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Quantum channels are trace-preserving completely positive linear maps between Banach spaces
of trace-class operators (Schatten classes of order 1); these are noncommutative analogs of Markov
operators in classical probability theory. They also play the role of dynamical maps in quantum theory|[1,
Chap. 6].

The main characteristics determining the information properties of a quantum channel include
its classical entanglement-assisted and unassisted capacities. The classical (unassisted) capacity
C(®) of a channel ® determines the limit rate of classical information transmission through ® with
any block coding at the input and the corresponding measurement at the output, and the classical
entanglement-assisted channel capacity Ce,(®) supposes, in addition, the presence of an entangled
state between the input and the output of the channel ® (a detailed description of transmission
protocols can be found in [1, Chap. 8]). Since entanglement is an additional resource, it follows that
Cea(®) > C(®) for any channel ®.

Let H be a separable Hilbert space. By T(#) we denote the Banach space of all trace-class operators
on H and by &(H), the subset of T(H) consisting of all positive operators with trace 1; we refer to such
operators as quantum states and denote them by Greek letters p,o,... . We denote a set of quantum
states {p;} with probability distributions {m;} by {m;, p;} and call it an ensemble of states; the state
p =Y, mip; is called the average state of the ensemble {7;, p; }.

A quantum channel is a trace-preserving completely positive linear map ®: T(H4) — T(Hp) [,
Chap. 6]. Let H(p) be the von Neumann entropy of a state p, and let H(p||o) be the quantum relative
entropy of states p and o. For a given channel ® and any ensemble {7, p;} of input quantum states, the
output x-quantity is determined by the expression

ol{mi i) = S mH (@)1 2(7) = H(@(E) ~ S mH (D

where the second relation holds under the condition H(®(p)) < +oc.
If a channel ® is finite-dimensional (i.e., dim H 4, dim Hp < 4+o0), then the Holevo—Schumacher—
Westmoreland (HSW) theorem implies

C(®) = lim n 'Oy (®%"),

n—-+o0o

where C,, is the y-capacity of the channel, which is defined by
Cx(®) = sup xo({m,pi});

{mi,pi}
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here the supremum is taken over all ensembles of quantum states.

The Bennett—Shor—Smolin—Thapliyal (BSST) theorem [2] gives the following expression for the
classical entanglement-assisted capacity of a finite-dimensional channel:

Cea(®) = sup I(2, p),
p

where I(®,p) = H(p) + H(®(p)) — H(P, p) is the quantum mutual information of ® in the state
p € &(H,) (here H(®, p) is the exchange entropy of the channel ® in the state p).

Determining the capacity of an infinite-dimensional quantum channel requires imposing certain
constraints on the states used as codes, e.g., a constraint on the mean energy of these states. We take

a positive self-adjoint operator F' on 4 and subject the input states p(™ of the channel ®®" to linear
constraints of the form!

Tr p™WFM™ < nE, (1)
where
F("):F®---®I—|—"'+I®"'®F. (2)

Another special feature of the infinite-dimensional case is the necessity of using generalized ensem-
bles of quantum states. Such an ensemble can be defined as the Borel probability measure g on the
set G(H ) of quantum states; its average state is the barycenter p(u) of the measure u. The output
x-quantity of a generalized ensemble p for a channel @ is defined as

/ H(®(0)[|2(p(10))) pu(dp) = H (@ (p(1))) — / H(®(p)) pldp),

where the second equality holds under the condition H(®(p(u))) < +oo[1, Chap. 10].

The operational definition of the classical entanglement-assisted and unassisted capacities of a
quantum channel with linear constraints can be found in [3], where the corresponding generalizations of
the HSW and BSST theorems were also proved under certain conditions on the form of the constraints.
A maximally complete generalization of the BSST theorem for an infinite-dimensional channel with
linear constraints is given in [4].

By the HSW theorem for a channel with linear constraints [3, Proposition 3], the classical
entanglement-assisted capacity of a channel ® with constraint (1) is determined by the regularized
expression

C(®,F,E) = lim n~'C(®%", F™ nE),

n— 400
in which the operator F(™ is defined by (2) and

OX(q>7F7E) = SU.p X‘I?(lu) (3)
wTrp(p) F<E

By the BSST theorem for a channel with linear constraints [4, Theorem 1], the classical capacity of a
channel ® with constraint (1) is determined by the expression

Oea(q)7F7E) = sup I(p7q))7
p:TrpF<E

where I(p, ®) is the quantum mutual information (appropriately generalized to the infinite-dimensional
case).

