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It is shown that the entropy reduction (the information gain in the initial terminology)
of an efficient (ideal or pure) quantum measurement coincides with the generalized
quantum mutual information of a quantum-classical channel mapping an a priori
state to the corresponding posteriori probability distribution of the outcomes of the
measurement. As a result the entropy reduction is defined for arbitrary a priori states
(not only for states with finite von Neumann entropy) and its analytical properties
is studied in detail by using general properties of the quantum mutual information.
By using this approach it is shown that the entropy reduction of an efficient quantum
measurement is a nonnegative lower semicontinuous concave function on the set of
all a priori states having continuous restrictions to subsets on which the von Neumann
entropy is continuous. Monotonicity and subadditivity of the entropy reduction are
also easily proved by this method. A simple continuity condition for the entropy re-
duction and for the mean posteriori entropy considered as functions of a pair (a priori
state, measurement) is obtained. A characterization of an irreducible measurement
(in the Ozawa sense) which is not efficient is considered in the Appendix. © 2011
American Institute of Physics. [doi:10.1063/1.3589831]

. INTRODUCTION

The notion of a quantum measurement plays a key role in quantum theory. One of quantitative
characteristics of a quantum measurement is the entropy reduction defined as a difference between
the von Neumann entropy of an a priori (pre-measurement) state and the mean von Neumann entropy
of the corresponding posteriori (post-measurement) states. This characteristic was originally called
the information gain (cf., Refs. 6, 12, and 21) but then the terminology had been changed (some
arguments explaining this change can be found in Ref. 4). Roughly speaking, the entropy reduction
characterizes a degree of purifying (“gain in purity”) of a state in a measurement process. More
details about the information sense of this value can be found in Refs. 11, 15, and 21.

An interesting question concerns the sign of the entropy reduction. Groenewold has conjectured
in Ref. 6 and Lindblad has proved in Ref. 12 that the entropy reduction is nonnegative for quantum
measurements of the von Neumann-Luders type. The general case has been studied by Ozawa,
who has proved in Ref. 21 that the entropy reduction is nonnegative if and only if the quantum
measurement is quasicomplete (also called irreducible in Ref. 19) in the sense that for an arbitrary
pure a priori state the corresponding family of posteriori states consists of pure states (for almost
all outcomes). The class of quasicomplete (irreducible) quantum measurements contains the class
of efficient or pure measurement (cf., Refs. 10, 11, and 15) described in Sec. III A. Quantum
measurements belonging to the gap between these two classes are characterized in the Appendix as
measurements with quite singular properties.

In this paper, we show that the entropy reduction of an efficient (pure) quantum measurement
can be expressed via the (generalized) quantum mutual information of the quantum-classical channel
mapping an a priori state to the corresponding posteriori probability distribution of the outcomes of
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the measurement. This makes it possible to define the entropy reduction for arbitrary a priori states
(not only for states with finite von Neumann entropy), and to study its analytical properties by using
results concerning the quantum mutual information of infinite-dimensional channels.®

The paper is organized as follows.

In Sec. II, we restrict attention to the case of quantum measurements with a discrete set
of outcomes, which is more simple mathematically. In this case, the quantum-classical channel
mapping an a priori state to the corresponding posteriori probability distribution of the outcomes
can be considered as a quantum-quantum infinite-dimensional channel, and its quantum mutual
information is a well studied value.® So, the obtained expression of the entropy reduction of an
efficient quantum measurement with a discrete set of outcomes via this value directly shows that
the entropy reduction can be uniquely extended to a nonnegative lower semicontinuous concave
function on the set of all a priori states and that this function has several special properties such as
continuity of restrictions to subsets on which the von Neumann entropy is continuous, etc., stated in
Theorem 1.

In Sec. III, we consider the case of general quantum measurements described by completely
positive instruments. In this case, we have to pay a special attention to the difference between
the class of irreducible instruments (Definition 2) and its proper subclass consisting of efficient
(or pure) instruments (Definition 3). As shown in Proposition 2, this difference becomes vis-
ible when we consider tensor product of an instrument with the “identity” instrument corre-
sponding to the trivial measurement (similar to the difference between positive and completely
positive maps). It is the class of efficient instruments to which the results of Sec. II can be
extended.

The other problem in dealing with general quantum measurements consists in nonexistence of
quantum-quantum modification for the quantum-classical channel mapping an a priori state to the
corresponding posteriori probability distribution of the outcomes. This implies necessity to extend
the notion of the quantum mutual information to channels taking values in the space of normal
states of an arbitrary W*-algebra (Definition 4). By using this extension the analog of the above
representation of the entropy reduction via the quantum mutual information is proved (Corollary 1).
This makes it possible to obtain generalizations of the assertions of Theorem 1 to the case of general
quantum measurements, presented in Theorem 2.

Section III is completed by considering a question of continuity of the entropy reduction with
respect to simultaneous perturbations of a priory states and quantum instruments. Proposition 4
contains a sufficient continuity condition for the entropy reduction considered as a function of the
pair (a priory state, quantum instrument), which is obtained by means of the above representation via
the quantum mutual information. It implies a sufficient continuity condition for the mean posteriori
entropy presented in Corollary 2.

In the Appendix, we consider a characterization of irreducible quantum instruments which are
not efficient (Proposition 5). It shows quite singular properties of such instruments and provides a
simple sufficient condition for efficiency of irreducible instruments (Corollary 3).

Il. THE DISCRETE CASE

Let H be a separable Hilbert space, ®B(H) — the Banach space of all bounded operators in H
with the operator norm || - ||, () — the Banach space of all trace-class operators in H with the trace
norm || - ||y = Tr| - |, containing the cone T (H) of all positive trace-class operators. The closed
convex subset G(H) = {A € T (H)| TrA = 1} is a complete separable metric space with the metric
defined by the trace norm. Operators in G(H) are denoted p, o, w, ... and called density operators
or states since each density operator uniquely defines a normal state on B(H).?

The identity operator in a Hilbert space H and the identity transformation of the set T(H) will
be denoted I7; and Idy correspondingly.

For an arbitrary state w € G(H ® K) the partial states Triw and Tryw will be denoted wy
and wg.
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We will use the following natural extension of the von Neumann entropy H(p) = —Trplog p
of a quantum state p € G(H) to the cone T (H) of all positive trace-class operators

A
H(A)=TrAH (ﬂ) =Trn(A) — n(TrA), n(x)= —xlogx,
T
where log denotes the natural logarithm.
The quantum relative entropy is defined for arbitrary operators A and B in T () as follows:

H(AllB):Z(H(AlogA—AlogB+B—A)|i), (1)
where {|i)} is the orthonormal basis of eigenvectors of A and it is assumed that H(A || B) = 400 if
suppA is not contained in suppB.'3

A linear completely positive trace-preserving map ® : T(H) — T(H') is called a quantum-
quantum channel®'” (we use the term quantum-quantum, since we will use below the more general
notion of a channel, in particular, the notion of a quantum-classical channel).

