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Quantum channels are trace-preserving completely positive linear maps between Banach spaces
of trace-class operators (Schatten classes of order 1); these are noncommutative analogs of Markov
operators in classical probability theory. They also play the role of dynamical maps in quantum theory [1,
Chap. 6].

The main characteristics determining the information properties of a quantum channel include
its classical entanglement-assisted and unassisted capacities. The classical (unassisted) capacity
C(Φ) of a channel Φ determines the limit rate of classical information transmission through Φ with
any block coding at the input and the corresponding measurement at the output, and the classical
entanglement-assisted channel capacity Cea(Φ) supposes, in addition, the presence of an entangled
state between the input and the output of the channel Φ (a detailed description of transmission
protocols can be found in [1, Chap. 8]). Since entanglement is an additional resource, it follows that
Cea(Φ) ≥ C(Φ) for any channel Φ.

Let H be a separable Hilbert space. By T(H) we denote the Banach space of all trace-class operators
on H and by S(H), the subset of T(H) consisting of all positive operators with trace 1; we refer to such
operators as quantum states and denote them by Greek letters ρ, σ, . . . . We denote a set of quantum
states {ρi} with probability distributions {πi} by {πi, ρi} and call it an ensemble of states; the state
ρ =

∑
i πiρi is called the average state of the ensemble {πi, ρi}.

A quantum channel is a trace-preserving completely positive linear map Φ: T(HA) → T(HB) [1,
Chap. 6]. Let H(ρ) be the von Neumann entropy of a state ρ, and let H(ρ‖σ) be the quantum relative
entropy of states ρ and σ. For a given channel Φ and any ensemble {πi, ρi} of input quantum states, the
output χ-quantity is determined by the expression

χΦ({πi, ρi}) .
=

∑

i

πiH(Φ(ρi)‖Φ(ρ)) = H(Φ(ρ))−
∑

i

πiH(Φ(ρi)),

where the second relation holds under the condition H(Φ(ρ)) < +∞.
If a channel Φ is finite-dimensional (i.e., dimHA,dimHB < +∞), then the Holevo–Schumacher–

Westmoreland (HSW) theorem implies

C(Φ) = lim
n→+∞

n−1Cχ(Φ
⊗n),

where Cχ is the χ-capacity of the channel, which is defined by

Cχ(Φ) = sup
{πi,ρi}

χΦ({πi, ρi});
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here the supremum is taken over all ensembles of quantum states.
The Bennett–Shor–Smolin–Thapliyal (BSST) theorem [2] gives the following expression for the

classical entanglement-assisted capacity of a finite-dimensional channel:

Cea(Φ) = sup
ρ

I(Φ, ρ),

where I(Φ, ρ) = H(ρ) +H(Φ(ρ))−H(Φ, ρ) is the quantum mutual information of Φ in the state
ρ ∈ S(HA) (here H(Φ, ρ) is the exchange entropy of the channel Φ in the state ρ).

Determining the capacity of an infinite-dimensional quantum channel requires imposing certain
constraints on the states used as codes, e.g., a constraint on the mean energy of these states. We take
a positive self-adjoint operator F on HA and subject the input states ρ(n) of the channel Φ⊗n to linear
constraints of the form1

Tr ρ(n)F (n) ≤ nE, (1)

where

F (n) = F ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ F. (2)

Another special feature of the infinite-dimensional case is the necessity of using generalized ensem-
bles of quantum states. Such an ensemble can be defined as the Borel probability measure μ on the
set S(HA) of quantum states; its average state is the barycenter ρ(μ) of the measure μ. The output
χ-quantity of a generalized ensemble μ for a channel Φ is defined as

χΦ(μ)
.
=

ˆ
H(Φ(ρ)‖Φ(ρ(μ)))μ(dρ) = H(Φ(ρ(μ)))−

ˆ
H(Φ(ρ))μ(dρ),

where the second equality holds under the condition H(Φ(ρ(μ))) < +∞ [1, Chap. 10].
The operational definition of the classical entanglement-assisted and unassisted capacities of a

quantum channel with linear constraints can be found in [3], where the corresponding generalizations of
the HSW and BSST theorems were also proved under certain conditions on the form of the constraints.
A maximally complete generalization of the BSST theorem for an infinite-dimensional channel with
linear constraints is given in [4].

By the HSW theorem for a channel with linear constraints [3, Proposition 3], the classical
entanglement-assisted capacity of a channel Φ with constraint (1) is determined by the regularized
expression

C(Φ, F,E) = lim
n→+∞

n−1Cχ(Φ
⊗n, F (n), nE),

in which the operator F (n) is defined by (2) and

Cχ(Φ, F,E) = sup
μ:Tr ρ(μ)F≤E

χΦ(μ). (3)

By the BSST theorem for a channel with linear constraints [4, Theorem 1], the classical capacity of a
channel Φ with constraint (1) is determined by the expression

Cea(Φ, F,E) = sup
ρ:Tr ρF≤E

I(ρ,Φ),

where I(ρ,Φ) is the quantum mutual information (appropriately generalized to the infinite-dimensional
case).

