
Reversibility of a quantum channel: General conditions and their
applications to Bosonic linear channels
M. E. Shirokov 
 
Citation: J. Math. Phys. 54, 112201 (2013); doi: 10.1063/1.4827436 
View online: http://dx.doi.org/10.1063/1.4827436 
View Table of Contents: http://jmp.aip.org/resource/1/JMAPAQ/v54/i11 
Published by the AIP Publishing LLC. 
 
Additional information on J. Math. Phys.
Journal Homepage: http://jmp.aip.org/ 
Journal Information: http://jmp.aip.org/about/about_the_journal 
Top downloads: http://jmp.aip.org/features/most_downloaded 
Information for Authors: http://jmp.aip.org/authors 

http://jmp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1536256211/x01/AIP-PT/Maplesoft_JMPCoverPg_100213/JMP_Physics_advert1640x440_maple17.jpg/6c527a6a7131454a5049734141754f37?x
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=M. E. Shirokov&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4827436?ver=pdfcov
http://jmp.aip.org/resource/1/JMAPAQ/v54/i11?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://jmp.aip.org/about/about_the_journal?ver=pdfcov
http://jmp.aip.org/features/most_downloaded?ver=pdfcov
http://jmp.aip.org/authors?ver=pdfcov


JOURNAL OF MATHEMATICAL PHYSICS 54, 112201 (2013)

Reversibility of a quantum channel: General conditions and
their applications to Bosonic linear channels

M. E. Shirokov
Steklov Mathematical Institute, Moscow, Russia

(Received 23 May 2013; accepted 15 October 2013; published online 5 November 2013)

The method of complementary channel for analysis of reversibility (sufficiency) of a
quantum channel with respect to families of input states (pure states for the most part)
are considered and applied to Bosonic linear (quasi-free) channels, in particular, to
Bosonic Gaussian channels. The obtained reversibility conditions for Bosonic linear
channels have clear physical interpretation and their sufficiency is also shown by ex-
plicit construction of reversing channels. The method of complementary channel gives
possibility to prove necessity of these conditions and to describe all reversed families
of pure states in the Schrodinger representation. Some applications in quantum infor-
mation theory are considered. Conditions for existence of discrete classical-quantum
subchannels and of completely depolarizing subchannels of a Bosonic linear channel
are presented. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827436]

I. INTRODUCTION

Reversibility (sufficiency) of a quantum channel � : S(HA) → S(HB) with respect to a family
S of states in S(HA) means existence of a quantum channel � : S(HB) → S(HA) such that
�(�(ρ)) = ρ for all ρ ∈ S.18, 23

The notion of reversibility of a channel naturally arises in analysis of different general questions
of quantum information theory, in particular, of conditions for preserving entropic characteristics of
quantum states under action of a channel.10, 17, 18, 22, 23 For instance, it follows from Petz’s theorem
(cf. Refs. 17 and 23) that the Holevo quantity of an ensemble {π i, ρ i} of quantum states is preserved
under action of a quantum channel �, i.e.,

χ ({πi ,�(ρi )}) = χ ({πi , ρi }),

if and only if the channel � is reversible with respect to the family {ρ i}.
A general criterion for reversibility of a quantum channel expressed in terms of von Neumann

algebras theory is obtained in Ref. 17 (see also Ref. 18). By using this criterion and the notion of
complementary channel conditions for reversibility of a quantum channel with respect to complete
families of states, in particular, of pure states are obtained in Ref. 25. These conditions can be specified
and reformulated for analysis of reversibility with respect to noncomplete families. Moreover,
their “necessary” parts can be expressed in terms of weak complementary channel by using the
“face property” of a set of all channels reversible with respect to a given family of states. These
generalizations and their corollaries, in particular, several criteria for reversibility of a channel with
respect to families of orthogonal mixed states are considered in Sec. III.

In Sec. IV we apply these conditions to Bosonic linear (quasi-free) channels. We show that a
noisy Bosonic linear channel is reversible neither with respect to any complete family of pure states
nor with respect to any complete family of orthogonal states containing a finite rank state (but it
may be reversible with respect to complete family of orthogonal infinite rank states). Then we focus
attention on analysis of reversibility of such channels with respect to noncomplete orthogonal and
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nonorthogonal families. The obtained conditions are reformulated for Bosonic Gaussian channels
playing a central role in quantum information theory.3, 9, 12, 16

The obtained results imply conditions for (non)-preserving the Holevo quantity of arbitrary
(discrete or continuous) ensembles of states under action of a quantum channel. They are considered
in Sec. V.

II. PRELIMINARIES

Let H be a separable Hilbert space, B(H) and T(H) — the Banach spaces of all bounded
operators in H and of all trace-class operators in H correspondingly, S(H) — the closed convex
subset of T(H) consisting of positive operators with unit trace called states.12, 21 Denote by B+(H)
the cone of positive operators in B(H).

We will use the Greek letters ρ, σ , ... for trace-class operators (not only for states) to distinguish
their from bounded operators which will be denoted A, B, ....

The support suppρ of a positive operator ρ is the orthogonal complement to its kernel.
Denote by IH and IdH the unit operator in a Hilbert space H and the identity transformation of

the Banach space T(H) correspondingly.
Let H(ρ) and H (ρ ‖σ ) be respectively the von Neumann entropy of a state ρ and the quantum

relative entropy of states ρ and σ .12, 21

A finite or countable collection of states {ρ i} with the corresponding probability distribution
{π i} is called ensemble and denoted {π i, ρ i}. Its Holevo quantity is defined as follows:

χ ({πi , ρi }) .=
∑

i

πi H (ρi ‖ ρ̄) = H (ρ̄) −
∑

i

πi H (ρi ),

where ρ̄
.= ∑

i πiρi is the average state of this ensemble and the second formula is valid under
the condition H (ρ̄) < +∞. The Holevo quantity provides an upper bound for accessible classical
information which can be obtained by applying a quantum measurement.12, 21

A completely positive trace preserving linear map � : T(HA) → T(HB) is called quantum
channel.12, 21 It has the Kraus representation

�(ρ) =
∑

k

VkρV ∗
k , ρ ∈ T(HA), (1)

where {Vk} is a set of linear operators from HA into HB such that
∑

k V ∗
k Vk = IHA .

We will use unitary dilation of a quantum channel:3, 12 for a channel � : T(HA) → T(HB) one
can find separable Hilbert spaces HD,HE for which HA ⊗ HD ⊆ HB ⊗ HE = H, a state ρD in
S(HD) and an unitary operator U in the spaceH such that this channel can be represented as follows:

�(ρ) = TrHE Uρ ⊗ ρDU ∗, ρ ∈ T(HA). (2)

The quantum channel,

�̂w(ρ) = TrHB Uρ ⊗ ρDU ∗, ρ ∈ T(HA), (3)

is called weak complementary to the channel � (see Ref. 2 and Chap. 6 of Ref. 12). If the state ρD

is pure then (2) is the Stinespring representation of the channel � and the channel defined by (3)
coincides with the complementary channel �̂ to the channel �.7 The weak complementary channel
is not uniquely defined (it depends on representation (2)), but the complementary channel is unique:
if �̂′ : T(HA) → T(HE ′) is a channel defined by (3) via another representation (2) (with pure state
ρ ′

D) then the channels �̂ and �̂′ are isometrically equivalent in the sense of the following definition
and Ref. 15, the Appendix.

Definition 1. Channels � : T(HA) → T(HB) and �′ : T(HA) → T(H′
B) are isometrically

equivalent if there exists a partial isometry W : HB → HB ′ such that

�′(ρ) = W�(ρ)W ∗, �(ρ) = W ∗�′(ρ)W, ρ ∈ T(HA).
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The notion of isometrical equivalence is very close to the notion of unitary equivalence (see the
remark after Definition 2 in Ref. 25).

Definition 2. A channel � : T(HA) → T(HB) is called classical-quantum of discrete type
(briefly, discrete c-q channel) if it has the following representation:

�(ρ) =
dimHA∑

i=1

〈i |ρ|i〉σi , ρ ∈ T(HA), (4)

where {|i〉} is an orthonormal basis in HA and {σ i} is a collection of states in S(HB).
We use the term “discrete” in this definition, since in infinite dimensions there exist channels

naturally called classical-quantum which have no representation (4), for example, Bosonic Gaussian
c-q channels (see Ref. 12, Chap. 12).