By the Stinespring dilation theorem, there exist a separable Hilbert space " and an isometry
V:H — H' ® H" such that

D(A) =T VAV*, VA e T(H). 2)
The quantum-quantum channel
T(H)> A > ®(A) = Try VAV* € T(H") (3)

is called complementary to the channel ®, it is uniquely defined up to unitary equivalence’ (the
channel @ is also called conjugate to the channel &'°).

The quantum mutual information is an important entropic characteristic of a channel & :
T(H) — T(H') related to the entanglement-assisted classical capacity of this channel.”!” In finite
dimensions, it is defined at arbitrary state p € G(H) by the expression (cf., Ref. 1)

I(p, ®) = H(p) + H(®(p)) — H(®(p)). “

In infinite dimensions, this expression may contain uncertainty “ co — co,” but it can be modified
to avoid this problem as follows:

I(p, ®) = H (P QIdc(D)IIP ®Idc(p ® ), ®)

where K is a Hilbert space isomorphic to H, g is a purification of the state p in the space H ® K
(this means that Trcp = p), and 0 = Tryp is a state in G(KC) isomorphic to p. Analytical properties
of the function (p, ®) > I(p, P) defined by (5) in the infinite dimensional case are studied in
Ref. 8.

A general quantum measurement )1 with a countable outcome set X = {x;};c; is described by
a set {Vij}ier,jeys; of operators in B(H) such that 3, >, V;;Vi; = I1. A measurement DN is
called efficient if for each i the index set J; degenerates to a single point, so it is described by a
set {V;};es of operators in B(H) such that ) _,_, V*V; = I¢.'>!7 Applying this measurement to an
arbitrary a priori state p € G(H) results in the posteriori probability distribution {m;(p)};c;, Where
mi(p) = TrV;pV is the probability of the outcome x;, and the corresponding family of posteriori
states {p; }ie;, Where p; = (71;(0)) "' VipVi*. Thus, >_,, mi(p)H(pi) = Y_;c; H(VipV;*) is the mean
entropy of posteriori states. The entropy reduction of the quantum measurement 9t at an a priori
state p with finite entropy is the following value:

ER(p.9M) = H(p) = ) _mi(p)H(p) = H(p) = ) HV;pVy").
iel iel
Let Hx be a Hilbert space having dimension coinciding with the cardinality of the outcome set
X. Consider the quantum-quantum channel

T(H) > A > Tan(A) = Y Tr[V;AV?] lgi)(gil € T(Hy), (6)

iel
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where {|@;)}ics is a particular orthonormal basis in Hy. The channel ITgy is a quantum-quantum
modification of the quantum-classical channel mapping a state p to the probability distribution
{mi(0)}ics. It is essential that

ER(p, M) = I(p, Mon) (M

for any state p in G(H) with finite entropy. If H ({m;(p)}ic;) < 400 this equality directly follows
from (4), since ﬁgm(-) = i UiVi()V U}, where {U;}ic; is a family of isometrical embedding
of H into €, ., Hi, H; = H, such that U;H = 'H,. In general case, it can be easily deduced from
Ref. [8, (Proposition 3 and Theorem 1)] or can be proved directly by the obvious modification of
the proof of Proposition 3 in Sec. III B.

Equality (7) obtained under the condition H(p) < 400 makes it possible to consider the entropy
reduction of an efficient quantum measurement with a countable outcome set as a function on the
whole space of a priori states.

Definition 1: The entropy reduction of an efficient quantum measurement I = {V;};c; at an
arbitrary a priori state p is defined as follows:

ER(p, M) = I(p, Ian),

where Tlgy is the quantum-quantum channel defined by (6).

By equality (7), this definition is consistent with the conventional one. Its main advantage
consists in possibility to study the function p — E R(p, 1) on the whole space of a priori states by
using properties of the quantum mutual information (many of them follow from the corresponding
properties of the quantum relative entropy).

Theorem 1: Let 901 be an efficient measurement in a Hilbert space H with a countable outcome
set. The function p — ER(p, M) is nonnegative concave and lower semicontinuous on the set
G(H). It has the following properties:

(1) {ER(p, M) =0} {p = p Vi s.t. m;(p) # 0}, where {m;(p)} and {p;} are respectively the
posteriori probability distribution and the family of posteriori states corresponding to an a
priori state p;

(2) continuity on any subset of G(H) on which the von Neumann entropy is continuous:

lim H(p,) = H(po) < +00 = lim ER(p,, M) = ER(po, M) < +00
n——+00

n—+00

for any sequence {p,} of states converging to a state py,
(3) monotonicity: for arbitrary efficient measurements M = {V;};e; and N = {U;} jc; ina Hilbert
space H with the outcome sets X and Y the inequality

ER(p, Mo MM) = ER(p, M) ®)

holds for any p € G(H), where N o M is the measurement in the space H with the outcome
set X x Y determined by the family {U;V;}ici jes;

(4) subadditivity: for arbitrary efficient measurements I = {V;}ic; and N = {U,};c; in Hilbert
spaces H and IC with the outcome sets X and Y the inequality

ER(w, M@ N) < ER(wy, M) + ER(wic, N) )

holds for any v € SG(H ® K), where M @ N is the measurement in the space H ® KC with
the outcome set X x Y determined by the family {V; @ U;}icy, jes-

Proof: (1) Note that the equality
ER(p, M) = 1(p, Tlon) = HIon ® Ild(p)|[Iom(p) ® 0) = 0,
where p is a purification of p and o = Tryf, means

Hon ® Idx () = Han(p) @ 0. (10)
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by the well known property of the relative entropy.

Letp =), Alk) (k| and p = ijk VA iVl )kl ® 1)) (k|. Tt is easy to see that (10) is equiv-
alent to

KIVEVilj) = 8 TeV Vip = 8mi(p) forall i, j. k. (11)

“«<=" Note that this implication is obvious only if the state p has finite entropy. Let g;
= (i () ' Tr Vi @ I - p - V* ® Ix. Then o; = p; and hence ¢; = g, since ¢ = p. By noting
that o = )", _, mi(p)o; we conclude from Lemma 6 in the Appendix that o; = o for all i. Since
0 = ()" Y4 /Ry /IITEVi ) (K V1) (k| and @ = 7, Aelk) (K], we obtain (11).

