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It is shown that the entropy reduction (the information gain in the initial terminology)
of an efficient (ideal or pure) quantum measurement coincides with the generalized
quantum mutual information of a quantum-classical channel mapping an a priori
state to the corresponding posteriori probability distribution of the outcomes of the
measurement. As a result the entropy reduction is defined for arbitrary a priori states
(not only for states with finite von Neumann entropy) and its analytical properties
is studied in detail by using general properties of the quantum mutual information.
By using this approach it is shown that the entropy reduction of an efficient quantum
measurement is a nonnegative lower semicontinuous concave function on the set of
all a priori states having continuous restrictions to subsets on which the von Neumann
entropy is continuous. Monotonicity and subadditivity of the entropy reduction are
also easily proved by this method. A simple continuity condition for the entropy re-
duction and for the mean posteriori entropy considered as functions of a pair (a priori
state, measurement) is obtained. A characterization of an irreducible measurement
(in the Ozawa sense) which is not efficient is considered in the Appendix. C© 2011
American Institute of Physics. [doi:10.1063/1.3589831]

I. INTRODUCTION

The notion of a quantum measurement plays a key role in quantum theory. One of quantitative
characteristics of a quantum measurement is the entropy reduction defined as a difference between
the von Neumann entropy of an a priori (pre-measurement) state and the mean von Neumann entropy
of the corresponding posteriori (post-measurement) states. This characteristic was originally called
the information gain (cf., Refs. 6, 12, and 21) but then the terminology had been changed (some
arguments explaining this change can be found in Ref. 4). Roughly speaking, the entropy reduction
characterizes a degree of purifying (“gain in purity”) of a state in a measurement process. More
details about the information sense of this value can be found in Refs. 11, 15, and 21.

An interesting question concerns the sign of the entropy reduction. Groenewold has conjectured
in Ref. 6 and Lindblad has proved in Ref. 12 that the entropy reduction is nonnegative for quantum
measurements of the von Neumann-Luders type. The general case has been studied by Ozawa,
who has proved in Ref. 21 that the entropy reduction is nonnegative if and only if the quantum
measurement is quasicomplete (also called irreducible in Ref. 19) in the sense that for an arbitrary
pure a priori state the corresponding family of posteriori states consists of pure states (for almost
all outcomes). The class of quasicomplete (irreducible) quantum measurements contains the class
of efficient or pure measurement (cf., Refs. 10, 11, and 15) described in Sec. III A. Quantum
measurements belonging to the gap between these two classes are characterized in the Appendix as
measurements with quite singular properties.

In this paper, we show that the entropy reduction of an efficient (pure) quantum measurement
can be expressed via the (generalized) quantum mutual information of the quantum-classical channel
mapping an a priori state to the corresponding posteriori probability distribution of the outcomes of
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the measurement. This makes it possible to define the entropy reduction for arbitrary a priori states
(not only for states with finite von Neumann entropy), and to study its analytical properties by using
results concerning the quantum mutual information of infinite-dimensional channels.8

The paper is organized as follows.
In Sec. II, we restrict attention to the case of quantum measurements with a discrete set

of outcomes, which is more simple mathematically. In this case, the quantum-classical channel
mapping an a priori state to the corresponding posteriori probability distribution of the outcomes
can be considered as a quantum-quantum infinite-dimensional channel, and its quantum mutual
information is a well studied value.8 So, the obtained expression of the entropy reduction of an
efficient quantum measurement with a discrete set of outcomes via this value directly shows that
the entropy reduction can be uniquely extended to a nonnegative lower semicontinuous concave
function on the set of all a priori states and that this function has several special properties such as
continuity of restrictions to subsets on which the von Neumann entropy is continuous, etc., stated in
Theorem 1.

In Sec. III, we consider the case of general quantum measurements described by completely
positive instruments. In this case, we have to pay a special attention to the difference between
the class of irreducible instruments (Definition 2) and its proper subclass consisting of efficient
(or pure) instruments (Definition 3). As shown in Proposition 2, this difference becomes vis-
ible when we consider tensor product of an instrument with the “identity” instrument corre-
sponding to the trivial measurement (similar to the difference between positive and completely
positive maps). It is the class of efficient instruments to which the results of Sec. II can be
extended.

The other problem in dealing with general quantum measurements consists in nonexistence of
quantum-quantum modification for the quantum-classical channel mapping an a priori state to the
corresponding posteriori probability distribution of the outcomes. This implies necessity to extend
the notion of the quantum mutual information to channels taking values in the space of normal
states of an arbitrary W ∗-algebra (Definition 4). By using this extension the analog of the above
representation of the entropy reduction via the quantum mutual information is proved (Corollary 1).
This makes it possible to obtain generalizations of the assertions of Theorem 1 to the case of general
quantum measurements, presented in Theorem 2.

Section III is completed by considering a question of continuity of the entropy reduction with
respect to simultaneous perturbations of a priory states and quantum instruments. Proposition 4
contains a sufficient continuity condition for the entropy reduction considered as a function of the
pair (a priory state, quantum instrument), which is obtained by means of the above representation via
the quantum mutual information. It implies a sufficient continuity condition for the mean posteriori
entropy presented in Corollary 2.

In the Appendix, we consider a characterization of irreducible quantum instruments which are
not efficient (Proposition 5). It shows quite singular properties of such instruments and provides a
simple sufficient condition for efficiency of irreducible instruments (Corollary 3).

II. THE DISCRETE CASE

Let H be a separable Hilbert space, B(H) – the Banach space of all bounded operators in H
with the operator norm ‖ · ‖, T(H) – the Banach space of all trace-class operators in H with the trace
norm ‖ · ‖1 = Tr| · |, containing the cone T+(H) of all positive trace-class operators. The closed
convex subset S(H) = {A ∈ T+(H) | TrA = 1} is a complete separable metric space with the metric
defined by the trace norm. Operators in S(H) are denoted ρ, σ, ω, . . . and called density operators
or states since each density operator uniquely defines a normal state on B(H).3

The identity operator in a Hilbert space H and the identity transformation of the set T(H) will
be denoted IH and IdH correspondingly.

For an arbitrary state ω ∈ S(H ⊗ K) the partial states TrKω and TrHω will be denoted ωH
and ωK.
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We will use the following natural extension of the von Neumann entropy H (ρ) = −Trρ log ρ

of a quantum state ρ ∈ S(H) to the cone T+(H) of all positive trace-class operators

H (A) = TrAH

(
A

TrA

)
= Trη(A) − η(TrA), η(x) = −x log x,

where log denotes the natural logarithm.
The quantum relative entropy is defined for arbitrary operators A and B in T+(H) as follows:

H (A ‖B) =
∑

i

〈i | (A log A − A log B + B − A) |i〉, (1)

where {|i〉} is the orthonormal basis of eigenvectors of A and it is assumed that H (A ‖B) = +∞ if
suppA is not contained in suppB.13

A linear completely positive trace-preserving map � : T(H) → T(H′) is called a quantum-
quantum channel9, 17 (we use the term quantum-quantum, since we will use below the more general
notion of a channel, in particular, the notion of a quantum-classical channel).

By the Stinespring dilation theorem, there exist a separable Hilbert space H′′ and an isometry
V : H → H′ ⊗ H′′ such that

�(A) = TrH′′ V AV ∗, ∀A ∈ T(H). (2)

The quantum-quantum channel

T(H) � A → �̃(A) = TrH′ V AV ∗ ∈ T(H′′) (3)

is called complementary to the channel �, it is uniquely defined up to unitary equivalence7 (the
channel �̃ is also called conjugate to the channel �16).

