1
∑

i>n πiyi, where λn =
∑n

i=1 πi. The sequence {xn} lies in A∗ and
converges to x0.

For every n we have x0 = λnxn + (1 − λn)yn and hence f∗(x0) > λnf∗(xn) =
λnf(xn) by the concavity and non-negativity of f∗ and the formulae (9). Thus
lim supn→+∞ f(xn) 6 f∗(x0) and hence f(x0) 6 f∗(x0) by the lower semicontinuity
of f . This and (9) yield that f(x0) = f∗(x0). �

IfA is µ-compact andA1 is closed, then all the subsetsAk are closed by Lemma 3.
We make the following assumption.

(∗) The restriction of f to Ak is continuous for every k.
This assumption (with A1 = extrA) is motivated by applications (see Exam-

ples 1, 2 below and § 6 in [19]).

Remark 5. The assumption (∗) implies that the restriction of f to Ak is bounded
for every k. Indeed, if {xn} ⊂ Ak is a sequence with limn→+∞ f(xn) = +∞,
then the sequence {λnxn + (1 − λn)y0} ⊂ Ak+1, where y0 is any point in A1 and
λn = (f(xn))−1, converges to y0 (since A is bounded). Since f is concave, we have

lim inf
n→+∞

f(λnxn + (1− λn)y0) > lim inf
n→+∞

(
λnf(xn) + (1− λn)f(y0)

)
= 1 + f(y0),

contrary to the assumption (∗).
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Remark 5 enables us to deduce the following proposition (showing that the
sequence {fk} is useful in problems of approximation) from Theorem 1 and Corol-
lary 1, B).

Proposition 3. Let A1 be a closed subset of a µ-compact convex stable set A such
that A = σ-co(A1) and the map Ma(A1) 3 µ 7→ b(µ) ∈ A is open. For every
concave non-negative function f on A satisfying condition (∗), the sequence {fk}
consists of continuous bounded functions.

By the generalized Vesterstrøm–O’Brien theorem (Theorem 1 in [10]) and
Lemma 2, the set extrA is closed and the map Ma(extrA) 3 µ 7→ b(µ) ∈ A is
open for every µ-compact stable set A with A = σ-co(extrA). Thus Proposition 3
yields the following result.

Corollary 3. Let A be a µ-compact stable convex set such that A = σ-co(extrA),
and let {Ak} be the family of subsets defined in (2) with A1 = extrA. For every
concave non-negative function f on A satisfying condition (∗), the sequence {fk}
consists of continuous bounded functions.

Under the hypotheses of Proposition 3 (Corollary 3), Lemma 4 shows that the
monotone sequence {fk} of continuous bounded functions converges pointwise to f
if and only if f is lower semicontinuous.

Example 1. The Shannon entropy is the concave lower-semicontinuous non-
negative function

S({xj}∞j=1) = −
∞∑

j=1

xj lnxj

on the set P+∞ = {{xj}∞j=1 ∈ `1 | xj > 0 ∀ j,
∑∞

j=1 xj = 1} of all probability dis-
tributions with a countable set of outcomes [20]. This function takes the value +∞
on a dense subset of P+∞.

As described in § 2, the convex set P+∞ is stable and µ-compact. The set
extrP+∞ consists of degenerate probability distributions (sequences having 1 at
some place and zeros elsewhere). Clearly, P+∞ = σ-co(extrP+∞) and, for every
k ∈ N, the function x 7→ S(x) has a continuous restriction to the set

P k
+∞ =

{ k∑
i=1

πixi | {πi} ∈ Pk, {xi} ⊂ extrP+∞

}
of all probability distributions having no more than k non-zero elements. By Corol-
lary 3, the concave function

P+∞ 3 x 7→ Sk(x) = sup
{πi,xi}∈Ma

x (P k
+∞)

∑
i

πiS(xi),

which coincides with the Shannon entropy S on P k
+∞, is continuous for every k.

By Lemma 4, the monotone sequence {Sk} converges pointwise to the Shannon
entropy S on P+∞.

The sequence {fk} can be used to derive local continuity conditions for f .
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Theorem 2. Let A be a convex µ-compact set, A1 a closed subset of A with A =
σ-co(A1), and f a concave non-negative function on A satisfying condition (∗).
Suppose that one of the following conditions holds.

a) A is stable and the map Ma(A1) 3 µ 7→ b(µ) ∈ A is open.
b) f is lower semicontinuous.

Then a sufficient condition for the continuity of f on a given subset B ⊆ A is given
by the relation

lim
k→+∞

sup
x∈B

∆k(x|f) = 0, where ∆k(x|f) = inf
{πi,xi}∈Ma

x (Ak)

[
f(x)−

∑
i

πif(xi)
]
.

(10)
If both conditions a) and b) hold and B is compact, then (10) is a necessary and
sufficient condition for the continuity of f on B.

Condition a) always holds if A is stable and A1 = extrA.

Remark 6. Since ∆k(x|f) = f(x) − fk(x), the condition (10) means the uniform
convergence of the sequence {fk} to f on B.