Discrete c-q channel (4), for which σ i = σ for all i, is a completely depolarizing channel: �(ρ)
= σTrρ.

Following Refs. 18 and 22 introduce the basic notion of this paper.

Definition 3. A channel � : T(HA) → T(HB) is reversible with respect to a family S ⊆ S(HA)
if there exists a channel � : T(HB) → T(HA) such that ρ = � ◦ �(ρ) for all ρ ∈ S.

In Refs. 17 and 23, this property is called sufficiency of the channel � for the family S.
We will call � and S in Definition 3 reversing channel and reversed family, respectively.

Definition 4. A family S of states in S(H) is complete if for any nonzero positive operator A in
B(H) there exists a state ρ ∈ S such that TrAρ > 0.

A family {|ϕλ〉〈ϕλ|}λ ∈ 
 of pure states in S(H) is complete if and only if the linear hull of the
family {|ϕλ〉}λ ∈ 
 is dense in H.

By separability of H an arbitrary complete family of states in S(H) contains a countable
complete subfamily (see Ref. 17, Lemma 2]).

III. GENERAL CONDITIONS FOR REVERSIBILITY

Now we consider general conditions for reversibility of a channel with respect to arbitrary
families of states (pure states for the most part).

We begin with the following observation showing the “face property” of a set of all channels
reversible with respect to a given family of states.

Proposition 1. Let �1 and �2 be quantum channels from T(HA) to T(HB) and � = p �1 +
(1 − p)�2, where p ∈ (0, 1). If the channel � is reversible with respect to a family S of states in
S(HA) then the channels �1 and �2 are reversible with respect to the family S.

Proof. By Definition 3 reversibility of a channel with respect to a given family of states is
equivalent to its reversibility with respect to any dense countable subfamily of this family. So, since
the space T(HA) is separable, we may assume that the family S is countable.

Let S = {ρi } and {π i} be a nondegenerate probability distribution with finite Shannon entropy.
Then the Holevo quantity of the ensemble {π i, ρ i} is finite. Let ρ̄ = ∑

i πiρi be the average state of
this ensemble. By reversibility of the channel � with respect to the family S we have∑

i

πi H (ρi ‖ ρ̄) =
∑

i

πi H (�(ρi )‖�(ρ̄))

=
∑

i

πi H (p �1(ρi ) + (1 − p)�2(ρi )‖ p �1(ρ̄) + (1 − p)�2(ρ̄))

≤ p
∑

i

πi H (�1(ρi )‖�1(ρ̄)) + (1 − p)
∑

i

πi H (�2(ρi )‖�2(ρ̄))

≤ p
∑

i

πi H (ρi ‖ ρ̄) + (1 − p)
∑

i

πi H (ρi ‖ ρ̄) =
∑

i

πi H (ρi ‖ ρ̄),
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where the inequalities follow from monotonicity and joint convexity of the relative entropy. Thus
equalities hold in both these inequalities and hence the channels �1 and �2 preserve the Holevo
quantity of the ensemble {π i, ρ i}. By Theorem 2 in Ref. 17 (with the Remark after it) this implies
reversibility the channels �1 and �2 with respect to the family S.

Note that the assertion of Proposition 1 is not inverted: reversibility of channels �1 and �2 with
respect to some family S does not imply reversibility of their convex mixture with respect to this
family. The simplest example is given by unitary channels �1 and �2.

Petz’s theorem implies the following necessary condition for reversibility of a quantum channel
with respect to complete families of states (for families of orthogonal states this condition is also
sufficient for reversibility).

Theorem 1. Let S = {ρi } be a complete family of states in S(HA), {π i} a nondegenerate
probability distribution and {Ai = πi [ ρ̄ ]−1/2ρi [ ρ̄ ]−1/2} — the corresponding resolution of the
identity in HA, where ρ̄ = ∑

i πiρi .
If a channel � : T(HA) → T(HB) is reversible with respect to the family S then any its weak

complementary channel �̂w has the Kraus representation

�̂w(ρ) =
∑
i, j

Wi jρW ∗
i j such that Ai =

∑
j

W ∗
i j Wi j for all i. (5)

It follows, in particular, that

max
i, j

rankWi j ≤ max
i

rankρi and min
i

max
j

rankWi j ≤ min
i

rankρi . (6)

If suppρi ⊥ suppρk for all i �= k then existence of Kraus representation (5) for the channel
�̂w = �̂ is equivalent to reversibility of the channel � with respect to the family S.

Proof. The Kraus representation (5) for the complementary channel �̂ is constructed in the
proof of Theorem 3 in Ref. 25.

Let �̂w be a weak complementary channel to the channel � defined by formula (3) and
ρD = ∑

k λkρ
k
D a pure states decomposition of the state ρD. Then �=∑

kλk�k and �̂w = ∑
k λk�̂

w
k ,

where �k and �̂w
k are channels defined by formulae (2) and (3) with ρk

D instead of ρD. Since the
state ρk

D is pure, we have �̂w
k = �̂k for each k.

By Proposition 1 reversibility of the channel � with respect to the family S implies reversibility
of all the channels �k with respect to this family. Thus, as mentioned before, all the channels �̂w

k =
�̂k have Kraus representation (5). Hence the same property holds for the channel �̂w = ∑

k λk�̂
w
k .

If suppρi ⊥ suppρk for all i �= k then Ai is the projector onto suppρi for each i. Represen-
tation (5) of the channel �̂ implies ̂̂�(ρ) = ∑

i, j,k,l Tr[Wi jρW ∗
kl]|i ⊗ j〉〈k ⊗ l| (cf. Ref. 15) and

hence supp ̂̂�(ρi ) ⊥ supp ̂̂�(ρk) for all i �= k. It follows, since � and ̂̂� are isometrically equiv-
alent channels, that the channel � is reversible with respect to the family {ρ i} (by Lemma 1 in
Ref. 25). �

In analysis of reversibility of a channel with respect to noncomplete families of pure states we
will need the following notion.

Definition 5. The restriction of a channel � : T(HA) → T(HB) to the subspace T(H0) of T(HA),
where H0 is a nontrivial subspace of HA, is called subchannel of � corresponding to the subspace
H0 and is denoted �|T(H0).

The (weak) complementary channel to the subchannel of a channel � corresponding to any
subspace H0 ⊂ HA coincides with the subchannel of the (weak) complementary channel �̂ corre-
sponding to the subspace H0, i.e.,

�̂ = �̂|T(H0) and �̂w = �̂w|T(H0), where � = �|T(H0). (7)



112201-5 M. E. Shirokov J. Math. Phys. 54, 112201 (2013)

Remark 1. It follows from (7) that the reversibility conditions in Theorem 1 are generalized to
noncomplete family S by replacing the channels �̂w and �̂ by their subchannels corresponding to
the subspace HS

A = ∨
ρ∈S suppρ.

Remark 2. The first relation in (6) shows that reversibility of a channel � with respect to a
complete family of states of rank ≤ r implies that any its weak complementary channel �̂w is
r-partially entanglement-breaking.5 Thus, by Theorem 1 and Remark 1, to prove that a channel
� is not reversible with respect to any family S of states of rank ≤ r it suffices to find its weak
complementary channel �̂w and a state ω in S(HS

A ⊗ K) such that

either SN (�̂w ⊗ IdK(ω)) > r or E(�̂w ⊗ IdK(ω)) > log r,

where SN is the Schmidt number and E is any convex entanglement monotone coinciding on the set
of pure states with the entropy of a partial state, in particular, E = EoF.24

The second relation in (6) can be used to show nonreversibility of a channel � with respect to
families containing at least one finite rank state. In particular, for complete families it suffices to find
a weak complementary channel �̂w such that any its Kraus representation (1) consists of infinite
rank operators Vk . We will use this way in the proof of Corollary 5 in Sec. IV B.

Theorem 1 gives the following criteria for reversibility with respect to orthogonal families.