The quantum mutual information is an important entropic characteristic of a channel � :
T(H) → T(H′) related to the entanglement-assisted classical capacity of this channel.9, 17 In finite
dimensions, it is defined at arbitrary state ρ ∈ S(H) by the expression (cf., Ref. 1)

I (ρ,�) = H (ρ) + H (�(ρ)) − H (�̃(ρ)). (4)

In infinite dimensions, this expression may contain uncertainty “ ∞ − ∞,” but it can be modified
to avoid this problem as follows:

I (ρ,�) = H (� ⊗ IdK(ρ̂)‖� ⊗ IdK(ρ ⊗ � )), (5)

where K is a Hilbert space isomorphic to H, ρ̂ is a purification of the state ρ in the space H ⊗ K
(this means that TrKρ̂ = ρ), and � = TrHρ̂ is a state in S(K) isomorphic to ρ. Analytical properties
of the function (ρ,�) → I (ρ,�) defined by (5) in the infinite dimensional case are studied in
Ref. 8.

A general quantum measurement M with a countable outcome set X = {xi }i∈I is described by
a set {Vi j }i∈I, j∈Ji of operators in B(H) such that

∑
i∈I

∑
j∈Ji

V ∗
i j Vi j = IH. A measurement M is

called efficient if for each i the index set Ji degenerates to a single point, so it is described by a
set {Vi }i∈I of operators in B(H) such that

∑
i∈I V ∗

i Vi = IH.15, 17 Applying this measurement to an
arbitrary a priori state ρ ∈ S(H) results in the posteriori probability distribution {πi (ρ)}i∈I , where
πi (ρ) = TrViρV ∗

i is the probability of the outcome xi , and the corresponding family of posteriori
states {ρi }i∈I , where ρi = (πi (ρ))−1ViρV ∗

i . Thus,
∑

i∈I πi (ρ)H (ρi ) = ∑
i∈I H (ViρV ∗

i ) is the mean
entropy of posteriori states. The entropy reduction of the quantum measurement M at an a priori
state ρ with finite entropy is the following value:

E R(ρ,M)
.= H (ρ) −

∑
i∈I

πi (ρ)H (ρi ) = H (ρ) −
∑
i∈I

H (ViρV ∗
i ).

Let HX be a Hilbert space having dimension coinciding with the cardinality of the outcome set
X . Consider the quantum-quantum channel

T(H) � A → 	M(A) =
∑
i∈I

Tr
[
Vi AV ∗

i

] |ϕi 〉〈ϕi | ∈ T(HX ), (6)
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where {|ϕi 〉}i∈I is a particular orthonormal basis in HX . The channel 	M is a quantum-quantum
modification of the quantum-classical channel mapping a state ρ to the probability distribution
{πi (ρ)}i∈I . It is essential that

E R(ρ,M) = I (ρ,	M) (7)

for any state ρ in S(H) with finite entropy. If H ({πi (ρ)}i∈I ) < +∞ this equality directly follows
from (4), since 	̃M(·) = ∑

i∈I Ui Vi (·)V ∗
i U ∗

i , where {Ui }i∈I is a family of isometrical embedding
of H into

⊕
i∈I Hi , Hi

∼= H, such that UiH = Hi . In general case, it can be easily deduced from
Ref. [8, (Proposition 3 and Theorem 1)] or can be proved directly by the obvious modification of
the proof of Proposition 3 in Sec. III B.

Equality (7) obtained under the condition H (ρ) < +∞ makes it possible to consider the entropy
reduction of an efficient quantum measurement with a countable outcome set as a function on the
whole space of a priori states.

Definition 1: The entropy reduction of an efficient quantum measurement M = {Vi }i∈I at an
arbitrary a priori state ρ is defined as follows:

E R(ρ,M)
.= I (ρ,	M),

where 	M is the quantum-quantum channel defined by (6).
By equality (7), this definition is consistent with the conventional one. Its main advantage

consists in possibility to study the function ρ → E R(ρ,M) on the whole space of a priori states by
using properties of the quantum mutual information (many of them follow from the corresponding
properties of the quantum relative entropy).

Theorem 1: Let M be an efficient measurement in a Hilbert space H with a countable outcome
set. The function ρ → E R(ρ,M) is nonnegative concave and lower semicontinuous on the set
S(H). It has the following properties:

(1) {E R(ρ,M) = 0} ⇔ {ρi
∼= ρ ∀i s.t. πi (ρ) �= 0}, where {πi (ρ)} and {ρi } are respectively the

posteriori probability distribution and the family of posteriori states corresponding to an a
priori state ρ;

(2) continuity on any subset of S(H) on which the von Neumann entropy is continuous:

lim
n→+∞ H (ρn) = H (ρ0) < +∞ ⇒ lim

n→+∞ E R(ρn,M) = E R(ρ0,M) < +∞

for any sequence {ρn} of states converging to a state ρ0;
(3) monotonicity: for arbitrary efficient measurements M = {Vi }i∈I and N = {U j } j∈J in a Hilbert

space H with the outcome sets X and Y the inequality

E R(ρ,N ◦ M) ≥ E R(ρ,M) (8)

holds for any ρ ∈ S(H), where N ◦ M is the measurement in the space H with the outcome
set X × Y determined by the family {U j Vi }i∈I, j∈J ;

(4) subadditivity: for arbitrary efficient measurements M = {Vi }i∈I and N = {U j } j∈J in Hilbert
spaces H and K with the outcome sets X and Y the inequality

E R(ω,M ⊗ N) ≤ E R(ωH,M) + E R(ωK,N) (9)

holds for any ω ∈ S(H ⊗ K), where M ⊗ N is the measurement in the space H ⊗ K with
the outcome set X × Y determined by the family {Vi ⊗ U j }i∈I, j∈J .

Proof: (1) Note that the equality

E R(ρ,M)
.= I (ρ,	M)

.= H (	M ⊗ IdK(ρ̂)‖	M(ρ) ⊗ �) = 0,

where ρ̂ is a purification of ρ and � = TrHρ̂, means

	M ⊗ IdK(ρ̂) = 	M(ρ) ⊗ �, (10)
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by the well known property of the relative entropy.
Let ρ = ∑

k λk |k〉〈k| and ρ̂ = ∑
j,k

√
λ j

√
λk | j〉〈k| ⊗ | j〉〈k|. It is easy to see that (10) is equiv-

alent to

〈k|V ∗
i Vi | j〉 = δ jkTrV ∗

i Viρ = δ jkπi (ρ) for all i, j, k. (11)

“⇐” Note that this implication is obvious only if the state ρ has finite entropy. Let �i

= (πi (ρ))−1TrHVi ⊗ IK · ρ̂ · V ∗
i ⊗ IK. Then �i

∼= ρi and hence �i
∼= �, since � ∼= ρ. By noting

that � = ∑
i∈I πi (ρ)�i we conclude from Lemma 6 in the Appendix that �i = � for all i . Since

�i = (πi (ρ))−1 ∑
j,k

√
λ j

√
λk[TrVi | j〉〈k|V ∗

i ]| j〉〈k| and � = ∑
k λk |k〉〈k|, we obtain (11).

“ ⇒” Relations (11) mean that PV ∗
i Vi P = πi (ρ)P for each i , where P = ∑

k |k〉〈k| is the
projector on the support of the state ρ. Thus, (πi (ρ))−1/2Vi P is a partial isometry and hence
ρi = (πi (ρ))−1Vi Pρ PV ∗

i
∼= ρ for each i such that πi (ρ) �= 0.

(2) This directly follows from Proposition 4 in Ref. 8.
(3) This follows from the 1-st chain rule for the quantum mutual information (property 3 in

Proposition 1 in Ref. 8). Indeed,

	N◦M(A) =
∑

i∈I, j∈J

Tr
[
V ∗

i U ∗
j U j Vi A

] |i〉〈i | ⊗ | j〉〈 j |, A ∈ T(H),

where {|i〉}i∈I and {| j〉} j∈J are particular orthonormal bases in the spaces HX and HY , and hence
	M(A) = TrHY 	N◦M(A).