“ =" Relations (11) mean that PV*V; P = m;(p)P for each i, where P =), |k)(k| is the
projector on the support of the state p. Thus, (7;(p))~'/>V; P is a partial isometry and hence
pi = (mi(p)~'V; PoPV;* = p for each i such that ;(p) # 0.

(2) This directly follows from Proposition 4 in Ref. 8.

(3) This follows from the 1-st chain rule for the quantum mutual information (property 3 in
Proposition 1 in Ref. §). Indeed,

Myem(A) = Y Tr[V;UTU VAL ® 1) (jl. A€ T(H),

iel,jel

where {[i)};c; and {|j)};c; are particular orthonormal bases in the spaces Hy and Hy, and hence
[on(A) = Try, Minoom(A).

(4) This follows from subadditivity of the quantum mutual information (property 5 in
Proposition 1 in Ref. 8), since [Topgmn = Moy @ M. O

Consider a question of continuity of the entropy reduction with respect to “perturbation” of
quantum measurements.

Let M((H) be the set of all efficient quantum measurements in the Hilbert space H with finite or
countable set of outcomes identified with the set of all sequences {V; };;Of of operators in B(H) such
that ;olo V*V; = Iy, endowed with the topology of coordinate-wise strong operator convergence.

Proposition 1 in Ref. 8 and Corollary 2 in Ref. 8 imply the following assertion.

Proposition 1: The function
(o, M) — ER(p, M) (12)

is lower semicontinuous on the set S(H) x M(H). Let A be an arbitrary subset of G(H) on which
the von Neumann entropy is continuous. Then function (12) is continuous on the set A x M(H).

By Proposition 1 and Proposition 6.6 in Ref. 18 function (12) is continuous on the set Ky j
x M(H), where K 5 is the set of states with the mean energy TrH p not exceeding & > 0 provided
the Hamiltonian H of the quantum system satisfies the condition Tre™*# < +o0 forall » > 0 (which
holds, for example, for the Hamiltonian of the system of quantum oscillators).

lll. THE GENERAL CASE
A. On properties of efficient (pure) instruments

A general quantum measurement in a Hilbert space H with the measurable outcome set {X, F}
is described by a special mathematical object called instrument, which was introduced by Davis and
Lewis.> An instrument 90t (in a space of states) is a o -additive measure on { X, '} taking values within
the set of quantum operations — completely positive trace-non-increasing linear transformations of
T(H) such that 91(X) is a channel (see the detailed definition in Refs. 2,9, and 14).

Let p be an arbitrary a priori state in &(H). Then the outcome of the measurement )T
is contained in a set F € F with probability TrON(F)[p]. If this probability is nonzero then
(TEN(F)[p]) "' M(F)[p] is the corresponding posteriori state of the system. Thus, F > Ho(F)
= TrIN(F)[p] is the posteriori probability measure on the outcome set { X, F} corresponding to the
a priori state p.
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Ozawa proved in Ref. 20 existence of a family {,}.cx of posteriori states defined for 1 ,-almost
all x, such that the function x — TrAp, is F-measurable for any A € B(H) and

/,ox,up(dx) =IM(F)[p] VF € F. (Bochner integral)
F

By using the family {p,},cx, one can consider the mean entropy of posteriori state
fx H(px)p(dx), and assuming that H(p) < 400 one can define the entropy reduction as fol-
lows:

ER(p, M) = H(p)—/ H(p.)pp(dx).
X

This is a natural generalization of the entropy reduction considered in Sec. II for the class of
measurements with a countable set of outcomes.

Ozawa proved in Ref. 21 that ER(p, 907) is nonnegative if and only if the instrument 907 is
irreducible in the sense of the following definition.?*

Definition 2: An instrument M is called irreducible if for an arbitrary pure a priori state p the
posteriori states py are pure for (i,-almost all x.
An arbitrary instrument 91 in a Hilbert space H can be represented as follows:

M(FIA]l=V*-AQ P(F)-V, A€ B(H), (13)

where 9U*(F) is a dual map to the map 99(F), V is an isometry from H into H ® Hy and P(F) is
a spectral measure in Ho' (see also Ref. 10).

The following notion introduced in Ref. 10 is a natural generalization of the notion of an efficient
measurement with a countable outcome set.

Definition 3: An instrument N is called efficient or pure if it has representation (13) with the
spectral measure P(F) of multiplicity one.

Below, we will use the term efficient to be consistent with the accepted terminology.

In Ref. 10, it is shown that an efficient instrument is irreducible. The converse assertion is
not true (see Example 1 in the Appendix). A characterization of a quantum instrument, which is
irreducible but not efficient, and a simple sufficient condition providing equivalence of efficiency
and irreducibility are presented respectively in Proposition 5 and in Corollary 3 in the Appendix.
This characterization shows that a quantum instrument, which is irreducible but not efficient, has
quite singular properties.

It is the class of efficient instruments to which the results of Sec. II can be extended. We
will use the following characterization of such instruments, where 9 ® Jx denotes the instrument
IM(-) ® Idk in the Hilbert space H ® K with the outcome set of the instrument 1.

Proposition 2: Let N be an instrument in a Hilbert space H with the outcome set {X, F}. The
following statements are equivalent:

(1) the instrument 9N is efficient;

(ii)  the instrument MM Q Ji is irreducible for 2-D Hilbert space IC;

(iii)  the instrument IM Q Ji is irreducible for a separable Hilbert space IC;

(iv)  there exist a positive o -finite measure u on {X, F}, a dense domain D C 'H and a function
x = V(x) defined for w-almost all x, such that V(x) is a linear operator from D to 'H,
satisfying

(0] T (F)[Alg) = / (VORI AV (1)) u(d),
F
forany ¢ € D, F € F, A € B(H).

(v)  statement (iv) holds with D = lin{|g;)}, where {|@;)} is a given arbitrary orthonormal basis
in H.
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Proof: (1) = (iii). It is easy to see that the instruments 2t and 9 ® Jx have representation (13)
with the same spectral measure. Hence, efficiency of 901 is equivalent to efficiency of 9T ® Jx. As
mentioned after the proof of Theorem 1 in Ref. 10 any efficient instrument is irreducible.

(iii) = (ii) is obvious, since the instrument in (ii) can be considered as a restriction of the
instrument in (iii).

