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Abstract—We consider a class of convex bounded subsets of a separable Banach space. This class
includes all convex compact sets as well as some noncompact sets important in applications. For
sets in this class, we obtain a simple criterion for the strong CE-property, i.e., the property that
the convex closure of any continuous bounded function is a continuous bounded function. Some
results are obtained concerning the extension of functions defined at the extreme points of a set in
this class to convex or concave functions defined on the entire set with preservation of closedness
and continuity. Some applications of the results in quantum information theory are considered.
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1. INTRODUCTION

The notion of convex closure of a function defined on a convex subset of a topological linear space is
widely used in modern convex analysis and its applications [1, 2].1 The convex closure of a function f can
be defined as the maximal closed convex function that does not exceed f . There naturally arise questions
as to how to represent the convex closure by a closed analytic formula, whether it coincides with the
convex envelope (the maximal convex function that does not exceed f ), and what the relationship
between the continuity properties of f and the convex closure of f is. The last question is of fundamental
importance for applications in quantum information theory [4], where the convex closure of a certain
function serves as a characteristic of a physical system (see Sec. 6).

The convex closure and the convex envelope of an arbitrary continuous function on a convex compact
set coincide [3]. However, even in R

3, there exist convex compact sets and continuous functions defined
on them (in particular, concave continuous functions) whose convex closure is discontinuous. A convex
compact set is said to have the CE-property if the convex closure of every concave continuous function
on this set is continuous [5, 6]. In the present paper, for a wide class of convex sets, referred to as
μ-compact sets, we consider the following strengthened version of the CE-property: the convex closure
of every bounded continuous function on a convex μ-compact set is bounded and continuous. This
property can naturally be referred to as the strong CE-property. The class of μ-compact sets consists
of subsets of separable Banach spaces. These subsets are characterized by the fact that the barycentric
mapping has a certain property, which serves as a substitute of compactness in the proof of many results,
including some results in Choquet’s theory [7]. This class contains all convex compact sets as well as
some noncompact sets important in applications, e.g., the simplex of all probability distributions with
countably many outcomes and its noncommutative analog, the set of density operators on a separable
Hilbert space.

We obtain a simple criterion that permits one to establish the strong CE-property for a wide class
of convex compact sets in R

n as well as for the noncompact sets indicated above. We consider some
corollaries of the strong CE-property related to the problem of extending continuous closed functions
defined on the set of extreme points of a convex μ-compact set to convex or concave functions defined
on the entire set and possessing certain continuity properties.

*E-mail: msh@mi.ras.ru.
1The term “lower envelope” is also used [3].
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In Sec. 2, the definition of μ-compact sets is given and a sufficient condition and a criterion for
μ-compactness are presented. Some auxiliary results about properties of μ-compact sets, including
a generalization of Choquet’s barycentric decomposition theorem, are obtained.

Section 3 deals with a representation of the convex closure of an arbitrary closed lower-bounded
function on a μ-compact convex set. We establish that the convex envelope and the convex closure of
an arbitrary continuous bounded function coincide; this assertion generalizes Corollary I.3.6 in [3].

In Sec. 4, we prove a theorem stating that the strong CE-property is equivalent to two other
properties of a μ-compact convex set. We use this theorem to establish the strong CE-property for
all P-sets (sets with certain continuity properties of the boundary [8]) in R

n as well as for the simplex
of all probability distributions with countably many outcomes and for the set of density operators on a
separable Hilbert space.

Section 5 contains some results on the extension, with closedness preserved, of closed lower-
bounded functions defined on the set of extreme points of a μ-compact convex set with the strong CE-
property to convex or concave functions defined on the entire set. In particular, we prove that each
continuous bounded function defined on the set of extreme points has a continuous bounded convex
extension with certain maximality properties. A criterion for the convex closure of a concave function to
be continuous is obtained.

Section 6 deals with applications in quantum information theory.
In Sec. 7, we discuss possible generalizations of the main results of the paper to a wider class of

convex sets.

2. ON A CLASS OF CONVEX SETS

In Secs. 2–6, we assume that A is a closed bounded subset of a separable Banach space. The
following notation will be used:

co(A ), σ- co(A ), and co(A ) are the convex hull, the σ-convex hull,2 and the convex closure,
respectively, of a set A .

extr A is the set of extreme points of a convex set A .
C(A ) is the set of continuous bounded functions on a set A .

P (A ) and P̂ (A ) are, respectively, the set of convex continuous bounded functions on a convex set A
and the set of functions representable as pointwise limits of monotone sequences of functions in P (A ).

co f and co f are, respectively, the convex envelope and the convex closure of a function f defined on
a convex set A [1, 2].

Pn = {{πi}n
i=1 | πi ≥ 0,

∑n
i=1 πi = 1} is the simplex of all probability distributions with n ≤ +∞

outcomes.

The convex set of all Borel probability measures on a set A , equipped with the weak convergence
topology [9], will be denoted by M+

1 (A ). The measure in M+
1 (A ) concentrated at a point x ∈ A will be

denoted by δ(x). Consider the barycentric mapping

M+
1 (A ) � μ �→ b(μ) =

∫

A
xμ(dx) ∈ co A , (1)

where the integral is treated in the sense of Bochner. The convex closed subset of the set M+
1 (A ) of

measures μ such that b(μ) = x ∈ co A will be denoted by Mx(A ).
The mapping (1) is continuous (e.g., see [10, Sec. 2]); consequently, the image of any compact subset

of M+
1 (A ) under the mapping (1) is a compact subset of co A . Let us single out a class of convex sets

for which the converse assertion holds.

