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Generalized compactness in linear
spaces and its applications

V.Yu. Protasov and M. E. Shirokov

Abstract. For a fixed convex domain in a linear metric space the prob-
lems of the continuity of convex envelopes (hulls) of continuous concave
functions (the CE-property) and of convex envelopes (hulls) of arbitrary
continuous functions (the strong CE-property) arise naturally. In the case
of compact domains a comprehensive solution was elaborated in the 1970s
by Vesterstrom and O’Brien. First Vesterstrom showed that for compact
sets the strong CE-property is equivalent to the openness of the barycentre
map, while the CE-property is equivalent to the openness of the restriction
of this map to the set of maximal measures. Then O’Brien proved that
in fact both properties are equivalent to a geometrically obvious ‘stability
property’ of convex compact sets. This yields, in particular, the equivalence
of the CE-property to the strong CE-property for convex compact sets. In
this paper we give a solution to the following problem: can these results
be extended to noncompact convex sets, and, if the answer is positive, to
which sets? We show that such an extension does exist. This is an exten-
sion to the class of so-called µ-compact sets. Moreover, certain arguments
confirm that this could be the maximal class to which such extensions are
possible. Then properties of µ-compact sets are analysed in detail, sev-
eral examples are considered, and applications of the results obtained to
quantum information theory are discussed.
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§ 1. Introduction

Various properties and structure of compact sets in the convex analytic context
have been studied thoroughly starting from the middle of the last century. An
extensive bibliography is devoted to this theme (see [1]–[3] and references therein).
The most important results are well known: the Krein-Milman theorem on the
convex hulls of extreme points, Choquet’s theory of barycentric decompositions,
properties of convex hulls (envelopes) of functions on convex compact sets. Some
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classical results have been extended to noncompact sets in locally convex spaces
by Edgar [4], [5] and Bourgin [6], [7]. Such generalizations are interesting not only
theoretically, but also very important in applications, for instance, in mathematical
physics [8], in quantum information theory [9], and so on. Of course, classical
results of convex analysis cannot be extended to all noncompact sets. One has to
postulate some special properties of these sets. Choquet’s theory, for example, has
been generalized to sets possessing the Radon-Nikodym property [4]. In [9] several
results on the continuity of convex hulls of functions were extended to a special
class of sets called µ-compact sets. This class, characterized by the special relation
between the topology and the structure of linear operations, is the main subject of
this paper.

Problems of continuity of the convex hulls of continuous functions (see defini-
tions in the next section) have been studied in the literature since the 70s of the last
century. Under what conditions on the convex compact set A is the convex hull of
any continuous (another assumption: concave continuous) function defined on A
continuous? Vesterstrom [10] showed that a necessary and sufficient condition for
this is the openness of the barycentre map. He conjectured the equivalence of the
continuity of the convex hull of any continuous concave function (this property was
called by Lima [11] the CE-property) to the continuity of the convex hull of any con-
tinuous function (called in [9] the strong CE-property). This conjecture was proved
by O’Brien [12], who, moreover, showed the equivalence of both CE-properties to
the openness of the convex mixing map

(x, y, λ) 7→ λx + (1− λ)y

(the so-called ‘stability property for convex sets’ [13]–[15]). The question arises
if these results can be extended to noncompact sets A . The first step towards
the solution of this problem was made in [9], where so-called µ-compact sets were
defined. Some results on CE-properties were generalized from compact sets to the
class of µ-compact sets. This, in particular, made it possible to derive several results
concerning the entropy characteristics of infinite-dimensional quantum channels and
systems.

In this paper we analyse the µ-compactness property in detail, consider several
examples that are important in applications, and extend some classical results of
convex analysis known earlier for compact sets only, in particular, the Vesterstrom-
O’Brien theory, to the class of µ-compact sets.

The class of µ-compact convex sets is defined by the requirement of the weak
compactness of the preimages of all compact sets under the barycentre map. This
property is not purely topological, it expresses certain relations between topology
and the structure of linear operations. This class contains all compact sets, as well
as some important noncompact sets, for example, the set of density operators in
a separable Hilbert space. These µ-compact sets lack many properties of compact
sets, such as the boundedness of continuous functions, the Weierstrass theorem, and
so on. Nevertheless, as we shall see, a lot of results of Choquet’s theory and of the
Vesterstrom-O’Brien theory can be extended to this class. Moreover, we present
arguments showing that the class of µ-compact sets is, in some sense, the largest
class to which the Vesterstrom-O’Brien theory can be extended.
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This paper is organized as follows. In § 2 we derive basic properties of µ-compact
sets. By a simple example we show that several results true for µ-compact sets
become false after relaxing slightly this assumption to pointwise µ-compactness
(this property is defined by the requirement of the weak compactness of sets of
measures with fixed barycentre). Further we consider examples of µ-compact sets.
We show, in particular, that the bounded part of the positive cone in the space lp
for p = 1 is µ-compact, while for p > 1 it is not even pointwise µ-compact. The
µ-compactness of the set of Borel probability measures on a complete separable
metric space is also established. This result makes it possible to show that the
convex closure operation respects the µ-compactness property.

In § 3 we complete the generalization of the Vesterstrom-O’Brien theory to the
class of µ-compact sets started in [9]. The µ-compact version of the main result
from [12] is proved. This establishes the equivalence of the continuity property for
convex hulls of concave bounded continuous functions and the continuity property
for convex hulls of arbitrary bounded continuous functions. We construct an exam-
ple confirming our conjecture that µ-compact sets form the largest class of convex
metrizable sets for which this extension is possible. In § 4 we apply some of our
results to quantum information theory. In § 5 we discuss possible generalizations
and formulate several open problems.

§ 2. On µ-compact sets

2.1. Definitions and basic properties. Throughout § 2 and § 3 we assume A
to be a closed bounded subset of a locally convex space. We also assume that
its convex closure co A (defined as the closure of the convex hull co A of A ) is
a complete separable metric space.1 We use the following notation:

extrA is the set of extreme points of A ;
C(A ) is the set of continuous bounded functions on the set A ;
P (A ) and Q(A ) are the sets of convex and concave continuous bounded func-

tions on the convex set A , respectively;
co f and co f are the convex hull and the convex closure of a function f on

a convex set; they are defined as the maximal convex and the maximal convex
closed (that is, lower semicontinuous) function not exceeding f , respectively (see
[3], [16]);

Pn =
{
{πi}n

i=1 | πi > 0,
∑n

i=1 πi = 1
}

is the simplex of all probability distribu-
tions with n 6 +∞ outcomes.

Let M(A ) be the set of all Borel probability measures on the set A with the
topology of weak convergence [17], [18].

With an arbitrary measure µ ∈ M(A ) we associate its barycentre (average)
b(µ) ∈ co A , which is defined by the Pettis integral (see [17], [19])

b(µ) =
∫

A

xµ(dx). (1)

1This means that the topology on the set co A is defined by a countable subset of the family
of seminorms generating the topology of the entire locally convex space, and this set is separable
and complete in the metric generated by this subset of seminorms.
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Let Mx(A ) be the convex closed subset of the set M(A ) consisting of measures µ
such that b(µ) = x ∈ co A .

We denote by {πi, xi} the measure with finitely or countably many atoms {xi}
with weights {πi}. Let M f(A ) and M f

x(A ) be the subsets of the sets M(A )
and Mx(A ), respectively, that consist of measures with finite support.

The barycentre map
M(A ) 3 µ 7→ b(µ) ∈ co A (2)

is continuous, which can be shown easily by applying Prokhorov’s theorem. There-
fore, the image of any compact set in M(A ) under the map (2) is compact in co A .
The inverse map b−1 may not possess this property. Generalizing a definition in [9]
consider the class of convex sets for which the map b−1 takes compact sets to
compact sets.

Definition 1. The set A is said to be µ-compact if the preimage of any compact
subset of co A under the barycentre map (2) is a compact subset of the set M(A ).

Any compact set is µ-compact. Indeed, the compactness of A implies the com-
pactness of M(A ) [18]. Using Prokhorov’s theorem one can derive the following
criterion of µ-compactness [9].

Proposition 1. A convex set A is µ-compact if and only if for any compact subset
K ⊆ A and any ε > 0 there is a compact subset Kε of A such that for any x ∈ K
and any expansion x =

∑n
i=1 λixi, where {xi}n

i=1 ⊂ A , {λi}n
i=1 ∈ Pn, we have∑

i:xi∈A \Kε
λi < ε.