(i) = (v). By Theorem 1 in Ref. 10 and its proof, there exist a positive o-finite measure p
on {X, F} and a countable family {x — Vi (x)}; of functions defined for p-almost all x, such that
Vi(x) is a linear operator from D = lin({|¢;)}) to H, satisfying

(| M*(F)[Alp) =LZ(Vk(x)(NAVk(X)(O)M(dX),
k

foranyp e D, FeF, A€ B(H). Consider the family {f/\k(x) = Vi(x) ® Idg} of linear operators
from D = lin({g; ® ¢;}i;) to H ® K, where {|¢;)} is an orthonormal basis of the space K. By using
the polarization identity it is easy to show that

(@I MM*(F) ® 1dc[C19) = f D (V)P ICVi(x)@)u(dx),
Foy

for any ¢ € 73, FeF, C e B(H®K). Hence, for the instrument M ® Jic and a pure a priori
state 0 = |@)(@| (where ¢ € D) we have

wa(dx) = 3 V)@ P udx), (14)
k

while the posteriori state corresponding to the outcome x € X \ Xj is

D Vix)9) (V)@
Y Vi)l
where X;; ={xeX|), ||\'./\k(x)¢)||2 = 0} is a set such that uﬁ(X;},) =0.10
By noting that the instrument 9 ® Ji is irreducible and by using (14), one can show existence
of aset Xy € F such that (X \ Xy) = 0 and the above state p, is pure for any x € X \ X .

Let Dy be a countable subset of D consisting of finite linear combinations of the vectors of
the family {¢; ® ¢;};; with rational coefficients. Let XO = ﬂweDU Xy € F. Then u(X \ Xo) =0

and the state g, defined by (15) is pure for all (p € Do and all x € X\ XS Hence, the family

5)

X

{|V1< (x)@)}x consists of collinear vectors forall ¢ € DO andall x € X (o. Since the rank of the operator
Vk(x) is either 0 or > 1, Lemma 5 in the Appendix shows that Vk(x) = Ak(x)Vl(x) and hence
Vi(x) = Ap(x)V1(x), where A (x) € C, for all k and all x € X.

Consider the linear operator V(x) =./>, [A¢(X)|? Vi(x) defined on the set D for all x € X,.
It is easy to see that

(I M(F)[Alp) Z/F(V(X)wlAV(X)w)M(dX),

forany ¢ € D, F € F, A € B(H).
(v) = (iv) is obvious.
(iv) = (i). By the condition, the linear operator

DB(pf—) V(x)(peLQ(X,]:,/L,H);H®L2(X,]:,M)

is isometrical, and hence it can be extended to the isometry V from H into H ® Lo(X, F, ). A
direct verification shows that

(@I (F)[Algp) = (Vol(A® P(F)Ve) = (p|V(A® P(F))Vy),

for any vector ¢ in H, where P(-) is the spectral measure defined as follows (P(F) f)(x) = xr(x) f(x)
forany f € Ly(X, F, n), where xr(-)is the indicator function of the set F' € F. Thus, the instrument
I is efficient. O
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We will also use the following simple observations.

Lemma 1: (1) For arbitrary efficient instruments M and N in a separable Hilbert space 'H
with the outcome sets {X, F} and {Y, E} the instrument N o M in the space H with the outcome
set {X xY, F®E}, defined by the relation Mo M(F x E)=NE)oM(F), FeF, E€&, is
efficient.

(2) For arbitrary efficient instruments 9 and N in separable Hilbert spaces H and IC with
the outcome sets {X, F} and {Y, E} the instrument IM @ N in the space H Q K with the outcome
set {X x Y, FQE}, defined by the relation M QM(F x E)=MF)QWNE), F e F, Ecé, is
efficient.

Proof: It is easy to show that the instruments 91 o 997 and 9t ® D1 have representation (13)
with the spectral measure Popy ® Py, where Poy and Pey are spectral measures corresponding to the
instruments 97 and 1. O

B. A representation for the entropy reduction

To extend the results of the Sec. II to the case of general type measurement consider the
construction proposed by Barchielli and Lupieri in Ref. 2. Choose a positive complete measure /1
on (X, F) such that u,, is absolutely continuous with respect to g for all p in &(H) (this can be done
by using the measure ji,,, where pp is a given full rank state in S(H)). Let Loo(X, F, o, B(H)) be
the W*-algebra of jo-essentially bounded B(H)-valued weakly* measurable functions on X with
the predual Banach space L(X, F, o, T(H)) of T(H)-valued Bochner po-integrable functions
on X. By Theorem 2 in Ref. 2 with an arbitrary instrument 9, one can associate a channel
A%y 1 Loo(X, F, o, B(H)) — B(H) defined by the relation

TrAL (A ® f)p = f FEOTONEx)[p]A, A€ B(H), f € Loo(X,F, o), p € SCH).
X

The preadjoint channel Agy : T(H) — Li(X, F, wo, T(H)) produces the posteriori family as
follows:

T -1 , T 0,
px={( ro(x)) o (x), Tro(x) # 16

005 Tro(x) =0,
where o (x) is a particular representative of the class A gy (), while the function Tro (x) is a probability

density (the Radon-Nikodym derivative) of the measure 1, with respect to the measure fig.
Consider the channel IT5; : Loo(X, F, o) — B(H) defined by the relation

Trp n*zm(f)Z/ JOTEM@x)pl,  f € Loo(X, F, 1o), p € 6(H). A7)
X

The preadjoint channel Ilgy : T(H) — Li(X, F, no) maps an arbitrary a priori state p to the
probability density of the posteriori measure 11, with respect to the measure jo, and hence it can
be considered as a natural generalization of the channel gy defined by (6) (since the last channel
is a quantum-quantum modification of the channel mapping an a priory state p to the probability
distribution {m;(0)}icr)-

Note that IToy = ® o Agy, where © is the preadjoint channel of the channel

®* : LOO(Xv fs I’LO) B f = f ® I’H € LOO(Xv ~7:a I’L()’ %(H))
Since the channel gy defined by (17) has no quantum-quantum modification, to extend the

results of Section II we have to generalize the notion of quantum mutual information.

Definition 4: Let A be an arbitrary W*-algebra and ®* : A — B(H) be a channel with the
preadjoint channel ® : T(H) — A,. Let p be a state in G(H). The quantum mutual information of
the channel ® at the state p is defined as follows:

I(p, ®) = H(® Q@ Idc(D)|P ® Idc(p ® 0)),
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where K is a Hilbert space isomorphic to H, p is a purification of the state p in the space H ® K,
o0 = Tryp is a state in S(K) isomorphic to p and H(-|-) is the relative entropy for two states in
(AQ B(K))..

