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The continuity of the output entropy of positive maps

M. E. Shirokov

Abstract. Global and local continuity conditions for the output von Neu-
mann entropy for positive maps between Banach spaces of trace-class oper-
ators in separable Hilbert spaces are obtained. Special attention is paid to
completely positive maps: infinite dimensional quantum channels and oper-
ations.

It is shown that as a result of some specific properties of the von Neu-
mann entropy (as a function on the set of density operators) several results
on the output entropy of positive maps can be obtained, which cannot be
derived from the general properties of entropy type functions. In particu-
lar, it is proved that global continuity of the output entropy of a positive
map follows from its finiteness. A characterization of positive linear maps
preserving continuity of the entropy (in the following sense: continuity of
the entropy on an arbitrary subset of input operators implies continuity
of the output entropy on this subset) is obtained. A connection between
the local continuity properties of two completely positive complementary
maps is considered.

Bibliography: 21 titles.

Keywords: von Neumann entropy, positive trace-class operator, quantum
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§ 1. Introduction

Trace-preserving and trace-nonincreasing positive linear maps between Banach
spaces of trace-class operators in separable Hilbert spaces are noncommutative
analogs of Markov and sub-Markov maps in the classical probability theory [1].
In the statistical structure of quantum theory the notions of a quantum chan-
nel (dynamical map) and of a quantum operation play key roles. They are defined
respectively as trace-preserving and trace-nonincreasing linear maps between
Banach spaces of trace-class operators possessing the complete positivity prop-
erty [2], § 3.1).

The output von Neumann entropy is an important characteristic of a quan-
tum channel. It can be considered as a noncommutative analogue of the output
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Shannon entropy of a Markov map. It is this characteristic that is involved (some-
times implicitly) in expressions for different information capacities of a quantum
channel, see [3], Chs. 8–9. The notions of a quantum operation and of its output
entropy are key to the theory of quantum measurements [2], Ch. 4.

In the finite-dimensional case the output entropy of quantum channels and oper-
ations is a concave continuous non-negative function on the cone of input positive
operators, but only concavity and non-negativity are preserved when we pass to
infinite dimensions while continuity is replaced by lower semicontinuity with the
possible inclusion of +∞ in the set of output values. This is a consequence of
the ‘pathological’ behaviour of the von Neumann entropy in the infinite dimen-
sional case, which is considered in detail in [4]. At the same time, the special
properties of the von Neumann entropy can be used for proving continuity of the
output entropy on particular subsets of input operators. For example, in [3], § 11.5
it is shown that the output entropy of Gaussian quantum channels is continuous on
the set of quantum states (density operators) of the system of quantum oscillators
with bounded mean energy. Moreover, there exist nontrivial infinite dimensional
quantum channels, whose output entropy is continuous on the whole cone of input
operators (see § 3).

Singular analytical properties of the output entropy of quantum channels and
operations are real obstacles to the analysis of their statistical and information char-
acteristics, in particular, the capacities of quantum channels. This means we need
to study the output entropy with the aim of obtaining global and local continuity
conditions. The following questions arise naturally in applications:

1) Under what conditions is the output entropy of a positive map (in particular,
a quantum channel or operation) continuous on the whole cone of input
operators?

2) Under what conditions is the output entropy of a positive map (in particular,
a quantum channel or operation) continuous on any subset of the cone of
input operators on which the entropy is continuous?

3) How are continuity properties of the output entropy of completely positive
complementary maps connected?

The complementary relation, mentioned in the last question, is defined via the Stine-
spring representation of a completely positive map (see § 2). It plays an important
role in analysing the information properties of quantum channels [3], Ch. 6.

The paper is organized as follows. In § 2 we give all the necessary definitions
and known results used in the main part of the paper. §§ 3–5 are devoted to the
analysis of questions 1)–3) above respectively. They are at the core of the paper.
Possible generalizations of the results in §§ 3–5 to analyse the continuity of the
output entropy of a positive map as a function of the pair (map, input operator)
are considered in § 6. This analysis is necessary to study the physically motivated
question about the continuity of information capacities of a quantum channel as
a function of the channel and to realize an approximation approach in the study of
quantum channels [5], [6].
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§ 2. Preliminaries