Corollary 1. Let � : T(HA) → T(HB) be a quantum channel and S = {ρi } a family of mutually
orthogonal states in S(HA). Let Pi be the projector on the support of the state ρ i for each i and
HS

A = ⊕
i suppρi . The following statements are equivalent:

(i) the channel � is reversible with respect to the family S;
(ii) the subchannel �|T(HS

A ) is isometrically equivalent to the channel

T(HS
A ) � ρ �→ �(ρ) =

∑
i, j,k,l

Tr[Wi jρW ∗
kl]|i ⊗ j〉〈k ⊗ l|,

where {Wi j } is a set of operators such that
∑

j W ∗
i j Wi j = Pi for all i;

(iii) �̂(ρ) = ∑
i, j Wi jρW ∗

i j for all ρ ∈ T(HS
A ), where {Wi j } is the same set as in (ii);

(iv) Pi�̂
∗(A)Pk = 0 for all A ∈ B(HE ) and all i �= k;

(v) {Pi } ⊂ P �∗(B+(HB))P , where P = ∑
iPi is the projector onto HS

A .

If (i) holds then (iii) and (iv) are valid for any weak complementary channel �̂w to the
channel �.

If the family S is complete (i.e., HS
A = HA) then (ii) gives a description (up to isometrical

equivalence) of the set of all quantum channels reversible with respect to S.

Proof. By passing to the subchannel of � corresponding to the subspace HS
A we may consider

that S is a complete family.
(i) ⇔ (iii) follows from Theorem 1 and Remark 1. (ii) ⇔ (iii) follows from the standard

representation of a complementary channel (see Ref. 15, formula (11)]). (iii) ⇒ (iv) is easily
verified.

(iv) ⇒ (i) For given i and k �= i it follows from (iv) that �̂(|ϕ〉〈ψ |) = 0 for any vec-
tors ϕ ∈ suppρi and ψ ∈ suppρk . By the definition of a complementary channel this implies
supp�(|ϕ〉〈ϕ|) ⊥ supp�(|ψ〉〈ψ |). It follows that supp�(ρ i) ⊥ supp�(ρk) for all i �= k and hence
the channel � is reversible with respect to the family {ρ i}.
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(ii) ⇒ (v) Since �∗(A) = ∑
i, j,k,l〈k ⊗ l|A|i ⊗ j〉W ∗

kl Wi j , we have Pi = ∑
j W ∗

i j Wi j =
�∗(|i〉〈i | ⊗ IH{| j〉} ), where H{| j〉} is the Hilbert space with the basis {|j〉}.

(v) ⇒ (iii) follows from the proof of Theorem 3 in Ref. 25.
The last assertion of the corollary follows from Theorem 1 and Remark 1. �
Now we consider conditions for reversibility of a quantum channel with respect to arbitrary

families of pure states.
By Lemma 5 in Ref. 25 any family S of pure states in S(H) has the unique (finite or countable)

decomposition

S =
n⋃

k=1

Sk (n ≤ dim
∨

ρ∈S suppρ), (8)

where {Sk}n
k=1 is a collection of orthogonally non-decomposable (OND) families (this means that

there is no subspace H0 such that some states (not all) from Sk lie in H0, while the others – in H⊥
0 )

mutually orthogonal in the sense that ρ⊥σ if ρ ∈ Sk and σ ∈ Sl , k �= l.
The following theorem is an extended and strengthened version of Theorem 4 in Ref. 25.

Theorem 2. Let � : T(HA) → T(HB) be a quantum channel and S a family of pure
states in S(HA) with decomposition (8) into OND subfamilies. Let HS

A = ∨
ρ∈S suppρ, HS

B =∨
ρ∈S supp�(ρ),

m = min
{

dim
[

ker PS�∗(·)PS ∩ B(HS
B )

] + 1, dimHS
B

}
,

where PS is the projector on the subspace HS
A , and {Pk}n

k=1 the orthogonal resolution of the identity
in HS

A corresponding to decomposition (8). The following statements are equivalent:

(i) the channel � is reversible with respect to the family S;
(ii) the channel � is reversible with respect to the family

Ŝ =
{

ρ ∈ S(HS
A )

∣∣∣∣∣ ρ =
n∑

k=1

Pkρ Pk

}
;

(iii) the subchannel �̂|T(HS
A ) is a discrete c-q channel having the representation

�̂(ρ) =
n∑

k=1

[TrPkρ]σk, ρ ∈ T(HS
A ), (9)

where {σ k} is a set of states in S(HE ) such that rankσk ≤ m for all k;
(iv) the subchannel �|T(HS

A ) is isometrically equivalent to the channel

�(ρ) =
n∑

k,l=1

Pkρ Pl ⊗
m∑

p,t=1

〈ψ l
t |ψk

p〉|p〉〈t |

from T(HS
A ) into T(HS

A ⊗ Hm), where {|ψk
p〉} is a collection of vectors in a separable Hilbert

space such that
∑m

p=1 ‖ψk
p‖2 = 1 and 〈ψk

t |ψk
p〉 = 0 for all p �= t for each k and {|p〉}m

p=1 is
an orthonormal basis in Hm .

If �̂w is a weak complementary channel to the channel � defined by (3) via the state ρD then
(i) implies that �̂w|T(HS

A ) is a discrete c-q channel having representation (9) in which {σ k} is a set

of states in S(HE ) such that rankσk ≤ dimHS
B × rankρD for all k.

Proof. The first assertion of the theorem follows from Theorem 4 in Ref. 25 applied to the
subchannel of � corresponding to the subspace HS

A and (7).
Let �̂w be a weak complementary channel to the channel � defined by formula (3) and ρD =∑r

i=1 λiρ
i
D be a pure states decomposition of the state ρD, where r = rankρD . Then � = ∑r

i=1 λi�i
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and �̂w = ∑r
i=1 λi�̂

w
i , where �i and �̂w

i are channels defined by formulae (2) and (3) with ρi
D

instead of ρD. Since the state ρi
D is pure, we have �̂w

i = �̂i for each i.
By Proposition 1 reversibility of the channel � with respect to the family S implies reversibility

of the channels �i, i = 1, r , with respect to this family. By the first assertion of the theorem
�̂w

i (ρ) = �̂i (ρ) = ∑n
k=1[TrPkρ]σ i

k for all ρ ∈ S(HS
A ), where {σ i

k } is a set of states in S(HE ) such
that rankσ i

k ≤ dimHS
B , for each i. Hence

�̂w(ρ) =
r∑

i=1

λi�̂
w
i (ρ) =

n∑
k=1

[TrPkρ]
r∑

i=1

λiσ
i
k , ρ ∈ T(HS

A ). �

Remark 3. If the family S in Theorem 2 is nonorthogonal then the collection {Pk}n
k=1 contains

at least one projector Pk0 of rank >1. By the implication (i) ⇒ (ii) in Theorem 2 reversibility of
the channel � with respect to this family S implies its reversibility with respect to the family of all
states supported by the subspace Hk0 = Pk0 (HA), i.e., its perfect reversibility on the subspace Hk0 in
terms of Ref. 12, Chap. 10]. Theorem 2 also shows that reversibility of the channel � with respect
to the family S implies that the subchannels �̂|T(Hk0 ) and �̂w|T(Hk0 ) are completely depolarizing.

Theorem 2 (with Remark 3) shows that analysis of reversibility properties of a quantum chan-
nel requires conditions for existence of discrete c-q subchannels and of completely depolarizing
subchannels of the (weak) complementary channel. The following lemma gives such conditions
expressed in terms of the kernel (null set) of a channel.

Lemma 1. Let � : T(HA) → T(HB) be a quantum channel.
(A) The channel � has no discrete c-q subchannels if and only if the set ker � does not contain

1-rank operators.
(B) The channel � has discrete c-q subchannels but it has no completely depolarizing sub-

channels if and only if the set ker � contains 1-rank operators but it does not contain the operators

|ϕ〉〈ψ | and |ϕ〉〈ϕ| − |ψ〉〈ψ | (10)

simultaneously for all unit vectors ϕ and ψ in HA.
(C) The channel � has completely depolarizing subchannels if and only if the set ker � contains

operators (10) for some unit vectors ϕ and ψ in HA.