Remark 1: 1t is natural to ask about validity for the above-defined value of the properties of
the quantum mutual information of a quantum-quantum infinite dimensional channel presented in
Propositions 1 and 4 in Ref. 8. Since the proofs of these propositions can not be directly generalized
to the case of a channel considered in Definition 4, the above question is not trivial.

Here, we note only that for an arbitrary channel ® : T(H) — A, the function p — I(p, @) is
nonnegative and lower semicontinuous and that for an arbitrary channel W : A4, — B, where ‘B
is an other W*-algebra, the inequality /(p, ¥ o ®) < I(p, ®) holds for all p (the 1-st chain rule).
These properties follow from nonnegativity and lower semicontinuity of the relative entropy, Lemma
2 in Ref. 8 and Uhlmann’s monotonicity theorem.'®

Since we will use Definition 4 with A = Loo(X, F, uo, B(H)), we will deal with the relative
entropy for states in (A ® B(K)), = L1(X, F, no, T(H Q K)).

The relative entropy for two states o) and 07 in L (X, F, 1o, T(H)) can be expressed as follows:

H(o | 02)=/Tr(m(X)(lOgm(X)—10g02(X)))Mo(dX)
X
(18)

o1(x) H 02(x)

Z/XHq(Gl(X) l Gz(X))Mo(dX)Z/XHq <Tm](x) Traz(x)>ﬂl(dX)+Hc(M1 Il e2),

where (dx) = Tro(x)uo(dx) (see [2, formula (4)]). In this expression H, denotes the quantum
relative entropy for two positive trace class operators defined by (1), while H, denotes the classical

relative entropy for two probability measures, that is H (i1 || 2) = . y log gg—;g{; ui1(dx).
For an arbitrary instrument 21 equality (7) does not hold, but one can prove the following

estimation.

Proposition 3. Let 9 be an arbitrary instrument in a Hilbert space H with the outcome set
{X, F} and p be a state in S(H) with finite entropy. Let p be a purification of the state p in the
space ' H @ K. Then

|ER(p, M) — 1(p, Ton)| S/H(ﬁx)up(dX),
X

where Tlon is the quantum-classical channel defined by (17), w,(-) = TrIN()[p] and {px} is the
Sfamily of posteriori states corresponding to the instrument 9(-) = () Q@ Idx and the a priori state

il

Proof: Consider the channels
Aogn : T(H) = Li(X, F, o, T(H)) and Az :THOK) = Li(X, F, po, T(H ® K))

produced by the Barchielli-Lupieri construction described before (since fi,(-) = Triﬁt(-)[a)]
= TrIM()[wn] = te,(-) forany o € G(H & K), we can use the same measure /i in the both cases).
By noting that L. (X, F, o, B(H Q K)) = Loo(X, F, o, B(H)) ® B(K) it is easy to show that
Agp = Ao ® Idi.

Let {4, } be the family of posteriori states obtained via a given representative of the class Ag;(0)
by the rule similar to (16). It is easy to see that {p, = Trx 0.} is the family of lmsteriori states for
the instrument 9t corresponding to the a priori state p. Since the instrument 9 is localized in the
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space H we have fx Trypep,(dx) = Tryp = 0 = p. By using expression (18) we obtain

I(p, Magn) = H (TMyn ® Idic(p) [ Man(p) ® @) = H (© ® Idx(Ag(p)) || Man(p) ® )

_ / H,(Teyps 10y (dx) = — / H(Tryp )iy (dx) + / Tr(Tere s (— log )1, (dx)
X X X
. / H(Tenp )i, (dx) + Tro (— log 0)
X

= [H(/O)—/XH(px)up(dX)]vL/X(H(Trzcﬁx)—H(TrHﬁx))Mp(dX)-

By the triangle inequality, the absolute value of the last term in this expression is majorized by
Sy H(po)mp(dx). =

Propositions 2 and 3 imply the following generalization of equality (7).

Corollary 1: Let 9M be an efficient instrument in a Hilbert space H. Then ER(p,N)
= I(p, [gy) for any state p in G(H) with finite entropy.

Corollary 1 makes it possible to consider the entropy reduction of an efficient quantum mea-
surement not only for a priori states with finite entropy and motivates the following extended version
of Definition 1.

Definition 5: The entropy reduction of an efficient instrument 9 in a Hilbert space H at an
arbitrary a priori state p € G(H) is defined as follows:

ER(p, M) = I(p, Mgn),
where Tlgy is the quantum-classical channel defined by (17).

The following theorem is an extended version of Theorem 1.

Theorem 2: Let 9 be an arbitrary efficient instrument in a Hilbert space 'H. The function
p = ER(p, M) is nonnegative concave and lower semicontinuous on the set S(H). It has the
following properties:

(1) {ER(p, M) =0} & {px = p for py-almost all x}, where {p.} and u, are respectively the
Sfamily of posteriori states and the posteriori probability measure corresponding to the a priori
state p;

(2) continuity on any subset of G(H) on which the von Neumann entropy is continuous:

lim H(p,) = H(pg) < +o0 = lim ER(p,, M) = ER(py, M) < +00
n—+00 n—+o00

for any sequence {p,} of states converging to a state py,
(3) monotonicity: for arbitrary efficient instruments M and N in a separable Hilbert space 'H
the inequality

ER(p, Mo M) > ER(p, M) (19)

holds for any p € G(H), where Yt o M is the instrument defined in Lemma 1;
(4) subadditivity: for arbitrary efficient instruments I and N in separable Hilbert spaces H and
KC the inequality

ER(w, M® N < ER(wn, M) + ER(w, N (20
holds for any w € G(H ® K), where 2t @ M is the instrument defined in Lemma 1.

Proof: By Definition 5 lower semicontinuity of the function p — E R(p, 9) follows from the
second part of Remark 1.
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Concavity of the function p — ER(p, 1) on the convex subset of states with finite entropy
follows from inequality (56) in Ref. 2. Concavity of this function on the set G(H) can be proved by
using lower semicontinuity of this function and Lemma 2 below (see the proof of Proposition 1 in

Ref. 8).
Below, we will use the notations introduced in the proof of Proposition 3.
(1) Note that
ER(p, M) = I(p, Mgp) = H (© ® ldc(Agz(p)) | ©(Agn(p)) ® 0) = 0
means

O @ Ide(Ag(P) = O(Am(p)) ® 0
by the well known property of the relative entropy. This equality holds if and only if
Trypy =0 for u,-almostall x. 21

“<” Let o, = Tryp,. Since the instrument M is irreducible (by Proposition 2), we have
Ox = @y for p,-almost all x, and hence g, = ¢ = Tryp for u,-almost all x. Since the instru-
ment M is localized in the space H, we have o = f y OxMp(dx). Thus, Lemma 6 in the Appendix
implies (21). R

“=" Since the instrument 1 is irreducible (by Proposition 2), it follows from (21) that p,
= Trpy = Trypy =0 = p for u,-almost all x.