Remark 7. The application of the sufficient condition for continuity in Theorem 2
is based on finding a convenient upper bound for the function in square brackets
in (10) (see Example 2). The necessity of this condition enables us to obtain
assertions of the form ‘if f is continuous on a subset B ⊆ A, then f (or some
function related to f) is continuous on any subset B′ ⊆ A obtained from B by
operations that preserve the infinitesimality of ∆k(x|f)’ (see § 5 in [12]).

Proof of Theorem 2. If condition a) holds, then fk ∈ C(A) for all k by Proposition 3.
Thus, by Remark 6, the continuity of f on B follows from (10). If, in addition, f
is lower semicontinuous and B is compact, then Lemma 4 and Dini’s lemma show
that condition (10) is equivalent to the continuity of f on B.

If condition b) holds, then to prove the continuity of f on B it suffices to show
that f is upper semicontinuous and bounded on B. Since all the subsets Ak are
closed by Lemma 3, we can consider the sequence of functions

A 3 x 7→ fµ
k (x) = sup

µ∈Mx(Ak)

∫
Ak

f(y) µ(dy), k = 1, 2, . . .

(the lower semicontinuity of f guarantees its measurability). Since f satisfies
Jensen’s integral inequality (see Remark 8 in the Appendix), we have

fk 6 fµ
k 6 f, fµ

k

∣∣
Ak

= f
∣∣
Ak

,

while Remark 5 and Proposition 1 show that all the functions in this sequence are
upper semicontinuous and bounded. Hence, by Remark 6, the upper semicontinuity
and boundedness of f on B follow from condition (10).

The last assertion in Theorem 2 follows from the µ-compact version of the
Vesterstrøm–O’Brien theorem (Theorem 1 in [10]) and Lemma 2. �
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Example 2. Returning to Example 1, we will use Theorem 2 to obtain a criterion
for the local continuity of the Shannon entropy. If f = S, then the expression in
the square brackets in (10) can be represented as

S(x)−
∑

i

πiS(xi) =
∑

i

πiS(xi‖x),

where S( · ‖ · ) is the relative entropy (the Kullback–Leibler distance [20]), which
is defined for arbitrary probability distributions x = {xj}∞j=1 and y = {yj}∞j=1

in P+∞ by the formula

S(x‖ y) =

{∑∞
i=1 xj ln(xj/yj), {yj = 0} ⇒ {xj = 0},

+∞ otherwise.

Theorem 2 gives the following criterion for the local continuity of the Shannon
entropy. The function x 7→ S(x) is continuous on a compact subset P ⊆ P+∞ if
and only if

lim
k→+∞

sup
x∈P

∆k(x|S) = 0, where ∆k(x|S) = inf
{πi,xi}∈Ma

x (P k
+∞)

∑
i

πiS(xi‖x).

(11)
This criterion can be applied in a direct way using well-known properties of the

relative entropy. For example, since the relative entropy is jointly convex and lower
semicontinuous, the validity of (11) for convex subsets P′ and P′′ of P+∞ implies
that of (11) for the convex closure co(P′ ∪P′′) of these subsets. Thus the criterion
for continuity shows that the continuity of the Shannon entropy on convex closed
subsets P′ and P′′ implies 9 its continuity on their convex closure co(P′ ∪ P′′).

The continuity criterion can also be applied using the estimate

∆k(x|S) 6 S(k(x)), k ∈ N, (12)

where k(x) is the probability distribution obtained from x by the coarse-graining of
order k, that is, (k(x))j = x(j−1)k+1 + · · ·+ xjk for all j = 1, 2, . . . . This estimate
is proved by using the decomposition

x =
∞∑

i=1

λk
i pk

i (x),

where λk
i = (k(x))i and pk

i (x) is the probability distribution with (pk
i (x))j =

(λk
i )−1xj for j = (i − 1)k + 1, . . . , ik and (pk

i (x))j = 0 for other values of j, since
it is easy to check that

∞∑
i=1

λk
i S(pk

i (x)‖x) =
∞∑

i=1

λk
i (− lnλk

i ) = S(k(x)).

9One can show that if the Shannon entropy is continuous on a convex subset of P+∞, then
this subset is relatively compact.
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The following assertion is obtained from the continuity criterion and (12).

Assertion 1. Let x0 be a probability distribution in P+∞ with finite Shannon
entropy. Then the Shannon entropy is continuous on the set

{x ∈ P+∞ | x ≺ x0}, (13)

where x ≺ y means that the probability distribution y = {yj}∞j=1 is more chaotic
than the probability distribution x = {xj}∞j=1 in the sense of Uhlmann [21], [22],
that is,

∑n
j=1 x̂j >

∑n
j=1 ŷj for every positive integer n, where the sequences

{x̂j}∞j=1 and {ŷj}∞j=1 are obtained by arranging the sequences {xj}∞j=1 and {yj}∞j=1

in non-increasing order.10

Indeed, assuming that the elements of the probability distributions x and x0

are arranged in non-increasing order, we have

x ≺ x0 ⇒ k(x) ≺ k(x0) ⇒ S(k(x)) 6 S(k(x0))

by the Shur concavity of the Shannon entropy [22]. Hence the validity of (11) for
the set (13) follows from (12) and the easily verifiable implication S(x0) < +∞⇒
limk→+∞ S(k(x0)) = 0. �

The main area of application of the results of this section is the quantum
information theory dealing with analytic properties of different entropic charac-
teristics of quantum systems and channels. In this case A is the µ-compact stable
set of quantum states (density operators on a separable Hilbert space). Our results
apply because many important entropic characteristics, being discontinuous func-
tions on the set of all quantum states with possibly infinite values, have continuous
bounded restrictions to the sets of states of rank 6 k (which play the role of Ak) for
every k. The simplest (and most important) example is the von Neumann entropy
(a non-commutative analogue of the Shannon entropy), for which Theorem 2 (more
precisely, a reduced version) gives a criterion for local continuity which leads to
several useful ‘convergence conditions’ [12]. Applications of the results of this sec-
tion to other entropic characteristics of quantum systems and channels are given
in § 6 of [19].

§ 6. Appendix

For an arbitrary Borel function f on a closed subset B ⊆ A we consider the
functional

M(B) 3 µ 7→ f(µ) =
∫
B

f(x)µ(dx). (14)

It is easy to show that this functional is lower semicontinuous (resp. upper semi-
continuous) if f is lower semicontinuous and lower bounded (resp. upper semicon-
tinuous and upper bounded) [13].

10The relation ≺ is opposite to the majorization relation in linear algebra [23].
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Proof of Proposition 1. The function f̂µ
B is well-defined on co(B) by Lemma 1. By

the upper semicontinuity of the functional f defined in (14) and the compactness
of the set Mx(B) for every x in co(B) (which follows from the µ-compactness of A),
the supremum in the definition of f̂µ

B (x) is achieved at some measure µx in Mx(B)
such that f̂µ

B (x) = f(µx).
If f̂µ

B is not upper semicontinuous, then there is a sequence {xn} ⊂ co(B) con-
verging to x0 ∈ co(B) such that

∃ lim
n→+∞

f̂µ
B(xn) > f̂µ

B (x0). (15)

As proved above, for every n there is a measure µn ∈ Mxn
(B) such that f̂µ

B (xn) =
f(µn). Since A is µ-compact, we have a subsequence {µnk

} converging to some
measure µ0 in M(B). By the continuity of the map µ 7→ b(µ), the measure µ0 lies
in Mx0(B). Since the functional f is upper semicontinuous, we have

f̂µ
B(x0) > f(µ0) > lim sup

k→+∞
f(µnk

) = lim
k→+∞

f̂µ
B (xnk

),

contrary to (15). �

Proof of Proposition 2. A) The function f̂µ
B is well defined on co(B) by Lemma 1.

If f̂µ
B is not lower semicontinuous, then there is a sequence {xn} ⊂ co(B) converging

to x0 ∈ co(B) such that
∃ lim

n→+∞
f̂µ
B(xn) < f̂µ

B (x0). (16)

For arbitrary ε > 0 let µε
0 be a measure in Mx0(B) such that f̂µ

B (x0) 6 f(µε
0) + ε

(where f is the functional defined in (14)). Since the map M(B) 3 µ 7→ b(µ) ∈ co(B)
is open, one can find a subsequence {xnk

} and a sequence {µk} ⊂ M(B) converging
to the measure µε

0 such that b(µk) = xnk
for every k. By the lower semicontinuity

of the functional f we have

f̂µ
B(x0) 6 f(µε

0) + ε 6 lim inf
k→+∞

f(µk) + ε 6 lim
k→+∞

f̂µ
B (xnk

) + ε.

This contradicts (16) since ε is arbitrary.

B) The function f̂σ
B is well defined and concave on σ-co(B). Its lower semi-

continuity is proved by an obvious modification of the argument in the proof of
part A).

If σ-co(B) = co(B), then the concave lower-bounded function f̂σ
B , being lower

semicontinuous, satisfies Jensen’s integral inequality (see Remark 8 below). Since
f̂σ
B
∣∣
B > f by the definition of f̂σ

B , we have

f̂σ
B (x) >

∫
B

f̂σ
B (y) µ(dy) >

∫
B

f(y)µ(dy)

for any x ∈ co(B) and any measure µ in Mx(B). Thus f̂σ
B > f̂µ

B , and hence f̂σ
B = f̂µ

B .



Stability of convex sets 855

Remark 8. Jensen’s integral inequality,

f
(
b(µ)

)
>

∫
A

f(x) µ(dx), µ ∈ M(A),

holds for a concave non-negative function f on a convex set A if this function
is lower semicontinuous. This can be shown by approximating the measure µ by
a sequence of finitely supported measures with the same barycentre and using the
lower semicontinuity of the functional f . Note that the condition of the lower semi-
continuity of f is essential (it cannot be replaced by the condition of measurability
of this function).

The author is grateful to V. M. Tikhomirov and the participants of his seminar
at Moscow State University for useful remarks and discussions.
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