Proof. The assertions of the lemma follow from Lemma 3 in Appendix A. �
To describe reversibility properties of a channel � with respect to families of pure states it is

convenient to introduce the reversibility index ri(�) = [ ri1(�), ri2(�) ], in which the both components
take the values 0, 1, 2. The first component ri1(�) characterizes reversibility of the channel � with
respect to (w.r.t.) complete families of pure states as follows:

ri1(�) = 0 : if � is not reversible w.r.t. any complete family S of pure states;
ri1(�) = 1 : if � is reversible w.r.t. a complete orthogonal family S of pure states but it is not

reversible w.r.t. any complete nonorthogonal family S of pure states;
ri1(�) = 2 : if � is reversible w.r.t. a complete nonorthogonal family S of pure states.

The value of ri1(�) can be interpreted geometrically as follows: ri1(�) > 0 means existence of
an orthonormal basis {|ϕi〉} of the space HA such that

supp�(|ϕi 〉〈ϕi |) ⊥ supp�(|ϕ j 〉〈ϕ j |) ∀ i �= j, (11)

if the channel � is perfectly reversible on a subspace spanned by some vectors of this basis then
ri1(�) = 2, otherwise ri1(�) = 1 (this follows from Remark 3).

The second component ri2(�) characterizes reversibility of the channel � with respect to
noncomplete families of pure states and is defined similarly to ri1(�) with the “complete family S”
replaced by “noncomplete family S.”
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So that ri(�) = 01 means that the channel � is not reversible with respect to any family of
pure states which is either complete or nonorthogonal, but it is reversible with respect to some
noncomplete orthogonal family.

By Remark 3 the value of ri2(�) has the clear geometrical interpretation: ri2(�) = 2 means
existence of a subspace of HA on which the channel � is perfectly reversible, if there are no such
subspaces but there exists an orthonormal set {|ϕi〉} of vectors in HA such that (11) holds then ri2(�)
= 1. This implies the following observation.

Remark 4. If � is a finite dimensional channel then ri2(�) characterizes positivity of one-shot
zero-error capacities of � as follows:

ri2(�) = 0 ⇔ C̄0(�) = 0, ri2(�) = 2 ⇔ Q̄0(�) > 0,

(so, ri2(�) = 1 means that C̄0(�) > 0 but Q̄0(�) = 0), where C̄0(�) and Q̄0(�) are the one-shot
zero-error classical and quantum capacities of the channel �, respectively.8, 20

It follows from the definition that the reversibility index can take the values

00, 01, 02, 11, 12, 22.

By using the below Corollary 2 it is easy to construct a channel with any reversibility index from
the above list excepting the index 12. Existence of a channel � with ri(�) = 12 is an interesting
open question.

Corollary 2. Let � be a quantum channel and �̂ its complementary channel. Then

{ ri(�) = 00 } ⇔ { �̂ satisfies condition A of Lemma 1 },
{ ri(�) = 01 } ⇔ { �̂ is not discrete c-q and satisfies condition B of Lemma 1 },
{ ri(�) = 02 } ⇔ { �̂ is not discrete c-q and satisfies condition C of Lemma 1 },
{ ri(�) = 11 } ⇔ { �̂ is discrete C-Q and satisfies condition B of Lemma 1 },
{ ri(�) = 12 } ⇔ { �̂ is discrete C-Q and satisfies condition C of Lemma 1 },
{ ri(�) = 22 } ⇔ { �̂ is discrete c-q channel (4) with σi = σ j for some i �= j },

where “discrete C-Q” denotes discrete c-q channel (4) with σ i �= σ j for all i �= j.
For a weak complementary channel �̂w to the channel � the following implications hold

{ ri(�) = 00 } ⇐ { �̂w satisfies condition A of Lemma 1 },
{ ri(�) ≥ 02 } ⇒ { �̂w satisfies condition C of Lemma 1 },
{ ri(�) ≥ 11 } ⇒ { �̂w is a discrete c-q channel },

where X1X2 ≤ Y1Y2 means that X1 ≤ Y1 and X2 ≤ Y2.

Proof. All the above assertions follow from Theorem 2, Remark 3, and Lemma 1. �
We will show in Sec. IV that the reversibility index takes the values 00, 01, 02, and 22 on the

class of Bosonic linear channels.

IV. REVERSIBILITY OF BOSONIC LINEAR CHANNELS

Let HX (X = A, B, ...) be the space of irreducible representation of the Canonical Commutation
Relations (CCR)

WX (z)WX (z′) = exp
(− i

2 
X (z, z′)
)

WX (z′ + z), z, z′ ∈ Z X ,

where (ZX, 
X) is a symplectic space and WX (z) are the Weyl operators,3, 9 and Ref. 12, Chap. 12].
We will also use the symbol 
X for the matrix of the form 
X, i.e., 
X(z, z′) = z�
Xz′. Denote by
sX the number of modes of the system X, i.e., 2sX = dim Z X .



112201-9 M. E. Shirokov J. Math. Phys. 54, 112201 (2013)

A Bosonic linear channel �K , f : T(HA) → T(HB) is defined via the action of its dual �∗
K , f :

B(HB) → B(HA) on the Weyl operators:

�∗
K , f (WB(z)) = WA(K z) f (z), z ∈ Z B, (12)

where K: ZB → ZA is a linear operator, and f(z) is a complex continuous function on ZB such that
f(0) = 1 and the matrix with the elements f (zs − zr ) exp

(
i
2 z�

s [
B − K �
A K ]zr
)

is positive for
any finite subset {zs} of ZB.11, 13 This channel is also called quasi-free.6

We will assume existence of a Bosonic unitary dilation for the channel �K, f, i.e., existence
of such Bosonic systems D and E that this channel can be represented as a restriction of a corre-
sponding unitary evolution of the composite system AD = BE (described by the symplectic space
Z = ZA ⊕ ZD = ZB ⊕ ZE) provided that the system D is in a particular state ρD. This means that

�∗
K , f (WB(z)) = TrHD (IHA ⊗ ρD)U ∗

T (WB(z) ⊗ IHE )UT , z ∈ Z B, (13)

where UT is the unitary operator in the space HA ⊗ HD
∼= HB ⊗ HE implementing the symplectic

transformation

T =
[

K L
K D L D

]
(14)

of the space Z (here L: ZE → ZA, KD: ZB → ZD, LD: ZE → ZD are appropriate linear operators).3, 4, 12, 13

Note that

f (z) = φρD (K Dz), (15)

where φρD is the characteristic function of the state ρD.
The weak complementary channel (see Sec. II) is defined as follows:

[�̂w
K , f ]∗(WE (z)) =TrHD (IHA ⊗ ρD)U ∗

T (IHB ⊗ WE (z))UT

=TrHD (IHA ⊗ ρD)(WA(Lz) ⊗ WD(L Dz))

=WA(Lz)φρD (L Dz), z ∈ Z E .

(16)

Thus �̂w
K , f is a Bosonic linear channel as well. If the state ρD is pure then �̂w

K , f = �̂K , f is the
complementary channel to the channel �K, f.

Remark 5. Unitary dilation (13) and (14) does not exist for all Bosonic linear channels (it
suffices to note that (15) implies |f(z)| = 1 ⇔ f(z) = 1), but one can conjecture that any Bosonic
linear channel can be transformed by appropriate displacement unitaries to Bosonic linear channel
for which such dilation exists. This conjecture is true for Bosonic Gaussian channels (see Sec. IV B).

A. Reversibility conditions

We begin with the following observation concerning reversibility with respect to complete
families.

Proposition 2. Let �K, f be a noisy (not noiseless27) Bosonic linear channel for which unitary
dilation (13) and (14) exists. The channel �K, f is not reversible with respect to a complete family
S in the following cases:

• S consists of pure states;
• S consists of orthogonal states at least one of which has finite rank.

The channel �K, f is reversible with respect to a particular complete family S of orthogonal
infinite rank states if and only if Zf

.= {z ∈ ZB | f(z) = 1} �= {0}.
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Proof. It suffices to prove the first assertion in the second case, since reversibility of a channel
with respect to a complete family of pure states implies its reversibility with respect to some complete
family of orthogonal pure states by Corollary 2 of Ref. 25.