Proposition 1 and the basic properties of the set M(A ) yield the following cri-
terion of µ-compactness, which is most convenient for applications.

Proposition 2. A convex set A is µ-compact if and only if there is a family F (A )
of nonnegative concave functions on A with the following properties :

• the set {x ∈ A | f(x) 6 c} is relatively compact for any function f ∈ F (A )
and any c > 0;

• for any compact set K ⊆ A there is a function f ∈ F (A ) such that
supx∈K f(x) < +∞.

Proof. The sufficiency easily follows from Proposition 1 (see [9]). Let us prove the
necessity. Let V(A ) be the set of lower semicontinuous function ϕ on A taking
values in [0,+∞] and such that {x ∈ A | ϕ(x) 6 c} is compact for any c > 0. From
Prokhorov’s theorem (see [17], Example 8.6.5) we conclude that a set M0 ⊆ M(A )
is relatively compact if and only if there exists a function ϕ ∈ V(A ) such that

sup
µ∈M0

∫
A

ϕ(x)µ(dx) < +∞.

Consider the following family of concave nonnegative functions on the set A :

fϕ(x) = sup
µ∈Mx(A )

∫
A

ϕ(y) µ(dy), ϕ ∈ V(A ).
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This family possesses the first characteristic property of the family F (A ), as follows
from the continuity of the barycentre map. The second property follows from the
µ-compactness of the set A .

Remark 1. It is interesting that for all convex noncompact, but µ-compact sets con-
sidered in § 2.2 there exist families F (A ) that consist of affine lower semicontinuous
functions.

There exists a criterion of µ-compactness of a convex set in terms of properties
of functions defined on this set [20]. More precisely, it is shown that µ-compactness
is equivalent to the continuity of the operator of convex closure (that is, the double
Fenchel transform) with respect to monotone pointwise converging sequences on the
classes of continuous bounded and lower semicontinuous lower bounded functions.

Continuous affine maps do not necessarily respect the µ-compactness property.
Nevertheless we have the following simple consequence of Propositions 1 and 2.

Proposition 3. Let A and B be convex sets2 and ϕ a continuous affine map
from A into B such that for any compact set C ⊆ B its preimage ϕ−1(C ) is
compact in A . Then

1) the µ-compactness of B implies the µ-compactness of A ;
2) if ϕ is surjective, then the µ-compactness of A implies the µ-compactness

of B.

The operations of intersection, taking the convex closure, and Cartesian product
respect µ-compactness.

Proposition 4. 1) A closed subset of any µ-compact set is µ-compact.
2) The convex closure of any µ-compact set is µ-compact.
3) The Cartesian product of a finite or countable family of µ-compact sets is

µ-compact (in the topology of coordinatewise convergence).

Proof. 1) This follows directly from Definition 1.
2) Combining the µ-compactness of the set A and Proposition 2 in [9] (its

proof for our class of sets is literally the same as in that paper) we obtain that
the barycentre map µ 7→ b(µ) is a continuous affine surjection from M(A ) into
co A satisfying the assumptions of Proposition 3. Applying the second part of
that proposition and Corollary 4 (see the next subsection) we conclude that the set
co A is µ-compact.

3) By assertion 2) it suffices to consider the case of convex µ-compact sets.
Assume that for every n ∈ N the set A n is µ-compact. We shall show that the set
A =

⊗
n∈N A n is µ-compact in the topology of coordinatewise convergence. For

an arbitrary compact set K ⊂ A and each n ∈ N let K n be the projection of K
onto A n. The set K n consists of points xn ∈ A n which are the corresponding
coordinates of some point x ∈ K . This set is compact. Since A n is µ-compact, it
follows from Proposition 1 that for any ε > 0 there exists a corresponding compact
set K n

ε ⊂ A n. Since K ⊆
⊗

n∈N K n, we have Kε =
⊗

n∈N K n
ε2−n . It is easy to

check that this set satisfies the assumptions of Proposition 1, therefore the set A
is µ-compact.

2It is assumed that the set B possesses all the properties mentioned in the beginning of § 2.1.
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The first assertion of Proposition 4 implies that the intersection of µ-compact
sets is µ-compact. However, their union and Minkowski sum are not µ-compact in
general (Remark 4).

Remark 2. By the second assertion of Proposition 4, to prove the µ-compactness
of a convex set A it suffices to show the µ-compactness of any subset B of it
such that A = co B. Note that the sets of measures M(A ) and M(B) (which are
involved in the definition of µ-compactness of the sets A and B) can be completely
different. For example, if A is a simplex, then B can be a countable family {ei} of
isolated extreme points of the set A . Hence M(B) is isomorphic to the set P+∞
of all probability distributions with countably many outcomes. The criterion of
µ-compactness for the set B, and therefore, for A , can be formulated as follows:
for any compact set K ⊂ A and any ε > 0 there exists n such that the inclusion∑+∞

i=1 πiei ∈ K , {πi} ∈ P+∞ implies
∑+∞

i=n+1 πi < ε.
The second assertion of Proposition 4 together with Proposition 5 below lead to

the following observation. Let A be a µ-compact convex set in the initial topology τ
and let τ ′ be a stronger topology on A that coincides with τ on the set extrA ;
then the set A is µ-compact in the topology τ ′.

Proposition 3 implies that all isomorphisms in the category of µ-compact convex
sets are affine homeomorphisms. The affineness assumption cannot be omitted, as
is seen from the following example. Suppose that A is a convex set that is not
µ-compact. The first assertion of Proposition 4 and Corollary 4 from the next
subsection yield that the subset of M(A ) that consists of Dirac (single-atomic)
measures is a µ-compact set, which is, moreover, homeomorphic to the set A . This
observation shows that the µ-compactness property, by contrast to compactness,
is not purely topological. It is defined by a combination of the topology and the
structure of the operation of convex mixing.

Proposition 3 gives the following condition for the µ-compactness of families of
maps. This condition is used in the next section.

Corollary 1. Let F(X ,Y ) be a locally convex space with the topology τ of maps
from the set X into a locally convex space Y . Also let F0 be a convex closed
bounded subset of the space F(X ,Y ) that consists of maps taking values in a convex
µ-compact set A ⊂ Y . Moreover, assume that F0 is a complete separable metric
space for which there is an element x0 ∈ X such that

1) {τ − limn→+∞ Φn = Φ0} =⇒ {limn→+∞ Φn(x0) = Φ0(x0)} ∀ {Φn} ⊂ F0;
2) the set {Φ ∈ F0 | Φ(x0) ∈ C } is relatively compact in the topology τ for any

compact set C ⊆ A .
Then the set F0 is µ-compact.

Proof. The continuous affine map

F0 3 Φ 7→ Φ(x0) ∈ A

satisfies the assumptions of Proposition 3. The first part of this proposition implies
the µ-compactness of the set F0.

For a further analysis of µ-compactness we need a weaker version of this property.
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Definition 2. The set A is said to be pointwise µ-compact if for any x ∈ co A
the set Mx(A ) is a compact subset of the set M(A ).

Clearly, pointwise µ-compactness follows from µ-compactness. However, as we
shall see in Proposition 13, these two properties are not equivalent.

µ-Compact sets do not possess many properties of compact sets, such as the uni-
form continuity and boundedness of continuous functions, the Weierstrass theorem
on extremal values of continuous functions, and so on. It turns out, however, that
µ-compact sets inherit some important properties of compact sets. This allows us
to extend many results of Choquet’s theory and the Vesterstrom-O’Brien theory to
these sets (see the next section).

If A is a convex set, then we can introduce on the set M(A ) the following partial
ordering (called the Choquet ordering; see [1], [6]). We shall write µ � ν if and
only if ∫

A

f(y) µ(dy) >
∫

A

f(y) ν(dy)

for each function f ∈ P (A ). A measure µ ∈ M(A ) is called maximal if ν � µ
implies ν = µ for any ν ∈ M(A ). We observe that if µ and ν are measures in
M(A ) such that µ � ν, then b(µ) = b(ν): this follows from the fact that the
set of continuous bounded affine functions on the set A separates its points. The
following result is a straightforward consequence of Definition 2.

Lemma 1. Let A be a convex pointwise µ-compact set. Any subset of the set M(A )
that is linearly ordered by the relation ≺ has the least upper bound.