Definition 1. A set A is said to be μ-compact if the preimage of every compact subset of co(A ) under
the mapping (1) is a compact subset of M+

1 (A ).

2The set of all countable convex combinations of elements of A .
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Note that every compact set A is μ-compact, because the compactness of A implies that
of M+

1 (A ) [9].

Proposition 1. A convex set A is μ-compact if and only if, for any compact subset K ⊆ A and
any ε > 0, there exists a compact subset Kε ⊆ A such that, for each x ∈ K , the decomposition
x =

∑n
i=1 λixi, where {xi}n

i=1 ⊂ A and {λi}n
i=1 ∈ Pn, implies that

∑
i:xi∈A \Kε

λi < ε.

A convex set A is μ-compact if there exists a family F (A ) of concave nonnegative functions
on A with the following properties:

• The set {x ∈ A : f(x) ≤ c} is relatively compact for any f ∈ F (A ) and c > 0.

• For each compact subset K ⊆ A , there exists a function f ∈ F (A ) satisfying the inequal-
ity supx∈K f(x) < +∞.

Proof. The first assertion in Proposition 1 follows from Prokhorov’s theorem [9]. Indeed, the property
indicated in this assertion means that the set of all measures in M+

1 (A ) with finite support and with
barycenter in K is dense. By Lemma 1 below and Theorem 6.1 in [9], this is equivalent to the fact that
the set of all measures in M+

1 (A ) with barycenter in K is dense.

The proof of the second assertion generalizes the argument in the proof of Proposition 2 in [11].
Let K be a compact subset of A , and let f ∈ F (A ) be a function such that supx∈K f(x) = c < +∞.
For each ε > 0, let Kε = {x ∈ A : f(x) ≤ c/ε}; this is a relatively compact subset of A . Since f is
concave and nonnegative, we have

c ≥ f(x) ≥
n∑

i=1

λif(xi) ≥
∑

i:xi∈A \Kε

λif(xi) >
c

ε

∑

i:xi∈A \Kε

λi

for an arbitrary x ∈ K and a decomposition x =
∑n

i=1 λixi, whence it follows that
∑

i:xi∈A \K ε
λi < ε.

Lemma 1. Let A be a convex set. Then each measure μ0 M+
1 (A ) is the limit of a sequence {μn}

of finitely supported measures in M+
1 (A ) such that b(μn) = b(μ0) for all n.

The proof of this lemma naturally generalizes that of Lemma 1 in [11].

The sufficient condition given in Proposition 1 can be used to show the μ-compactness of the
noncompact set P+∞ of all probability distributions with countably many outcomes. To this end,
for F (P+∞) one can take a family of functions of the form {pi}+∞

i=1 �→
∑+∞

i=1 pihi, where {hi}+∞
i=1 is

an arbitrary increasing sequence of positive numbers tending to +∞.

Many results of Choquet’s theory, which was developed for compact convex sets, can readily be
generalized to the case of μ-compact convex sets. The forthcoming exposition heavily relies on the
following generalization of Choquet’s theorem [7].

Proposition 2. Let A be a μ-compact set. Then each element of co(A ) is the barycenter of some
measure in M+

1 (A ).

Proof. Let x0 ∈ co(A ). By the definition of convex closure, there exists a sequence {xn} ⊆ co(A )
converging to x0. For each n, the element xn is the barycenter of some finitely supported measure
μn ∈ M+

1 (A ). Since the set A is μ-compact, it follows that the sequence {μn} is relatively compact
and hence has a partial limit μ0 ∈ M+

1 (A ). The mapping (1) is continuous, and so x0 is the barycenter
of μ0.
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If A is a convex set, then the set M+
1 (A ) can be equipped with the following partial order, which is

often called the Choquet order [7, 12]. One has μ � ν if and only if
∫

A
f(y)μ(dy) ≥

∫

A
f(y) ν(dy) ∀ f ∈ P (A ).

A measure μ ∈ M+
1 (A ) is said to be maximal if, for any measure ν ∈ M+

1 (A ), the relation ν � μ
implies that ν = μ.

We need the following properties of Choquet’s partial order.

Lemma 2. Let A be a convex μ-compact set.3

(A) If μ and ν are measures in M+
1 (A ) such that μ � ν, then

b(μ) = b(ν) and
∫

A
f(y)μ(dy) ≥

∫

A
f(y) ν(dy) ∀ f ∈ P̂ (A ).

(B) Let {μn} and {νn} be sequences of measures in M+
1 (A ) converging to some measures μ

and ν, respectively, in M+
1 (A ), satisfying the condition μn � νn for all n. Then μ � ν.

(C) If extr A = extr A , then the set of maximal measures in M+
1 (A ) coincides with the set

M+
1 (extr A ). If, in addition, A = co(extr A ), Then for each measure μ ∈ M+

1 (A ) there exists a
maximal measure μ̂ ∈ M+

1 (A ) such that μ̂ � μ.

Proof. Assertions A and B can readily be derived from definitions and the monotone convergence
theorem for Lebesgue integral.

The first part of assertion C can be proved with the use of Theorem 5.2 in [10], Theorem 6.3.9 in [12],
and the argument in the proof of Theorem 1.1 in [13]. One can obtain a constructive proof of the second
part of assertion C by using Lemma 1 and Lemma 3 below.

Lemma 3. Let A be a μ-compact convex set such that extr A = extr A and A = co(extr A ).
Then, for each sequence {μn} of finitely supported measures in M+

1 (A ) converging to some
measure μ0 ∈ M+

1 (A ), there exists a subsequence {μnk
} and a sequence {μ̂k} of measures

in M+
1 (extr A ) converging to some measure μ̂0 ∈ M+

1 (extr A ) and satisfying the relation

b(μ̂k) = b(μnk
) ∀ k and μ̂0 � μ0.