Let H be a separable Hilbert space, B(H ) and T(H ) the Banach spaces of
all linear bounded operators in H with operator norm ∥ · ∥ and of all trace-class
operators in H with the trace norm ∥ · ∥1 = Tr | · |, respectively, B+(H ) and
T+(H ) the cones of positive operators in these spaces (see [1], [2]). The closed
convex subsets

T1(H ) = {A ∈ T+(H ) | TrA 6 1}, S(H ) = {A ∈ T+(H ) | TrA = 1}

of the cone T+(H ) are complete separable metric spaces with the metric defined by
the trace norm. Following tradition operators in S(H ) will be denoted by Greek
letters ρ, σ, ω and called states since each such operator ρ determines a linear
normal functional A 7→ TrAρ with unit norm on the algebra B(H ), called a state
in the theory of operator algebras [7]. The support suppA of a positive operator A is
the orthogonal complement of its kernel, the rank of this operator is the dimension
of its support: rankA = dim suppA. The range of an arbitrary linear operator A
will be denoted RanA.

We will use the Dirac notation |ϕ⟩, |χ⟩⟨ψ|, . . . for vectors and operators of rank 1
in a Hilbert space (in this notation the action of the operator |χ⟩⟨ψ| on a vector |ϕ⟩
gives the vector ⟨ψ,ϕ⟩ |χ⟩). As usual, orthonormal sets of vectors {|ϕi⟩}i∈I , where
I = {1, 2, . . . , n} or I = N, will be denoted by {|i⟩}i∈I .

In what follows A is a subset of the cone of positive trace-class operators.
Let cl(A ), co(A ), co(A ) and extr(A ) denote the closure, the convex hull, the

convex closure and the set of extreme points of a set A , respectively, see [8], [9].
A finite or countable collection {Ai} of operators (states) in a particular subset

A of the cone T+(H ) with the corresponding probability distribution {πi} will
be called an ensemble and denoted by {πi, Ai}. The operator

∑
i πiAi in co(A ) is

called the average operator (state) of such an ensemble. The set of ensembles of
operators from A with a given average operator A will be denoted Pa

{A}(A ).1

We set IH and IdH to be the identity operator in the Hilbert space H and the
identity transformation of the Banach space T(H ), respectively.

Let H and H ′ be separable Hilbert spaces, called input and output spaces,
respectively, and let Φ: T(H ) → T(H ′) be a linear map which is positive and
trace-nonincreasing (Φ(A) > 0 and Tr Φ(A) 6 TrA for any A > 0). The dual map
Φ∗ : B(H ′) → B(H ) (defined by the duality relation Tr Φ(A)B = TrAΦ∗(B),
A ∈ T(H ), B ∈ B(H ′)) is a positive map such that Φ∗(IH ′) 6 IH . The set of
all linear positive trace-nonincreasing maps from T(H ) into T(H ′) is denoted by
L+

61(H ,H ′).
A linear map Φ: T(H ) → T(H ′) is called completely positive if for any Hilbert

space K the map Φ∗⊗ Id∗K from the C∗-algebra B(H ′⊗K ) into the C∗-algebra
B(H ⊗K ) is positive (equivalent definitions of complete positivity can be found
in [3], § 6.2).

1This notation is used because an arbitrary ensemble of operators from A can be identified
with the atomic probability measure on the set A .
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Definition 1. A linear completely positive trace-nonincreasing map

Φ: T(H ) → T(H ′)

is called a quantum operation.
A trace-preserving quantum operation is called a quantum channel.

Denote the sets of all quantum operations and of all quantum channels from
T(H ) into T(H ′) by F61(H ,H ′) and F=1(H ,H ′), respectively. Thus

F=1(H ,H ′) ⊂ F61(H ,H ′) ⊂ L+
61(H ,H ′).

An arbitrary quantum operation (channel) Φ ∈ F61(H ,H ′) has the Kraus
representation

Φ( · ) =
+∞∑
i=1

Vi( · )V ∗i , (1)

determined by the set {Vi}+∞i=1 of bounded linear operators from H into H ′ such
that

∑+∞
i=1 V

∗
i Vi 6 IH (

∑+∞
i=1 V

∗
i Vi = IH , respectively); see [3], § 6.2.