Proof. Any subset of the set M(A ) that is linearly ordered by the relation ≺ ,
which is actually a net {µλ}λ∈Λ, lies in Mx(A ) for some x ∈ A and consequently,
is relatively compact. Hence there is a subnet {µλπ

}π∈Π that converges to some
measure µ0 ∈ Mx(A ). One can easily verify that µλ ≺ µ0 for all λ ∈ Λ.

Combining Lemma 1 with Theorem 2.4 in [5] we see that the class of convex
pointwise µ-compact sets is a proper subclass of the class of convex sets with
the Radon-Nikodym property. This class is studied in an extensive literature
(see [4]–[6]).

Applying Lemma 1 and Zorn’s lemma one can easily prove the following gen-
eralizations of the Krein-Milman theorem and of Choquet’s theorem to pointwise
µ-compact sets. This follows actually from the Radon-Nikodym property of these
sets [5].

Proposition 5. Let A be a pointwise µ-compact convex set. Then co(extr A ) = A
and b(M( extrA )) = A .

Proof. Since the set of finitely supported measures is dense in M(extrA ) (see [18],
Theorem 6.3), the first assertion follows from the second.

Let x0 ∈ A . Lemma 1 combined with Zorn’s lemma yields the existence of
a maximal measure µ∗ in Mx0 . From the properties of the Choquet ordering it
follows that the measure µ∗ is also maximal in M(A ); hence it lies in M( extrA )
(see the proof of Theorem 5.2 in [4]). Thus, x0 ∈ b(M( extrA )).
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Another property inherited by µ-compact sets from compact ones is the following
representation of the convex closure of a lower semicontinuous function ([9], Pro-
position 3). Its proof is easily generalized to our class of sets.

Proposition 6. If f is a lower semicontinuous lower bounded function on a convex
µ-compact set A , then its convex closure can be described by the expression

co f(x) = inf
µ∈Mx(A )

∫
A

f(y)µ(dy) ∀x ∈ A , (3)

where the infimum is attained on some measure µf
x in Mx(A ).

This representation is a crucial point for most results on the convex closures of
functions defined on µ-compact sets.

If f is a continuous bounded function on a convex µ-compact set A , then com-
bining the continuity of the functional

M(A ) 3 µ 7→
∫

A

f(x) µ(dx)

and [9], Lemma 1 we see that the infimum in (3) can be taken over finitely-supported
measures.

Corollary 2. An arbitrary continuous bounded function f on a convex µ-compact
set A possesses a lower semicontinuous (closed) convex hull, that is,

co f(x) = inf
{πi,xi}∈M f

x(A )

∑
i

πif(xi) = co f(x) ∀x ∈ A . (4)

This is a µ-compact generalization of Corollary I.3.6 in [2]. The µ-compactness
assumption about the set A in Proposition 6 and Corollary 2 cannot be weakened
to pointwise µ-compactness.

Proposition 7. If a convex set A is not µ-compact, but only pointwise µ-compact,
then there exists a continuous bounded function f on A whose convex hull co f is
not lower semicontinuous. This means that the representation (3) fails for the
convex closure co f of the function f .

Proof. Since the set A is not µ-compact, there exists a non-compact sequence of
measures {µn} ⊂M(A ) such that the corresponding sequence {xn = b(µn)} ⊂A
converges. By Prokhorov’s theorem the sequence {µn} is not tight. As shown
in the proof of Theorem 8.6.2 in [17], this guarantees the existence of ε > 0 and
δ > 0 such that for any compact set K ⊂ A and any positive integer N there is
n > N such that µn(Uδ(K )) < 1− ε, where Uδ(K ) is the closed δ-neighbourhood
of the compact set K . Since finitely supported measures are dense in the set of all
measures with fixed barycentre ([9], Lemma 1), applying Corollary 8.2.9 from [17]
we may assume that the sequence {µn} contains only finitely supported measures.

Let x0 be the limit of the sequence {xn}. By the pointwise µ-compactness of
the set A , for ε defined above there exists a convex compact set Kε such that
µ(Kε) > 1− ε/2 for any measure µ ∈ Mx0(A ).
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Let f be a bounded continuous function on A , such that f(x) = 1 for all x ∈ Kε

and f(x) 6 0 for every x ∈ A \Uδ(Kε). Then it follows from the properties of the
sequences {xn} and {µn} that for any positive integer N there is n > N for which
co f(xn) < 1− ε. On the other hand, the properties of the set Mx0(A ) imply that
co f(x0) > 1− ε/2. Thus, the function co f is not lower semicontinuous.

Remark 3. The condition of pointwise µ-compactness cannot be omitted in the
proof of Proposition 7. This shows that µ-compact sets do not form the maxi-
mal class of convex sets for which Corollary 2 holds. However, without pointwise
µ-compactness Corollary 2 may fail (see Example 1 in the next subsection).

To construct an example showing that the condition of pointwise µ-compactness
is essential in Proposition 7 we consider the unit ball B in a separable Hilbert space.
Clearly, it is not a pointwise µ-compact set. We claim that for any continuous
bounded function f on B its convex hull co f is continuous. Since a bounded
convex function is continuous at interior points of its domain, it is sufficient to
prove the continuity of co f at the boundary of B, that is, at the unit sphere.

Let x be a point of the unit sphere. For arbitrary ε > 0 there exists δ > 0 such
that |f(x) − f(y)| < ε whenever ‖x − y‖ < 2δ. From Lemma 2 stated below we
conclude that for any z such that ‖z−x‖ < δ and any µ ∈ Mz(B) the ball of radius
2δ with centre at x has measure at least r(δ, z). Hence∣∣∣∣f(x)−

∫
B

f(t) dµ

∣∣∣∣
does not exceed εr(δ, z) + N(1− r(δ, z)), where N = supt∈B |f(t)|. Therefore,

|f(x)− co f(z)| 6 εr(δ, z) + N(1− r(δ, z)).

Since ‖z‖ → 1 as z → x, it follows that r(δ, z) → 1, and so co f(z) → f(x). It
remains to note that co f(x) = f(x) because x is an extreme point of B.

Lemma 2. Let B be the unit ball of the Hilbert space and let δ > 0. For an
arbitrary point z ∈ B such that ‖z‖ > 1 − δ and any measure µ ∈ Mz(B) the
measure of a ball of radius δ with centre at z is at least

r(δ, z) =
δ2 − (1− ‖z‖2)
δ2 − (1− ‖z‖)2

.

Proof. Let z̄ = z/‖z‖ and

B0 =
{

y ∈ B, (y, z̄) <
1 + ‖z‖2 − δ2

2‖z‖

}
,

B1 =
{

y ∈ B, (y, z̄) >
1 + ‖z‖2 − δ2

2‖z‖

}
.

By direct calculation we show that if ‖y‖ = 1 and ‖y − z‖ > δ, then y ∈ B0. Con-
sequently, all points in the ball B lying at a distance more than δ from z belong to
the set B0. We denote by ci the barycentre of the measure µ on the set Bi, i = 0, 1.



706 V. Yu. Protasov and M.E. Shirokov

We have z = µ(B0)c0+µ(B1)c1. It is obvious that (c0, z̄) 6 (1 + ‖z‖2 − δ2)/(2‖z‖)
and (c1, z̄) 6 1. Consequently,

‖z‖ = (z, z̄) < (1− µ(B1))
1 + ‖z‖2 − δ2

2‖z‖
+ µ(B1),

which gives the required inequality for B1 and therefore also for the measure of the
ball of radius δ with centre at z since this ball contains B1.

One of the most important conclusions from Proposition 6 is that any lower
semicontinuous function f bounded below defined on a convex µ-compact set A
coincides with its convex closure co f on the set of extreme points extrA . Fur-
thermore, this proposition enables us to obtain the following representation for the
set extrA , which will help us in § 3.

Proposition 8. Let A be a µ-compact convex set. Then

extrA =
⋂

f∈Q(A )

Bf , where Bf = {x ∈ A | f(x) = co f(x)}. (5)

Proof. The inclusion extrA ⊆ Bf for any function f ∈ Q(A ) follows from (4).
Suppose x0 ∈ A \ extrA . Then there are two distinct points x1 and x2 in A
such that x0 = 1

2x1 + 1
2x2. To prove that x0 is not in

⋂
f∈Q(A ) Bf we can find

a function f in Q(A ) such that f(x0) > 1
2f(x1)+ 1

2f(x2). The function −a2( · ) will
do, where a is an affine continuous bounded function on A such that a(x1) 6= a(x2).

Example 1 in the next subsection shows the importance of the assumption of
µ-compactness in Proposition 8.