If A = σ- co(extr A ), then for {μ̂k} one can take a sequence of atomic measures.

Proof. By Proposition 2, for each n, every atom xn
i of the measure

μn =
m(n)∑

i=1

πn
i δ(xn

i )

is the barycenter of some measure

μn
i ∈ M+

1 (extr A ).

It is easily seen that μ̂n =
∑m(n)

i=1 πn
i μn

i is a measure in M+
1 (extr A ) such that b(μ̂n) = b(μn) and μ̂n �

μn. Since the mapping (1) is continuous, it follows that the set {b(μn)}n≥0, which coincides with the
closure of the set b({μ̂n}n>0), is compact. The set A is μ-compact; therefore, the sequence {μ̂n}n>0

is relatively compact in M+
1 (extr A ) and hence contains a subsequence {μ̂nk

} converging to some
measure {μ̂0} ∈ M+

1 (extr A ). Since μ̂nk
� μnk

for all k, it follows from assertion B in Lemma 2 that
μ̂0 � μ0. Using the notation μ̂k = μ̂nk

, we obtain the main assertion of the lemma.
If A = σ- co(extr A ), then the measures μn

i in the above argument can be chosen to be atomic.

3The μ-compactness condition is only used in the proof of the second assertion in item C; it permits one to establish the
existence of the measure μ̂ without resorting to the Zorn lemma.
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Lemma 3 results in the observation that atomic measures are dense in the set of all maximal measures
with a given barycenter.

Lemma 4. Let A be a μ-compact convex set such that extr A = extr A and A = σ- co(extr A ).
Then each measure μ0 ∈ M+

1 (extr A ) is the limit of a sequence {μn} of atomic measures
in M+

1 (extr A ) such that b(μn) = b(μ0) for all n.

Proof. By Lemma 1, each measure μ0 ∈ M+
1 (extr A ) is the limit of a sequence {μn} of finitely

supported measures in M+
1 (A ) such that b(μn) = b(μ0) for all n. By applying Lemma 3 and by using

the fact (which follows from assertion C in Lemma 2) that the measure μ0 is maximal in M+
1 (A ), we

obtain a sequence {μ̂n} of measures with the desired properties.

3. ON THE CONVEX CLOSURE

For every closed lower-bounded function f on a closed set A , the functional

μ �→
∫

A
f(x)μ(dx) (2)

is well defined and lower semicontinuous on the set M+
1 (A ).

Proposition 3. The convex closure of every lower-bounded closed function f on a μ-compact
convex set A is determined by the expression

co f(x) = inf
μ∈Mx(A )

∫

A
f(y)μ(dy) ∀x ∈ A . (3)

For each x ∈ A , there exists a measure μf
x ∈ Mx(A ) such that

co f(x) =
∫

A
f(y)μf

x(dy).

If extr A = extr A , A = co(extr A ), and f is a concave lower bounded function such that
−f ∈ P̂ (A ), then for μf

x one can take a measure supported in extr A .

Remark 1. In general, the infimum over all measures in Mx(A ) in (3) cannot be replaced by the
infimum over all atomic measures in Mx(A ). (In other words, the integral cannot be replaced by a
finite or countable sum.) There exist functions f for which these infima are distinct (see the examples in
Remarks 1 and 2 in [14]).

Proof. By assertion A in Lemma 5 below, the function

f̌A = inf
μ∈Mx(A )

∫

A
f(y)μ(dy)

is convex and closed on A . Therefore, f̌A (x) ≤ co f(x) for all x ∈ A . Since co f is a convex closed
function majorized by f , it follows from Jensen’s inequality that

co f(x) ≤ inf
μ∈Mx(A )

∫

A
co f(y)μ(dy) ≤ inf

μ∈Mx(A )

∫

A
f(y)μ(dy) = f̌A (x)

for all x ∈ A . Therefore, f̌A = co f .

The existence of the measure μf
x follows from assertion A in Lemma 5.

Let f be a concave lower-bounded function such that −f ∈ P̂ (A ), and let μf
x be the measure whose

existence was established above for each x ∈ A . By assertion C in Lemma 2, there exists a measure
μ̂f

x ∈ M+
1 (extr A ) that is maximal in M+

1 (A ) and satisfies μ̂f
x � μf

x. By assertion A in Lemma 2,
b(μ̂f

x) = x, and the infimum in the expression for co f(x) is attained on μ̂f
x.
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Lemma 5. Let f be a closed lower-bounded function on the set A .
(A) If A is μ-compact, then the function

f̌A (x) = inf
μ∈Mx(A )

∫

A
f(y)μ(dy)

is convex and closed on the set co(A ); moreover, for each x ∈ co(A ), the infimum in the definition
of f̌A (x) is attained on some measure in Mx(A ).

(B) If the mapping M+
1 (A ) � μ �→ b(μ) ∈ co(A ) is open and surjective, then the function

f̂A (x) = sup
μ∈Mx(A )

∫

A
f(y)μ(dy)

is concave and closed on the set co(A ).

Proof. (A) The function f̌A is well defined on co(A ), since the set Mx(A ) is nonempty for every
element x ∈ co(A ) by Proposition 2. The convexity of this function readily follows from its definition and
the convexity of the set M+

1 (A ). Since the functional (2) is lower semicontinuous and the set Mx(A )
is compact (the latter follows from the μ-compactness of A ), it follows that, for each x ∈ co(A ), the
infimum in the definition of f̌A (x) is attained at some measure in Mx(A ).