(2) This property follows from identity (24) in Lemma 3 below, since the both summands in the
left side of this identity are lower semicontinuous functions on the set G(7) by the second part of
Remark 1.

(3) This follows from the 1-st chain rule for the generalized quantum mutual information
mentioned in the second part of Remark 1. Indeed, let 1o be a measure on {X x ¥, F ® £} chosen in
accordance with the Barchielli-Lupieri construction for the instrument 9t o 9t and vy be a measure
on {X, F} such that vo(F) = uo(F x Y) for any F € F. Since (YY) is a trace preserving map,
we have Trdt o M(F x Y)[p] = TNRY)[IMN(F)[p]] = TrIN(F)[p] for any F € F and p € G(H).
Hence, the measure vy can be used in the Barchielli-Lupieri construction for the instrument 91. Let
E be a channel from L(X X Y, F ® &, uo) to L1(X, F, vy) preadjoint to the channel

Lw(Xsf’UO)Bf’_) E*(f):f®1)ELOO(XXY7]:®87M0)’

where f ® 1,(x, y) = f(x)1(y). Then I1gy = E o ITrogn. This follows from the relation

Tr p Miuan © () = Trp Mpon(f ®1,) = | f)TNAy) M) ]l

XxY
2/ FOTIMAx)[p] = Trp Mgp(f),  p € S&(H), f € Loo(X, F, ),
X

which can be proved easily by noting that 91(Y) is a trace preserving map.

(4) Let 119 and vy be measures on {X, F} and on {Y, £} chosen in accordance with the Barchielli-
Lupieri construction for the instruments 9t and 1 correspondingly. Then for the instrument 97t ® 1,
one can take the measure (19 ® vy. By noting that

Loo(X XY, F®E, o @ vo, B(H ® K)) = Loo(X, F, pto, B(H)) ® Los(Y, &, vo, B(K))

it is easy to show that Afy 0 = Afy ® A
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Let w be a state in G(H ® K) such that H(wy) and H(wi) are finite. Then inequality (20) for
the state w follows from the inequality

H(wy) + H(wg) — H(w) = H(w || oy ® ox) = H(Amgn(o) | Am(w) ® An(wx))

> Hq(a)xy | (W) ® (wIC)y)Mw(dXdy) = - H(wxy),uw(dxa'y)
XxY XxY

+ / Tray, ((— log(@r)s) ® I + I ® (— log(wx),) Holdxdy)
XxY

= - H(wxy)ﬂw(d-Xdy) + / H((wH)x)/-’LwH(d-x) + / H((w/(:)y)//‘wk(dy)s
X Y

XxY

obtain by using monotonicity of the relative entropy, expression (18) and the equalities

/X Tron (= log(n),) @ Iouu(dxdy) = /X H((@r):)ptan, (),
22)

fx Tro Uy @ (~Iogwn),uo(dxdy) = fy H((@x)y o (dY).

Prove the first of the above equalities. Let f be a continuous bounded function on R. Then f ((wx)x) €
Loo(X, F, o, B(H)) and

fX , Tr iy (f (@1)x) ® I)po(dxdy) = (Amen(®@), f(@n)) ® Uk ® 1,))
= Tra)A;;n@m(f((wH)x) ® (IIC ® ly)) = TerASﬁ(f((wH)x))

= (Ao(wn), f(@n)o) = / Tr(wr)x f((@01)) e, (dX).
X

Hence, the first equality in (22) can be proved by using approximation of the function —logx on
[0, 1] by an increasing sequence of continuous bounded functions and the monotone convergence
theorem.

Let ” be an arbitrary state in G(H ® K). Let {P,} and {0, } be increasing sequences of finite
rank spectral projectors of the states w% and a),oC strongly converging to the operators I, and I
correspondingly. Consider the sequence of states

-1
" = (Tt (P ® Q) - @°)) " (Py® Qu)- 0" (P ® Q)
converging to the state »”. A direct verification shows that
Al < a)% and Ao < w%, where A, =Tr ((Pn ® 0,) - wo).
Hence, concavity and lower semicontinuity of the entropy reduction imply

lim ER(w},, M) = ER(w},, M) and lim ER(@}-, M) = ER(w), MN)
n——+00 n——+0o0

(this can be shown by using the arguments from the proof of Ref. 23, (Lemma 6).]).
Since inequality (20) holds with w = " for all n, these limit relations and lower semicontinuity
of the entropy reduction show that inequality (20) holds for the state °. m|

Lemma 2: Let I be an efficient instrument in a Hilbert space H and py be a state in G(H)
with the spectral representation py = Z;of Ailei){ei|. Let p, = c;l Z:’l:l Ailei){e;|, where c,
=Y '_| A foreachn, then

lim ER(p,, M) = ER(py, M).
n——+4o00
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Proof: Let K = H and P, = ) ._, |e;)(e;| be a projector in kC, n = 1, 2. .. Consider the value
I, = H(Tgy ® Idic(4u)ITon(p0) ® 04) = H(c; ' Tan @ W, (o)) llc;, ' Tan(00) @ Wa(Q0))):

where

+00
po=Y_ Jririle)lej| @ lei)lejl,  pu=c;' In® Py po- In® Py,

ij=1
00 = Trypo, 0n = Tryp, and W, (-) = P,(-) P, is a map from T(K) to itself. We will show that
lim I, = H (TTon ® Idx(po) [| Tlan(po) ® 00) = ER(po, M). (23)

n——+oo

Let o1(x) and o0,(x) be representatives of the classes Ilgny ® Idx(09) and Ilgn(p0) ® 0o corre-
spondingly. Then ¢, ! P,o1(x)P, and ¢, ! P,0,(x)P, are respectively representatives of the classes
C;lngﬁ Q V¥, (po) and c;l [on(po) @ W, (00)- Expression (18) implies

I = / ¢ H, (oo (x)Py || Pacra(x) Py)pao(d),
X

H (Ilon ® Idx(0o) || Tan(00) ® Qo) = /XHq(m(X) | o2(x) oldx)

Hence, (23) follows from Lemma 4 in Ref. 13 and the monotone convergence theorem.
By using expression (18) we obtain

Mp,(dX)
0=<1,—ER(p;, M) = He(pip, |l thp,) = / log =2~ Mo, (dx) < —logcy,
X  Mpldx)
since ¢y, (F) < p,(F) for all F e F. Hence, lim, (I, — ER(p,, M)) = 0. This and (23) imply
the assertion of the lemma. 0O