Arguing as in the proof of Proposition 7 one can easily produce the following
necessary condition for the representation (5), the condition of local µ-compactness
in a neighbourhood of the set extr A : for any extreme point x0 of the set A and
any sequence {xn} ⊂ A converging to x0 the set b−1({xn}) is compact in M(A ).

2.2. Examples. Any compact set is obviously µ-compact. In this section we
consider several most important examples of µ-compact, but not compact sets.

Proposition 9. The bounded part3 of the positive cone in the space l1 is µ-compact.

Proof. It is sufficient to take the family of functions of the form l13{xi} 7→
∑

i hixi,
where {hi} is an increasing unbounded sequence of positive numbers, and then to
apply Proposition 2 taking into account the compactness criterion for subsets of
the space l1.

Corollary 3. The set P+∞ of probability distributions with countably many out-
comes is a µ-compact subset of the space l1.

Remark 4. Let A1 = {x ∈ l1 | x > 0, ‖x‖1 6 1}. Proposition 9 implies that
both A1 and −A1 are µ-compact in the metric l1. However, neither their convex

3Here and in what follows by the bounded part of a positive cone in an ordered Banach space
we mean the intersection of this cone with a unit ball.
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hull nor their Minkowski sum is µ-compact. These are actually not even pointwise
µ-compact because they contain a unit ball of the space l1, which is not point-
wise µ-compact (this is easy to show).

Proposition 10. An arbitrary weakly closed bounded (in variation) set of Borel
measures on a complete separable metric space is µ-compact in the weak-convergence
topology.

Proof. Let X be a complete separable metric space, M a weakly closed bounded
set of Borel measures on the space X and V(X) the set of all lower semicontinuous
functions ϕ on X taking values in [0,+∞] such that the set {x ∈ X | ϕ(x) 6 c} is
compact for all c > 0. Prokhorov’s theorem (see [17], Example 8.6.5) implies that
the set M0 ⊆ M is relatively compact if and only if there exists a function ϕ ∈ V(X)
for which

sup
µ∈M0

∫
X

ϕ(x)µ(dx) < +∞.

Hence the family of affine lower semicontinuous functions

fϕ(µ) =
∫

X

ϕ(x)µ(dx), ϕ ∈ V(X),

on the set M satisfies all the assumptions of Proposition 2.

Corollary 4. The set of all Borel probability measures on a complete separable
metric space is µ-compact in the topology of weak convergence.

Using Propositions 3 and 9 as well as Proposition 15 stated below one can prove
the following result on the properties of the cone of positive operators in the Shatten
class of order p, that is, in the Banach space of all operators acting in a separable
Hilbert space H such that Tr |A|p < +∞, with the norm ‖A‖p = (Tr |A|p)1/p.

Proposition 11. The bounded part of the positive cone in the Shatten class of
order p is µ-compact precisely for p = 1.

Proof. In the case p = 1, applying the compactness criterion for subsets of the
positive cone T+(H ) of the space of trace class operators T(H ) ([21], Appendix)
we obtain that the map taking an operator A ∈ T+(H ) to the sequence of its
diagonal elements (in some fixed basis of the space H ) satisfies the assumptions of
the first part of Proposition 3 (with the bounded parts of the positive cones of the
spaces T(H ) and l1 taking the roles of A and B, respectively). Combining that
proposition with Proposition 9 we obtain the µ-compactness of the bounded part
of the cone T+(H ).

The cone of positive operators in the Shatten class of order p > 1 contains
a subcone of commuting operators. That subcone is affinely homeomorphic to Ap

(the bounded part of the positive cone in the space lp), which is not µ-compact
(Proposition 15).

Proposition 11 yields, in particular, the µ-compactness of the set S(H ) of quan-
tum states, density operators in a separable Hilbert space H . This fact was orig-
inally proved in [22]. Corollary 1 and Lemma 5 from the appendix imply the
following result.
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Proposition 12. Let L+(H ,H ′) be the cone of positive linear continuous maps
from the Banach space T(H ) of trace class operators in a separable Hilbert space H
into a similar space T(H ′). Then the bounded (in operator norm) part of this cone
is µ-compact in the strong operator topology.

Proposition 12 implies the µ-compactness of the set of quantum operations and
of quantum channels in the topology of strong convergence [21].

Proposition 12 also yields the µ-compactness (in the strong operator topology) of
the bounded part of the cone of linear continuous positive operators in l1. Indeed,
this cone is naturally identified with a subset of the cone L+(H ,H ′). This shows
the µ-compactness of the set of sub-Markov operators, in particular, Markov oper-
ators.

Now consider some ‘negative’ examples. Proposition 13 gives an example of
pointwise µ-compact sets (Definition 2) that are not µ-compact. We are going
to see that in a Hilbert space there are no µ-compact sets that are not compact
(Proposition 14). Then we give several examples of sets that are not even pointwise
µ-compact.

By definition the pointwise µ-compactness property of a set survives weakening
the topology. The next proposition shows that µ-compactness does not possess this
property. The bounded part of the positive cone in l1 loses µ-compactness after
weakening the topology.

Proposition 13. For any p > 1 the simplex

∆p =
{

x ∈ lp

∣∣∣∣ x > 0,

+∞∑
i=1

xi 6 1
}

in the space lp is pointwise µ-compact, but not µ-compact.

Proof. The pointwise µ-compactness of the set ∆p follows from the remark above.
Let us show that ∆p is not µ-compact in the space lp. Consider an increas-
ing sequence of natural numbers {nr}r∈N and a sequence of nonnegative numbers
{zi}i∈N such that

∑nr+1−1
i=nr

zi = 1 and
∑nr+1−1

i=nr
(zi)p 6 1/r for each r > 1. The

set K =
{
y ∈ ∆p | ∀ r ∈ N

∑+∞
i=nr

(yi)p 6 1/r} is compact. If the set ∆p is
µ-compact, then by Proposition 1 for any ε > 0 there is the corresponding compact
set Kε. The set Kε can contain only a finite number of vectors of the canonical
basis {ei}, otherwise it is not compact. Let N be such that ei /∈ Kε for i > N . We
take an arbitrary r for which nr > N and denote by x ∈ ∆p the vector with coor-
dinates xi = zi for nr 6 i < nr+1 and xi = 0 for all other i. Clearly, x ∈ K . Since
x =

∑nr+1−1
i=nr

xiei and
∑nr+1−1

i=nr
xi = 1, but ei /∈ Kε for all i = nr, . . . , nr+1 − 1, we

arrive at a contradiction with the µ-compactness criterion from Proposition 1.

In particular, Proposition 13 shows that a Hilbert space contains noncompact
pointwise µ-compact sets. It appears, however, that it does not contain µ-compact
sets that are not compact.

Proposition 14. There are no µ-compact subsets of a Hilbert space that are not
compact.
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Proof. We describe the idea of the proof omitting details, which can be easily
reconstructed by the reader. Let A be a bounded convex closed subset of a Hilbert
space. Without loss of generality it can be assumed that its diameter is 1. If A is
not compact, then there exists a sequence of its elements {ak}k∈N such that all
their norms and all pairwise distances between them exceed some value ε > 0.
Because of the weak compactness of A it can be assumed, maybe after passing to
a subsequence, that the sequence {ak} converges weakly to some element a. Since
the set A is convex and closed, we have a ∈ A . The sequence {bk = ak − a}k∈N
converges weakly to zero. Hence by passing to subsequences one can achieve a rapid
convergence to zero for the scalar products: (bi, bj) 6 ε22−i−j for every i 6= j. Since
ε 6 ‖bi‖2 6 1 for all i ∈ N, invoking the Cauchy-Schwarz inequality we conclude
that any sequence x ∈ l2 satisfies the inequalities

ε

2
‖x‖2 6

∥∥∥∑
i

xibi

∥∥∥
2

6 2‖x‖2.

This means that the system of elements {bk} possesses the Riesz basis property.
Then there is a continuous linear operator that is continuously invertible and takes
the system {bk} to an orthonormal system [23]. This operator maps the convex
hull of the points a and {ak}k∈N onto the set ∆2 from Proposition 3, which is not
µ-compact. Hence this convex hull is not µ-compact, therefore nor is the set A .

Now we consider two important examples of not pointwise µ-compact sets.

Proposition 15. For any p > 1 the set Ap = {x ∈ lp | x > 0, ‖x‖p 6 1} (the
bounded part of the positive cone in the space lp) is not pointwise µ-compact.