(4) This follows from subadditivity of the quantum mutual information (property 5 in
Proposition 1 in Ref. 8), since 	M⊗N = 	M ⊗ 	N. �

Consider a question of continuity of the entropy reduction with respect to “perturbation” of
quantum measurements.

Let M(H) be the set of all efficient quantum measurements in the Hilbert space H with finite or
countable set of outcomes identified with the set of all sequences {Vi }+∞

i=1 of operators in B(H) such
that

∑+∞
i=1 V ∗

i Vi = IH endowed with the topology of coordinate-wise strong operator convergence.
Proposition 1 in Ref. 8 and Corollary 2 in Ref. 8 imply the following assertion.

Proposition 1: The function

(ρ,M) → E R(ρ,M) (12)

is lower semicontinuous on the set S(H) × M(H). Let A be an arbitrary subset of S(H) on which
the von Neumann entropy is continuous. Then function (12) is continuous on the set A × M(H).

By Proposition 1 and Proposition 6.6 in Ref. 18 function (12) is continuous on the set KH,h

× M(H), where KH,h is the set of states with the mean energy TrHρ not exceeding h > 0 provided
the Hamiltonian H of the quantum system satisfies the condition Tre−λH < +∞ for all λ > 0 (which
holds, for example, for the Hamiltonian of the system of quantum oscillators).

III. THE GENERAL CASE

A. On properties of efficient (pure) instruments

A general quantum measurement in a Hilbert space H with the measurable outcome set {X,F}
is described by a special mathematical object called instrument, which was introduced by Davis and
Lewis.5 An instrument M (in a space of states) is a σ -additive measure on {X,F} taking values within
the set of quantum operations – completely positive trace-non-increasing linear transformations of
T(H) such that M(X ) is a channel (see the detailed definition in Refs. 2, 9, and 14).

Let ρ be an arbitrary a priori state in S(H). Then the outcome of the measurement M

is contained in a set F ∈ F with probability TrM(F)[ρ]. If this probability is nonzero then
(TrM(F)[ρ])−1M(F)[ρ] is the corresponding posteriori state of the system. Thus, F → μρ(F)
.= TrM(F)[ρ] is the posteriori probability measure on the outcome set {X,F} corresponding to the

a priori state ρ.
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Ozawa proved in Ref. 20 existence of a family {ρx }x∈X of posteriori states defined for μρ-almost
all x, such that the function x → TrAρx is F-measurable for any A ∈ B(H) and∫

F
ρxμρ(dx) = M(F)[ρ] ∀F ∈ F . (Bochner integral)

By using the family {ρx }x∈X , one can consider the mean entropy of posteriori state∫
X H (ρx )μρ(dx), and assuming that H (ρ) < +∞ one can define the entropy reduction as fol-

lows:

E R(ρ,M) = H (ρ) −
∫

X
H (ρx )μρ(dx).

This is a natural generalization of the entropy reduction considered in Sec. II for the class of
measurements with a countable set of outcomes.

Ozawa proved in Ref. 21 that E R(ρ,M) is nonnegative if and only if the instrument M is
irreducible in the sense of the following definition.24

Definition 2: An instrument M is called irreducible if for an arbitrary pure a priori state ρ the
posteriori states ρx are pure for μρ-almost all x.

An arbitrary instrument M in a Hilbert space H can be represented as follows:

M∗(F)[A] = V ∗ · A ⊗ P(F) · V, A ∈ B(H), (13)

where M∗(F) is a dual map to the map M(F), V is an isometry from H into H ⊗ H0 and P(F) is
a spectral measure in H0

19 (see also Ref. 10).
The following notion introduced in Ref. 10 is a natural generalization of the notion of an efficient

measurement with a countable outcome set.

Definition 3: An instrument M is called efficient or pure if it has representation (13) with the
spectral measure P(F) of multiplicity one.

Below, we will use the term efficient to be consistent with the accepted terminology.
In Ref. 10, it is shown that an efficient instrument is irreducible. The converse assertion is

not true (see Example 1 in the Appendix). A characterization of a quantum instrument, which is
irreducible but not efficient, and a simple sufficient condition providing equivalence of efficiency
and irreducibility are presented respectively in Proposition 5 and in Corollary 3 in the Appendix.
This characterization shows that a quantum instrument, which is irreducible but not efficient, has
quite singular properties.

It is the class of efficient instruments to which the results of Sec. II can be extended. We
will use the following characterization of such instruments, where M ⊗ JK denotes the instrument
M(·) ⊗ IdK in the Hilbert space H ⊗ K with the outcome set of the instrument M.

Proposition 2: Let M be an instrument in a Hilbert space H with the outcome set {X, F}. The
following statements are equivalent:

(i) the instrument M is efficient;
(ii) the instrument M ⊗ JK is irreducible for 2-D Hilbert space K;
(iii) the instrument M ⊗ JK is irreducible for a separable Hilbert space K;
(iv) there exist a positive σ -finite measure μ on {X, F}, a dense domain D ⊂ H and a function

x → V (x) defined for μ-almost all x, such that V (x) is a linear operator from D to H,
satisfying

〈ϕ| M∗(F)[A]ϕ〉 =
∫

F
〈V (x)ϕ|AV (x)ϕ〉μ(dx),

for any ϕ ∈ D, F ∈ F , A ∈ B(H).
(v) statement (iv) holds with D = lin{|ϕi 〉}, where {|ϕi 〉} is a given arbitrary orthonormal basis

in H.
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Proof: (i) ⇒ (iii). It is easy to see that the instruments M and M ⊗ JK have representation (13)
with the same spectral measure. Hence, efficiency of M is equivalent to efficiency of M ⊗ JK. As
mentioned after the proof of Theorem 1 in Ref. 10 any efficient instrument is irreducible.

(iii) ⇒ (ii) is obvious, since the instrument in (ii) can be considered as a restriction of the
instrument in (iii).

(ii) ⇒ (v). By Theorem 1 in Ref. 10 and its proof, there exist a positive σ -finite measure μ

on {X, F} and a countable family {x → Vk(x)}k of functions defined for μ-almost all x , such that
Vk(x) is a linear operator from D = lin({|ϕi 〉}) to H, satisfying

〈ϕ| M∗(F)[A]ϕ〉 =
∫

F

∑
k

〈Vk(x)ϕ|AVk(x)ϕ〉μ(dx),

for any ϕ ∈ D, F ∈ F , A ∈ B(H). Consider the family {V̂k(x) = Vk(x) ⊗ IdK} of linear operators
from D̂ = lin({ϕi ⊗ φ j }i j ) to H ⊗ K, where {|φ j 〉} is an orthonormal basis of the space K. By using
the polarization identity it is easy to show that

〈ϕ̂| M∗(F) ⊗ IdK[C] ϕ̂〉 =
∫

F

∑
k

〈V̂k(x)ϕ̂|CV̂k(x)ϕ̂〉μ(dx),

for any ϕ̂ ∈ D̂, F ∈ F , C ∈ B(H ⊗ K). Hence, for the instrument M ⊗ JK and a pure a priori
state ρ̂ = |ϕ̂〉〈ϕ̂| (where ϕ̂ ∈ D̂) we have

μρ̂(dx) =
∑

k

‖V̂k(x)ϕ̂‖2μ(dx), (14)

while the posteriori state corresponding to the outcome x ∈ X \ Xs
ϕ̂ is

ρ̂x =
∑

k |V̂k(x)ϕ̂〉〈V̂k(x)ϕ̂|∑
k ‖V̂k(x)ϕ̂‖2

, (15)

where Xs
ϕ̂ = {x ∈ X | ∑

k ‖V̂k(x)ϕ̂‖2 = 0} is a set such that μρ̂(Xs
ϕ̂) = 0 .10

By noting that the instrument M ⊗ JK is irreducible and by using (14), one can show existence
of a set X ϕ̂ ∈ F such that μ(X \ X ϕ̂) = 0 and the above state ρ̂x is pure for any x ∈ X ϕ̂ \ Xs

ϕ̂ .