If Φ is a quantum operation (channel) from F61(H ,H ′), then the Stinespring
theorem implies the existence of a Hilbert space H ′′ and a contraction (isometry)
V : H → H ′ ⊗H ′′ such that

Φ(A) = TrH ′′ V AV ∗, A ∈ T(H ). (2)

A quantum operation (channel)

T(H ) ∋ A 7→ Φ̃(A) = TrH ′ V AV ∗ ∈ T(H ′′) (3)

is called complementary to the operation (channel) Φ (see [3], § 6.6).2 That the
definition of the complementary operation is unique (up to unitary equivalence) is
shown in [11], where the following representation is also proved:

Φ̃(A) =
+∞∑
i,j=1

Tr[ViAV ∗j ]|i⟩⟨j|, A ∈ T(H ), (4)

where {Vi}+∞i=1 is the set of operators from the Kraus representation (1) for the
operation Φ and {|i⟩} is an orthonormal basis in the space H ′′ (this representation
can easily be obtained by noting that (2) holds for the operator V : H ∋ |ϕ⟩ 7→∑+∞
i=1 |Viϕ⟩ ⊗ |i⟩ ∈ H ′ ⊗H ′′).
The dual map of a quantum operation Φ with representations (1) and (2) has

the form

Φ∗(B) =
+∞∑
i=1

V ∗i BVi = V ∗(B ⊗ IH ′′)V, B ∈ B(H ′). (5)

We denote the simplex of all probability distributions with n 6 +∞ outcomes
by Pn.

2Sometimes the quantum operation Φ̃ is also called conjugate to the operation Φ [10].
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The von Neumann entropy

H(ρ) = Tr η(ρ)

of a state ρ∈S(H ), where η(x)=−x log x, has the following natural extension to
the cone T+(H ):

H(A) = TrAH
(

A

TrA

)
= Tr η(A)− η(TrA), A ∈ T+(H )

(see [12]).3 In what follows the function A 7→ H(A) on the cone T+(H ) will be
called the quantum entropy while the function

{xi} 7→ H({xi}) =
∑
i

η(xi)− η

(∑
i

xi

)
on the positive cone of the Banach space ℓ1, coinciding with the Shannon entropy
on the set P+∞ of all probability distributions, will be called the classical entropy.

The non-negativity, concavity and lower semicontinuity of the quantum entropy
on the cone T+(H ) follow from the corresponding properties of the von Neumann
entropy on the set S(H ) ([4], [12], [13]). By definition

H(λA) = λH(A), A ∈ T+(H ), λ > 0. (6)

Taken with (6) the concavity of the von Neumann entropy implies that the quantum
entropy is monotonic:

A 6 B =⇒ H(A) 6 H(B), A,B ∈ T+(H ). (7)

By simple approximation it is easy to derive from Theorem 11.10 in [14] that

n∑
i=1

λiH(Ai) 6 H

( n∑
i=1

λiAi

)
6

n∑
i=1

λiH(Ai) +H({λi}ni=1), (8)

which holds for any collection {Ai}ni=1 ⊂ T1(H ) and any probability distribution
{λi}ni=1, where n 6 +∞. This inequality implies the following:

n∑
i=1

H(Ai) 6 H

( n∑
i=1

Ai

)
6

n∑
i=1

H(Ai) +H({TrAi}ni=1), (9)

which holds for any collection {Ai}ni=1 ⊂ T+(H ) such that

n∑
i=1

TrAi < +∞.

Equality holds in the second inequality in (9) if suppAi ⊥ suppAj for any i ̸= j.

3Here and in what follows log denotes the natural logarithm.
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If V is an arbitrary linear contraction from H into H ′ and A is an arbitrary
operator in T+(H ) the following inequality holds:

H(V AV ∗) 6 H(A), (10)

which can easily be proved by noting that V ⊕
√
IH − V ∗V is an isometry from

H into H ′ ⊕H .
A positive unbounded linear operator in a separable Hilbert space with a dis-

crete spectrum of finite multiplicity will be called an H-operator. If {|i⟩}+∞i=1 is an
orthonormal set of eigenvectors and {hi}+∞i=1 the corresponding sequence of eigen-
values of the H-operator H, then this operator has the ‘spectral’ representation
H =

∑+∞
i=1 hi|i⟩⟨i| on the domain

D(H) =
{
ϕ ∈ lin({|i⟩}+∞i=1 )

∣∣∣ +∞∑
i=1

h2
i |⟨i, ϕ⟩|2 < +∞

}
.

