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Abstract—The Schmidt number of a state of an infinite-dimensional composite quantum system is
defined and several properties of the corresponding Schmidt classes are considered. It is shown that
there are states with given Schmidt number such that any of their countable convex decompositions
does not contain pure states of finite Schmidt rank. The classes of infinite-dimensional partially
entanglement-breaking channels are considered, and generalizations of several properties of such
channels, which were obtained earlier in the finite-dimensional case, are proved. At the same time,
it is shown that there are partially entanglement-breaking channels (in particular, entanglement-
breaking channels) such that all the operators in any of their Kraus representations are of infinite
rank.
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1. INTRODUCTION

The Schmidt rank of a pure state and its “generalization” to mixed states, which is called the Schmidt
number, are important quantitative characteristics of entanglement in composite quantum systems.

The Schmidt rank of a pure state of a composite system AB described by the unit vector
|ψ〉 ∈ HA ⊗HB (where HA and HB are the Hilbert states corresponding to the systems A and B) is
defined as the number of nonzero terms in the Schmidt decomposition

|ψ〉 =
∑

i

λi|αi〉 ⊗ |βi〉

of this vector; it coincides with the rank of partial states TrHB
|ψ〉〈ψ| and TrHA

|ψ〉〈ψ|.
The Schmidt number of a mixed state ω of a finite-dimensional composite quantum system AB

was defined in [1] as the maximum Schmidt rank in the ensemble of pure states with average state ω
minimized over all of such ensembles (see Sec. 3). In [1], it is shown that the Schmidt number does
not increase under the action of LOCC-operations and the set of states whose Schmidt number does
not exceed k (the Schmidt class of order k) can be characterized in terms of k-positive maps.1 Various
properties of the Schmidt number and Schmidt classes are considered in subsequent papers [2]–[4].

The Schmidt number is significantly used in the definition of partially entanglement-breaking
quantum channels [5]. It was recently discovered in [6, Theorem 1] that there is a relationship between
this notion and a necessary condition for equality in the law stating that the Holevo quantity of an
ensemble of quantum states does not increase under the action of a quantum channel.

*E-mail: msh@mi.ras.ru
1The definitions of LOCC-operations and k-positive maps, as well as of several other notions of noncommutative probability
theory, are given in Sec. 2.
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The present paper deals with infinite-dimensional generalizations of the notions listed above. A
partial motivation of this paper is the author’s desire to generalize the above-mentioned result [6] to
the case of infinite-dimensional quantum systems and channels.

In Sec. 3, we consider the definition of the Schmidt number for states of an infinite-dimensional
composite quantum system. Since the existence of separable not countably decomposable states
(see [7]) shows that the finite-dimensional formula for the Schmidt number is not correct, a “continuous”
modification of this formula is proposed on the basis of the notion of essential supremum of a function
with respect to a given measure. It is shown that this formula gives an adequate definition of the Schmidt
number in the sense that the corresponding Schmidt classes (the sets of states with Schmidt number
≤ k) coincide with the convex closures of sets of pure states of Schmidt rank ≤ k.

The properties of the Schmidt classes in the infinite-dimensional case are considered in Sec. 4. In
particular, the characterization of the Schmidt class of order k in terms of k-positive maps (generalizing
Theorem 1 in [1]) is proved. It is shown that an arbitrary state of Schmidt class of order k is the barycenter
of some probability measure supported in the set of pure states of Schmidt rank ≤ k. It is simultaneously
proved that there are states with a given Schmidt number such that any of their convex decompositions
does not contain pure states of finite Schmidt rank.

The definition and several properties of infinite-dimensional partially entanglement-breaking quan-
tum channels are considered in Sec. 5. It is shown that, in contrast to the finite-dimensional case,
the class of partially entanglement-breaking channels of order k does not coincide with the class of
channels such that the operators in their Kraus representation are of rank ≤ k (the last class is a
proper subclass of the first class). Moreover, it is shown that there are partially entanglement-breaking
channels (in particular, entanglement-breaking channels) such that all the operators in any of their
Kraus representations are of infinite rank.

2. PRELIMINARIES

The following notation is used:

• H, H′, and K are separable Hilbert spaces;

• B(H) is the Banach space of all bounded operators in H;

• T(H) is the Banach space of all trace-class operators in H;

• T+(H) is the cone of all positive trace-class operators in H;

• S(H) is the subset of the cone T+(H) consisting of operators with unit trace.

The closure, convex hull, convex closure, and the set of extreme points of a subset A of a topological
linear space will be denoted by cl(A), co(A), co(A), and extr(A), respectively [8]–[10].

The operators in S(H) are denoted by ρ, σ, ω, . . . and are called density operators or states,
because each density operator uniquely determines a normal state on the algebra B(H). The states
corresponding to density operators of rank 1 are said to be pure. The set of pure states in S(H) coincides
with extr S(H).

For vectors and operators of rank 1 in a Hilbert space, we use the Dirac notation |ϕ〉, |χ〉〈ψ|, . . .
(where the action of the operator |χ〉〈ψ| on the vector |ϕ〉 is the vector 〈ψ,ϕ〉 |χ〉).