Proof. We shall show that if x ∈ Ap is such that ‖x‖p < 1/3 and
∑

i xi = +∞, then
it has no compact set Kε for ε = 1/3 (see Proposition 1). If such a compact set
exists, then it can contain only finitely many elements of the canonical basis {ei}.
Take a sufficiently large N such that ei /∈ Kε for every i > N . Since the series∑

i xi diverges, we see that there exists r for which s =
∑N+r

i=N+1 xi ∈ (1/3, 2/3).
Let x̄ = x −

∑N+r
i=N+1 xiei (the components of the vector x̄ from the (N + 1)st to

the (N +r)th are zeros, and the others coincide with the corresponding components
of x). Then

x = (1− s)
(

1
1− s

x̄

)
+

N+r∑
i=N+1

xiei.

Since 1/(1− s) < 3 and ‖x̄‖p < 1/3, it follows that x̄/(1−s) ∈ Ap. All the points ei

in this barycentric combination lie outside Kε, but their total weight s exceeds 1/3,
which is a contradiction.

The next example complements Proposition 7 and demonstrates that sets that
are not pointwise µ-compact do not necessarily satisfy relations (3) and (4) for
continuous bounded concave functions. This violates representation (5).

Example 1. Let f be a continuous function on the bounded part Ap of the positive
cone of the set lp for p > 1 that takes value 1 at zero and vanishes at all the vectors of
the canonical basis {en} of the space lp. For example, the function f( · ) = 1−‖ · ‖p
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will do. Since the zero vector of the space lp is a limit point of the set of all convex
combinations of the vectors {en}, the convex closure of the function f is identically
zero on the set Ap. Therefore, co f(0) 6= f(0). This example shows also that for
the set Ap such that Ap = co(extr Ap) and the map (2) is open (as follows from
a theorem in [15] in combination with the strict convexity of the space lp for p > 1
and the proof of Theorem 1 in [9]) the assertion of Corollary 2 in [9] does not hold,
that is, a continuous function on the closed set extrAp need not have a convex
continuous (or even lower semicontinuous) extension to Ap.

A Hilbert cube is the set

Ha = {x ∈ l2 | |xi| 6 ai, i ∈ N},

where a = {ai}i∈N is an arbitrary sequence of positive numbers. We claim that the
following alternative holds for any Hilbert cube.

Proposition 16. If ‖a‖2 < ∞, then the set Ha is compact ; otherwise, if
‖a‖2 = +∞, then it is not even pointwise µ-compact.

Proof. The first assertion is well known. It follows, for instance, from the com-
pactness criterion for l2. If ‖a‖2 = +∞, then we split the sequence a into blocks
so that each block contains a finite number of consecutive elements the sum of
whose squares exceeds 1. Suppose that the nth block consists of elements ak,
ak+1, . . . , ak+m. We write

bn =
k+m∑
i=k

aiei

for every n and we denote by L the closure of the linear span of the elements
bn, n ∈ N. The set L is a Hilbert space with orthogonal basis {bn}. The unit
ball of the space L lies in Ha. Since a ball in the Hilbert space is not pointwise
µ-compact, it follows that the set Ha is not so either.

§ 3. The CE-properties of µ-compact convex sets

In the 1970s various properties of convex compact sets, in particular, the continu-
ity properties of the convex hulls of continuous functions were intensively studied.
Vesterstrom proved in [10] a relation between the continuity of the convex hull4

of an arbitrary continuous function and the openness of the barycentre map. He
also conjectured the equivalence between the continuity of the convex hull of any
continuous concave function (called the CE-property in [11]) and the continuity of
the convex hull of any continuous function (called the strong CE-property in [9]).
This conjecture was proved by O’Brien [12], who showed the equivalence of these
properties to the openness of the convex mixture map (x, y, λ) 7→ λx+(1−λ)y. In
many subsequent papers the latter property was studied for convex sets that are
not necessarily compact, and was called the stability property. Convex sets having
this property were called stable convex sets [13]. Relations between the stability
property and several other properties of convex sets were also revealed [14], [15].

4By Corollary I.3.6 in [2] the convex hull of any continuous function on a compact set coincides
with the convex closure of this function.



Generalized compactness in linear spaces and its applications 711

In this section we generalize the Vesterstrom-O’Brien theory to the class of
µ-compact convex sets. The first partial result in this direction was obtained in [9],
where the µ-compact version of Theorem 3.1 in [10] was proved. The following
theorem is the µ-compact generalization of the main result in [12].

Theorem 1. For a convex µ-compact set A the following properties are equi-
valent :

(i) the map A ×A 3 (x, y) 7→ x+y
2 ∈ A is open (the stability property [13]);

(ii) the map M(A ) 3 µ 7→ b(µ) ∈ A is open ;
(iii) the map M( extrA ) 3 µ 7→ b(µ) ∈ A is open ;5

(iv) the convex hull of an arbitrary function in C(A ) is continuous (the strong
CE-property [9]);

(v) the convex hull of an arbitrary function in Q(A ) is continuous (the CE-
property [11]).

The equivalent properties (i)–(v) imply the closedness of the set extrA .

Remark 5. Property (i) in Theorem 1 is equivalent to the openness of the map
A ×A × [0, 1] 3 (x, y, λ) 7→ λx+(1−λ)y ∈ A [14]. Properties (iv) and (v) in The-
orem 1 can be formulated as the continuity of the convex closure and its coincidence
with the convex hull for any function in C(A ) and in Q(A ), respectively.

Remark 6. If properties (i)–(v) hold for a convex µ-compact set A , then the fam-
ily F (A ) in Proposition 2 can be chosen consisting of lower semicontinuous func-
tions. Indeed, using property (ii) it is easy to show that the functions fϕ constructed
in the proof of Proposition 2 are lower semicontinuous.

Proof of Theorem 1. Note first that by Proposition 8, (v) implies the closedness of
the set extr A since (v) guarantees the closedness of the set

Bf = {x ∈ A | f(x) = co f(x)}

for any function f ∈ Q(A ).
(v) =⇒ (iii). The proof of this part of the theorem (as well as the proof of the

analogous part of Theorem 3.2 in [10]) can be carried out by means of Lemma 2.1
in [10]. That lemma can be proved without the compactness assumption in view of
the following observation: if X is a compact space and Y is an arbitrary topological
space then the image of any closed subset of X × Y under the canonical projection
X × Y 3 (x, y) 7→ y ∈ Y is a closed subset of Y .

By representation (3) the convex closure of any function f in Q(A ) is determined
by the expression

co f(x) = inf
µ∈Mx(extr A )

µ(f) ∀x ∈ A , where µ(f) =
∫

extr A

f(x) µ(dx).

Hence (v) yields the continuity and boundedness of the function

A 3 x 7→ sup{µ(f) | µ ∈ M(extrA ), b(µ) = x}
5This map is surjective by Proposition 5.
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for any f in P (A ). The above-mentioned generalization of Lemma 2.1 in [10] with
K = M(A ), M = M(extrA ) and K ′ = A implies the openness of the map

M(extrA ) 3 µ 7→ b(µ) ∈ A , (6)

provided that the set M(extrA ) is endowed with the topology that has a subbasis
consisting of the sets {µ ∈ M(extrA ) | µ(f) > 0}, f ∈ P (A ). Following the
terminology in [10], this will be called the p-topology. This is the weakest topology
providing the lower semicontinuity of the functionals µ 7→ µ(f) for any function
f ∈ P (A ).

Using Lemma 6 (see § 6) we shall show that the openness of the map (6) in
the p-topology on M(extrA ) and the closedness of the set extrA proved above
imply the openness of the map (6) in the weak topology on M(extrA ).6 For this
it suffices to show that for an arbitrary converging sequence {xn} ⊂ A and an
arbitrary net {µλ}λ∈Λ ⊂ M(extrA ) such that

b({µλ}λ∈Λ) ⊆ {xn}, ∃ p - lim
λ

µλ = µ0,

where µ0 is a measure in M(extrA ) such that b(µ0) = limn→+∞ xn, there exists
a subnet of the net {µλ}λ∈Λ that converges weakly to the measure µ0.

Let {xn} and {µλ}λ∈Λ be the above sequence and net, respectively. Since the
sequence is relatively compact, the µ-compactness of the set A and the inclusions
b({µλ}λ∈Λ) ⊆ {xn} imply the relative compactness of the net {µλ}λ∈Λ in the weak
topology and hence the existence of a subnet {µλπ}π∈Π weakly converging to some
measure ν ∈ M(extrA ). By the definitions of the weak topology and p-topology

ν(f) = lim
π

µλπ (f) > p - lim inf
λ

µλ(f) > µ0(f) ∀ f ∈ P (A ).