Suppose that the function f̌A is not closed. Then there exists a sequence {xn} ⊂ co(A ) that
converges to x0 ∈ co(A ) and satisfies

lim
n→+∞

f̌(xn) < f̌(x0). (4)

By the preceding observation, for each n = 1, 2, . . . , there exists a measure μn ∈ Mxn(A ) such that

f̌A (xn) =
∫

A
f(y)μn(dy).

It follows from the μ-compactness of A and the compactness of the sequence {xn}n≥0 that the
sequence {μn}n>0 of measures is relatively compact. Consequently, it has a subsequence {μnk

}
converging to some measure μ0. Since the mapping (1) is continuous, it follows that μ0 ∈ Mx0(A ).
The functional (2) is lower semicontinuous, and so

f̌A (x0) ≤
∫

A
f(y)μ0(dy) ≤ lim inf

k→+∞

∫

A
f(y)μnk

(dy) = lim
k→+∞

f̌A (xnk
),

which contradicts (4).

(B) The function f̂A is well defined on co(A ), since, in view of the surjectivity of the barycenter
mapping, the set Mx(A ) is nonempty for each x ∈ co(A ). The concavity of this function is a
straightforward consequence of the definition of f̂A and the convexity of the set M+

1 (A ). Suppose that
the function f̂A is not closed. Then there exists a sequence {xn} ⊂ co(A ) that converges to x0 ∈ co(A )
and satisfies

lim
n→+∞

f̂A (xn) < f̂A (x0). (5)

For an arbitrary ε > 0, let με
0 ∈ Mx0(A ) be a measure such that

f̂A (x0) <

∫

A
f(y)με

0(dy) + ε.

Since the barycentric mapping is open, it follows that there exists a subsequence {xnk
} of the

sequence {xn} and a sequence {μk} of measures in M+
1 (A ) converging to με

0 such that b(μk) = xnk
for

each k. Since the functional (2) is lower semicontinuous, we have

f̂A (x0) ≤
∫

A
f(y)με

0(dy) + ε ≤ lim inf
k→+∞

∫

A
f(y)μk(dy) + ε ≤ lim

k→+∞
f̂A (xnk

) + ε,

which contradicts (5) in view of the fact that ε is arbitrary.
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Proposition 3 and Lemma 1 imply the following assertion, which generalizes Corollary I.3.6 in [3] to
the case of μ-compact convex sets.

Corollary 1. If A is a μ-compact convex set, then the convex closure of every function f ∈ C(A )
is determined by the expression

co f(x) = inf
n∈N

{ n∑

i=1

πif(xi)
∣
∣
∣

n∑

i=1

πixi = x, {xi} ⊂ A , {πi} ∈ Pn

}

∀x ∈ A .

This expression means that co f = co f for any function f ∈ C(A ).

4. STRONG CE-PROPERTY FOR CONVEX μ-COMPACT SETS

The CE-property of a convex compact set A is as follows: the convex closure of every concave
function in C(A ) belongs to C(A ) [5, 6]. Using this terminology, we introduce the following definition.

Definition 2. A convex topological space A is said to have the strong CE-property if the convex
closure of every function in C(A ) belongs to C(A ).

It was shown in [5] that the CE-property of a convex compact set A implies that the set extr A is
closed. Moreover, the CE-property is equivalent to the assertion that the mapping

M+
1 (extr A ) � μ �→ b(μ) ∈ A

is open. (This mapping is surjective by Choquet’s theorem.)

Theorem 1. Let A be a convex μ-compact set. The following properties are equivalent:

(i) The mapping A × A × [0, 1] � (x, y, λ) �→ λx + (1 − λ)y ∈ A is open.

(ii) The barycentric mapping M+
1 (A ) � μ �→ b(μ) ∈ A is open.

(iii) The set A has the strong CE-property.

Properties (i)–(iii) imply that the set extr A is closed and, given A = co(extr A ), the mapping

M+
1 (extr A ) � μ �→ b(μ) ∈ A

is open.4

Proof. (i) ⇒ (ii) Let us show that property (i) implies that the mapping

Ψn : A ×n × Pn �
(
{xi}n

i=1, {πi}n
i=1

)
�→

n∑

i=1

πixi ∈ A

is open. Here

A ×n = A × · · · × A︸ ︷︷ ︸
n

for each n. Property (i) means that the mapping Ψ2 is open. Suppose that the mapping Ψn−1 is open.
In view of symmetry, it suffices to prove that Ψn is open on the open set

M0 = A ×n ×
(
Pn \ {(0, 0, . . . , 0

︸ ︷︷ ︸
n−1

, 1)}
)
.

4See the remark following the proof of the theorem.
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One can readily see that the mapping Πn given by

Pn \ {(0, 0, . . . , 0
︸ ︷︷ ︸

n−1

, 1)} � {πi}n
i=1 �→

({
πi

1 − πn

}n−1

i=1

, {1 − πn, πn}
)

∈ Pn−1 × P2

is open.
The fact that the mapping Ψn is open on M0 follows from the representation of Ψn as the product of

the mapping IdA ×n ×Πn, which is open on M0, the mapping

(
{xi}n

i=1, {πi}n−1
i=1 , {υ, 1 − υ}

)
�→

(n−1∑

i=1

πixi, xn, {υ, 1 − υ}
)

from A ×n × Pn−1 × P2 to A ×2 ×P2, which is open by the inductive hypothesis, and the mapping Ψ2,
which is open by property (i).