Let S = {ρi } be a complete family of orthogonal states and {Pi} the corresponding orthogonal
resolution of the identity in HA (Pi is the projector onto suppρ i). Let �L ,g = �̂w

K , f be a weak
complementary channel to the channel � defined by (16), where g(z) = φρD (L Dz). Since �K, f is not
noiseless, �L, g is not completely depolarizing, i.e., L �= 0. By Corollary 1 ((i) ⇒ (iv)) reversibility
of the channel �K, f with respect to the family S implies

g(z)WA(Lz) = g(z)
∑

i

Pi WA(Lz)Pi ∀z ∈ Z E . (17)

If rankρi0 < +∞ for some i0 then (17) implies that the operator WA(z0), where z0 is a nonzero
vector in RanL, commutes with the finite dimensional projector Pi0 . This contradicts to the well-
known fact that the Weyl operators have no purely point spectrum.

If Zf = {0} then, since (15) implies Z f = ker K D , Lemma 2 below shows that RanL = [K(Zf)]⊥

= ZA. It follows that the family {WA(Lz)}z∈Z E acts irreducibly on HA and hence (17) cannot be valid
for any orthogonal resolution of the identity {Pi}.

Let Z f = ker K D �= {0}. Consider the von Neumann algebras A and B generated, respectively,
by the families {WA(K z)}z∈Z f and {WB(z)}z∈Z f . By the second assertion of Lemma 2 below the
restriction of the operator K to the subspace Zf is nondegenerate and symplectic (i.e., 
A(Kz1, Kz2)
= 
B(z1, z2) for all z1, z2 ∈ Zf). This implies that the restriction of the dual map �∗

K , f to the algebra
B ⊆ B(HB) is a ∗-isomorphism between the algebras B and A (see details in Ref. 26, Sec. 2). It
follows that for any orthogonal resolution of the identity {Pi} in A there exists an unique orthogonal
resolution of the identity {Qi} in B such that Pi = �∗

K , f (Qi ) for all i and hence

�K , f
(
S(Hi

A)
) ⊆ S(Hi

B) ∀i, (18)

where Hi
A = Pi (HA) and Hi

B = Qi (HB) (so that HA = ⊕
i Hi

A and HB = ⊕
i Hi

B).
Let {ρ i} be a family of states in S(HA) such that suppρi = Hi

A for all i. It follows from (18)
that the channel �K, f is reversible with respect to the orthogonal family {ρ i} and that the simplest
reversing channel has the form

�(σ ) =
∑

i

[TrQiσ ]ρi , σ ∈ S(HB). (19)

�
Now we consider reversibility of Bosonic linear channels with respect to arbitrary families of

pure states. For these channels the reversibility index (introduced in Sec. III) can take the values
00, 01, 02, 22 .

Theorem 3. Let �K, f be a Bosonic linear channel for which unitary dilation (13) and (14)
exists and Zf

.= {z ∈ ZB | f(z) = 1} . Then ri(�K, f) = 22 if and only if �K, f is a noiseless channel (see
Ref. 27). Otherwise

{ ri(�K , f ) = 00 } ⇔ { Z f = {0} },
{ ri(�K , f ) = 01 } ⇔ { Z f is a nontrivial isotropic subspace of Z B },
{ ri(�K , f ) = 02 } ⇔ { ∃ z1, z2 ∈ Z f such that 
B(z1, z2) �= 0 }.

(20)

A description (in the Schrodinger representation) of reversed families of pure states for the
channel �K, f in the cases ri(�K, f) = 01, 02 is given in Sec. IV C.

Proof. The first assertion of the theorem follows from Proposition 2.

In proving the second one we may consider (by using a purification procedure if necessary)
that (13) and (14) is a Stinespring dilation for the channel �K, f, i.e., the state ρD is pure. Then the
complementary channel to the channel �K, f is a Bosonic linear channel defined by (16).



112201-11 M. E. Shirokov J. Math. Phys. 54, 112201 (2013)

Since (15) implies Z f = ker K D , Lemma 2 below shows that RanL = [K(Zf)]⊥, ker K ∩ Z f =
{0} and that 
A(Kz1, Kz2) = 
B(z1, z2) for all z1, z2 ∈ Zf. Hence all the statements in (20) follow
from Corollary 2 and Proposition 3 in Appendix A. �

Remark 6. Sufficiency of the reversibility conditions (20) can be shown without using Corollary
2 by explicit construction of reversing channels for particular orthogonal and non-orthogonal families
of pure states.

Reversibility of the channel �K, f with respect to some orthogonal families of pure states under
the condition Zf �= {0} can be shown by repeating the arguments from the proof of Proposition 2
and by taking the family {ρ i} consisting of pure states such that suppρi ⊆ Hi

A for all i. The simplest
reversing channel in this case is given by (19).

Consider now how to prove the implication “⇐” in the third statement in (20). In this case one
can construct Bosonic linear reversing channels for families of all states supported by particular
subspaces of HA.

Indeed, if Z0
B is a nontrivial symplectic subspace of Zf then the second assertion of Lemma 2

below shows that the restriction K0 of the operator K to the subspace Z0
B is a symplectic embedding

of this subspace into ZA. Let Z0
A = K (Z0

B). Then Z X = Z0
X ⊕ Z∗

X , where Z∗
X = [Z0

X ]⊥, and hence
HX = H0

X ⊗ H∗
X , X = A, B. Let σ be a given arbitrary state in S(H∗

A) and Sσ = {ρ ⊗ σ | ρ ∈
S(H0

A)} ⊂ S(HA). Let �0(·) = UK 0 (·)U ∗
K 0 be a channel from T(H0

B) to T(H0
A), where UK 0 is the

unitary operator from H0
B onto H0

A implementing the symplectic transformation K 0 : Z0
B → Z0

A,
and �* be the completely depolarizing channel from T(H∗

B) to T(H∗
A) with the output state σ .

Then �0 ⊗ �* is a Bosonic linear channel from T(HB) to T(HA) and it is easy to see that
�0 ⊗ �∗(�K , f (ω)) = ω for all ω ∈ Sσ .

Lemma 2. Let T: ZB ⊕ ZE → ZA ⊕ ZD be a symplectic transformation defined by matrix
(14). Then [RanL]⊥ = K (ker K D) and ker K D = 
B K �
A

(
[RanL]⊥

)
, where [RanL]⊥ is the skew-

orthogonal complement to the subspace RanL = {Lz}z∈Z E ⊆ Z A (see Appendix B).
The restriction of the operator K (correspondingly, 
BK�
A) to the subspace ker K D (corre-

spondingly, [RanL]⊥) is nondegenerate and symplectic, i.e., it preserves the corresponding skew-
symmetric forms 
X, X = A, B.

This lemma shows that for a given Bosonic linear channel �K, f the subspace RanL is determined
by the set Z f = ker K D and does not depend on a choice of its unitary dilation (13) and (14). It
implies that the algebra generated by the Weyl operators WA(z), z ∈ K(Zf)⊥, coincides with the
noncommutative graph of the channel �K, f (in terms of Ref. 8).

Proof. Note first that [RanL]⊥ = ker[L�
A].
Since the matrix T defined in (14) is symplectic, we have (cf. Ref. 13)


B = K �
A K + K �
D
D K D,

0 = L�
A K + L�
D
D K D,


E = L�
A L + L�
D
D L D.

(21)

Since the group of symplectic matrices is closed under transposition, the matrix T� is symplectic
and hence we have the following equations (similar to (21))


A = K 
B K � + L 
E L�,

0 = K D
B K � + L D
E L�,


D = K D
B K �
D + L D
E L�

D.

(22)

The second equations in (21) and (22) imply, respectively,

K (ker K D) ⊆ ker[L�
A], 
B K �
A(ker[L�
A]) ⊆ ker K D, (23)
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while the first equations in (21) and (22) show that

ker K ∩ ker K D = {0}, ker[
B K �
A] ∩ ker[L�
A] = {0},
since the matrices 
A and 
B are nondegenerate. It follows, by the dimension arguments, that “=”
holds in the both inclusions in (23).