This means that ν � µ0 (in the Choquet ordering). The closedness of the set
extrA implies the maximality in M(A ) of any measure in M(extrA ). This can be
proved using Theorem 2.2 in [5] and the arguments from the proof of Theorem 1.1
in [7], but it can also be immediately shown by using property (v) and the coin-
cidence of any function in Q(A ) with its convex hull on the set extrA . Thus µ0 is
the maximal measure in M(A ) and hence ν = µ0.

(iii) =⇒ (i). This implication follows from Proposition 5 and Proposition 17
below (with X = extrA ).

By Remark 5 the equivalence of properties (i), (ii) and (iv) for convex µ-compact
subsets of a Banach space is proved in [9], Theorem 1. This proof is easily extended
to the class of sets considered in this paper.

The implication (iv) =⇒ (v) is obvious.

In the proof of Theorem 1 we have involved the following result of measure theory
(see [24], Theorem 2.4).

Proposition 17. Let X be a complete separable metric space. Then the map
M(X)×M(X) 3 (µ, ν) 7→ 1

2 (µ + ν) ∈ M(X) is open.

6In the case of a compact set A the coincidence of these topologies on M(extr A ) is proved in
[10], Lemma 3.4. In the case of a µ-compact set A we cannot prove such a coincidence.
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Since the set M(X) is µ-compact (Corollary 4), we arrive at the following
observation.

Corollary 5. Properties (i)–(v) in Theorem 1 hold for the set of Borel probability
measures on a complete separable metric space endowed with the weak-convergence
topology.

The µ-compactness condition is essential in the proof of Theorem 1; it cannot
be removed without changing the whole structure of the proof. This motivates the
conjecture that the class of µ-compact convex sets is the maximal class of convex
metrizable sets for which the Vesterstrom-O’Brien theory can be generalized. This
conjecture can be justified by the following example, showing that even pointwise
µ-compactness is not sufficient for the proof of Theorem 1.

Proposition 18. For any p > 1 the pointwise µ-compact simplex

∆p =
{

x ∈ lp | x > 0,
∞∑

i=1

xi 6 1
}

in lp is stable, that is, it possesses property (i) in Theorem 1, which implies (ii),
but it does not possess properties (iii)–(v).

Note that for p = 1 the µ-compact simplex ∆1 = A1 already has properties
(i)–(v) in Theorem 1.

Proof. Example 1 shows that the simplex ∆p does not possess properties (iv)
and (v). Let us show that it does not possess (iii) either. Note that extr∆p =
{0, ei, i ∈ N}, and the set ∆p is a simplex: for any point x in it there exists
a unique measure on extr ∆p with barycentre x. The sequence of points xn =
(1/n, . . . , 1/n, 0, . . . ) ∈ ∆p (the first n coordinates are equal to 1/n and all other
are zero) converges to zero in lp as n → +∞, but it is easy to see that the cor-
responding sequence of measures on extr ∆p does not converge to the single-atom
measure supported at the point 0.

Let us now show that for an arbitrary p > 1 the set ∆p is stable, that is, has
property (i) which implies (ii) (see the proof of Theorem 1 in [9]). It suffices to prove
that for arbitrary points a, b ⊂ ∆p, c = 1

2 (a+ b) and for arbitrary ε > 0 there exists
δ > 0 with the following property: for any z ∈ ∆p such that ‖z − c‖p < δ there
exists a closed interval [x, y] ⊂ ∆p with centre at z for which ‖x − a‖p < ε and
‖y − b‖p < ε. By taking sufficiently small ε we can assume that ‖a‖p < 1 − ε
and that ‖b‖p < 1− ε. Otherwise the points a and b can be replaced by sufficiently
close points belonging to the interior of [a, b]. Since the lp-norm is strictly convex,
the norms of a and of b will be less then 1. Then we choose a large N so that for
each of a and b the norm of the ‘tail’ starting from the (N + 1)th coordinate is less
than 1

6 ε, that is,
(∑∞

k=N+1(a
k)p

)1/p
< 1

6 ε and
(∑∞

k=N+1(b
k)p

)1/p
< 1

6 ε. Consider
the space RN generated by the first N coordinates. We denote by ∆̃p and s̃ the
restrictions of the set ∆p and an arbitrary element s ∈ lp to this space. Since ∆̃p is
a simplex in RN , it is stable (see [13]) and one can take δ > 0 such that there always
exist points x̃, ỹ ∈ ∆̃p for which 1

2 (x̃ + ỹ) = z̃, ‖x̃ − ã‖p < 1
3 ε and ‖ỹ − b̃‖p < 1

3 ε
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once ‖z̃ − c̃‖p < δ. Now for fixed z ∈ ∆p and arbitrary t ∈ [−1, 1] we define points
x(t), y(t) ∈ lp as follows:

xk(t) =

{
x̃k, k 6 N,

(1 + t)zk, k > N,
yk(t) =

{
ỹk, k 6 N,

(1− t)zk, k > N.

By construction 1
2 (x(t) + y(t)) = z for any t, while the norms of the elements x(t)

and y(t) do not exceed 1− 1
3 ε + 2δ. Indeed,

‖x̃‖p 6 ‖ã‖p + ‖x̃− ã‖p 6 1− ε +
1
3

ε = 1− 2
3

ε,

while the norm of the ‘tail’ of (1 + t)z does not exceed the sum of the norms of
the ‘tails’ of 2c and 2(z − c), that is, it does not exceed 2

(
1
6 ε + δ

)
. Taking the

sum we obtain ‖x(t)‖p 6 1− 1
3 ε + 2δ, and the same holds for y(t). For δ 6 1

6 ε we
obtain ‖x(t)‖p 6 1 and ‖y(t)‖p 6 1. We shall show that there exists τ ∈ [−1, 1]
for which ‖x(τ)‖1 6 1 and ‖y(τ)‖1 6 1, so that x(τ), y(τ) ∈ ∆p. It is clear that
‖x̃‖1 6 1 and ‖ỹ‖1 6 1. For definiteness suppose ‖x̃‖1 > ‖ỹ‖1. If ‖y(−1)‖1 6 1,
then one can take τ = −1 since ‖x(−1)‖1 = ‖x̃‖1 6 1. If ‖y(−1)‖1 > 1, then
‖y(−1)‖1 > ‖x(−1)‖1, and since ‖y(1)‖1 6 ‖x(1)‖1, using the continuity argument
we conclude that there exists τ ∈ [−1, 1] such that ‖y(τ)‖1 = ‖x(τ)‖1. Since
1
2 (x(τ) + y(τ)) = z, it follows that ‖x(τ)‖1 = ‖y(τ)‖1 = ‖z‖1 6 1.

Finally, the norm of the difference ‖x(τ)−a‖p as concerns the first N coordinates,
does not exceed 1

3 ε, and as concerns the other coordinates it does not exceed the
maximal norm of the two ‘tails’: of the element a and of 2z. Hence

‖x(τ)− a‖p 6
1
3

ε + max
{

1
6

ε, 2
(

1
6

ε + δ

)}
=

2
3

ε + 2δ.

For δ < 1
6ε we obtain ‖x(τ) − a‖p < ε, and similarly ‖y(τ) − b‖p < ε. Setting

x = x(τ) and y = y(τ) we complete the proof.

§ 4. Applications to quantum information theory

An important example of convex µ-compact sets for which the equivalent prop-
erties in Theorem 1 hold is the set S(H ) of quantum states. Quantum states are
density operators (positive operators with trace equal to 1) in a separable Hilbert
space H .7 The set of extreme points of the set S(H ) consists of one-dimensional
projectors called pure states [25]. The µ-compactness and the stability prop-
erty (i) in Theorem 1 of the set S(H ) are established in [22], Proposition 2 and
in [26], Lemma 3, respectively. These properties are used essentially in the study
of characteristics of quantum states and of quantum channels. For instance, the
µ-compactness of the set S(H ) makes it possible to prove that any nonentangled
state (see below) of a composite quantum system can be represented as an average
(barycentre) state of some generalized ensemble of pure product states (probability
measure on the set of product pure states) [27]. The stability property of the set

7The set S(H ) is compact if and only if dim H < +∞.
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S(H ) plays the crucial role in the proof of the lower semicontinuity property of the
χ-function for an arbitrary quantum channel, which is an important characteristic
related to the classical capacity of this channel [26].