Let U be an arbitrary open subset of M+
1 (A ). Suppose that the set b(U) is not open. Then, for

some x0 ∈ b(U), there exists a sequence {xn} ⊂ A \ b(U) converging to x0.
Let μ0 be a measure in U such that b(μ0) = x0. By Lemma 1, we can assume that μ0 is finitely

supported; i.e.,

μ0 =
m∑

i=1

π0
i δ(x

0
i ) for some {x0

i }m
i=1 ∈ A m, {π0

i }m
i=1 ∈ Pm, m ∈ N.

We have already established that the mapping Ψm is open. Therefore, there exists a subsequence {xnk
}

of the sequence {xn} and a sequence {μk =
∑m

i=1 πk
i δ(xk

i )} of measures converging to μ0 such that

b(μk) =
m∑

i=1

πk
i xk

i = xnk

for all k. Since U is open, it follows that μk ∈ U for all sufficiently large k, which contradicts the definition
of the sequence {xn}.

(ii) ⇒ (iii) By Proposition 3, the upper semicontinuity of the function co f under condition (ii) follows
from assertion B in Lemma 5, applied to the function −f .

(iii) ⇒ (i) Let Ur(x) be a ball neighborhood of radius r of a point x ∈ A . One can readily see that
property (i) is equivalent to the following: for any x, y ∈ A , any λ ∈ [0, 1], and any sequence {zn} ⊂ A
converging to λx + (1 − λ)y, there exist points xm ∈ U1/m(x) and ym ∈ U1/m(y), m = 1, 2, 3 . . . , such
that

λmxm + (1 − λm)ym ∈ {zn}n>m for some λm ∈ [0, 1].

Therefore, if property (i) is violated, then there necessarily exist x0, y0 ∈ A , λ0 ∈ [0, 1], a sequence {zn}
converging to λ0x0 + (1 − λ0)y0, and a number m0 such that

co
(
U1/m0

(x0) ∪ U1/m0
(y0)

)
∩ {zn}n>m0 = ∅. (6)

Let f be a continuous function on A with range [0, 1] such that

f(x0) = f(y0) = 0 and f(x) = 1 ∀x ∈ A \
(
U1/2m0

(x0) ∪ U1/2m0
(y0)

)
.

Assume that the function co f , which coincides with the function co f by Corollary 1, is continuous.
Then

lim
n→+∞

co f(zn) = co f(λ0x0 + (1 − λ0)y0) = 0. (7)

For each n, every finitely supported measure in Mzn(A ) can be represented in the form
∑

i

πn
i δ(xn

i ) +
∑

j

υn
j δ(yn

j ) +
∑

k

ηn
k δ(rn

k ), (8)
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where {xn
i } ⊂ U1/2m0

(x0), {yn
j } ⊂ U1/2m0

(y0), {rn
k} ⊂ A \ (U1/2m0

(x0) ∪ U1/2m0
(y0)), and {πn

i },
{υn

j }, and {ηn
k } are sets of positive numbers such that

∑

i

πn
i +

∑

j

υn
j +

∑

k

ηn
k = 1 and

∑

i

πn
i xn

i +
∑

j

υn
j yn

j +
∑

k

ηn
k rn

k = zn.

It follows from (7) that for each n there exists a measure of the form (8) such that

lim
n→+∞

(∑

i

πn
i f(xn

i ) +
∑

j

υn
j f(yn

j ) +
∑

k

ηn
k f(rn

k )
)

= 0.

By the definition of f , this is possible only if

lim
n→+∞

η̄n = 0, where η̄n =
∑

k

ηn
k .

Let

π̄n =
∑

i

πn
i , ῡn =

∑

j

υn
j , and r̄n = η̄−1

n

∑

k

ηn
k rn

k .

Note that

x̄n = π̄−1
n

∑

i

πn
i xn

i ∈ U1/2m0
(x0) and ȳn = ῡ−1

n

∑

j

υn
j yn

j ∈ U1/2m0
(y0),

since the neighborhoods U1/2m0
(x0) and U1/2m0

(y0) are convex.

Without loss of generality, we can assume that π̄n ≥ ῡn for each n. Set

x̄′
n = (π̄n + η̄n)−1(π̄nx̄n + η̄nr̄n) and π̄′

n = π̄n + η̄n.

Then

zn = π̄′
nx̄′

n + ῡnȳn ∀n. (9)

Since the sequence {η̄n} tends to zero and the set A is bounded, it follows that x̄′
n ∈ U1/m0

(x0) for all
sufficiently large n, which, in view of ȳn ∈ U1/2m0

(y0) and (9), contradicts (6).

We have thereby proved that properties (i)–(iii) are equivalent.

Property (i) readily implies that the set extr A is closed.

To prove that properties (i)–(iii) imply that the mapping

M+
1 (extr A ) � μ �→ b(μ) ∈ A

is open, it suffices to show that, for each measure μ0 ∈ M+
1 (extr A ) and each sequence {xn} ⊂ A

converging to b(μ0) = x0, there exists a subsequence {xnk
} and a sequence {μk} of measures

in M+
1 (extr A ) converging to μ0 such that b(μk) = xnk

for all k. Property (ii) guarantees that, for given
measure μ0 and sequence {xn}, there exists a subsequence {xnk

} and a sequence {μk} of measures
in M+

1 (A ) converging to μ0 such that b(μk) = xnk
for all k. By Lemma 1, we can assume that the

sequence {μk} consists of finitely supported measures. By Lemma 3 applied to the set co(extr A ), there
exists a subsequence {xnkm

} of the sequence {xnk
} and a sequence {μ̂m} of measures in M+

1 (extr A )
converging to some measure μ̂0 ∈ M+

1 (extr A ) such that

b(μ̂m) = b(μkm) = xnkm
∀m and μ̂0 � μ0.