We denote the unit operator in a Hilbert space H and the identity transformation of the space T(H)
by IH and IdH, respectively.

Let P(A) be the set of Borel probability measures on a closed subset A ⊆ S(H) equipped with
the weak convergence topology [11], [12]. This set can be regarded as a complete separable metric
space [12]. The barycenter b(μ) of the measure μ in P(A) is the state in co(A) defined by the Bochner
integral

b(μ) =
ˆ
A

ρμ (dρ).
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For an arbitrary subset B ⊆ co(A), the subset of the set P(A) consisting of measures with barycenter
in B will be denoted by PB(A).

A finite or countable set of states {ρi} ⊂ A ⊆ S(H) with the corresponding probability distribution
{πi} is traditionally called an ensemble and is denoted by {πi, ρi}. An ensemble of states can be
considered as an atomic (discrete) measure in P(A). The barycenter of this measure is the average
state

∑
i πiρi of the corresponding ensemble.

A linear map Φ: T(H) → T(H′) is said to be k-positive if, for any k-dimensional Hilbert space K,
the map Φ∗ ⊗ Id∗

K of the C∗-algebra B(H′ ⊗K) into the C∗-algebra B(H ⊗K) is positive. If a map Φ
is k-positive for any k, then it is said to be completely positive. A completely positive trace-preserving
linear map is called a quantum channel [13], [14]. The set of all quantum channels from T(H) into
T(H′) is denoted by F(H,H′).

A state ω ∈ S(H ⊗K) is said to be separable or not entangled if it belongs to the convex closure
of the set of all pure state-products in S(H ⊗K) (i.e., states of the form ρ ⊗ σ, where ρ ∈ S(H) and
σ ∈ S(K)); otherwise, it is said to be entangled.

The key notion in the theory of entanglement is the notion of LOCC-operation, i.e., of transformation
of states in S(H⊗K) that can be reduced to a sequence of local operations (Local Operation) over each
of the subsystems and to the exchange of classical information between these subsystems (Classical
Communication) [14], [15]. The simplest examples of LOCC-operations are quantum channels of the
form Φ ⊗ Ψ, where Φ ∈ F(H,H) and Ψ ∈ F(K,K).

3. SCHMIDT NUMBER
The Schmidt rank SR(ω) of a pure state ω in S(H⊗K) can be defined as the rank of isomorphic

states TrK ω and TrH ω.
If the spaces H and K are finite-dimensional, then the Schmidt number of an arbitrary state ω in

S(H ⊗K) is defined by the expression

SN(ω) = inf
P

i πiωi=ω
sup

i
SR(ωi), (3.1)

where the infimum is taken over all ensembles {πi, ωi} of pure states with average state ω [1]. Using the
Carathéodory theorem, one can easily show that, for each positive integer k, the set Sk(H⊗K) = {ω ∈
S(H ⊗K) | SN(ω) ≤ k} is closed and coincides with the convex hull of pure states of Schmidt rank
≤ k. This means that the function ω 
→ SN(ω) is lower semicontinuous on the set S(H⊗K). Thus, we
have the following increasing finite sequence 2

S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Sn−1 ⊂ Sn = S(H⊗K)

of closed subsets, where S1 is the set of separable (not entangled) states and n = min{dimH,dimK}.
If the spaces H and K are infinite-dimensional, then the right-hand side of (3.1) is well defined, but it

does not give an adequate definition of the Schmidt number. This follows from the existence of separable
states in S(H ⊗K) (they are said to be not countably decomposable), which cannot be represented
as a countable convex combination of pure state-products [7]. The fact that a separable state ω is not
countably decomposable implies that the right-hand side of (3.1) is greater than 1 for each of such states,
despite the natural requirement that must be satisfied for the Schmidt number.3

In what follows, it will be shown that a reasonable generalization of definition (3.1) to the infinite-
dimensional case is given by the formula

SN(ω) = inf
μ∈P{ω}(extr S(H⊗K))

ess supμ SR( · ), (3.2)

where “ess supμ” is the essential supremum with respect to the measure μ [9, Sec. 13.1]. We
note that ess supμ SR( · ) = ‖SR‖∞ is the norm of the function SR in the space L∞(X,μ), where
X = extr S(H ⊗K).

2From now on, for brevity, we write Sk instead of Sk(H⊗K).
3This problem is similar to the problem arising in the infinite-dimensional generalization of the method of the convex roof
construction of entanglement monotones [15]): the existence of not countably decomposable separable states results in
that the discrete version of this construction is not well defined (see Remark 9 in [16]).

MATHEMATICAL NOTES Vol. 93 No. 5 2013



SCHMIDT NUMBER AND PARTIALLY ENTANGLEMENT-BREAKING CHANNELS 769

Proposition 1. (A) The function SN(ω) defined by (3.2) is lower semicontinuous on the set
S(H ⊗K). For each state ω ∈ S(H⊗K), the infimum in (3.2) is attained on a measure in
extrP{ω}(extr S(H⊗K)).

(B) For each positive integer k, the set Sk = {ω ∈ S(H ⊗K) | SN(ω) ≤ k}, where SN(ω) is
defined by formula (3.2), is closed and convex. It coincides with the convex closure of the set
of pure states in S(H⊗K) which have Schmidt rank ≤ k.