Let D̂0 be a countable subset of D̂ consisting of finite linear combinations of the vectors of
the family {ϕi ⊗ φ j }i j with rational coefficients. Let X0 = ⋂

ϕ̂∈D̂0
X ϕ̂ ∈ F . Then μ(X \ X0) = 0

and the state ρ̂x defined by (15) is pure for all ϕ̂ ∈ D̂0 and all x ∈ X0 \ Xs
ϕ̂ . Hence, the family

{|V̂k(x)ϕ̂〉}k consists of collinear vectors for all ϕ̂ ∈ D̂0 and all x ∈ X0. Since the rank of the operator
V̂k(x) is either 0 or > 1, Lemma 5 in the Appendix shows that V̂k(x) = λk(x)V̂1(x), and hence
Vk(x) = λk(x)V1(x), where λk(x) ∈ C, for all k and all x ∈ X0.

Consider the linear operator V (x) =
√∑

k |λk(x)|2 V1(x) defined on the set D for all x ∈ X0.
It is easy to see that

〈ϕ|M∗(F)[A]ϕ〉 =
∫

F
〈V (x)ϕ|AV (x)ϕ〉μ(dx),

for any ϕ ∈ D, F ∈ F , A ∈ B(H).
(v) ⇒ (iv) is obvious.
(iv) ⇒ (i). By the condition, the linear operator

D � ϕ → V (x)ϕ ∈ L2(X,F , μ,H) ∼= H ⊗ L2(X,F , μ)

is isometrical, and hence it can be extended to the isometry V from H into H ⊗ L2(X,F , μ). A
direct verification shows that

〈ϕ|M∗(F)[A]ϕ〉 = 〈V ϕ|(A ⊗ P(F))V ϕ〉 = 〈ϕ|V ∗(A ⊗ P(F))V ϕ〉,
for any vector ϕ inH, where P(·) is the spectral measure defined as follows (P(F) f )(x) = χF (x) f (x)
for any f ∈ L2(X,F , μ), where χF (·) is the indicator function of the set F ∈ F . Thus, the instrument
M is efficient. �
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We will also use the following simple observations.

Lemma 1: (1) For arbitrary efficient instruments M and N in a separable Hilbert space H
with the outcome sets {X,F} and {Y, E} the instrument N ◦ M in the space H with the outcome
set {X × Y, F ⊗ E}, defined by the relation N ◦ M(F × E) = N(E) ◦ M(F), F ∈ F , E ∈ E , is
efficient.

(2) For arbitrary efficient instruments M and N in separable Hilbert spaces H and K with
the outcome sets {X,F} and {Y, E} the instrument M ⊗ N in the space H ⊗ K with the outcome
set {X × Y, F ⊗ E}, defined by the relation M ⊗ N(F × E) = M(F) ⊗ N(E), F ∈ F , E ∈ E , is
efficient.

Proof: It is easy to show that the instruments N ◦ M and M ⊗ N have representation (13)
with the spectral measure PM ⊗ PN, where PM and PN are spectral measures corresponding to the
instruments M and N. �
B. A representation for the entropy reduction

To extend the results of the Sec. II to the case of general type measurement consider the
construction proposed by Barchielli and Lupieri in Ref. 2. Choose a positive complete measure μ0

on (X,F) such that μρ is absolutely continuous with respect to μ0 for all ρ in S(H) (this can be done
by using the measure μρ0 , where ρ0 is a given full rank state in S(H)). Let L∞(X,F , μ0,B(H)) be
the W*-algebra of μ0-essentially bounded B(H)-valued weakly* measurable functions on X with
the predual Banach space L1(X,F , μ0,T(H)) of T(H)-valued Bochner μ0-integrable functions
on X . By Theorem 2 in Ref. 2 with an arbitrary instrument M, one can associate a channel
�∗

M
: L∞(X,F , μ0,B(H)) → B(H) defined by the relation

Tr�∗
M(A ⊗ f )ρ =

∫
X

f (x)TrM(dx)[ρ]A, A ∈ B(H), f ∈ L∞(X,F , μ0), ρ ∈ S(H).

The preadjoint channel �M : T(H) → L1(X,F , μ0,T(H)) produces the posteriori family as
follows:

ρx =
{

(Trσ (x))−1σ (x), Trσ (x) �= 0,

ρ0, Trσ (x) = 0,
(16)

where σ (x) is a particular representative of the class �M(ρ), while the function Trσ (x) is a probability
density (the Radon-Nikodym derivative) of the measure μρ with respect to the measure μ0.

Consider the channel 	∗
M

: L∞(X,F , μ0) → B(H) defined by the relation

Tr ρ 	∗
M( f ) =

∫
X

f (x)TrM(dx)[ρ], f ∈ L∞(X,F , μ0), ρ ∈ S(H). (17)

The preadjoint channel 	M : T(H) → L1(X,F , μ0) maps an arbitrary a priori state ρ to the
probability density of the posteriori measure μρ with respect to the measure μ0, and hence it can
be considered as a natural generalization of the channel 	M defined by (6) (since the last channel
is a quantum-quantum modification of the channel mapping an a priory state ρ to the probability
distribution {πi (ρ)}i∈I ).

Note that 	M = � ◦ �M, where � is the preadjoint channel of the channel

�∗ : L∞(X,F , μ0) � f → f ⊗ IH ∈ L∞(X,F , μ0,B(H)).

Since the channel 	M defined by (17) has no quantum-quantum modification, to extend the
results of Section II we have to generalize the notion of quantum mutual information.

Definition 4: Let A be an arbitrary W ∗-algebra and �∗ : A → B(H) be a channel with the
preadjoint channel � : T(H) → A∗. Let ρ be a state in S(H). The quantum mutual information of
the channel � at the state ρ is defined as follows:

I (ρ,�) = H (� ⊗ IdK(ρ̂)‖� ⊗ IdK(ρ ⊗ �)) ,
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where K is a Hilbert space isomorphic to H, ρ̂ is a purification of the state ρ in the space H ⊗ K,
� = TrHρ̂ is a state in S(K) isomorphic to ρ and H (·‖·) is the relative entropy for two states in
(A ⊗ B(K))∗.

Remark 1: It is natural to ask about validity for the above-defined value of the properties of
the quantum mutual information of a quantum-quantum infinite dimensional channel presented in
Propositions 1 and 4 in Ref. 8. Since the proofs of these propositions can not be directly generalized
to the case of a channel considered in Definition 4, the above question is not trivial.

Here, we note only that for an arbitrary channel � : T(H) → A∗ the function ρ → I (ρ,�) is
nonnegative and lower semicontinuous and that for an arbitrary channel � : A∗ → B∗, where B

is an other W ∗-algebra, the inequality I (ρ,� ◦ �) ≤ I (ρ,�) holds for all ρ (the 1-st chain rule).
These properties follow from nonnegativity and lower semicontinuity of the relative entropy, Lemma
2 in Ref. 8 and Uhlmann’s monotonicity theorem.18

Since we will use Definition 4 with A = L∞(X,F , μ0,B(H)), we will deal with the relative
entropy for states in (A ⊗ B(K))∗ = L1(X,F , μ0,T(H ⊗ K)).