The last assertions of the lemma directly follow from the first equations in (21) and (22).

Corollary 3. If det[
B − K �
A K ] �= 0 then ri(�K, f) = 00, i.e., the channel �K, f is not
reversible with respect to any families of pure states.

Proof. It is shown in Ref. 13 that the condition det[
B − K �
A K ] �= 0 implies existence of
unitary dilation (13) and (14) for the channel �K, f in which D = B and KD is a nondegenerate
quadratic matrix. �
B. The case of Gaussian channels

Bosonic Gaussian channels are Bosonic linear channels defined by (12) with the function

f (z) = exp
(

il z − 1
2 z�α z

)
,

where l is a 2sB-dimensional real row and α is a real symmetric (2sB) × (2sB) matrix satisfying
the inequality α ≥ ± i

2

[

B − K �
A K

]
.3, 9, 12

Any such channel can be transformed by appropriate displacement unitaries to the Bosonic
Gaussian channel with l = 0 and the same matrix α for which unitary dilation (13) and (14)
always exists with Gaussian state ρD.3, 12 In this case α = K �

DαD K D , where αD is the covariance
matrix of ρD. Thus all the above results can be reformulated for Bosonic Gaussian channels by
noting that Z f = ker K D = ker α (since the matrix αD is nondegenerate). In particular, Theorem 3
is reformulated as follows.

Corollary 4. Let � be a noisy (not noiseless27) Bosonic Gaussian channel with the parameters
K, l, α. Then

{ ri(�) = 00 } ⇔ { det α �= 0 },
{ ri(�) = 01 } ⇔ { ker α is a nontrivial isotropic subspace of Z B },
{ ri(�) = 02 } ⇔ { ∃ z1, z2 ∈ ker α such that 
B(z1, z2) �= 0 }.

Physically, this characterization of reversibility of a Gaussian channel � is intuitively clear, since in
the Heisenberg picture the condition det α �= 0 means that the channel �* injects quantum noise in
all canonical variables of the system B, while degeneracy of the matrix α is equivalent to existence
of noise-free canonical variables. Corollary 4 shows that

– the channel � is reversible with respect to some families of pure states if and only if the set of
noise-free canonical variables is nonempty;

– the channel � is reversible only with respect to some orthogonal families of pure states if and
only if all noise-free canonical variables commute;

– the channel � is reversible with respect to some nonorthogonal families of pure states (and
hence it is perfectly reversible on a particular subspace) if and only if there are noncommuting
noise-free canonical variables.

Example: One-mode Gaussian channels. The simplest Bosonic Gaussian channels are one-
mode channels for which dim Z A = dim Z B = 2.

A classification of all one-mode Gaussian channels is obtained in Ref. 14, where it is shown
that there exist the following canonical types

A1[N ], A2[N ], B1, B2[N ], C[k, N ] (k > 0, k �= 1), D[k, N ] (k > 0)

of such channels (the parameter N ≥ 0 denotes the level of noise, see details in Refs. 12 and 14).
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By Corollary 4 all one-mode Gaussian channels are not reversible with respect to any families
of pure states excepting the noiseless channel B2[0] and the channel B1 which has reversibility index
01. All reversed families of pure states for the channel B1 are described in Sec. IV B.

By Proposition 2 the channel B1 is the only noisy one-mode Gaussian channel reversible
with respect to some complete orthogonal families of (infinite rank) states. Applying the proof of
Proposition 2 to the channel B1 we have A = B = L∞(R) and hence any orthogonal resolution of
the identity {Pi} in A corresponds to a decomposition {Di} of R into disjoint measurable subsets.
In this case {Qi} = {Pi} and Hi

A = Hi
B = L2(Di ) is the subspace of HA = HB = L2(R) consisting

of functions supported by Di.
Thus, the subset S(L2(Di )) ⊂ S(L2(R)) is mapped by the channel B1 into itself for each i.

This conclusion agrees with the explicit formula for the channel B1 (formula (7.1) in Ref. 16 with q
replaced by p).

It follows that the channel B1 is reversible with respect to any family of states {ρ i} such that
ρi ∈ S(L2(Di )) for each i. One can expect that all reversed families for the channel B1 have such
form. For families of pure states this is proved in Sec. IV B (see the example).

In regard to reversibility of one-mode Gaussian channels with respect to nonorthogonal families
of mixed states we have the following partial result.

Corollary 5. Let � be a one-mode Gaussian channels of any type excepting B1, B2[0], and
C[k, 0] with k > 1. Then the channel � is not reversible with respect to any complete family of states
containing at least one finite rank state.

Proof. As shown in Ref. 16 all operators of any Kraus representation of the channel C[k, 0]
with k �= 1 have infinite rank. By Theorem 1 (see Remark 2) this implies nonreversibility of the
complementary channel to the channel C[k, 0] with k �= 1 with respect to any complete family of
states containing at least one finite rank state. This implies nonreversibility of the channels C[k, 0]
with k < 1 and D[k, 0] (complementary channels to one-mode Gaussian channels are described in
Refs. 12 and 14). Nonreversibility of all the others channels excepting the channels B1, B2[0], and
C[k, 0] with k > 1 can be shown by using their representation in the form � ◦ �, where � is either
the channel C[k, 0] with k < 1 or the channel D[k, 0] (see Table I in Ref. 16). �
C. Explicit forms of reversed families

Now we will give an explicit description of reversed families of pure states for the channel
�K, f. We will show that these families are completely determined by the subspace K(Zf) of ZA. By
Theorem 3 it suffices to consider the cases ri(�K, f) = 01, 02.

ri (�K,f) = 01. By Theorem 3 and Lemma 2 in this case K(Zf) is a nontrivial isotropic subspace
of ZA and hence the subspace RanL = [K(Zf)]⊥ contains a maximal isotropic subspace of ZA. By
Lemma 6 in Appendix B there exists a symplectic basis {ẽk, h̃k} in ZA such that
{ẽ1, ..., ẽsA , h̃d+1, ..., h̃sA } is a basis in RanL, 0 < d ≤ sA. If we identify the space HA with the
space L2(RsA ) of complex-valued functions of sA variables (which will be denoted ξ1, ..., ξsA ) and
the Weyl operators WA(ẽk) and WA(h̃k) with the operators

ψ(ξ1, ..., ξsA ) �→ eiξk ψ(ξ1, ..., ξsA ) and ψ(ξ1, ..., ξsA ) �→ ψ(ξ1, ..., ξk + 1, ..., ξsA )

then Theorem 2, Lemma 3, and the proof of Proposition 3 in Appendix A show that all reversed
families of pure states for the channel �K, f correspond to families {ψ i} of functions in L2(RsA ) with
unit norm satisfying the following condition

ψi · Syd+1,...,ysA
ψ j = 0 (in L2(RsA )) ∀(yd+1, ..., ysA ) ∈ RsA−d , ∀ i �= j, (24)

where Syd+1,...,ysA
is a shift operator by the vector (0, ..., 0, yd+1, ..., ysA ):

(Syd+1,...,ysA
ψ)(ξ1, ..., ξsA ) = ψ(ξ1, ..., ξd , ξd+1 + yd+1, ..., ξsA + ysA ).

This condition means, roughly speaking, that all shifts in RsA of the supports of the functions of the
family {ψ i} along the last sA − d coordinates do not intersect each other.
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As an example of a reversed family one can take the family of product pure states |φi ⊗ ϕ〉〈φi

⊗ ϕ| corresponding to the family of functions

ψi (ξ1, ..., ξsA ) = φi (ξ1, ..., ξd )ϕ(ξd+1, ..., ξsA ),

where {φi} is a family of functions in L2(Rd ) with mutually disjoint supports and ϕ is a given
function in L2(RsA−d ).

Example: One-mode Gaussian channel B1. In this case sA = sB = 1,

K =
[

1 0
0 1

]
, α =

[
0 0
0 1/4

]
, Z f = ker α =

[
1
0

]
.