(C) If ω is a state of finite rank in S(H⊗K), then the values of SN(ω) determined by
formulas (3.1) and (3.2) coincide.

Proof. Since the nonnegative function ω 
→ SR(ω) is lower semicontinuous on the set extr S(H⊗K),
the first assertion in the proposition follows from Proposition 9 in the appendix.

The second assertion follows from the first one and Lemma 1 in [7].

To prove the third assertion, we note that if the right-hand side of (3.2) is equal to k < +∞, then the
right-hand side of (3.1) is also equal to k because of the coincidence of the convex hull and the convex
closure of the subset

S
ω
k = {� ∈ extr S(supp ω) | SR(�) ≤ k}

of the finite-dimensional space T(suppω) (see [9, Corollary 5.33]).

The following proposition is a generalization of Proposition 1 in [1] to the infinite-dimensional case.

Proposition 2. The Schmidt number (defined by formula (3.2)) of a state of an infinite-
dimensional composite quantum system does not increase under the action of LOCC-operations.

This assertion can be reduced to the assertion of Proposition 1 in [1] by using the following
approximation result.

Lemma 1. Let {Pn} and {Qn} be increasing sequences of projection operators of finite rank that
strongly converge to IH and to IK, respectively. For an arbitrary state ω ∈ S(H ⊗K), let

ωn = (Tr Pn ⊗ Qn · ω)−1Pn ⊗ Qn · ω · Pn ⊗ Qn.

Then

lim
n→+∞

SN(ωn) = SN(ω).

If SN(ω) < +∞, then there is n0 such that SN(ωn) = SN(ω) for all n ≥ n0.

Proof. Since the Schmidt number is lower semicontinuous (Proposition 1, A), it suffices to show that

SN(ωn) ≤ SN(ω) ∀n. (3.3)

Since the state ω lies in the convex closure of the set S
p
SN(ω) of pure states of Schmidt rank

≤ SN(ω) (Proposition 1, B), it follows that there is a sequence {ωm} in the convex hull of the set
S

p
SN(ω) converging to the state ω and satisfying the condition limm→+∞ SN(ωm) = SN(ω). For each m,

inequality (3.3) with ω = ωm can be verified directly. Because of the lower semicontinuity of the Schmidt
number, passing to the limit as m → +∞, we obtain (3.3).
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770 SHIROKOV

4. SEVERAL PROPERTIES OF THE SCHMIDT CLASSES Sk

For dimH = dimK = +∞, we have an infinite increasing sequence

S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Sn−1 ⊂ Sn ⊂ · · ·
of closed subsets of the set S(H ⊗K), where S1 is the set of separable (not entangled) states.

Let S
p
k be the set of all pure states in Sk.

Proposition 3. (A) An arbitrary state in Sk is the barycenter of a measure in P(Sp
k).

(B) There are states ω in Sk \ Sk−1 such that the operator ω − λσ is not positive for any λ > 0
and any pure state σ of finite Schmidt rank.4 For each such state ω,

ω =
∑

i

πiωi, {ωi} ⊂ extr S(H ⊗K) =⇒ SR(ωi) = +∞ ∀ i.

(C) An arbitrary pure state in Sk \ Sk−1 can be approximated by a sequence of states in
Sk \ Sk−1 with the property mentioned in assertion (B).

Proof. The first assertion readily follows from Proposition 1, and the second is confirmed by the example
considered in Appendix 6.2 (after Proposition 10).

The third assertion can be proved by using the construction in the above-mentioned example in
Appendix 6.2 and taking account of the facts that the functions with nonzero Fourier coefficients form a
dense subset in L2([0, 2π)) and that an arbitrary set {|ψi〉}k

i=1 of orthogonal unit vectors in a separable
Hilbert space H is the image of the set of vectors {|ϕi〉 ⊗ |i〉}k

i=1 ⊂ L2([0, 2π)) ⊗K under a unitary map
from L2([0, 2π)) ⊗K into H, where {|i〉}k

i=1 is an orthonormal basis of the space K.

Let us consider a characterization of the set Sk in terms of k-positive maps (which is an infinite-
dimensional generalization of Theorem 1 in [1]).

Proposition 4. A state ω ∈ S(H⊗K) lies in Sk if and only if the operator Λk ⊗ IdK(ω) is positive
for any k-positive linear transformation Λk of the space T(H).

Proof. Let ω0 ∈ Sk. By Proposition 3, there is a measure μ0 in P(Sp
k) such that ω0 =

´
ωμ0 (dω).

Since Λk ⊗ IdK(ω) ≥ 0 for any state ω ∈ S
p
k by the definition of k-positiveness (see Sec. 2), we have

Λk ⊗ IdK(ω0) =
ˆ

Λk ⊗ IdK(ω)μ0 (dω) ≥ 0.

The converse assertion can be derived from the corresponding finite-dimensional result ([1, Theo-
rem 1]) by using an approximation method and Lemma 1.