Lemma 3: Let p be a state in SG(H) such that H(p) < 4+00. Then
I(p, on) + 1(p, Agn) = 2H(p). (24)

Proof: Since the instrument M is irreducible (by Proposition 2) and is localized in the space
‘H we have H(p,) =0 for p,-almostall x € X and fx TryOx i p(dx) = Tryp = 0 = p. By using
expression (18), we obtain

1(p. Ao) = H (Agi() || Aon(0) ® 0 ) = / Hy(px |l px @ 012, (d)
X
__ / H(powy(dx) + / Trye pr(— log pr )1y (dx) + / Teyfr(— log 0 )t (dx)
X X X

Z/Trpx(—Ingx)up(dx)+Trg(—10gQ)=/ H(px)inp(dx) + H(p).
X X

This expression and Corollary 1 imply (24). O

Remark 2: By proving concavity of the function p — I(p, Agy) and by using Lemma 6 in
Ref. 23, one can show validity of equality (24) for any p in G(H). By comparing this equality with
the assertion of Theorem 1 in Ref. 8, we see that the channel A gy plays the role of the complementary
channel to the channel Igy. Strictly speaking, this holds in the discrete case when the quantum-
classical channel ITgy can be considered as a quantum-quantum channel (see Section II).

The following proposition is a generalization of Proposition 1.

Proposition 4: Let {M,} be a sequence of efficient quantum instruments with the same outcome
space {X, F} converging to the instrument My in the following sense

I-li- tim 9, (F)lp] = Mo(Flp]l VF € F, ¥p € G(H). (25)
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Then for an arbitrary sequence {p,} of states in G(H) converging to a state py the following relation
holds

lim+inf ER(pn, M,) > ER(po, Mp).
n—+0o0

If;, in addition, lim,_, y~ H(p,) = H(pg) < 400 then
lim ER(p,, My) = ER(po, My).
n——+oo

Proof: By Lemma 2 in Ref. 8 there exists a sequence {g,} of purifications of the states {p,}
converging to a purification gy of the state pg. It is clear that we can choose a positive complete
measure j1o on (X, F) which can be used in the Barchielli-Lupieri construction for each instrument
from the sequence {901,,}. By using Lemma 4 below it is easy to show that p.w.- lim,_, y o Agr, (0n)
= Ao, (p0) and p.w.-1lim, o0 Agn, (n) = A, (o).

The first assertion follows from lower semicontinuity of the relative entropy with respect to
pointwise convergence of states Ref. [18, (Corollary 5.12)].

The second assertion follows from identity (24) in Lemma 3, since by the above arguments we
have

liminf 7(p,, Mon,) > I(po, [on,) and lrjgigofl(/?m Asn,) = 1(po, Aom,)-

n——+o0o

O

Proposition 4 implies the following “continuous” version of the third assertion of Corollary 2
in Ref. 8. Let (H )or , = f « H(px)1p(dx) be the mean entropy of posteriori states corresponding
to a quantum instrument 9t and an a priory state p.

Corollary 2: Let {9} be a sequence of efficient quantum instruments with the same outcome
space {X, F} converging to the instrument I in the sense of (25) and {p, } be a sequence in S(H)
converging to a state po such that lim,_, o H(p,) = H(pg) < 400. Then

lim (H)om,.p, = (H )omg.p-

n——+oo

Lemma 4: Convergence of the sequence {9, } to the instrument My defined by (25) means that

paw.- lim_Aw,(p) = Amy(0) Vp € &(H), (26)
that is 1im,,_. o0 (As, (). A) = (Aan,(p). A) for any A € Loo(X, F. o, B(H)).

Proof: Note first that lim,_, ;o {(Aom,(0), xr ® A) = (Ao, (p), xr ® A), where xp is the
indicator function of the set F € F and A € B(H), means that lim,_ . TN, (F)[p]A
= Tr9My(F)[p]A. Thus, (26) implies (25).

To prove the converse implication assume that H, is a finite-dimensional subspace of H.
Since Loo(X, F, 1o, B(Hp)) coincides with the C*-tensor product of L. (X, F, o) and %(Ho)
arbitrary Ao € Loo(X, F, no, B(Hp)) can be approximated in the norm topology by a sequence {A }
belonging to the linear span of the set {xy ® A| F € F, A € B(Hyp)}. As mentioned before (25)
implies lim,—, 4 o (Aon, (0), ;1\ = (Agmo(p) Z ) for each m. By using the standard argumentation
we conclude that lim,,_, ;o (Agn, (0), Ao) (Ao, (p), AO)

Note that (25) implies that the set {901,(X)[p]}.>0 of states in &(H) is compact. By the com-
pactness criterion for subsets of G(H) (see Lemma 10 in Ref. 23) for arbitrary ¢ > O there ex-
ists a finite dimensional projector P, such that Trdt, (X )[/o]PsL <egforalln=0,1,2,..., where
Pj- = Iy — P;. This means that

/ TrPeJ‘a,,(x);LO(dx) <¢g foral n=0,1,2,..., 27
X

where 0, (x) is a representative of the class Agp, (0).
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Let ¢ > 0 be arbitrary and A(x) be a representative of a class Ac Loo(X, F, 1o, B(H)). Then

(Ao, (), A) = / TrA GO0 (¥)po(dx) = / TeP, A(x) P.ow ()pto(d)
X X

+ / TrPA(x) P.o, (x)ito(dx) + / TrP. A(x) P 0, (x)jeo(dx) + f TrP- A(x) P o, (x)a0(dx).
X X X

By means of (27) it is easy to show that the last three terms in this expression are less than || A || for all
n=0,1,2,...Asproved before (25) implies that the first term tends to f « Tt P A(x) Peoo(x)po(dx),
since P, A(x)P, € B(P.(H)). Thus, we conclude that (26) holds. O
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APPENDIX A: A CHARACTERIZATION OF A QUANTUM INSTRUMENT WHICH IS
IRREDUCIBLE BUT NOT EFFICIENT

In Theorem 1 of Ref. 10, the representation of a quantum instrument analogous to the Kraus
representation of a completely positive map is obtained. By this theorem for an arbitrary instrument
M in a Hilbert space H with the outcome set {X, F} there exist a positive o-finite measure
on {X, F}, a dense domain D C ‘H and a countable family of functions x > V;(x) defined for
pn-almost all x, such that Vi(x) is a linear operator from D to ‘H, satisfying

(@M (F)[Alp) =/ Z(Vk(x)fﬂlAVk(x)w)M(dx),
Foy

forany ¢ € D, F € F, A € *B(H). We may assume that for each x the all nonzero operators from
the family V;(x) are not proportional to each other, since if Vi(x9) = AVi(xo) for some xy and
A € C then we may replace Vi(xq) by /1 + |A|2Vi(x0) and consider that Vi (xp) = 0.
The instrument 907 is efficient if and only if Vi (x) = O for k > 1 and p-almost all x. This follows
from the proof of Theorem 1 in Ref. 10 and the proof of the implication (iv) = (i) in Proposition 2.
So, if the instrument 91 is not efficient then there exists a subset F; of X such that 9(F) # 0
and V,(x) # 0 for all x € Fy (we assume that if V;(x) = 0 then Vi (x) = O for all ¥’ > k).