Let

H =
+∞∑
i=1

hi|i⟩⟨i|

be an H-operator in the space H and let A ∈ T+(H ). We will say that

TrAH =
+∞∑
i=1

hi⟨i|A|i⟩ 6 +∞

if suppA ⊆ lin({|i⟩}+∞i=1 ) and TrAH = +∞ otherwise.
An important example of an H-operator is the operator − logA for any operator

A =
∑+∞
i=1 λi|i⟩⟨i| in T1(H ) with infinite rank (λi > 0, i = 1, 2, . . . ), which has the

representation − logA =
∑+∞
i=1 (− log λi)|i⟩⟨i| on the set

D(− logA) =
{
ϕ ∈ suppA

∣∣∣ +∞∑
i=1

(log λi)2|⟨i, ϕ⟩|2 < +∞
}
.

Note that for any operators A ∈ T1(H ) and B ∈ T1(K ) the following identity
holds

− log(A⊗B) = (− logA)⊗ IK + IH ⊗ (− logB), (11)

where ‘=’ means the operators coincide on

D(− log(A⊗B)) ⊆ suppA⊗ suppB.

For an H-operator H we introduce the parameter

g(H) = inf{λ > 0 | Tr e−λH < +∞},

where we assume that g(H) = +∞ if Tr e−λH = +∞ for all λ > 0 [15]. It is clear
that g(− logA) 6 1 for any operator A in T1(H ).
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A given H-operator H in a Hilbert space H and a positive number h determine
the closed convex set

KH,h = {A ∈ T1(H ) | TrAH 6 h}.

We will use the following generalized versions of Proposition 1 in [15], Part I and
Proposition 6.6 in [13], which can easily be derived using the construction from the
proof of Lemma 3 below.

Proposition 1. Let H be an H-operator in a Hilbert space H and let h > 0.
A) The quantum entropy is bounded on the set KH,h if and only if g(H) < +∞;
B) the quantum entropy is continuous on the set KH,h if and only if g(H) = 0.

The following result can be derived directly from Corollaries 3 and 4 in [16].

Lemma 1. Let {An} and {Bn} be sequences of operators in T+(H ) converging to
operators A0 and B0, respectively. Then{
H(An+Bn) −→

n
H(A0+B0)

}
⇐⇒

{
H(An) −→

n
H(A0)

}
∧

{
H(Bn) −→

n
H(B0)

}
.

The quantum entropy of an arbitrary operator A ∈ T+(H ) and the classical
entropy of the sequence of diagonal elements of its matrix in any orthonormal basis
{|i⟩}+∞i=1 of the space H are related by the inequality

H(A) 6 H({⟨i|A|i⟩}+∞i=1 ), (12)

which follows since the relative entropy is non-negative (see equality (21) in [15],
Part I).

Using relations (6) and (12) it is easy to obtain the following continuity condition
for quantum entropy from Proposition 5 in [15], Part I.

Proposition 2. Let {|i⟩}+∞i=1 be an arbitrary orthonormal basis in a Hilbert space
H . The quantum entropy on a set A ⊂ T+(H ) is continuous provided that the
classical entropy on the set

{
{⟨i|A|i⟩}+∞i=1 | A ∈ A

}
⊂ (ℓ1)+ is continuous.

For an arbitrary operator C in T+(H ⊗ K ) the following triangle inequality
holds (see [14]):

H(C) >
∣∣H(TrK C)−H(TrH C)

∣∣. (13)

For arbitrary map Φ ∈ L+
61(H ,H ′) and operator A ∈ T+(H ) the following

estimate holds:

H(Φ(A)) 6
[

sup
ρ∈extr S(H )

H(Φ(ρ))
]
TrA+H(A), (14)

which is easily proved using the spectral decomposition of the operator A and
inequality (8).

We will use the following simple result repeatedly (see [3], § 3.1.3).

Lemma 2. Let A be a rank one operator in T+(H ⊗K ). The operators

TrK A ∈ T+(H ) and TrH A ∈ T+(K )

are isomorphic and hence have the same entropy.
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The relative entropy of operators A and B in T+(H ) is defined as follows:

H(A ∥B) =
+∞∑
i=1

⟨i|A logA−A logB +B −A |i⟩,

where {|i⟩}+∞i=1 is the orthonormal basis of eigenvectors for the operator A (or B),
and it is assumed that H(A ∥B) = +∞ if suppA * suppB (for details see [12]).