The relative entropy for two states σ1 and σ2 in L1(X,F , μ0,T(H)) can be expressed as follows:

H (σ1 ‖ σ2) =
∫

X
Tr (σ1(x) (log σ1(x) − log σ2(x))) μ0(dx)

=
∫

X
Hq (σ1(x) ‖ σ2(x))μ0(dx) =

∫
X

Hq

(
σ1(x)

Trσ1(x)

∥∥∥∥ σ2(x)

Trσ2(x)

)
μ1(dx) + Hc(μ1 ‖μ2),

(18)

where μ1(dx) = Trσ1(x)μ0(dx) (see [2, formula (4)]). In this expression Hq denotes the quantum
relative entropy for two positive trace class operators defined by (1), while Hc denotes the classical
relative entropy for two probability measures, that is Hc(μ1 ‖μ2) = ∫

X log Trσ1(x)
Trσ2(x) μ1(dx).

For an arbitrary instrument M equality (7) does not hold, but one can prove the following
estimation.

Proposition 3. Let M be an arbitrary instrument in a Hilbert space H with the outcome set
{X,F} and ρ be a state in S(H) with finite entropy. Let ρ̂ be a purification of the state ρ in the
space H ⊗ K. Then

|E R(ρ,M) − I (ρ,	M)| ≤
∫

X
H (ρ̂x )μρ(dx),

where 	M is the quantum-classical channel defined by (17), μρ(·) = TrM(·)[ρ] and {ρ̂x } is the
family of posteriori states corresponding to the instrument M̂(·) = M(·) ⊗ IdK and the a priori state
ρ̂.

Proof: Consider the channels

�M : T(H) → L1(X,F , μ0,T(H)) and �M̂ : T(H ⊗ K) → L1(X,F , μ0,T(H ⊗ K))

produced by the Barchielli-Lupieri construction described before (since μ̂ω(·) = TrM̂(·)[ω]
= TrM(·)[ωH] = μωH (·) for any ω ∈ S(H ⊗ K), we can use the same measure μ0 in the both cases).
By noting that L∞(X,F , μ0,B(H ⊗ K)) ∼= L∞(X,F , μ0,B(H)) ⊗ B(K) it is easy to show that
�M̂ = �M ⊗ IdK.

Let {ρ̂x } be the family of posteriori states obtained via a given representative of the class �M̂(ρ̂)
by the rule similar to (16). It is easy to see that {ρx

.= TrKρ̂x } is the family of posteriori states for
the instrument M corresponding to the a priori state ρ. Since the instrument M̂ is localized in the
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space H we have
∫

X TrHρ̂xμρ(dx) = TrHρ̂ = � ∼= ρ. By using expression (18) we obtain

I (ρ,	M)
.= H (	M ⊗ IdK(ρ̂) ‖	M(ρ) ⊗ �) = H

(
� ⊗ IdK(�M̂(ρ̂)) ‖	M(ρ) ⊗ �

)
=

∫
X

Hq (TrHρ̂x ‖�)μρ(dx) = −
∫

X
H (TrHρ̂x )μρ(dx) +

∫
X

Tr(TrHρ̂x (− log �))μρ(dx)

= −
∫

X
H (TrHρ̂x )μρ(dx) + Tr� (− log �)

= [H (ρ) −
∫

X
H (ρx )μρ(dx)] +

∫
X

(H (TrKρ̂x ) − H (TrHρ̂x ))μρ(dx).

By the triangle inequality, the absolute value of the last term in this expression is majorized by∫
X H (ρ̂x )μρ(dx). �

Propositions 2 and 3 imply the following generalization of equality (7).

Corollary 1: Let M be an efficient instrument in a Hilbert space H. Then E R(ρ,M)
= I (ρ,	M) for any state ρ in S(H) with finite entropy.

Corollary 1 makes it possible to consider the entropy reduction of an efficient quantum mea-
surement not only for a priori states with finite entropy and motivates the following extended version
of Definition 1.

Definition 5: The entropy reduction of an efficient instrument M in a Hilbert space H at an
arbitrary a priori state ρ ∈ S(H) is defined as follows:

E R(ρ,M)
.= I (ρ,	M),

where 	M is the quantum-classical channel defined by (17).
The following theorem is an extended version of Theorem 1.

Theorem 2: Let M be an arbitrary efficient instrument in a Hilbert space H. The function
ρ → E R(ρ,M) is nonnegative concave and lower semicontinuous on the set S(H). It has the
following properties:

(1) {E R(ρ,M) = 0} ⇔ {ρx
∼= ρ f or μρ-almost all x}, where {ρx } and μρ are respectively the

family of posteriori states and the posteriori probability measure corresponding to the a priori
state ρ;

(2) continuity on any subset of S(H) on which the von Neumann entropy is continuous:

lim
n→+∞ H (ρn) = H (ρ0) < +∞ ⇒ lim

n→+∞ E R(ρn,M) = E R(ρ0,M) < +∞

for any sequence {ρn} of states converging to a state ρ0;
(3) monotonicity: for arbitrary efficient instruments M and N in a separable Hilbert space H

the inequality

E R(ρ,N ◦ M) ≥ E R(ρ,M) (19)

holds for any ρ ∈ S(H), where N ◦ M is the instrument defined in Lemma 1;
(4) subadditivity: for arbitrary efficient instruments M and N in separable Hilbert spaces H and

K the inequality

E R(ω,M ⊗ N) ≤ E R(ωH,M) + E R(ωK,N) (20)

holds for any ω ∈ S(H ⊗ K), where N ⊗ M is the instrument defined in Lemma 1.

Proof: By Definition 5 lower semicontinuity of the function ρ → E R(ρ,M) follows from the
second part of Remark 1.
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Concavity of the function ρ → E R(ρ,M) on the convex subset of states with finite entropy
follows from inequality (56) in Ref. 2. Concavity of this function on the set S(H) can be proved by
using lower semicontinuity of this function and Lemma 2 below (see the proof of Proposition 1 in
Ref. 8).

Below, we will use the notations introduced in the proof of Proposition 3.
(1) Note that

E R(ρ,M)
.= I (ρ,	M)

.= H
(
� ⊗ IdK(�M̂(ρ̂)) ‖�(�M(ρ)) ⊗ �

) = 0

means

� ⊗ IdK(�M̂(ρ̂)) = �(�M(ρ)) ⊗ �

by the well known property of the relative entropy. This equality holds if and only if

TrHρ̂x = � for μρ-almost all x . (21)

“⇐” Let �x = TrHρ̂x . Since the instrument M̂ is irreducible (by Proposition 2), we have
ρx

∼= �x for μρ-almost all x, and hence �x
∼= � = TrHρ̂ for μρ-almost all x . Since the instru-

ment M̂ is localized in the space H, we have � = ∫
X �xμρ(dx). Thus, Lemma 6 in the Appendix

implies (21).
“⇒” Since the instrument M̂ is irreducible (by Proposition 2), it follows from (21) that ρx

= TrKρ̂x
∼= TrHρ̂x = � ∼= ρ for μρ-almost all x .

(2) This property follows from identity (24) in Lemma 3 below, since the both summands in the
left side of this identity are lower semicontinuous functions on the set S(H) by the second part of
Remark 1.