Hence ẽ1 = [1, 0]�, h̃1 = [0, 1]� (since K (Z f )⊥ = K (Z f ) = {λẽ1}) and condition (24) shows that
all reversed families of pure states for this channel have the form

{|ψi 〉〈ψi |}, where {ψi } ⊂ L2(R) such that ψi · ψ j = 0 (in L2(R)) ∀ i �= j,

i.e., roughly speaking, all reversed families of pure states correspond to families of functions with
mutually disjoint supports (in agreement with the observations in Sec. IV B which show sufficiency
of this condition).

ri (�K,f) = 02. By Theorem 3 in this case there exists a symplectic subspace Z0
B of Zf. By Lemma

2 Z0
A = K (Z0

B) is a symplectic subspace of [RanL]⊥ = K(Zf). Let {ẽk, h̃k}sA
k=1 be a symplectic basis

in ZA such that {ẽk, h̃k}d
k=1 is a symplectic basis in Z0

A. If we identify the space HA with the space
L2(RsA ) as before then Theorem 2, Lemma 3, and the proof of Proposition 3 in Appendix A show
that the channel �K, f is perfectly reversible on the subspaces L2(Rd ) ⊗ {c|ϕ〉}, ϕ ∈ L2(RsA−d ) (in
agreement with the second part of Remark 6).

V. APPLICATIONS

By Petz’s theorem reversibility properties of a quantum channel are closely related to the
question of (non)-preserving the Holevo quantity of arbitrary (discrete or continuous) ensembles
of states under action of this channel, i.e., to the question of validity of an equality in the general
inequality

χ (�(μ)) ≤ χ (μ), (25)

which holds, by monotonicity of the relative entropy, for any channel � : T(HA) → T(HB) and any
generalized ensemble μ of states in S(HA) (defined as a Borel probability measure on S(HA), see
Ref. 25, Sec. 5).

Denote byP(S(HA)) the set of all generalized ensembles of pure states (probability measures on
S(HA) supported by pure states). Denote by Pc(S(HA)) and Po(S(HA)) the subsets of P(S(HA))
consisting respectively of all ensembles with nondegenerate average state (barycenter) and of all
ensembles of mutually orthogonal pure states.

For a given channel � : T(HA) → T(HB) let P(�) be the subset of P(S(HA)) consisting of
all ensembles μ for which an equality holds in (25). The version of Petz’s theorem for continuous
ensembles (Proposition 3 in Ref. 25) shows that

{ ri(�) = 00 } ⇒ {P(�) = ∅ },
{ ri(�) = 01 } ⇒ {P(�) ⊂ Po\Pc},
{ ri(�) = 02 } ⇒ {P(�) ⊂ P\Pc },
{ ri(�) = 11 } ⇒ {P(�) ⊂ Po },
{ ri(�) = 12 } ⇒ {P(�) ⊂ Po ∪ [P\Pc] },

where we write P∗ instead of P∗(S(HA)) for brevity.
Thus, Corollary 4 implies the following assertions.
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Corollary 6. Let � be a Gaussian channel with the parameters K, l, α.
(A) If � is not a noiseless channel then

χ (�(μ)) < χ (μ) (26)

for any ensemble μ of pure states with nondegenerate average state;
(B) If ker α is an isotropic subspace of ZB then (26) holds for any nonorthogonal (in particular,

continuous) ensemble μ of pure states;
(C) If det α �= 0 then (26) holds for any ensemble μ of pure states.
By using the observations in Sec. IV C one can describe all ensembles μ of pure states for which

χ (�(μ)) = χ (μ). All such ensembles are completely determined by the subspace K (ker α).
Some applications of conditions for an equality (strict inequality) in (25) to study of capacities

of quantum channels are considered in Ref. 25, Sec. 5.
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APPENDIX A: ON DISCRETE c-q SUBCHANNELS AND COMPLETELY DEPOLARIZING
SUBCHANNELS OF BOSONIC LINEAR CHANNELS

Note first that any nontrivial Bosonic linear channel �K, f is not a discrete c-q channel (it is a
discrete c-q channel if and only if it is completely depolarizing). This immediately follows from
Definition 2 and Eq. (12), since the Weyl operator WA(K z) has purely point spectrum for any z ∈
ZB if and only if K = 0.

In this appendix we explore necessary and sufficient conditions for existence of discrete c-q
subchannels and of completely depolarizing subchannels of a Bosonic linear channel �K, f.

The following lemma shows that all discrete c-q subchannels and all completely depolarizing
subchannels of a quantum channel are determined by its kernel (null set).

Lemma 3. Let � : T(HA) → T(HB) be a quantum channel and �(�) the set of all families
{|ψ i〉} of unit vectors in HA such that �(|ψ i〉〈ψ j|) = 0 for all i �= j. The channel � has a discrete
c-q subchannel corresponding to a subspace H0, i.e.,

�(ρ) =
∑

i

〈ψi |ρ|ψi 〉σi ∀ρ ∈ T(H0),

where {|ψ i〉} is an orthonormal basis in H0, if and only if {|ψ i〉} ∈ �(�). Under this condition

σi = σ j ⇔ �(|ψi 〉〈ψi | − |ψ j 〉〈ψ j |) = 0.

Proof. It suffices to note that ρ = ∑
i, j〈ψ i|ρ|ψ j〉|ψ i〉〈ψ j| for any ρ ∈ T(H0). �

Remark 7. The conditions �(|ψ i〉〈ψ j|) = 0 and �(|ψ i〉〈ψ i|) = �(|ψ j〉〈ψ j|) can be expressed,
respectively, as follows:

〈ψi |�∗(B)|ψ j 〉 = 0 ∀B ∈ B(HB), 〈ψi |�∗(B)|ψi 〉 = 〈ψ j |�∗(B)|ψ j 〉 ∀B ∈ B(HB),

where �∗ : B(HB) → B(HA) is a dual map to the channel �.
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If � = �K, f then, since the family {WB(z)}z∈Z B generates B(HB) and f is a continuous function
such that f(0) = 1, the above conditions can be rewritten as

〈ψi |WA(K z)|ψ j 〉 = 0 ∀z ∈ Z B, (A1)

〈ψi |WA(K z)|ψi 〉 = 〈ψ j |WA(K z)|ψ j 〉 ∀z ∈ Z B . (A2)

By using Remark 7 it is easy to show that the set �(�K, f) introduced in Lemma 3 is empty
if and only if rankK = dim Z A and to describe all families belonging to this set in the case
rankK < dim Z A. This will be done in the proof of the following proposition.

Proposition 3. The channel �K, f has discrete c-q subchannels if and only if rankK < dim Z A.
Under this condition all these subchannels are not completely depolarizing if and only if

RanK
.= {K z}z∈Z B contains a maximal isotropic subspace of Z A, (A3)

which means that the subspace [RanK]⊥ is isotropic, i.e., there exist no z1, z2 ∈ ker[K �
A] such
that 
A(z1, z2) �= 0.

Proof. If rankK = dim Z A then the family {WA(K z)}z∈Z B of Weyl operators acts irreducibly on
HA. Hence condition (A1) cannot be valid.

If rankK < dim Z A and condition (A3) holds then Lemma 6 in Appendix B implies existence
of a symplectic basis {ẽk, h̃k} in ZA such that {ẽ1, ..., ẽsA , h̃d+1, ..., h̃sA } is a basis in RanK, d ≤
sA. Let Z0

B be a subspace of ZB with the basis {ze
1, ..., ze

sA
, zh

d+1, ..., zh
sA

} such that ẽk = K ze
k for

all k = 1, sA and h̃k = K zh
k for all k = d + 1, sA. Thus for any vector z ∈ Z0

B represented as z =∑sA
k=1 xk ze

k + ∑sA
k=d+1 yk zh

k , (x1, ..., xsA ) ∈ RsA , (yd+1, ..., ysA ) ∈ RsA−d we have

WA(K z) = WA

(
sA∑

k=1

xk K ze
k +

sA∑
k=d+1

yk K zh
k

)
= WA

(
sA∑

k=1

xk ẽk +
sA∑

k=d+1

yk h̃k

)
= λWA(x1ẽ1) · ... · WA(xsA ẽsA ) · WA(yd+1h̃d+1) · ... · WA(ysA h̃sA ),

where λ = ei[xd+1 yd+1+...+xsA ysA ] �= 0.
By identifying the space HA with the space L2(RsA ) of complex-valued functions of sA variables

(which will be denoted ξ1, ..., ξsA ) and the Weyl operators WA(ẽk) and WA(h̃k) with the operators

ψ(ξ1, ..., ξsA ) �→ eiξk ψ(ξ1, ..., ξsA ) and ψ(ξ1, ..., ξsA ) �→ ψ(ξ1, ..., ξk + 1, ..., ξsA )

the equality in (A1) for the vector z can be rewritten as follows:∫
ψi (ξ1, ..., ξsA )(Syd+1,...,ysA

ψ j )(ξ1, ..., ξsA )ei(x1ξ1+...+xsA ξsA )dξ1, ..., dξsA = 0,

where (Syd+1,...,ysA
ψ j )(ξ1, ..., ξsA ) = ψ j (ξ1, ..., ξd , ξd+1 + yd+1, ..., ξsA + ysA ).