Let ω0 ∈ S(H⊗K) \ Sk, i.e., let SN(ω0) > k. By Lemma 1, there are projection operators
P ∈ B(H) and Q ∈ B(K) of the same finite rank such that the state

ω∗ = (Tr P ⊗ Q · ω0)−1P ⊗ Q · ω0 · P ⊗ Q

does not lie in the set Sk. LetH∗ = P (H) and K∗ = Q(K). By Theorem 1 in [1], there is a k-positive map
Λk : T(H∗) → T(H∗) such that the operator Λk ⊗ IdK∗(ω∗) is not positive. We consider a k-positive map
Λk ◦Π, where Π( · ) = P ( · )P . Then the operator (Λk ◦Π) ⊗ IdK(ω0) is not positive, because otherwise
the operator

IH ⊗ Q · (Λk ◦ Π) ⊗ IdK(ω0) · IH ⊗ Q = (Tr P ⊗ Q · ω0)Λk ⊗ IdK∗(ω∗)

would be positive, and this contradicts the choice of Λk.

The compactness criterion for a subset of the cone T+(H⊗K) (see the proposition in the appendix
in [17]) can be used to prove the infinite-dimensional generalization of Proposition 1 in [2].

4It is assumed that S0 = ∅, and hence S1 \ S0 = S1 is a set of separable states.
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Proposition 5. An arbitrary state ωk ∈ Sk can be represented as

ωk = (1 − p)ωk−1 + pδ, p ∈ [0, 1], (4.1)

where ωk−1 ∈ Sk−1 and δ is a state with Schmidt number ≥ k such that the operator δ − λσ is not
positive for any λ > 0 and any σ ∈ Sk−1.

In the set of such decompositions, there is a decomposition with minimal p.

In [2], a state with the property of the state δ is called a k-edge state. In contrast to the finite-
dimensional case, to prove that δ is a k-edge state, it is not sufficient to show that the operator δ − λσ is
not positive for any λ > 0 and any σ ∈ S

p
k−1. This follows from Proposition 3, B.

Proof. Let

M = {0} ∪ {A ∈ T+(H⊗K) | A ≤ ωk, (Tr A)−1A ∈ Sk−1}
be a closed subset of the cone T+(H⊗K).

We assume that M �= {0}. It follows from the above-mentioned compactness criterion for subsets
of the cone T+(H⊗K) that the set M is compact. Therefore, there is an operator A0 ∈ M such that
Tr A0 = supA∈M Tr A.

Introducing the notation p = 1 − Tr A0, ωk−1 = (Tr A0)−1A0 and δ = p−1(ωk − A0), we obtain the
decomposition (4.1) with minimal p.

If M = {0}, then the only method for obtaining (4.1) is to set p = 1 and δ = ωk.

5. PARTIALLY ENTANGLEMENT-BREAKING CHANNELS

The notion of partially entanglement-breaking channel of order k (or of k-partially entanglement-
breaking channel) in the finite-dimensional case was introduced in [5] as a natural generalization of
the notion of entanglement-breaking channel (which is partially entanglement-breaking channel of
order 1). According to the definition given in [5], a channel Φ: T(H) → T(H′) is said to be partially
entanglement-breaking of order k if, for any Hilbert space K, the Schmidt number of the state
Φ ⊗ IdK(ω) ∈ S(H′ ⊗K) does not exceed k for any state ω ∈ S(H ⊗K).

The definition of the Schmidt number introduced in Sec. 3 can be used to generalize this definition of
partially entanglement-breaking channels of order k directly to the infinite-dimensional case.

Following tradition, a partially entanglement-breaking channel of order k will be briefly called a k-
PEB channel.

Let Pk(H,H′) be the class of k-PEB channels from T(H) into T(H′). Since the set Sk(H′ ⊗K) is
closed and convex, it follows that Pk(H,H′) is a closed convex subset of the set F(H,H′) of all channels
from T(H) into T(H′) equipped with the strong convergence topology [17].

The following charactrization of k-PEB channels (generalizing the corresponding result in [5], [18])
can easily be derived from Proposition 4.

Proposition 6. A channel Φ is a k-PEB channel if and only if the map Λk ◦ Φ is completely
positive for any k-positive map Λk.

By definition, the relation Φ ∈ Pk(H,H′) means that

Φ ⊗ IdK(ω) ∈ Sk(H′ ⊗K) for any ω ∈ S(H ⊗K).

Because of the following proposition, it suffices to verify this inclusion only for one pure state.

Proposition 7. Let Φ: T(H) → T(H′) be a quantum channel. If there is a pure state |ψ〉〈ψ| in
S(H ⊗K) with partial states TrK |ψ〉〈ψ| ∼= TrH |ψ〉〈ψ| of full rank such that

Φ ⊗ IdK(|ψ〉〈ψ|) ∈ Sk(H′ ⊗K),

then the channel Φ is a k-PEB channel.
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Proof. Let

|ψ〉 =
+∞∑

i=1

μi|i〉 ⊗ |i〉,

where {|i〉} is an orthonormal basis in H ∼= K and μi > 0 for all i. Let

Pn =
n∑

i=1

|i〉〈i|

be the projection operator in B(K).
By Proposition 2, we have

Φ ⊗ IdK(|ψn〉〈ψn|) = cnIH ⊗ Pn · Φ ⊗ IdK(|ψ〉〈ψ|) · IH ⊗ Pn ∈ Sk(H′ ⊗K),

where

|ψn〉 = cn

n∑

i=1

μi|i〉 ⊗ |i〉, cn =
[ n∑

i=1

μ2
i

]−1/2.