(3) This follows from the 1-st chain rule for the generalized quantum mutual information
mentioned in the second part of Remark 1. Indeed, let μ0 be a measure on {X × Y, F ⊗ E} chosen in
accordance with the Barchielli-Lupieri construction for the instrument N ◦ M and ν0 be a measure
on {X,F} such that ν0(F) = μ0(F × Y ) for any F ∈ F . Since N(Y ) is a trace preserving map,
we have TrN ◦ M(F × Y )[ρ] = TrN(Y )[M(F)[ρ]] = TrM(F)[ρ] for any F ∈ F and ρ ∈ S(H).
Hence, the measure ν0 can be used in the Barchielli-Lupieri construction for the instrument M. Let
� be a channel from L1(X × Y,F ⊗ E, μ0) to L1(X,F , ν0) preadjoint to the channel

L∞(X,F , ν0) � f → �∗( f ) = f ⊗ 1y ∈ L∞(X × Y,F ⊗ E, μ0),

where f ⊗ 1y(x, y)
.= f (x)1(y). Then 	M = � ◦ 	N◦M. This follows from the relation

Tr ρ 	∗
N◦M ◦ �∗( f ) = Tr ρ 	∗

N◦M( f ⊗ 1y)
.=

∫
X×Y

f (x)TrN(dy)[M(dx)[ρ]]

=
∫

X
f (x)TrM(dx)[ρ]

.= Tr ρ 	∗
M( f ), ρ ∈ S(H), f ∈ L∞(X,F , ν0),

which can be proved easily by noting that N(Y ) is a trace preserving map.
(4) Let μ0 and ν0 be measures on {X,F} and on {Y, E} chosen in accordance with the Barchielli-

Lupieri construction for the instruments M and N correspondingly. Then for the instrument M ⊗ N,

one can take the measure μ0 ⊗ ν0. By noting that

L∞(X × Y,F ⊗ E, μ0 ⊗ ν0,B(H ⊗ K)) = L∞(X,F , μ0,B(H)) ⊗ L∞(Y, E, ν0,B(K))

it is easy to show that �∗
M⊗N

= �∗
M

⊗ �∗
N

.
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Let ω be a state in S(H ⊗ K) such that H (ωH) and H (ωK) are finite. Then inequality (20) for
the state ω follows from the inequality

H (ωH) + H (ωK) − H (ω) = H (ω ‖ωH ⊗ ωK) ≥ H (�M⊗N(ω) ‖�M(ωH) ⊗ �N(ωK))

≥
∫

X×Y
Hq (ωxy ‖ (ωH)x ⊗ (ωK)y)μω(dxdy) = −

∫
X×Y

H (ωxy)μω(dxdy)

+
∫

X×Y
Tr ωxy

(
(− log(ωH)x ) ⊗ IK + IH ⊗ (− log(ωK)y)

)
μω(dxdy)

= −
∫

X×Y
H (ωxy)μω(dxdy) +

∫
X

H ((ωH)x )μωH (dx) +
∫

Y
H ((ωK)y)μωK (dy),

obtain by using monotonicity of the relative entropy, expression (18) and the equalities∫
X×Y

Tr ωxy((− log(ωH)x ) ⊗ IK)μω(dxdy) =
∫

X
H ((ωH)x )μωH (dx),

∫
X×Y

Tr ωxy(IH ⊗ (− log(ωK)y))μω(dxdy) =
∫

Y
H ((ωK)y)μωK (dy).

(22)

Prove the first of the above equalities. Let f be a continuous bounded function onR. Then f ((ωH)x ) ∈
L∞(X,F , μ0,B(H)) and∫

X×Y
Tr ωxy( f ((ωH)x ) ⊗ IK)μω(dxdy) = 〈

�M⊗N(ω), f ((ωH)x ) ⊗ (IK ⊗ 1y)
〉

= Tr ω�∗
M⊗N( f ((ωH)x ) ⊗ (IK ⊗ 1y)) = Tr ωH�∗

M( f ((ωH)x ))

= 〈�M(ωH), f ((ωH)x )〉 =
∫

X
Tr(ωH)x f ((ωH)x )μωH (dx).

Hence, the first equality in (22) can be proved by using approximation of the function − log x on
[0, 1] by an increasing sequence of continuous bounded functions and the monotone convergence
theorem.

Let ω0 be an arbitrary state in S(H ⊗ K). Let {Pn} and {Qn} be increasing sequences of finite
rank spectral projectors of the states ω0

H and ω0
K strongly converging to the operators IH and IK

correspondingly. Consider the sequence of states

ωn = (
Tr

(
(Pn ⊗ Qn) · ω0

))−1
(Pn ⊗ Qn) · ω0 · (Pn ⊗ Qn),

converging to the state ω0. A direct verification shows that

λnω
n
H ≤ ω0

H and λnω
n
K ≤ ω0

K, where λn = Tr
(
(Pn ⊗ Qn) · ω0

)
.

Hence, concavity and lower semicontinuity of the entropy reduction imply

lim
n→+∞ E R(ωn

H,M) = E R(ω0
H,M) and lim

n→+∞ E R(ωn
K,N) = E R(ω0

K,N)

(this can be shown by using the arguments from the proof of Ref. 23, (Lemma 6).]).
Since inequality (20) holds with ω = ωn for all n, these limit relations and lower semicontinuity

of the entropy reduction show that inequality (20) holds for the state ω0. �
Lemma 2: Let M be an efficient instrument in a Hilbert space H and ρ0 be a state in S(H)

with the spectral representation ρ0 = ∑+∞
i=1 λi |ei 〉〈ei |. Let ρn = c−1

n

∑n
i=1 λi |ei 〉〈ei |, where cn

= ∑n
i=1 λi for each n, then

lim
n→+∞ E R(ρn,M) = E R(ρ0,M).
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Proof: Let K ∼= H and Pn = ∑n
i=1 |ei 〉〈ei | be a projector in K, n = 1, 2 . . . Consider the value

In = H (	M ⊗ IdK(ρ̂n)‖	M(ρ0) ⊗ �n) = H (c−1
n 	M ⊗ �n(ρ̂0))‖c−1

n 	M(ρ0) ⊗ �n(�0))),

where

ρ̂0 =
+∞∑

i, j=1

√
λiλ j |ei 〉〈e j | ⊗ |ei 〉〈e j |, ρ̂n = c−1

n IH ⊗ Pn · ρ̂0 · IH ⊗ Pn,

�0 = TrHρ̂0, �n = TrHρ̂n and �n(·) = Pn(·)Pn is a map from T(K) to itself. We will show that

lim
n→+∞ In = H (	M ⊗ IdK(ρ̂0) ‖	M(ρ0) ⊗ �0) = E R(ρ0,M). (23)

Let σ1(x) and σ2(x) be representatives of the classes 	M ⊗ IdK(ρ̂0) and 	M(ρ0) ⊗ �0 corre-
spondingly. Then c−1

n Pnσ1(x)Pn and c−1
n Pnσ2(x)Pn are respectively representatives of the classes

c−1
n 	M ⊗ �n(ρ̂0) and c−1

n 	M(ρ0) ⊗ �n(�0). Expression (18) implies

In =
∫

X
c−1

n Hq (Pnσ1(x)Pn ‖ Pnσ2(x)Pn)μ0(dx),

H (	M ⊗ IdK(ρ̂0) ‖	M(ρ0) ⊗ �0) =
∫

X
Hq (σ1(x) ‖ σ2(x))μ0(dx)

Hence, (23) follows from Lemma 4 in Ref. 13 and the monotone convergence theorem.
By using expression (18) we obtain

0 ≤ In − E R(ρn,M) = Hc(μρn ‖μρ0 ) =
∫

X
log

μρn (dx)

μρ0 (dx)
μρn (dx) ≤ − log cn

since cnμρn (F) ≤ μρ0 (F) for all F ∈ F . Hence, limn (In − E R(ρn,M)) = 0. This and (23) imply
the assertion of the lemma. �

Lemma 3: Let ρ be a state in S(H) such that H (ρ) < +∞. Then

I (ρ,	M) + I (ρ,�M) = 2H (ρ). (24)

Proof: Since the instrument M̂ is irreducible (by Proposition 2) and is localized in the space
H we have H (ρ̂x ) = 0 for μρ-almost all x ∈ X and

∫
X TrHρ̂xμρ(dx) = TrHρ̂ = � ∼= ρ. By using

expression (18), we obtain

I (ρ,�M)
.= H

(
�M̂(ρ̂) ‖�M(ρ) ⊗ �

) =
∫

X
Hq (ρ̂x ‖ ρx ⊗ � )μρ(dx)

= −
∫

X
H (ρ̂x )μρ(dx) +

∫
X

TrKρ̂x (− log ρx )μρ(dx) +
∫

X
TrHρ̂x (− log � )μρ(dx)

=
∫

X
Trρx (− log ρx )μρ(dx) + Tr� (− log � ) =

∫
X

H (ρx )μρ(dx) + H (ρ).