Since μ0 is maximal in M+
1 (A ) (which is guaranteed by Lemma 2), it follows that μ̂0 = μ0. Thus, the

subsequence {xnkm
} and the sequence {μ̂m} of measures have the desired properties.
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Using Theorem 1, one can prove that the class of convex compact sets in R
n with the strong CE-

property is sufficiently wide and includes the class of P-sets in R
n. (The definition can be found in [2, 8].)

Indeed, by using Theorems 1.8.1 and 1.8.2 in [2], one can readily prove that the mapping

A × A � (x, y) �→ λx + (1 − λ)y ∈ A

is open for each fixed λ ∈ [0, 1] for any P-set A in R
n, which guarantees that property (i) holds for this

set. Note that the class of P-sets contains all convex polyhedra and all strictly convex compact sets
in R

n; furthermore, every convex compact set in R
2 is a P-set [2]. However, Example 1.8.1 in [2] shows

that, already in R
3, not every convex compact set with the strong CE-property is a P-set.

Note also that there exist convex compact sets in R
n, n ≥ 3, without the strong CE-property. By

Theorem 1, any compact set with nonclosed set of extreme points can serve as an example. Protasov
(oral communication) proved that property (i) for convex compact sets in R

3 is equivalent to the
closedness of the set of extreme points and constructed an example of a convex compact set in R

4 that
has a closed set of extreme points, satisfies the CE-property, but fails to satisfy property (i). Thus, the
difference between the CE-property and the strong CE-property of convex compact sets in R

n reveals
itself for n ≥ 4.

It was shown in [5] that the image of any compact set with the CE-property under an open continuous
affine mapping also has the CE-property. The counterpart of this assertion for the strong CE-property
is established in the corollary given below (with condition (a)), which can readily be proved with the use
of the fact that properties (i) and (iii) in Theorem 1 are equivalent.

Corollary 2. Let A be a μ-compact convex set with the strong CE-property, and let Φ be a
continuous affine mapping of A onto a μ-compact set B. The set B has the strong CE-property,
provided that one of the following conditions is satisfied:

(a) Φ is an open mapping.

(b) B ⊂ A , and Φ2 = Φ.

By using Corollary 2 with condition (b) and Proposition 4 in Sec. 6, one can establish the strong
CE-property of the μ-compact set P+∞ of all probability distributions with countably many outcomes.
In this case, for Φ one should take the mapping that takes each density operator to the sequence of its
diagonal elements in some fixed basis.

5. ON CONVEX AND CONCAVE EXTENSIONS
Let A be a μ-compact convex set such that extr A = extr A and A = co(extr A ), and let f be

a closed lower-bounded function on extr A . By Proposition 2, the set Mx(extr A ) of all measures
in M+

1 (extr A ) with barycenter x is nonempty for each x ∈ A . Consequently, the functions

f∗(x) = inf
μ∈Mx(extr A )

∫

extr A
f(y)μ(dy), f∗(x) = sup

μ∈Mx(extr A )

∫

extr A
f(y)μ(dy) (10)

are well defined on A .
Since the set M+

1 (extr A ) is convex, it follows that the first of these functions is convex and the
second is concave on A . The functions f∗ and f∗ coincide with f on extr A . Hence they can be viewed
as the convex and concave extensions, respectively, of f to A . The properties of these extensions are
described in the following theorem.

Theorem 2. Let A be a convex μ-compact set such that extr A = extr A and A = co(extr A ),
and let f be a closed lower-bounded function on extr A .

(A) The function f∗ is the maximal convex closed extension of f to A .5 For each x ∈ A , there
exists a measure μ̂f

x ∈ Mx(extr A ) such that

f∗(x) =
∫

extr A
f(y) μ̂f

x(dy).

5In [3], this function is called the lower envelope of f .
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(B) If the mapping M+
1 (extr A ) � μ �→ b(μ) ∈ A is open, then the function f∗ is closed. If,

in addition, A = σ- co(extr A ), then the function f∗ is the minimal concave lower-bounded
extension of f to A , and

f∗(x) = sup
{+∞∑

i=1

πif(xi)
∣
∣
∣

+∞∑

i=1

πixi = x, {xi} ⊂ extr A , {πi} ∈ P∞

}

∀x ∈ A .

Remark 2. By Theorem 1, all main assumptions of Theorem 2 are satisfied for a convex μ-compact
set A that has the strong CE-property and satisfies A = co(extr A ).

Analogs of the assertions in Theorem 2 on the existence of the measure μ̂f
x and on the representation

of the function f∗ in the case A = σ- co(extr A ) do not hold for the functions f∗ and f∗, respectively
(see the examples in Remark 2 in [14]). The lower boundedness condition in assertion B is important.
Indeed, the function

g(x) =

{
f∗(x), x ∈ co(extr A ),
−∞, x ∈ A \ co(extr A ),

is a concave extension of f to A and is majorized by f∗.

Proof. Lemma 5 (for the set extr A ), together with the μ-compactness of the set extr A ⊂ A and
Proposition 2, implies the closedness of f∗ and f∗ and the existence of μ̂f

x.
Let g be a convex closed lower-bounded extension of f to A . By Jensen’s inequality,

g(x) ≤ inf
μ∈Mx(extr A )

∫

extr A
g(y)μ(dy) = inf

μ∈Mx(extr A )

∫

extr A
f(y)μ(dy) = f∗(x)

for all x ∈ A . Hence f∗ is the maximal convex closed extension of f to A .
If A = σ- co(extr A ), then it follows from Lemma 4 that atomic measures are dense in Mx(extr A )

for each x ∈ A . This, together with the lower semicontinuity of the functional (2), readily shows that it
suffices to take the supremum in the definition of f∗(x) over the set of atomic measures in Mx(extr A ).