For any quantum channel ®, we have
Cea(®, F,E) 2 C(®, F, E), (4)

which follows straightiorwardly from the operational definitions of the channel capacities under consid-
eration. The strict inequality in (4) means that using the entangled state between the input and the

!The quantity Tr p(™ F™ (finite or infinite) is defined as sup, Tr p(™ P,F™ P, where P, is the spectral projection operator
F™ corresponding to the interval [0, ¢].
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output increases the limit speed of information transmission over the channel ® and gives a gain in the
size of an optimal code; this gain increases exponentially as n — oco. There naturally arises the question
about conditions under which (4) becomes an equality (a strict inequality). For an unconstrained
finite-dimensional channel, in [5], a criterion for the equality Ces(®) = C, (®) was obtained, which is
formally stronger than the equality Ceo(®) = C(®) (these equalities are equivalent if the y-capacity of
the channel @ is additive).

In this paper, we obtain sufficient conditions under which (4) is a strict inequality for bosonic
Gaussian channels, which play a central role in the theory of quantum information systems with
continuous variables.

Let Hx (X = A, B,...) be the space of an irreducible representation of canonical commutation
relations

Wx (2)Wx (2') = exp [—%Ax(z, z/)} Wx (2 + 2),

where (Zx,Ax) is a symplectic space and the Wx (z) are the Weyl operators [1, Chap. 11]. By sx we
denote the number of modes of the system X, which is determined by 2sx = dim Zx.

A bosonic Gaussian channel ®: T(H4) — T(Hp) is determined by the action of the adjoint map
O*: B(Hp) — B(Ha) on the Weyl operators:

" (Wp(z)) = Wa(Kz)exp [z’lz — %zTaz} , z € Zp,

where K is a linear operator Zg — Z4, lis a row (2sp)-vector, and « is a real symmetric (2s5) % (2s5)
matrix satisfying the inequality

o> i% [AB _ KTAAK]

For a long time, one of the main open problems in quantum information theory was the conjecture
about Gaussian minimizers, according to which the output entropy of a Gaussian channel ®, i.e., the
function p — H(®(p)), attains its minimum at a pure Gaussian state.

Recently, the Gaussian minimizer conjecture has been proved for a large class of Gaussian channels
with the property of gauge covariance or contravariance [6]. Among the many consequences of this
result, we mention the following theorem.

Theorem 1. Let ® be a Gaussian nontrivial (K # 0) gauge-covariant or gauge-contravariant
channel, and let F' =3, el-jajaj be a gauge-invariant oscillatory energy operator (here [€;;] is a
positive definite matrix). Then

Cea(®,F,E) > C(®,F,E). (5)

Proof. As shown in [6] and [7], it follows from the truth of the Gaussian minimizer conjecture for a
channel ® that

(2) there exists an optimal ensemble-measure p at which the supremum in (3) is attained, and the
barycenter of this measure is a nondegenerate Gaussian state.

Combining these assertions, observing that the finiteness of Tr F'p for an operator F' of the form
specified above implies the finiteness of the entropy H(p), and applying Theorem 2 from [4], we conclude
that the equality Cea(®, F, E) = C(®, F, E) can hold only if @ is a classical-quantum channel of discrete
type. By Proposition 5 from [4], this means that K = 0, i.e., ® is a completely depolarizing channel, for
which Cea (@, F, E) = C(®, F, E) = 0. O
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Remark 1. Theorem 1 is valid for any quadratic energy operator F', provided that condition (18) from [8]
holds in the form of a strict operator inequality, because this ensures the satisfiability of conditions (1)

and (2) specified above.?

Remark 2. The assumptions of Theorem 1 ensuring the strictness of inequality (5) are essential: there
exist nontrivial Gaussian channels with linear constraints for which

Cea(®, F,E) = C(®,F, E) = C\(®, F, E) > 0.

The simplest one-mode (s = 1) example of such a channel ® and an operator F' is given in [9]. An
important special feature of this example is the noncompactness of the solution set of the inequality
Tr Fp < E, which implies the absence of an optimal measure for the channel ® with constraint (1).

Remark 3. Under the assumptions of Theorem 1, the gain from entanglement assistance is estimated
from below as

Cea(®, F, E) = C(®, F, E) = H(p(opt)) + H(®(po)) — H(®, (ot ),

where p(uopt) is the average state of an optimal ensemble (determined by using an optimization
procedure described in [7]) and pg is the pure vacuum state.
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2If Ran K = Za, then, by virtue of Proposition 5 from [4], the requirement that the barycenter in condition (2) is
nondegenerate is not necessary for proving Theorem 1, and it suffices to require the fulfillment of condition (18) from [8] in
its usual form.
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