An important property of a quantum operation Φ ∈ F61(H ,H ′) consists in the
following monotonicity relation for the relative entropy (see [12]):

H(Φ(A)∥Φ(B)) 6 H(A ∥B), A,B ∈ T+(H ). (15)

For a given natural number k denote by Tk+(H ) (by Sk(H )) the set of operators
in T+(H ) (states in S(H ), respectively) having rank 6 k.

We shall look briefly at the method for approximating concave lower semicon-
tinuous non-negative functions on the set S(H ), put forward in [16], § 4.

For a given natural number k and a non-negative function f on the set Sk(H )
we consider the concave function

S(H ) ∋ ρ 7→ f̂σk (ρ) = sup
{πi,ρi}∈Pa

{ρ}(Sk(H ))

∑
i

πif(ρi) ∈ [0,+∞] (16)

(the supremum is taken over all ensembles of states Sk(H ) with average state ρ,
that is, over all decompositions of the state ρ into a convex combinations of states
with rank 6 k).

The strong stability property of the set S(H ) (see [16], § 3) means we can show
that for any lower semicontinuous non-negative (continuous and bounded) function
f on the set Sk(H ) the function f̂σk is lower semicontinuous (continuous) on the
set S(H ).

If f is a concave lower semicontinuous non-negative function on the set S(H ),
then the nondecreasing sequence {f̂σk }k converges pointwise to the function f . Thus
the above remark implies the following continuity condition: if the function f has
a continuous restriction to the set Sk(H ) for each k ∈ N, then a sufficient condition
for the function f to be continuous on a set A ⊂ S(H ) is that the sequence
{f̂σk }k converges uniformly on this set. If A is compact, then this condition is also
necessary by Dini’s lemma.

In [16], using this method it is shown that a sufficient condition for the quantum
entropy to be continuous on a set A ⊂ T+(H ) is that the uniform approximation
property (briefly, the UA-property) holds for this set. It can be expressed as follows:

lim
k→+∞

sup
A∈A

∆k(A) = 0,

where
∆k(A) = inf

{πi,Ai}∈Pa
{A}(T

k
+(H ))

∑
i

πiH(Ai∥A), k ∈ N

(the infimum is taken over all decompositions of the operator A into a convex combi-
nation of operators with rank 6 k). If the set A is compact, then the UA-property
is also a necessary condition for the quantum entropy to be continuous on this set.
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In § 4 the above approximation method will be used to analyse the local conti-
nuity of the output entropy of a positive map.

Remark 1. In what follows when we say a function f is continuous on a subset
A of the cone T+(H ) we mean the restriction of this function to this subset is
continuous. We assume that if a function is continuous, this implies it is finite (by
contrast with lower or upper semicontinuity).

§ 3. The continuity of the output
entropy on the cone of positive operators

3.1. General case. Let Φ: T(H ) → T(H ′) be a positive linear map. The output
entropy HΦ

.= H ◦ Φ of this map is a concave lower semicontinuous non-negative
function on the cone T+(H ). The following theorem shows that this function
cannot be both finite and discontinuous, that is, it is either continuous or takes
infinite values on some input operators.

Theorem 1. Let Φ be a map in L+
61(H ,H ′). The following statements are equiv-

alent :
(i) the function A 7→ HΦ(A) is finite on the set S(H ) ⊂ T+(H );
(ii) the function A 7→ HΦ(A) is continuous on the cone T+(H );
(iii) there exists an orthonormal basis {|i⟩}+∞i=1 of the space H ′ such that the

function A 7→ H({⟨i|Φ(A)|i⟩}+∞i=1 ) is continuous on the cone T+(H );4

(iv) there exists an orthonormal basis {|i⟩}+∞i=1 of the space H ′ and a sequence
{hi}+∞i=1 of non-negative numbers such that∥∥∥∥+∞∑

i=1

hiΦ∗(|i⟩⟨i|)
∥∥∥∥ < +∞,

+∞∑
i=1

e−hi < +∞,

where Φ∗ : B(H ′) → B(H ) is the map dual to the map Φ.
The set S(H ) in (i) can be replaced by an arbitrary convex closed bounded subset
A ⊂ T+(H ) such that

sup
n

sup
A∈A

TrABn < +∞ =⇒ sup
n
∥Bn∥ < +∞

for any increasing sequence {Bn} of operators in Φ∗(B+(H ′)).