Let g be a lower bounded concave extension of f to A . By applying Jensen’s inequality to this
function, we obtain

g(x) ≥ sup
{+∞∑

i=1

πig(xi)
∣
∣
∣

+∞∑

i=1

πixi = x, {xi} ⊂ extr A , {πi} ∈ P∞

}

= sup
{+∞∑

i=1

πif(xi)
∣
∣
∣

+∞∑

i=1

πixi = x, {xi} ⊂ extr A , {πi} ∈ P∞

}

= f∗(x)

for all x ∈ A . Hence f∗ is the minimal lower-bounded concave extension of f to A .

Theorem 2 implies the following generalization of Proposition 9 in [5] to the case of μ-compact convex
sets.

Corollary 3. Suppose that A is a convex μ-compact set with the strong CE-property such that
A = co(extr A ).

For each function f ∈ C(extr A ), the function f∗ defined by the first formula in (10) is a
continuous bounded convex extension of f to A and coincides with the supremum of all convex
closed extensions of f to A . If, in addition, A = σ- co(extr A ), then

f∗(x) = inf
{+∞∑

i=1

πif(xi)
∣
∣
∣

+∞∑

i=1

πixi = x, {xi} ⊂ extr A , {πi} ∈ P∞

}

∀x ∈ A ,

and f∗ coincides with the supremum of all convex upper-bounded extensions of f to A .
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For the function f∗, one can state an assertion dual to the assertion in Corollary 3.
Note that if a set A satisfying the assumptions of Corollary 3 is not compact, then it is not obvious

at all that every function in C(extr A ) has at least one convex extension in C(A ). For compact A , this
property is equivalent to the closedness of the set extr A [5, Corollary 2].

Note the following criterion, to be used in the next section, for the continuity of the convex closure of
concave functions.

Corollary 4. Suppose that A is a convex μ-compact set that has the strong CE-property and
satisfies A = co(extr A ).

Let f be a concave lower-bounded closed function on A such that −f ∈ P̂ (A ). Then

{co f ∈ C(A )} ⇔ {f |extr A ∈ C(extr A )}.

Proof. By Proposition 3, in view of the last assertion in Theorem 1,

co f(x) = inf
μ∈Mx(extr A )

∫

extr A
f(y)μ(dy) = f∗(x) ∀x ∈ A

for each function f of the form indicated. If f is continuous and bounded on extr A , then, by Corollary 3,
the function co f = f∗ is continuous and bounded on A . The converse is obvious, since the functions f
and co f coincide on extr A by Proposition 3.

6. SOME APPLICATIONS

Let H be a separable Hilbert space, and let T(H ) be the separable Banach space of all trace-class
operators in H with the trace norm ‖A‖1 = Tr

√
A∗A. A density operator (a quantum state) is a

positive trace class operator ρ with unit trace [4, 15]. The set S(H ) of all density operators is a convex
closed subset of T(H ); it is compact if and only if H is finite-dimensional. The set extr S(H ) is closed
and consists of pure states (one-dimensional projections). Moreover, S(H ) = σ- co(extr S(H )) by
the spectral theorem. The pure state equal to the projection onto the subspace spanned by a unit vector ϕ
will be denoted by Pϕ.

Using the sufficient condition given in Proposition 1, one can prove the μ-compactness of S(H ). To
this end, for F (S(H )) one can take a family of functions of the form ρ �→ Tr Hρ, where H is an arbitrary
unbounded positive operator with discrete spectrum of finite multiplicity. (See [11] for details.) Using
Lemma 3 in [16] with m = 2 and Theorem 1, we arrive at the following assertion.

Proposition 4. The set S(H ) is a convex μ-compact set with the strong CE-property.

Note that the μ-compactness of S(H ), together with Lemma 4, implies a useful result stating
that atomic measures are dense in the set of all probability measures on extr S(H ) with a given
barycenter: each measure μ0 in M+

1 (extr S(H )) is the limit of a sequence {μn} of atomic measures
in M+

1 (extr S(H )) such that b(μn) = b(μ0) for all n.

The von Neumann entropy of a density operator ρ is defined by the expression

H(ρ) = −
∑

i

λi log λi,

where {λi} is the set of eigenvalues of ρ, and is a closed concave function on S(H ) ranging
in [0,+∞] [17].

Consider a composite quantum system whose states are density operators in the tensor product
H ⊗ K of two separable Hilbert spaces H and K characterizing separate subsystems. Consider
the partial entropy, which is the closed concave function

fH : ω �→ H(TrK ω) ∈ [0,+∞]
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on S(H ⊗ K ), where TrK ( · ) is the partial trace over the space K [4]. The value of the convex
closure of fH on a state ω ∈ S(H ⊗ K ) is an important characteristic of this state. It is called the
entanglement of formation (EoF) and is denoted by EF (ω) [18, 19]; i.e.,

EF (ω) = co fH (ω) ∀ω ∈ S(H ⊗ K ).

One can readily show that EF (ω) = 0 if and only if ω is a nonentangled state, i.e., lies in the convex
closure of the set of pure product states.

In a similar way, one can define the function fK : ω �→ H(TrH ω). Although the functions fH

and fK are distinct, they coincide on the set extr S(H ⊗ K ) [4]. Hence the definition of the EoF
is independent of the choice of the space over which the partial trace is taken; i.e.,

EF = co fH = co fK . (11)

The following observations concerning the properties of the EoF can be obtained from these results
in view of Proposition 4.