Let Hn = lin({|i〉}n
i=1) and Kn = lin({|i〉}n

i=1) be n-dimensional subspaces of the spaces H and K.
An arbitrary vector |ϕ〉 in Hn ⊗Kn can be represented as

|ϕ〉 =
n∑

i,j=1

γij|i〉 ⊗ |j〉 =
n∑

i=1

μi|i〉 ⊗ A|i〉, where A =
n∑

i,j=1

(μi)−1γij |j〉〈i|

is an operator in B(Kn). Therefore,

|ϕ〉〈ϕ| = IHn ⊗ A · |ψn〉〈ψn| · IHn ⊗ A∗,

and hence

Φ ⊗ IdK(|ϕ〉〈ϕ|) = IH ⊗ A · Φ ⊗ IdK(|ψn〉〈ψn|) · IH ⊗ A∗ ∈ Sk(H′ ⊗K).

This means that the restriction of the channel Φ to the set S(Hn) is a k-PEB channel. By Lemma 2
given below, the channel Φ is a k-PEB channel.

Lemma 2. Let {Hn} be an increasing sequence of subspaces of the space H satisfying the relation
cl

(⋃
n Hn

)
= H. If the restriction of the channel Φ to the set S(Hn) is a k-PEB channel for each n,

then the channel Φ is a k-PEB channel.

Proof. Since an arbitrary state ω ∈ S(H ⊗K) can be approximated by a sequence {ωn} such that
suppTrK ωn ⊂ Hn (see Lemma 1), this assertion follows from the fact that the set Sk(H′ ⊗K) is closed.

Let |ψ〉〈ψ| be a pure state in S(H ⊗K), and let it have partial states

TrK |ψ〉〈ψ| ∼= TrH |ψ〉〈ψ| = σ

of full rank. Consider the one-to-one Choi–Jamiolkowski correspondence

F(H,H′) � Φ ←→ Φ ⊗ IdK(|ψ〉〈ψ|) ∈ Cσ
.= {ω ∈ S(H′ ⊗K) | TrH′ ω = σ},

which is a topological isomorphism if the set F(H,H′) of all channels is equipped with the strong
convergence topology [16, Proposition 3]. Proposition 7 implies the following observation.

Corollary 1. The restriction of the Choi–Jamiolkowski isomorphism to the class Pk(H,H′) is
an isomorphism between this class and Sk(H′ ⊗K) ∩ Cσ, which is a closed subset of the set
S(H′ ⊗K).

For a given isomorphism, the set Pk(H,H′) \ Pk−1(H,H′) corresponds to the set

(Sk(H′ ⊗K) \ Sk−1(H′ ⊗K)) ∩ Cσ, k = 2, 3, . . . .

MATHEMATICAL NOTES Vol. 93 No. 5 2013
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In [5], it was proved that the finite-dimensional channel Φ is a k-PEB channel if and only if it has the
Kraus representation

Φ( · ) =
∑

i

Vi( · )V ∗
i (5.1)

such that rankVi ≤ k for all i (this is a natural generalization of the well-known characterization
of finite-dimensional entanglement-breaking channels proved in [18]). In the infinite-dimensional
case, the class of k-PEB channels is significantly wider than the class of channels with the Kraus
representation mentioned above.

Proposition 8. (A) If a channel Φ has the Kraus representation (5.1) such that rankVi ≤ k for all i,
then it belongs to the class Pk(H,H′).

(B) There are channels Φ in Pk(H,H′) \ Pk−1(H,H′) that have the following property5:

Φ( · ) =
∑

i

Vi( · )V ∗
i =⇒ rankVi = +∞ ∀ i.

Proof. The first assertion is obvious, because, for any pure state ω ∈ S(H⊗K), the expression

Φ ⊗ IdK(ω) =
∑

i

Vi ⊗ IK · ω · V ∗
i ⊗ IK

leads to the decomposition of the state Φ ⊗ IdK(ω) into a convex combination of pure states of Schmidt
rank ≤ k.

To prove the second assertion, in the set Sk(H′ ⊗K) \ Sk−1(H′ ⊗K), we choose any state ω with
the property of assertion (B) in Proposition 3. We can assume that TrH′ ω is a state of full rank in S(K).
Let |ψ〉〈ψ| be purification of this state in S(H⊗K). By Corollary 1, the channel Φω associated with
the state ω by the Choi–Jamiolkowski isomorphism, which was induced by the state |ψ〉〈ψ|, lies in
Pk(H,H′) \ Pk−1(H,H′). If we assume that

Φω( · ) =
∑

i

Vi( · )V ∗
i

and rankVi0 < +∞ for some i0, then we see that the result contradicts the basic property of the state ω,
because Vi0 ⊗ IdK|ψ〉 �= 0 (otherwise, Vi0(TrK |ψ〉〈ψ|)(Vi0 )

∗ = 0, which contradicts the assumption that
TrK |ψ〉〈ψ| is a state of full rank).