In this section we consider a result following directly from the generalized
Vesterstrom-O’Brien theorem (Theorem 1) applied to the stable set S(H ).

According to the quantum mechanical formalism, states of a composite quan-
tum system arising as a result of joining two quantum systems represented by
two Hilbert spaces H and K correspond to the density operators in the tensor
product H ⊗ K of these spaces. A specific property of the quantum mechanical
statistical model (in comparison with the classical one) is the existence of so-called
entangled states of the composite system, which cannot be represented as convex
combinations of product states describing independent subsystems. Entanglement
can be regarded as a special purely quantum correlation, which is the base for the
construction of different quantum algorithms, quantum cryptographical protocols
and systems of information transmissions, which has attracted a lot of attention
of scientists in the last two decades (see [25], Chapter 3). This is why the study of
entanglement and, in particular, of its quantitative characteristics, is one of the
main problems of quantum information theory.

Let H and K be separable Hilbert spaces. A state ω ∈ S(H ⊗ K ) is called
nonentangled if it belongs to the convex closure of the set of product states, that
is, of states of the form ρ ⊗ σ, where ρ ∈ S(H ) and σ ∈ S(K ); otherwise it is
called entangled.

Entanglement monotone is an arbitrary function E on the set S(H ⊗K ) that
possesses the following properties (see [28], [29]):

E1) {E(ω) = 0} ⇐⇒ {the state ω is nonentangled};
E2) Monotonicity under Local Operations and Classical Communications

(LOCC), which means that

E(ω) >
∑

i

πiE(ωi) (7)

for an arbitrary state ω ∈ S(H ⊗ K ) and an arbitrary LOCC-operation
transforming the state ω into a set {ωi} of states with probability distribu-
tion {πi} (see details in [29]);

E3) the convexity of the function E on the set S(H ⊗K ), which means that

E

( ∑
i

πiωi

)
6

∑
i

πiE(ωi)

for an arbitrary finite set {ωi} of states in S(H ⊗ K ) and probability
distribution {πi}.

The standard method of ‘generation’ of entanglement monotones (EM) in the
case of finite-dimensional spaces H and K is the convex roof construction (see
[29], [30]). In accordance with this method, for an arbitrary concave continuous
nonnegative function f on the set S(H ) such that

f−1(0) = extrS(H ) and f(ρ) = f(UρU∗) (8)
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for an arbitrary state ρ in S(H ) and an arbitrary unitary operator U in the
space H the corresponding EM Ef is defined by

Ef (ω) = inf
{πi,ωi}∈Mω(extr S(H ⊗K ))

∑
i

πif ◦Θ(ωi), ω ∈ S(H ⊗K ), (9)

where Θ: ω 7→ TrK ω is the partial trace [27] (by the spectral theorem the right-
hand side of (9) is well defined). If the von Neumann entropy H(ρ) = −Tr ρ log ρ
(see [29]) is used as a function f , then this method provides the construction of the
Entanglement of Formation (EoF), which is one of the most useful entanglement
measures.8

In what follows we consider properties of the function Ef defined by (9) in the
case of infinite-dimensional spaces H and K .

An important problem in constructing EM is to analyse the continuity properties,
in particular, to prove its continuity on the entire state space S(H ⊗K ) (formally,
the last property is not included in the definition of EM, but in finite dimensions
it is considered a natural requirement). Note that the continuity of the function Ef

is not obvious even in the finite-dimensional case and is proved in general using the
explicit form of the function f . By Theorem 1 the µ-compactness and stability of
the set S(H ⊗K ) guarantee the continuity of the function Ef on this set for an
arbitrary continuous function f in both the finite- and infinite-dimensional cases.

Theorem 2. Let f be a concave continuous nonnegative function on the set S(H )
satisfying conditions (8). Then the function Ef defined by (9) is an entanglement
monotone that is continuous on the set S(H ⊗K ).

Proof. The nonnegativity, concavity, and continuity of the function f imply its
boundedness. By Theorem 1 the stability property of the µ-compact set S(H ⊗K )
guarantees the continuity of the function co(f ◦ Θ) and therefore its coincidence
with the function co(f ◦Θ), which by Proposition 6 has the following representation:

co(f ◦Θ)(ω) = inf
µ∈Mω(S(H ⊗K ))

∫
S(H ⊗K )

(f ◦Θ)($) µ(d$), ω ∈ S(H ⊗K ),

(10)
where the infimum is attained at a particular measure µω in Mω(S(H ⊗K )). By
the concavity, continuity, and boundedness of the function f ◦ Θ one can assume
that µω is a measure in Mω(extrS(H ⊗K )). Hence the definition of the function
Ef and the concavity of the function f ◦Θ imply Ef = co(f ◦Θ) = co(f ◦Θ).

By (8) the nonnegative function f ◦ Θ vanishes on a pure state in S(H ⊗K )
if and only if this state is product. As shown in [27], a state ω is nonentangled if
and only if there exists a measure µω supported by pure product states such that
b(µω) = ω. Thus, the above remark shows that condition E1) is fulfilled for the
function Ef = co(f ◦Θ).

Condition E2) for the function Ef is easily established in the same way as in the
finite-dimensional case (see [29]).

Condition E3) for the function Ef follows from its definition.

8An entanglement measure is an EM having some particular properties [29].
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Example 2. Generalizing the argument in [30] to the infinite-dimensional case we
consider the family of continuous concave functions

fα(ρ) = 2(1− Tr ρα), α > 1,

on the set S(H ) with dim H 6 +∞. It is easy to see that all the functions
in this family satisfy assumptions (8). By Theorem 2, {Efα}α>1 is a family of
entanglement monotones, which are continuous and bounded on the set S(H ⊗K )
with dim H 6 +∞ and dim K 6 +∞. The case α = 2 is of particular interest
since the entanglement monotone Ef2 can be considered as an infinite-dimensional
generalization of the notion of I-tangle [31].

§ 5. Possible generalizations and open questions

Proposition 1 actually gives an equivalent definition of the µ-compactness prop-
erty for convex sets of the class considered in this paper. A convex set A is
µ-compact if and only if for an arbitrary compact set K ⊆ A and arbitrary ε > 0
there exists a compact set Kε ⊆ A such that for any expansion of a point x ∈ K in
a convex combination of points in A the total weight of points belonging to the set
Kε is at least 1−ε. This property of (arbitrary!) convex sets can be called general-
ized µ-compactness, or briefly, µ̃-compactness. By Proposition 1 the µ̃-compactness
property means µ-compactness for convex bounded subsets of locally convex spaces
that are complete separable metric spaces. The above definition of µ̃-compactness
is translated without any change to any convex closed subsets of linear topological
spaces, not necessarily bounded. By contrast, the definition of µ-compactness is
not generalized to unbounded sets, since for unbounded sets the barycentre map
may not be well defined: the integral

b(µ) =
∫

A

xµ(dx)

does not necessarily exist for some measures µ ∈ M(A ). Thus, the notion of
µ̃-compactness generalizes the notion of µ-compactness to a wider class of convex
sets. Similarly to the case of µ-compact sets, the intersection and the Cartesian
product of a finite or countable family of µ̃-compact sets is µ̃-compact, a convex
closed subset of a µ̃-compact set is µ̃-compact. The proof of these assertions is lit-
erally the same as the proof of Proposition 4. A complete analogue of Proposition 3
for continuous transformations of µ-compact sets also holds. Nontrivial examples
of µ̃-compact sets appear even in the finite dimensional case.

Lemma 3. An arbitrary convex closed pointed (not containing lines) cone in Rd

is µ̃-compact.

Proof. Let C ⊂ Rd be a convex pointed cone. Then there exists a vector a ∈ Rd

such that infx∈C , ‖x‖=1(x, a) > 0 (see [32], p. 53). For each r > 0 the truncated
cone Cr = {x ∈ C , (x, a) 6 r} is compact. An arbitrary compact subset K of
C can be put in some truncated cone Cr. Then for each ε > 0 the compact set
Kε = Cr/ε has the required property.
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The following result of convex geometry is well known, so we omit the proof.

Lemma 4. The following properties of a convex closed set A ⊂Rd are equivalent :
(i) A lies in a convex pointed cone;
(ii) A has at least one extreme point ;
(iii) A contains no straight line;
(iv) the polar of the set A has a nonempty interior.