This expression and Corollary 1 imply (24). �
Remark 2: By proving concavity of the function ρ → I (ρ,�M) and by using Lemma 6 in

Ref. 23, one can show validity of equality (24) for any ρ in S(H). By comparing this equality with
the assertion of Theorem 1 in Ref. 8, we see that the channel �M plays the role of the complementary
channel to the channel 	M. Strictly speaking, this holds in the discrete case when the quantum-
classical channel 	M can be considered as a quantum-quantum channel (see Section II).

The following proposition is a generalization of Proposition 1.
Proposition 4: Let {Mn} be a sequence of efficient quantum instruments with the same outcome

space {X,F} converging to the instrument M0 in the following sense

‖ · ‖1 - lim
n→+∞ Mn(F)[ρ] = M0(F)[ρ] ∀F ∈ F , ∀ρ ∈ S(H). (25)
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Then for an arbitrary sequence {ρn} of states in S(H) converging to a state ρ0 the following relation
holds

lim inf
n→+∞ E R(ρn,Mn) ≥ E R(ρ0,M0).

If, in addition, limn→+∞ H (ρn) = H (ρ0) < +∞ then

lim
n→+∞ E R(ρn,Mn) = E R(ρ0,M0).

Proof: By Lemma 2 in Ref. 8 there exists a sequence {ρ̂n} of purifications of the states {ρn}
converging to a purification ρ̂0 of the state ρ0. It is clear that we can choose a positive complete
measure μ0 on (X,F) which can be used in the Barchielli-Lupieri construction for each instrument
from the sequence {Mn}. By using Lemma 4 below it is easy to show that p.w.- limn→+∞ �Mn (ρn)
= �M0 (ρ0) and p.w.- limn→+∞ �M̂n

(ρ̂n) = �M̂0
(ρ̂0).

The first assertion follows from lower semicontinuity of the relative entropy with respect to
pointwise convergence of states Ref. [18, (Corollary 5.12)].

The second assertion follows from identity (24) in Lemma 3, since by the above arguments we
have

lim inf
n→+∞ I (ρn,	Mn ) ≥ I (ρ0,	M0 ) and lim inf

n→+∞ I (ρn,�Mn ) ≥ I (ρ0,�M0 ).

�
Proposition 4 implies the following “continuous” version of the third assertion of Corollary 2

in Ref. 8. Let 〈H 〉M,ρ
.= ∫

X H (ρx )μρ(dx) be the mean entropy of posteriori states corresponding
to a quantum instrument M and an a priory state ρ.

Corollary 2: Let {Mn} be a sequence of efficient quantum instruments with the same outcome
space {X,F} converging to the instrument M0 in the sense of (25) and {ρn} be a sequence in S(H)
converging to a state ρ0 such that limn→+∞ H (ρn) = H (ρ0) < +∞. Then

lim
n→+∞〈H 〉Mn ,ρn = 〈H 〉M0,ρ0 .

Lemma 4: Convergence of the sequence {Mn} to the instrument M0 defined by (25) means that

p.w. - lim
n→+∞ �Mn (ρ) = �M0 (ρ) ∀ρ ∈ S(H), (26)

that is limn→+∞〈�Mn (ρ), Â〉 = 〈�M0 (ρ), Â〉 for any Â ∈ L∞(X,F , μ0,B(H)).

Proof: Note first that limn→+∞〈�Mn (ρ), χF ⊗ A〉 = 〈�M0 (ρ), χF ⊗ A〉, where χF is the
indicator function of the set F ∈ F and A ∈ B(H), means that limn→+∞ TrMn(F)[ρ]A
= TrM0(F)[ρ]A. Thus, (26) implies (25).

To prove the converse implication assume that H0 is a finite-dimensional subspace of H.
Since L∞(X,F , μ0,B(H0)) coincides with the C∗-tensor product of L∞(X,F , μ0) and B(H0),
arbitrary Â0 ∈ L∞(X,F , μ0,B(H0)) can be approximated in the norm topology by a sequence { Âm}
belonging to the linear span of the set {χF ⊗ A | F ∈ F , A ∈ B(H0)}. As mentioned before (25)
implies limn→+∞〈�Mn (ρ), Âm〉 = 〈�M0 (ρ), Âm〉 for each m. By using the standard argumentation
we conclude that limn→+∞〈�Mn (ρ), Â0〉 = 〈�M0 (ρ), Â0〉.

Note that (25) implies that the set {Mn(X )[ρ]}n≥0 of states in S(H) is compact. By the com-
pactness criterion for subsets of S(H) (see Lemma 10 in Ref. 23) for arbitrary ε > 0 there ex-
ists a finite dimensional projector Pε such that TrMn(X )[ρ]P⊥

ε < ε for all n = 0, 1, 2, . . ., where
P⊥

ε = IH − Pε. This means that∫
X

TrP⊥
ε σn(x)μ0(dx) < ε for all n = 0, 1, 2, . . . , (27)

where σn(x) is a representative of the class �Mn (ρ).
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Let ε > 0 be arbitrary and A(x) be a representative of a class Â ∈ L∞(X,F , μ0,B(H)). Then

〈�Mn (ρ), Â〉 =
∫

X
TrA(x)σn(x)μ0(dx) =

∫
X

TrPε A(x)Pεσn(x)μ0(dx)

+
∫

X
TrP⊥

ε A(x)Pεσn(x)μ0(dx) +
∫

X
TrPε A(x)P⊥

ε σn(x)μ0(dx) +
∫

X
TrP⊥

ε A(x)P⊥
ε σn(x)μ0(dx).

By means of (27) it is easy to show that the last three terms in this expression are less than ε‖ Â‖ for all
n = 0, 1, 2, . . . As proved before (25) implies that the first term tends to

∫
X TrPε A(x)Pεσ0(x)μ0(dx),

since Pε A(x)Pε ∈ B(Pε(H)). Thus, we conclude that (26) holds. �
ACKNOWLEDGMENTS

I am grateful to A. S. Holevo and the participants of his seminar “Quantum probability, statistic,
information” for useful discussion. I am also grateful to the organizers of the program “Quantum
information theory” in the Institut Mittag-Leffler (Djursholm, Sweden), where the work was com-
pleted, and to the participants of this program, especially, to E. Effros, M. Wolf, and C. Palazuelos
for the help in solving the particular problems.

This work is partially supported by the program “Mathematical control theory” of Russian
Academy of Sciences, by the Analytical Departmental Target Program “Development of the
Scientific Potential of the Higher School” (project 2.1.1/11133), by the Federal Target Program
“Scientific and pedagogical staff of innovative Russia” (program 1.2.1, contract P 938) and by
RFBR Grants 09-01-00424-a, 10-01-00139-a.

APPENDIX A: A CHARACTERIZATION OF A QUANTUM INSTRUMENT WHICH IS
IRREDUCIBLE BUT NOT EFFICIENT

In Theorem 1 of Ref. 10, the representation of a quantum instrument analogous to the Kraus
representation of a completely positive map is obtained. By this theorem for an arbitrary instrument
M in a Hilbert space H with the outcome set {X, F} there exist a positive σ -finite measure μ

on {X, F}, a dense domain D ⊂ H and a countable family of functions x → Vk(x) defined for
μ-almost all x , such that Vk(x) is a linear operator from D to H, satisfying

〈ϕ|M∗(F)[A]ϕ〉 =
∫

F

∑
k

〈Vk(x)ϕ|AVk(x)ϕ〉μ(dx),

for any ϕ ∈ D, F ∈ F , A ∈ B(H). We may assume that for each x the all nonzero operators from
the family Vk(x) are not proportional to each other, since if Vk ′(x0) = λVk(x0) for some x0 and
λ ∈ C then we may replace Vk(x0) by

√
1 + |λ|2Vk(x0) and consider that Vk ′(x0) = 0.