Corollary 2. There are entanglement-breaking channels Φ such that the operators Vi in any Kraus
representation (5.1) are of infinite rank.

Corollary 2 shows that infinite-dimensional entanglement-breaking channels can have a structure
which is more complicated than that of entanglement-breaking channels between finite-dimensional
systems [18].

6. APPENDIX

6.1. On a Property of the Set S(H)

Here we consider a consequence of the compactness criterion for subsets of probability measures on
the set S(H) (this criterion was considered in detail in [16, Sec. 1]), which states that a subset P of
the set P(S(H)) is compact (in the weak convergence topology) if and only if {b(μ) | μ ∈ P} is a
compact subset of the set S(H).

5It is assumed that P0(H,H′) = ∅, and hence P1(H,H′) \P0(H,H′) = P1(H,H′) is a class of entanglement-breaking
channels.
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Proposition 9. Let f be a nonnegative lower semicontinuous function on a closed subset
A ⊆ S(H). The function

F (ρ) = inf
μ∈P{ρ}(A)

ess supμ f( · ) (6.1)

is lower semicontinuous on the set co(A).6 For each state ρ ∈ co(A), the infimum in (6.1) is
attained on a certain measure in extrP{ρ}(A).

For each c ≥ 0, the set {ρ ∈ co(A) | F (ρ) ≤ c} coincides with the convex closure of the set
{ρ ∈ A | f(ρ) ≤ c}.

Proof. The function F (ρ) is well defined on the set co(A) by Lemma 1 in [7].

Let us show that the functional

P(A) � μ 
→ f̂(μ) = ess supμ f( · ) (6.2)

is concave and lower semicontinuous. Because, for a given measure μ in P(A), the μ-essential
supremum of the function f (coinciding with the norm ‖f‖∞ of the space L∞(A, μ)) is the least upper
bound of the increasing family of norms ‖f‖p of the spaces Lp(A, μ), p ∈ [1,+∞), the concavity and
lower semicontinuity of the functional (6.2) follows from the concavity and lower semicontinuity of the
functional

P(A) � μ 
→ ‖f‖p = p

√ˆ
A

[f(ρ)]pμ (dρ)

(the lower semicontinuity of this functional follows from the basic properties of weak convergence of
probability measures, see [11, Chap. I, Sec. 2]).

Since the functional (6.2) is concave and lower semicontinuous and the set P{ρ}(A) is compact
(which follows from the above compactness criterion), the infimum in the definition of the quantity F (ρ)
for each ρ in co(A) is attained on a certain measure in extrP{ρ}(A).

We assume that the function (6.1) is not lower semicontinuous. Then there is a sequence
{ρn} ⊂ co(A) converging to the state ρ0 ∈ co(A) such that

∃ lim
n→+∞

F (ρn) < F (ρ0). (6.3)

As was shown above, for each n = 1, 2, . . . , there is a measure μn in P{ρn}(A) such that F (ρn) = f̂(μn).
Since the sequence {ρn} is a compact set, it follows from the above compactness criterion that there is
a subsequence {μnk

} converging to some measure μ0. Because the map μ 
→ b(μ) is continuous, the
measure μ0 lies in P{ρ0}(A). The lower semicontinuity of the functional (6.2) implies

F (ρ0) ≤ f̂(μ0) ≤ lim inf
k→+∞

f̂(μnk
) = lim

k→+∞
F (ρnk

),

which contradicts (6.3).

The last assertion of the proposition is a consequence of the preceding assertions and Lemma 1 in [7].

6The symbol “ ess supμ” denotes the essential supremum with respect to the measure μ [9, Sec. 13.1].
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6.2. On the Existence of a State with a Given Schmidt Number Such That None of Its Countable
Convex Decompositions Contains Pure States of a Finite Schmidt Rank

First, we show that the separable not countably decomposable state constructed in [7] has in fact a
stronger property, i.e., any countable convex decomposition of this state does not contain pure states
of finite Schmidt rank (the property of being not countably decomposable means that it cannot be
decomposed in a convex combination of pure state-products, i.e., states of Schmidt rank = 1). Further,
we use this observation to construct a state with a given Schmidt number such that none of its countable
convex decompositions contains pure states of finite Schmidt rank.

We use the notation introduced [7] to present the construction of such a separable state. We consider
a one-dimensional group of rotations G identifying it with the interval [0, 2π) with addition mod 2π.
Let H =L2([0, 2π)) with normalized Lebesgue measure dx/2π, and let {|k〉; k ∈ Z} be an orthonormal
trigonometric basis in H such that

〈k|ψ〉 =
ˆ 2π

0
e−ixk ψ(x)

dx

2π
.

The unitary representation x → Vx of the group G, where Vx =
∑+∞

−∞ eixk|k〉〈k|, such that (Vuψ)(x) =
ψ(x + u) is considered.

For arbitrary unit vectors |ϕj〉 ∈ Hj � L2([0, 2π)), j = 1, 2, we consider the separable state

ρ12 =
ˆ 2π

0
V (1)

x |ϕ1〉〈ϕ1|(V (1)
x )∗ ⊗ V (2)

x |ϕ2〉〈ϕ2|(V (2)
x )∗

dx

2π
. (6.4)

The following proposition sharpens the statement of Theorem 3 in [7]. Its proof is a natural
generalization of the proof of that theorem.