For any quantum channel Φ, we have

Cea(Φ, F,E) ≥ C(Φ, F,E), (4)

which follows straightforwardly from the operational definitions of the channel capacities under consid-
eration. The strict inequality in (4) means that using the entangled state between the input and the

1The quantity Tr ρ(n)F (n) (finite or infinite) is defined as supt Tr ρ
(n)PtF

(n)Pt, where Pt is the spectral projection operator
F (n) corresponding to the interval [0, t].
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output increases the limit speed of information transmission over the channel Φ and gives a gain in the
size of an optimal code; this gain increases exponentially as n → ∞. There naturally arises the question
about conditions under which (4) becomes an equality (a strict inequality). For an unconstrained
finite-dimensional channel, in [5], a criterion for the equality Cea(Φ) = Cχ(Φ) was obtained, which is
formally stronger than the equality Cea(Φ) = C(Φ) (these equalities are equivalent if the χ-capacity of
the channel Φ is additive).

In this paper, we obtain sufficient conditions under which (4) is a strict inequality for bosonic
Gaussian channels, which play a central role in the theory of quantum information systems with
continuous variables.

Let HX (X = A,B, . . . ) be the space of an irreducible representation of canonical commutation
relations

WX(z)WX(z′) = exp

[

− i

2
ΔX(z, z′)

]

WX(z′ + z),

where (ZX ,ΔX) is a symplectic space and the WX(z) are the Weyl operators [1, Chap. 11]. By sX we
denote the number of modes of the system X, which is determined by 2sX = dimZX .

A bosonic Gaussian channel Φ: T(HA) → T(HB) is determined by the action of the adjoint map
Φ∗ : B(HB) → B(HA) on the Weyl operators:

Φ∗(WB(z)) = WA(Kz) exp

[

ilz − 1

2
z�αz

]

, z ∈ ZB ,

where K is a linear operator ZB → ZA, l is a row (2sB)-vector, and α is a real symmetric (2sB)× (2sB)
matrix satisfying the inequality

α ≥ ± i

2

[

ΔB −K�ΔAK

]

.

For a long time, one of the main open problems in quantum information theory was the conjecture
about Gaussian minimizers, according to which the output entropy of a Gaussian channel Φ, i.e., the
function ρ 	→ H(Φ(ρ)), attains its minimum at a pure Gaussian state.

Recently, the Gaussian minimizer conjecture has been proved for a large class of Gaussian channels
with the property of gauge covariance or contravariance [6]. Among the many consequences of this
result, we mention the following theorem.

Theorem 1. Let Φ be a Gaussian nontrivial (K 
= 0) gauge-covariant or gauge-contravariant
channel, and let F =

∑
ij εija

†
iaj be a gauge-invariant oscillatory energy operator (here [εij ] is a

positive definite matrix). Then

Cea(Φ, F,E) > C(Φ, F,E). (5)

Proof. As shown in [6] and [7], it follows from the truth of the Gaussian minimizer conjecture for a
channel Φ that

(1) C(Φ, F,E) = Cχ(Φ, F,E);

(2) there exists an optimal ensemble-measure μ at which the supremum in (3) is attained, and the
barycenter of this measure is a nondegenerate Gaussian state.

Combining these assertions, observing that the finiteness of TrFρ for an operator F of the form
specified above implies the finiteness of the entropy H(ρ), and applying Theorem 2 from [4], we conclude
that the equality Cea(Φ, F,E) = C(Φ, F,E) can hold only if Φ is a classical-quantum channel of discrete
type. By Proposition 5 from [4], this means that K = 0, i.e., Φ is a completely depolarizing channel, for
which Cea(Φ, F,E) = C(Φ, F,E) = 0.
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Remark 1. Theorem 1 is valid for any quadratic energy operator F , provided that condition (18) from [8]
holds in the form of a strict operator inequality, because this ensures the satisfiability of conditions (1)
and (2) specified above.2

Remark 2. The assumptions of Theorem 1 ensuring the strictness of inequality (5) are essential: there
exist nontrivial Gaussian channels with linear constraints for which

Cea(Φ, F,E) = C(Φ, F,E) = Cχ(Φ, F,E) > 0.

The simplest one-mode (s = 1) example of such a channel Φ and an operator F is given in [9]. An
important special feature of this example is the noncompactness of the solution set of the inequality
TrFρ ≤ E, which implies the absence of an optimal measure for the channel Φ with constraint (1).

Remark 3. Under the assumptions of Theorem 1, the gain from entanglement assistance is estimated
from below as

Cea(Φ, F,E) − C(Φ, F,E) ≥ H(ρ(μopt)) +H(Φ(ρ0))−H(Φ, ρ(μopt)),

where ρ(μopt) is the average state of an optimal ensemble (determined by using an optimization
procedure described in [7]) and ρ0 is the pure vacuum state.
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2If RanK = ZA, then, by virtue of Proposition 5 from [4], the requirement that the barycenter in condition (2) is
nondegenerate is not necessary for proving Theorem 1, and it suffices to require the fulfillment of condition (18) from [8] in
its usual form.
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