The instrument M is efficient if and only if Vk(x) = 0 for k > 1 and μ-almost all x . This follows
from the proof of Theorem 1 in Ref. 10 and the proof of the implication (iv) ⇒ (i) in Proposition 2.

So, if the instrument M is not efficient then there exists a subset Fs of X such that M(Fs) �= 0
and V2(x) �= 0 for all x ∈ Fs (we assume that if Vk(x) = 0 then Vk ′(x) = 0 for all k ′ > k).

Proposition 5: If the instrument M is irreducible but not efficient then for μ-almost all x in
Fs the all nonzero operators Vk(x) have the same one dimensional range (depending on x), that
is Vk(x)|ϕ〉 = ωk(x)[ϕ]|ψx 〉 for all ϕ ∈ D, where ωk(x) is a linear functional defined on D (not
necessary bounded) and ψx is a unit vector in H (not depending on ϕ). This means that

〈ϕ|M∗(F)[A]ϕ〉 =
∫

F
〈ψx |Aψx 〉

∑
k

|ωk(x)[ϕ]|2μ(dx), (A1)

for any ϕ ∈ D, A ∈ B(H) and F ∈ F such that F ⊆ Fs.
It follows that for an arbitrary a priori state ρ the posteriori state is ρx = |ψx 〉〈ψx | for μρ-

almost all x ∈ Fs (that is, ρx does not depend on ρ).
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This assertion can be obtained by using the arguments from the proof of the implication
(ii) ⇒ (iv) in Proposition 2 with dimK = 1. The only difference appears at the point where Lemma
5 is used, since in this case we can not exclude the possibility of rankVk(x) = 1. It is this possibility
that prevents to prove that any irreducible instrument is efficient.

Corollary 3: If M is an instrument not taking values within the set of nonzero entanglement
breaking quantum operations (see Ref. 25) then M is efficient if and only if M is irreducible.

Proof: Let M be a instrument in a Hilbert space H with the outcome set {X, F}, which is
irreducible but not efficient. By Proposition 5 there exist a positive σ -finite measure μ on {X, F},
a subset F of X such that M(F) �= 0, a dense domain D ⊆ H, a family {x → ωk(x)}k of functions
on F , such that ωk(x) is a linear functional defined on D for each x ∈ F , and a function x → ψx

on F such that ψx is a unit vector in H for each x ∈ F , for which relation (A1) holds. By using the
polarization identity, one can show that

M(F)[|ϕ1〉〈ϕ2|] =
∫

F
|ψx 〉〈ψx |

∑
k

ωk(x)[ϕ1] ωk(x)[ϕ2]μ(dx), (A2)

where
∫

denotes the Bochner integral.
Let ω = ∑m

i, j=1 |ϕi 〉〈ϕ j | ⊗ |φi 〉〈φ j | be a pure state in S(H ⊗ K), where {ϕi }m
i=1 ⊂ D and

{φi }m
i=1 ⊂ K. Then (A2) implies

M(F) ⊗ IdK(ω) =
∫

F
|ψx 〉〈ψx | ⊗

∑
k

m∑
i, j=1

ωk(x)[ϕi ] ωk(x)[ϕ j ] |φi 〉〈φ j | μ(dx)

=
∫

F
|ψx 〉〈ψx | ⊗

∑
k

|ηk
x 〉〈ηk

x | μ(dx),

where |ηk
x 〉 = ∑m

i=1 ωk(x)[ϕi ]|φi 〉 is a vector in K. It follows that the operator M(F) ⊗ IdK(ω) is
separable. Since an arbitrary pure state in S(H ⊗ K) can be approximated by a sequence of above-
considered states, the operator M(F) ⊗ IdK(ω) is separable for any state ω ∈ S(H ⊗ K). Thus, the
operation M(F) is entanglement-breaking. �

Example 1: Let P be a spectral projector valued measure on a measurable space {X,F} and
|ψ0〉 be a fixed unit vector in H. Then the instrument M(F)[ρ] = [TrP(F)ρ]|ψ0〉〈ψ0| is obviously
irreducible, but it is efficient if and only if the spectral measure P has (uniform) multiplicity one,
since it is easy to see that the spectral measure from representation (13) coincides with P . Note that
the channel M(X ) : ρ → |ψ0〉〈ψ0| is entanglement-breaking.

APPENDIX B: TWO AUXILIARY LEMMAS

Lemma 5: Let L1 = lin({ϕi }i∈N) be a linear space andL0
1 be a countable subset of L1 consisting

of finite linear combinations of the vectors ϕ1, ϕ2, . . . with rational coefficients. Let {Ak} be a finite
or countable family of nonzero linear operators from L1 to a linear space L2 such that the set
{Ak(ϕ)} ⊂ L2 consists of collinear vectors for any ϕ ∈ L0

1. If at least one operator in the family
{Ak} has rank > 1 then Ak = λk A1 for all k, where {λk} is a set of nonzero scalars.

Proof: Suppose rankA1 > 1 and k is arbitrary. By the condition Ak(ϕ) = λ
ϕ

k A1(ϕ) for all
ϕ ∈ L0

1 \ ker A1. We will show that λ
ϕ

k does not depend on ϕ.
Since rankA1 > 1, without loss of generality we may assume that the vectors A1(ϕ1) and A1(ϕ2)

are not collinear. Let ψ = c1ϕ1 + c2ϕ2, where c1 and c2 are nonzero rational coefficients. By linearity
we have

Ak(ψ) = λ
ψ

k A1(ψ) = λ
ψ

k (c1 A1(ϕ1) + c2 A1(ϕ2))
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and

Ak(ψ) = c1 Ak(ϕ1) + c2 Ak(ϕ2) = c1λ
ϕ1
k A1(ϕ1) + c2λ

ϕ2
k A1(ϕ2).

Hence, λ
ϕ1
k = λ

ϕ2
k . Let ϕ be an arbitrary vector in L0

1 \ ker A1. Then the vector A1(ϕ) is not collinear
with A1(ϕi ), where either i = 1 or i = 2. By repeating the above arguments for the pair (ϕ, ϕi )
instead of (ϕ1, ϕ2) we obtain λ

ϕ

k = λ
ϕi
k . Thus, λ

ϕ

k = λk for all ϕ ∈ L0
1 \ ker A1.

If λk = 0 then Ak(ϕ) = 0 for all ϕ ∈ L0
1 \ ker A1. This implies Ak = 0 contradicting to the

assumption. Indeed, if ϕi ∈ ker A1 for some i then ϕi = (ϕi + ϕ1) − ϕ1, and hence Ak(ϕi ) = Ak(ϕi

+ ϕ1) − Ak(ϕ1) = 0.
Thus, we have

Ak(ϕ) = λk A1(ϕ) for all ϕ ∈ L0
1 \ ker A1, where λk �= 0. (B1)

Hence, the vectors Ak(ϕ1) and Ak(ϕ2) are not collinear. By repeating the above arguments with Ak

instead of A1 and A1 instead of Ak we obtain

A1(ϕ) = λ′
k Ak(ϕ) for all ϕ ∈ L0

1 \ ker Ak, where λ′
k �= 0. (B2)

It follows from (B1) and (B2) that Ak(ϕi ) = λk A1(ϕi ) for all i ∈ N, and hence Ak = λk A1. �
Lemma 6: Let {πα, ρα} be a countable or continuous ensemble of states in S(H) such that

ρα
∼= ρ̄ for all α, where ρ̄ is the average state of this ensemble. Then ρα = ρ̄ for all α.
The assertion of this lemma follows from existence of a finite strictly convex function22 on the

set S(H) depending only on the spectrum of a state. As the simplest example, one can consider the
function f (ρ) = Trρ2.
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