Proposition 10. Assume that ρ12 is the separable state defined in (6.4). If all Fourier coefficients
(coordinates in the basis {|k〉}) of the vectors |ϕj〉 are nonzero, then the operator

ρ12 − λσ

is not positive for any λ > 0 and a pure state σ of finite Schmidt rank.
In particular, this means that any countable convex decomposition of the state ρ12 does not

contain pure states of finite Schmidt rank.

Proof. We assume that there is a vector |ψ〉 in H1 ⊗H2 of Schmidt rank n such that

ρ12 ≥ |ψ〉〈ψ|. (6.5)

Assume that

|ψ〉 =
n∑

i=1

|α1
i 〉 ⊗ |α2

i 〉,

where {|αj
i 〉}n

i=1, j = 1, 2, are sets of orthogonal vectors. It follows from inequality (6.5) that
ˆ 2π

0

∣∣〈λ1|V (1)
x |ϕ1〉

∣∣2∣∣〈λ2|V (2)
x |ϕ2〉

∣∣2 dx

2π
≥

∣∣∣∣
n∑

i=1

〈λ1|α1
i 〉〈λ2|α2

i 〉
∣∣∣∣
2

(6.6)

for any λj ∈ L2([0, 2π)), j = 1, 2.
We consider the linear mappings

L2([0, 2π)) � λ 
→ Φj(λ) = {〈αj
i |λ〉}n

i=1 ∈ C
n,

L2([0, 2π)) � λ 
→ Ψj(λ) = 〈λ|V (j)
x |ϕj〉 =

+∞∑

k=−∞
〈ϕj |k〉〈k|λ〉e−ikx, j = 1, 2.
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In the space L2([0, 2π)), let H0 be a dense subset consisting of trigonometric polynomials (functions
with finitely many nonzero Fourier coefficients). Since 〈ϕj |k〉 �= 0 for all k, the maps Ψj , j = 1, 2, are
linear isomorphisms in H0. Therefore, it follows from (6.6) that

|〈A1(ξ),Ξ(A2(η))〉Cn |2 ≤
ˆ 2π

0
|ξ(x)η(x)|2 dx

2π
, ξ, η ∈ H0, (6.7)

where Aj( · ) = Φj(Ψ−1
j ( · )), j = 1, 2, are linear mappings from H0 into C

n, and Ξ is the complex
conjugation in C

n.

Since {Φ2(λ) | λ ∈ L2([0, 2π))} = C
n, we have {Φ2(λ) | λ ∈ H0} = C

n, and hence

{A2(ξ) | ξ ∈ H0} = C
n.

Therefore, there is a set |η1〉, . . . , |ηn〉 of vectors in the basis {|k〉} such that the vectors

A2(η1), . . . , A2(ηn)

form a basis in C
n. Since |ηi(x)| = 1, it follows from (6.7) that

|〈A1(ξ),Ξ(A2(ηi))〉Cn |2 ≤
ˆ 2π

0
|ξ(x)|2 dx

2π
= ‖ξ‖2, i = 1, . . . , n, ξ ∈ H0.

Therefore, the map A1 is bounded on H0 and can be extended to a bounded linear map A1

from L2([0, 2π)) into C
n.

Similar considerations show that it is possible to extend the map A2 to a bounded linear map A2

from L2([0, 2π)) into C
n.

Since the anti-linear operator B = A∗
1 ◦ Ξ ◦ A2 in the space L2([0, 2π)) is of rank ≤ n, it can be

represented as

B( · ) =
n∑

i=1

〈 · |β2
i 〉|β1

i 〉,

where {|βj
i 〉}, j = 1, 2, are sets of vectors in L2([0, 2π)) and the set {|β1

i 〉} consists of linearly indepen-
dent vectors.

Therefore, (6.7) can be rewritten as
∣∣∣∣

n∑

i=1

〈ξ|β1
i 〉〈η|β2

i 〉
∣∣∣∣
2

≤
ˆ 2π

0
|ξ(x)η(x)|2 dx

2π
. (6.8)

It follows from Lemma 3 below that, for an arbitrary ε > 0, one can find a subset A ⊂ [0, 2π) with
Lebesgue measure < ε such that the functions β1

1 , β1
2 , . . . , β1

n are linearly independent on A. Therefore,
for each i, one can find a function ξ supported in A such that 〈ξ|β1

i 〉 �= 0 but 〈ξ|β1
j 〉 = 0 for all j �= i. For

this function ξ and an arbitrary function η supported in [0, 2π) \ A, the right-hand side of (6.8) is zero,
and hence 〈η|β2

i 〉 = 0; thus, β2
i (x) = 0 almost everywhere in [0, 2π) \ A. Therefore, the measure of the

support of the function β2
i does not exceed ε, and hence β2

i (x) = 0 almost everywhere in [0, 2π). Thus,
we have B = 0, which implies |ψ〉 = 0.

In the following lemma, the linear independence of measurable functions f1, . . . , fn on a measurable
subset A ⊂ R means that any nontrivial linear combination of these functions is not equal to zero almost
everywhere on A.