Applying Lemma 3 we conclude that property (i) implies the µ̃-compactness of
the set A . On the other hand, a line is not µ̃-compact, therefore µ̃-compactness
implies property (iii). Thus, we obtain the following result.

Proposition 19. In the space Rd µ̃-compactness is equivalent to each of properties
(i)–(iv) in Lemma 4.

Positive cones in the spaces lp and Lp(X) are µ̃-compact in the weak topology.
The proof is analogous to the proof of Lemma 3 and is based on the weak com-
pactness of bounded sets in these spaces. The positive cone in l1 (Proposition 9),
the cone of finite Borel measures on a complete separable metric space (Proposi-
tion 10) and the cone of positive operators in the Shatten class of order p = 1
(Proposition 11) are µ̃-compact and, by contrast with these propositions, one need
not take bounded parts of these cones. Thus, µ̃-compactness substantially extends
the notion of µ-compactness. This motivates our first question.

Question 1. To what extent are the results of this paper generalized to µ̃-compact
sets?

The following questions concern µ-compact sets.

Question 2. Do there exist µ-compact noncompact sets in the spaces Lp and lp
for p > 1?

Question 3. Consider a Banach lattice. Under what conditions is the bounded
part of the positive cone in it µ-compact?

Question 4. Under what conditions on a convex set A , is the convex hull of an
arbitrary continuous bounded function A continuous?

The last property holds for stable µ-compact sets (Theorem 1), but it does not
hold for stable pointwise µ-compact sets that are not µ-compact (Proposition 7).
The unit ball in the space l2 possesses this property (Remark 3), but the positive
part of this ball does not (Example 1).

§ 6. Appendix

6.1. The compactness criterion for subsets of the cone L+(H , HH , HH , HH , HH , HH , HH , H ′). Let
L+(H ,H ′) be the cone of linear continuous positive maps from the Banach space
T(H ) of trace-class operators in a separable Hilbert space H into the similar
Banach space T(H ′). The compactness criterion for subsets of this cone in the
strong operator topology is presented in the following lemma.
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Lemma 5. 1) A closed bounded subset L0 ⊆ L+(H ,H ′) is compact in the strong
operator topology if in S(H ) there exists a full-rank state σ such that {Φ(σ)}Φ∈L0

is a compact subset of T(H ′).
2) If a subset L0⊆L+(H ,H ′) is compact in the strong operator topology, then

{Φ(σ)}Φ∈L0 is a compact subset of T(H ′) for any state σ in S(H ).

Proof. 1) Let {|i〉} be the basis of eigenvectors of the state σ arranged in non-
increasing order and Hm be the eigensubspace generated by the first m vectors of
this basis. Let {Φn} be an arbitrary sequence of maps in L0.

We claim that for each m for an arbitrary operator A in T(Hm) there exists
a subsequence {Φnk

} such that the sequence {Φnk
(A)}k converges in T(H ′). Sup-

pose first that A > 0. Since A ∈ T(Hm), there is λA > 0 such that λAA 6 σ.
By the compactness criterion for subsets of T(H ′) (see the appendix in [21]) for
arbitrary ε > 0 there exists Pε ∈ B(H ′) such that Tr(IH ′ − Pε)Φ(σ) < ε, and
hence Tr(IH ′ − Pε)Φ(A) < λ−1

A ε for all Φ ∈ L0. By the same compactness cri-
terion the set {Φ(A)}Φ∈L0 is compact. This implies the existence of the desired
subsequence for a positive operator A. The existence of such a subsequence for an
arbitrary operator A ∈ T(Hm) follows from the representation of this operator as
a linear combination of positive operators in T(Hm).

Thus for each m an arbitrary sequence {Φn} ⊂ L0 contains a subsequence {Φnk
}

such that the limits

lim
k→+∞

Φnk
(|i〉〈j|) = Cm

ij (11)

exist for all i, j = 1, . . . ,m, where {Cm
ij } are some operators in T(H ′).

For arbitrary m′ > m, by applying the above observation to the sequence {Φnk
}k

we obtain a subsequence of the sequence {Φn} such that (11) holds for all i, j =
1, . . . ,m′ with a set of operators {Cm′

ij } such that Cm′

ij = Cm
ij for all i, j = 1, . . . ,m.

By using this construction one can show the existence of the set {Cij}+∞
i,j=1 of

operators having the following property: for each m there exists a subsequence
{Φnk

} of the sequence {Φn} such that (11) holds with Cm
ij = Cij for all i, j =

1, . . . ,m.
On the set

⋃
m∈N T(Hm) consider the map

Φ∗ :
∑
i,j

aij |i〉〈j| 7→
∑
i,j

aij Cij ∈ T(H ′).

This map is linear by construction. It is easy to prove its positivity and bound-
edness. Indeed, by the property of the set {Cij} for an arbitrary operator A ∈⋃

m T(Hm) there exists a subsequence {Φnk
} of the sequence {Φn} such that

Φ∗(A) = limk→+∞ Φnk
(A). Thus, the positivity and boundedness of the map

Φ∗ follows from the positivity of the maps in the sequence {Φn} and the uniform
boundedness of these maps. Since the set

⋃
m T(Hm) is dense in T(H ), the map Φ∗

can be extended to a linear positive bounded map from T(H ) into T(H ′) (denoted
by the same symbol Φ∗).

We show that the map Φ∗ is a limit point of the sequence {Φn} in the strong
operator topology. This topology on bounded subsets of L+(H ,H ′) can be deter-
mined by a countable family of seminorms Φ 7→ ‖Φ(ρi)‖1, where {ρi} is an arbitrary
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countable dense subset of the set S(H ).9 We choose the set of states in
⋃

m T(Hm)
as this subset. An arbitrary neighbourhood of the map Φ∗ contains a neighbour-
hood of the form

{Φ ∈ L(H ,H ′) | ‖(Φ− Φ∗)(ρit
)‖1 < ε, t = 1, . . . , p},

where {ρit
}p

t=1 is a finite subset of the above set of states and ε > 0. Since
{ρit

}p
t=1 ⊂ T(Hm) for a particular m, the construction of the map Φ∗ implies

the existence of a subsequence {Φnk
} of the sequence {Φn} such that Φ∗(ρit) =

limk→+∞ Φnk
(ρit

) for all t = 1, . . . , p. Hence at least one element of the sequence
{Φn} is contained in the above neighbourhood.

Thus, the map Φ∗ is a limit point of the sequence {Φn} in the strong operator
topology. By metrizability of the strong operator topology on bounded subsets of
the cone L+(H ,H ′) this implies the existence of a subsequence of the sequence
{Φn} converging to the map Φ∗. This proves the compactness of the set L0.

2) This assertion immediately follows from the definition of the strong operator
topology.

6.2. The openness criterion.

Lemma 6. Let ϕ be a map from a topological space X into a metric space Y . Then
the following assertions are equivalent :

(i) the map ϕ is open ;
(ii) for arbitrary x0 ∈ X and an arbitrary sequence {yn} ⊂ Y converging to

y0 = ϕ(x0) there exists a subnet {ynλ
}λ∈Λ of the sequence {yn} and a net

{xλ}λ∈Λ converging to x0 such that ϕ(xλ) = ynλ
.

Proof. (i) =⇒ (ii). Let U be the set of all neighbourhoods of the point x0. Then
the set Λ of all pairs λ = (U, k), where U ∈ U and k ∈ N, with the partial order

{λ1 = (U1, k1) � λ2 = (U2, k2)} ⇐⇒ {k1 > k2 and U1 ⊆ U2}

is directed. For each λ = (U, k) the set Wλ = ϕ(U) ∩ Vk, where Vk is the open ball
in Y with centre at y0 and radius 1/k, is a neighbourhood of the point y0. Hence
there exists a minimal positive integer nλ such that ynλ

∈ Wλ. It is easy to see
that {ynλ

}λ∈Λ is a subnet of the sequence {yn}. For each λ = (U, k) there exists
xλ ∈ U such that ϕ(xλ) = ynλ

. It is clear that the net {xλ}λ∈Λ converges to x0.
(ii) =⇒ (i). If there exists an open set U ⊆ X such that the set ϕ(U) is not

open then there exist y0 = ϕ(x0) ∈ ϕ(U) and sequence {yn} ⊂ Y \ϕ(U) converging
to y0. Using (ii) it is easy to obtain a contradiction.

The authors are grateful to the referees for useful remarks and the recommen-
dations providing an improvement of this paper.

9Here we use the possibility to express an arbitrary operator in T(H ) as a linear combination
of four states in S(H ).
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