This equality is valid for all (x1, ..., xsA ) ∈ RsA and (yd+1, ..., ysA ) ∈ RsA−d (that is for all z ∈ Z0
B)

if and only if

ψi (ξ1, ..., ξsA )(Syd+1,...,ysA
ψ j )(ξ1, ..., ξsA ) = 0

for almost all (ξ1, ..., ξsA ) ∈ RsA and all (yd+1, ..., ysA ) ∈ RsA−d . Since RanK = K (Z0
B), it implies

that the set �(�K, f) introduced in Lemma 3 consists of families {ψ i} satisfying the condition

ψi · Syd+1,...,ysA
ψ j = 0 (in L2(RsA )) ∀(yd+1, ..., ysA ) ∈ RsA−d , ∀ i �= j. (A4)

This condition means, roughly speaking, that all shifts in RsA of the supports of the functions of the
family {ψ i} along the last sA − d coordinates do not intersect each other.
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As an example of a family satisfying condition (A4) one can take the family of functions

ψi (ξ1, ..., ξsA ) = φi (ξ1, ..., ξd )ϕ(ξd+1, ..., ξsA ), (A5)

where {φi} is a family of functions in L2(Rd ) with mutually disjoint supports and ϕ is a given
function in L2(RsA−d ). It is clear that this family (consisting of tensor product vectors |φi ⊗ ϕ〉) is
not a “general solution” of (A4).

To show that for any i �= j the equality in (A2) cannot be valid for all z ∈ ZB note that this
equality for the vector z = ∑sA

k=1 xe
k zk ∈ Z0

B can be rewritten as follows:∫
|ψi (ξ1, ..., ξsA )|2ei(x1ξ1+...+xsA ξsA )dξ1, ..., dξsA

=
∫

|ψ j (ξ1, ..., ξsA )|2ei(x1ξ1+...+xsA ξsA )dξ1, ..., dξsA .

Validity of this equality for all (x1, ..., xsA ) ∈ RsA means that the classical characteristic functions of
the probability densities |ψ i|2 and |ψ j|2 coincide. But this obviously contradicts to condition (A4).

If condition (A3) is not valid then the subspace [RanK]⊥ contains a symplectic subspace Z0
A.

Let {ẽk, h̃k}sA
k=1 be a symplectic basis in ZA such that {ẽk, h̃k}d

k=1 is a symplectic basis in Z0
A.

By identifying the space HA with the space L2(RsA ) as before we see that the equalities in (A1)
and in (A2) can be rewritten, respectively, as∫

ψi (ξ1, ..., ξsA )(WA(K z)ψ j )(ξ1, ..., ξsA )dξ1, ..., dξsA = 0 (A6)

and ∫
ψi (ξ1, ..., ξsA )(WA(K z)ψi )(ξ1, ..., ξsA )dξ1, ..., dξsA

=
∫

ψ j (ξ1, ..., ξsA )(WA(K z)ψ j )(ξ1, ..., ξsA )dξ1, ..., dξsA ,

(A7)

where {ψ i} is an orthonormal family of functions in L2(RsA ).
Since for any z ∈ ZB the vector Kz has no components corresponding to the vectors ẽk, h̃k, k =

1, d , one can satisfy equalities (A6) and (A7) for all i �= j and all z ∈ ZB by taking the family
of functions (A5), in which {φi} is an arbitrary orthonormal basis in L2(Rd ) and ϕ is a given
function in L2(RsA−d ). Thus this family belongs to the set �(�K, f) introduced in Lemma 3 and this
lemma shows that the restriction of the channel �K, f to any subspace of the form L2(Rd ) ⊗ {c|ϕ〉},
ϕ ∈ L2(RsA−d ), is completely depolarizing. �

APPENDIX B: SOME FACTS ABOUT SYMPLECTIC SPACES

In what follows Z is a 2s-dimensional symplectic space with the nondegenerate skew-symmetric
form 
.1, 12, 19 The set of vectors {e1, ..., es, h1, ..., hs} is called symplectic basis in Z if 
(ek, el)
= 
(hk, hl) = 0 for all k, l, but 
(ek, hl) = δkl. For an arbitrary subspace L ⊂ Z one can define its
skew-orthogonal complement L⊥ = {z ∈ Z | 
(z, z′) = 0 ∀z′ ∈ L}. Despite the fact that L∩L⊥ �= {0}
in general, we always have the familiar relations

[L⊥]⊥ = L and dim L + dim L⊥ = dim Z .

A linear transformation T: Z → Z is called symplectic if 
(Tz1, Tz2) = 
(z1, z2) for all z1, z2 ∈
Z. A symplectic transformation maps any symplectic basis to symplectic basis and vice versa: any
two symplectic base are related by the particular symplectic transformation.

A subspace L of Z is called symplectic if the form 
 is nondegenerate on L, in this case L has
even dimension and can be considered as a symplectic space of itself. We will use the following
simple observation.1, 19
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Lemma 4. If L is a symplectic subspace of Z then L⊥ is a symplectic subspace of Z and Z = L
+ L⊥ (i.e., Z = L ∨ L⊥ and L ∩ L⊥ = {0}).

By joining the symplectic base in L and in L⊥ we obtain a symplectic basis in Z.
A subspace L of Z is called isotropic if the form 
 equals to zero on L. In this case L has

dimension ≤ s. We will use the following observation.

Lemma 5. If L is an isotropic subspace of Z then there exists a symplectic basis {ẽk, h̃k} in Z
such that {ẽ1, ..., ẽd} is a basis in L.

Proof. Let {ek, hk} be an arbitrary symplectic basis in Z and L′ the isotropic subspace of Z
generated by the vectors e1, ..., ed. Since the isotropic subspaces L and L′ have the same dimension,
there is a symplectic transformation T such that L = T(L′).19 The basis {ẽk = T ek, h̃k = T hk} has
the required properties. �

Now we can prove the lemma used in the proof of Proposition 3.

Lemma 6. Let L be an arbitrary subspace of Z. Then there exists a symplectic basis in Z such
that dim L vectors of this basis lie in L.

Proof. If the subspace L is either symplectic or isotropic then the assertion of the lemma follows
respectively from Lemma 4 (with the remark after it) and Lemma 5.

If the subspace L is neither symplectic nor isotropic then

L1 = L ∩ L⊥ = {z ∈ L | 
(z, z′) = 0, ∀z′ ∈ L}
is a nontrivial subspace of L. Let L2 be an arbitrary subspace such that L = L1 + L2, i.e., L = L1 ∨
L2 and L1 ∩ L2 = {0}. Then the subspace L2 is symplectic. Indeed, if there is a vector z0 ∈ L2 such
that 
(z0, z) = 0 for all z ∈ L2 then 
(z0, z + z′) = 0 for all z′ ∈ L1, z ∈ L2, which implies z0 ∈ L1

and hence z0 = 0.
By Lemma 4 the subspace L⊥

2 is symplectic. It obviously contains the isotropic subspace L1.
By Lemma 5 there exists a symplectic basis {ek, hk} in L⊥

2 such that {e1, ..., ed} is a basis in L1. By
joining this basis and any symplectic basis in L2 we obtain a basis with the required properties. �
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