Lemma 3. Let f1, . . . , fn be linearly independent measurable functions on [a, b]. For any arbitrary
ε > 0, there is a subset A ⊂ [a, b] with Lebesgue measure μ(A) < ε such that the functions
f1, . . . , fn are linearly independent on A.
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Proof. For n = 1, 2, the assertion of the lemma is obvious. We assume that it holds for a given n and
we will show that it can be satisfied for n + 1.

By assumption, for any ε > 0 and each set of functions {fi} \ fj , j = 1, . . . , n + 1, there is a subset
Aε

j ⊂ [a, b] with μ(Aε
j) < ε such that the functions in this set are linearly independent on Aε

j .

If the assertion of the lemma does not hold for n + 1, then there is an ε∗ > 0 such that the functions
f1, . . . , fn+1 are linearly dependent on any subset A ⊂ [a, b] with μ(A) < ε∗.

Let ε < ε∗/2(n + 1), and let

Aε =
n+1⋃

j=1

Aε
j .

We choose a finite set {Bk} of nonintersecting subsets of the set [a, b] \ Aε such that μ(Bk) < ε∗/2 and⋃
k Bk = [a, b] \ Aε.

For each k, we let Ck = Aε ∪ Bk. Since μ(Ck) < ε∗, there is a set {λk
i }n+1

i=1 of complex numbers such
that

n+1∑

i=1

λk
i fi(x) = 0 almost everywhere on Ck,

n+1∑

i=1

|λk
i | > 0. (6.9)

Since Aε
j ⊂ Ck for all j, it is easy to see that λk

i �= 0 for all i. Therefore, we can assume that λk
n+1 = 1.

Since the functions f1, . . . , fn+1 are linearly independent on [a, b] =
⋃

k Ck, there are k1 and k2 such that

{λk1
i }n+1

i=1 �= {λk2
i }n+1

i=1 .

It follows from (6.9) that
n∑

i=1

(λk1
i − λk2

i )fi(x) = 0 almost everywhere on Aε
n+1 ⊆ Ck1 ∩ Ck2,

n∑

i=1

|λk1
i − λk2

i | > 0,

which contradicts the construction of the set Aε
n+1.

6.3. Example of the State ω with SN(ω) = k ∈ N Such That the Operator ω − λσ is Not Positive for
Any Pure State σ of a Finite Schmidt Rank and Any λ > 0

Let {|ϕi
1〉}k

i=1 and {|ϕi
2〉}k

i=1 be sets of orthogonal unit vectors in

H1 = L2([0, 2π)) and H2 = L2([0, 2π)),

respectively, which have nonzero Fourier coefficients. Let K be a k-dimensional Hilbert space with
orthonormal basis {|i〉}k

i=1. For each positive integer n, we consider the state

ρn
123 =

ˆ 2π/n

0
V (1)

x ⊗ V (2)
x ⊗ IK · |Ω〉〈Ω| · (V (1)

x )∗ ⊗ (V (2)
x )∗ ⊗ IK

n dx

2π
(6.10)

in S(H1 ⊗H2 ⊗K), where

|Ω〉 =
1√
k

k∑

i=1

|ϕi
1〉 ⊗ |ϕi

2〉 ⊗ |i〉

is the unit vector in H1 ⊗H2 ⊗K.
Further (speaking about the Schmidt rank and the Schmidt number), we assume that the space

H1 ⊗H2 ⊗K is the tensor product of the spaces H1 and H2 ⊗K.
Since the state ρn

123 lies in the convex closure of a family of local unitary “translations” of the state
|Ω〉〈Ω| such that SR(|Ω〉〈Ω|) = k, we have SN(ρn

123) ≤ k for all n. Since the sequence {ρn
123} converges

to the state |Ω〉〈Ω|, it follows from the lower semicontinuity of the Schmidt number (Proposition 1, A)
that SN(ρn

123) = k for a sufficiently large n.
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We assume that

ρn
123 ≥ λ|Ψ〉〈Ψ| (6.11)

for some λ > 0, where |Ψ〉〈Ψ| is a pure state in S(H1 ⊗H2 ⊗K) of finite Schmidt rank. Let Pi =
IH1 ⊗ IH2 ⊗ |i〉〈i|. Since

k∑

i=1

Pi = IH1⊗H2⊗K,

there is an i0 such that Pi0 |Ψ〉 �= 0. We can assume that i0 = 1. Therefore, we have P1|Ψ〉 = ν|ψ〉 ⊗ |1〉,
where ν > 0 and |ψ〉 is the unit vector in H1 ⊗H2.

Since P1ρ
n
123P1 = k−1ρn

12 ⊗ |1〉〈1|, where

ρn
12 =

ˆ 2π/n

0
V (1)

x |ϕ1
1〉〈ϕ1

1|(V (1)
x )∗ ⊗ V (2)

x |ϕ1
2〉〈ϕ1

2|(V (2)
x )∗

n dx

2π
,

it follows from (6.11) that ρn
12 ≥ kλν|ψ〉〈ψ|. Since P1( · )P1 and TrK( · ) are local operations, the state

|ψ〉〈ψ| is of finite Schmidt rank. Therefore, Proposition 10 shows that λ = 0.
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