Proposition 5. (A) The EoF is the maximal closed convex function coinciding with the partial
entropy on the set of pure states.

(B) Let L be a subspace of H ⊗ K . The EoF is continuous and bounded on the set

S(L ) = {ω ∈ S(H ⊗ K ) | suppω ⊆ L }
if and only if the function

ϕ �→ fH (Pϕ) = H(TrK Pϕ)

is continuous and bounded on the unit sphere in L .
(C) The EoF is continuous and bounded on S(H ⊗ K ) if and only if either dim H < +∞

or dimK < +∞.6

Proof. Assertion A follows from Proposition 3 and assertion A of Theorem 2.
Assertion B follows from Corollary 4.
Assertion C follows from B in view of (11).

Assertion A in Proposition 5 is of interest in connection with the fact that each function serving as
a candidate for a measure of entanglement should coincide on the set of pure states with the partial
entropy fH [5].

If H and K are infinite-dimensional spaces, then the EoF is not a continuous function on S(H ⊗
K ), but there exists subspaces L ⊆ H ⊗ K such that although the functions fH and fK are
unbounded on the set S(L ), the assumption in assertion B in Proposition 5 is satisfied. By this
assertion, the EoF is continuous and bounded on the set S(L ). This result is important in that, by
virtue of an observation in [21], the output entropy of any quantum channel can be represented as the
restriction of the EoF to the set S(L ) for some L ⊆ H ⊗ K . In practice, one can prove that the
assumption in assertion B holds for a given subspace L by using a sufficient condition for the continuity
of quantum entropy for noncompact sets of states [22].

From Corollary 3, in view of Proposition 4 and the spectral theorem, we obtain the following assertion,
which can be used for constructing continuous convex (or concave) characteristics of quantum states.

Corollary 5. For each function f ∈ C(extr S(H )), the function

f∗(ρ) = inf
{+∞∑

i=1

πif(ρi)
∣
∣
∣

+∞∑

i=1

πiρi = ρ, {ρi} ⊂ extr S(H ), {πi} ∈ P∞

}

is a convex continuous extension of f to the set S(H ). This function coincides with the supremum
of all convex closed extensions of f to S(H ) and with the supremum of all convex upper-bounded
extensions of f to S(H ).

6Note that the direct proof of continuity of the EoF for the case in which dimH < +∞ and dim K < +∞ is not trivial [20].
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Since the set extr S(H ) consists of pure states (one-dimensional projections), it follows that the
set C(extr S(H )) is isomorphic to the set of continuous bounded functions defined on the unit sphere
of the Hilbert space H and invariant with respect to multiplication of the argument by unimodular
complex numbers.

Using Corollary 5, one can construct a continuous bounded quasi-measure of entanglement,7 closely
related to the entanglement of formation EF . Let n ∈ N. For an arbitrary pure state ω ∈ S(H ⊗ K ),
let

fn
H (ω) = −

n∑

i=1

λi log λi +
( n∑

i=1

λi

)

log
( n∑

i=1

λi

)

,

where {λi}n
i=1 is the set of n largest eigenvalues (with multiplicities taken into account) of the states

TrK ω ∼= TrH ω. By Proposition 4 in [17], the sequence {fn
H } of functions in C(extr S(H ⊗ K )) is

increasing and converges pointwise to the partial entropy fH .

Let En
F be the extension (fn

H )∗ of the function fn
H to the set S(H ⊗ K ) defined in Corollary 5

for f = fn
H . By this corollary, En

F belongs to P (S(H ⊗K )). By construction, the function En
F has the

following properties:

1. En
F (ω) = 0 if and only if ω is a nonentangled state.

2. En
F (ω) ≤ EF (ω) for each state ω.

3. En
F (ω) = EF (ω) for each state ω such that either rankTrK ω ≤ n or rankTrH ω ≤ n.

4. 0 ≤ En
F (ω) ≤ log n for each state ω.

The sequence {En
F } of functions in P (S(H ⊗ K )) is increasing. Consequently, its pointwise

limit E+∞
F is a convex closed function on S(H ⊗ K ) and coincides on the set of pure states with

the partial entropy. It is of interest to study the relation between E+∞
F and EF . By construction,

we have E+∞
F (ω) ≤ EF (ω) for an arbitrary state ω, where the equality occurs for each pure state ω

and also, by property 3, for each state ω such that either rankTrK ω ≤ +∞ or rankTrH ω ≤ +∞.
Proving that E+∞

F and EF coincide on the entire S(H ⊗ K ) would mean that EF is a function of the
class P̂ (S(H ⊗ K )). 8

7. POSSIBLE GENERALIZATIONS

The conditions that the set A is separable, metrizable, and μ-compact are substantially used when
proving the main results of the paper. Since these conditions are rather restrictive, let us briefly discuss
possible generalizations of these results to a wider class of convex sets.

First, note that the main result of the paper, Theorem 1, can be generalized in a straightforward
manner to the class of compact convex subsets of an arbitrary locally convex linear topological space. To
obtain this generalization, one should use Proposition I.2.3 in [3] instead of Lemma 1 and slightly modify
the proof of Theorem 1. However, it is very difficult in this case to weaken the compactness requirements.

Note also that one can prove the equivalence of properties (i) and (iii) in Theorem 1 where the
condition of μ-compactness of the set is replaced by the condition that the convex closure and the convex
envelope of an arbitrary continuous bounded function on this set coincide.

7As was noted above, each measure of entanglement coincides on the set of pure states with the partial entropy and hence
cannot be continuous in the infinite-dimensional case.

8This conjecture has now been proved by the author.
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