Proposition 5: If the instrument N is irreducible but not efficient then for u-almost all x in
F; the all nonzero operators Vi(x) have the same one dimensional range (depending on x), that
is Vi) |p) = or(X)[el|Yy) for all ¢ € D, where wi(x) is a linear functional defined on D (not
necessary bounded) and , is a unit vector in H (not depending on ¢). This means that

(| M*(F)[Alp) =/(I/fxlAl/fx)Z|wk(x)[§0]|2M(dx), (A1)
F k

forany ¢ € D, A € B(H) and F € F such that F C Fj.
It follows that for an arbitrary a priori state p the posteriori state is py = |Y) (V| for p,-
almost all x € F; (that is, p, does not depend on p).
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This assertion can be obtained by using the arguments from the proof of the implication
(i1) = (iv) in Proposition 2 with dim IC = 1. The only difference appears at the point where Lemma
5 is used, since in this case we can not exclude the possibility of rankV; (x) = 1. It is this possibility
that prevents to prove that any irreducible instrument is efficient.

Corollary 3: If 9 is an instrument not taking values within the set of nonzero entanglement
breaking quantum operations (see Ref. 25) then 9N is efficient if and only if N is irreducible.

Proof: Let 901 be a instrument in a Hilbert space H with the outcome set {X, F}, which is
irreducible but not efficient. By Proposition 5 there exist a positive o -finite measure ¢ on {X, F},
a subset F of X such that M(F) # 0, a dense domain D C H, a family {x > w;(x)}; of functions
on F, such that wy(x) is a linear functional defined on D for each x € F, and a function x — ¥,
on F such that ¥, is a unit vector in H for each x € F, for which relation (A1) holds. By using the
polarization identity, one can show that

MEP)Ne1) (g2 =/FI%)(lﬁxlZwk(X)[%]wk(X)[(ﬂz]u(dX), (A2)
k

where [ denotes the Bochner integral.
Let w = Z;’szl li) (@il ® |¢i){¢;| be a pure state in S(H ® K), where {¢;}{", C D and
{¢:})™, C K. Then (A2) implies

M(F) @ ldx(w) = /F W (Wl ® Y Y on)pil (11 (5] 14(dx)

koi,j=1
=fF|wx><wx|®Z|nf§><nf§|u(dx),
k

where |ni‘,) =" wk(X)[@ille;) is a vector in K. It follows that the operator MM(F) ® Idg(w) is
separable. Since an arbitrary pure state in S(H ® K) can be approximated by a sequence of above-
considered states, the operator 9(F) ® Idi(w) is separable for any state w € G(H ® K). Thus, the
operation 91(F) is entanglement-breaking. O

Example 1: Let P be a spectral projector valued measure on a measurable space {X, F} and
[¥o) be a fixed unit vector in H. Then the instrument IM(F)[p] = [TrP(F)p]l|vo) (Yol is obviously
irreducible, but it is efficient if and only if the spectral measure P has (uniform) multiplicity one,
since it is easy to see that the spectral measure from representation (13) coincides with P. Note that
the channel 9U(X) : p — |¥o){(¥o| is entanglement-breaking.

APPENDIX B: TWO AUXILIARY LEMMAS

Lemma 5: Let L1 = lin({; }ieN) be a linear space and E? be a countable subset of L, consisting
of finite linear combinations of the vectors @1, ¢, ... with rational coefficients. Let { Ay} be a finite
or countable family of nonzero linear operators from Ly to a linear space L, such that the set
{Ar(p)} C Ly consists of collinear vectors for any ¢ € L(l). If at least one operator in the family
{A} has rank > 1 then A, = M Ay for all k, where {\} is a set of nonzero scalars.

Proof: Suppose rankA; > 1 and k is arbitrary. By the condition Ay(p) = A,‘fAl((p) for all
@ € LY\ ker A;. We will show that A{ does not depend on g.

Since rankA; > 1, without loss of generality we may assume that the vectors A;(¢;) and A;(¢;)
are not collinear. Let ¢ = c1¢; + c¢,, where c| and ¢; are nonzero rational coefficients. By linearity
we have

A = A A1) = A (1 A1(@1) + ¢2A1(92))
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and

Ac(Y) = c1 Ak(@1) + 2 Ar(ga) = 1A A1(@1) + AP Al(ga).

Hence, Af‘ = Afz. Let ¢ be an arbitrary vector in E(l) \ ker A;. Then the vector A(¢) is not collinear
with A|(g;), where either i = 1 or i = 2. By repeating the above arguments for the pair (¢, ¢;)
instead of (¢1, ¢2) we obtain A{ = AY". Thus, A{ = A forall g € £\ ker A;.

If A =0 then Ax(¢) =0 for all ¢ € L’? \ ker A;. This implies A; = 0 contradicting to the
assumption. Indeed, if ¢; € ker A for some i then ¢; = (¢; + ¢1) — ¢1, and hence Ay (¢;) = Ar(¢;

+ ¢1) — Ar(e1) = 0.
Thus, we have

Ar(p) = M Ai(p) forall ¢ € E? \ ker A;, where A, # 0. (B1)

Hence, the vectors Ai(¢;) and Ax(¢,) are not collinear. By repeating the above arguments with Ay
instead of A; and A, instead of A; we obtain

A1(p) = A Ax(p) forall ¢ € E? \ ker Ax, where A} # 0. (B2)
It follows from (B1) and (B2) that Ax(¢;) = ArAi(@;) foralli € N, and hence Ay = A A;. O

Lemma 6: Let {m,, ps} be a countable or continuous ensemble of states in S(H) such that
Pa = p for all a, where p is the average state of this ensemble. Then p, = p for all «.

The assertion of this lemma follows from existence of a finite strictly convex function?” on the
set G(H) depending only on the spectrum of a state. As the simplest example, one can consider the
function f(p) = Trp>.
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