Restrictions on the choice of the basis {|i⟩}+∞i=1 in statements (iii) and (iv) of this
theorem are considered in Remark 4 below.

Proof. (i) =⇒ (ii). Let A be a closed convex bounded subset of the cone T+(H )
satisfying the condition in the final assertion of the theorem. We can assume that
A ⊆ T1(H ). If the function A 7→ HΦ(A) is finite on A then it is bounded on this
set. Indeed, if for any natural number n there exists an operator An ∈ A such that
HΦ(An) > 2n then

+∞∑
n=1

2−nAn ∈ A and HΦ

(+∞∑
n=1

2−nAn

)
>

+∞∑
n=1

2−nHΦ(An) = +∞

4By Proposition 2 this statement is formally stronger than the previous one.



1546 M.E. Shirokov

by the discrete Jensen inequality (it is easy to verify that it holds for the concave
non-negative function A 7→ HΦ(A) on the set A ).

Thus Lemma 3 below implies that an H-operator H = − log T exists in the space
H ′ such that g(H) 6 1 and TrHΦ(A) 6 h for all A ∈ A and for some h > 0.
Let H =

∑+∞
i=1 hi|i⟩⟨i|. We can assume that {|i⟩}+∞i=1 is a basis in H ′. Since the

function

A 7→ TrHΦ(A) =
+∞∑
i=1

hi⟨i|Φ(A)|i⟩ = Tr
[+∞∑
i=1

hiΦ∗(|i⟩⟨i|)
]
A (17)

is bounded on the set A , the linear operator in the square brackets is bounded,
that is, using the assumption on the set A it lies in B(H ). Thus function (17) is
continuous on the cone T+(H ). For an arbitrary compact set C ⊂ T+(H ) Dini’s
lemma implies that the series

∑+∞
i=1 hi⟨i|Φ(A)|i⟩ converges uniformly on this com-

pact set and hence a nondecreasing sequence {yC
i }

+∞
i=1 of positive numbers exists,

which converges to +∞ and is such that supA∈C

∑+∞
i=1 y

C
i hi⟨i|Φ(A)|i⟩ < +∞. Note

that HC =
∑+∞
i=1 y

C
i hi|i⟩⟨i| is an H-operator with g(HC ) = 0. We have

sup
A∈C

TrHC Φ(A) = sup
A∈C

+∞∑
i=1

yC
i hi⟨i|Φ(A)|i⟩ < +∞. (18)

By Proposition 1, B) the function A 7→ H(Φ(A)) is continuous on the set C
and hence on the whole cone T+(H ) (since C is an arbitrary compact subset
of T+(H )).

(i) =⇒ (iv). In the proof of (i) =⇒ (ii) the existence of a basis {|i⟩}+∞i=1 and
a sequence {hi}+∞i=1 with the required properties was shown.

(iv) =⇒ (iii). This follows from the proof of (i) =⇒ (ii) since (18) implies
the function A 7→ H({⟨i|Φ(A)|i⟩}+∞i=1 ) is continuous on the set C by the classical
analogue of Proposition 1, B).

(iii) =⇒ (i). This follows from relation (12).

Lemma 3. Let A ⊂ T1(H ) be an arbitrary convex set on which the quantum
entropy is bounded. Then there exists an operator T ∈ T1(H ) such that

sup
A∈A

TrA(− log T ) < +∞ and UT = TU

for any unitary operator U in B(H ) such that UAU∗ ∈ A for all A ∈ A .

Proof. Let K be the one dimensional space generated by the vector |0⟩. Consider
the convex set

A e =
{
ρA = A⊕ (1− TrA)|0⟩⟨0| | A ∈ A

}
of states in S(H ⊕K ). For an arbitrary operator A ∈ A we have

H(ρA) = Tr η(A) + η(1− TrA) = H(A) + η(TrA) + η(1− TrA) 6 H(A) + 1.

Since the von Neumann entropy is bounded on the convex set A e, the χ-capacity
C(A e) of this set is finite [15]. Theorem 1 in [15], Part I implies a unique state
Ω(A e) in cl(A e) exists (called the optimal average state of the set A e) such that

H(ρ∥Ω(A e)) 6 C(A e), ρ ∈ A e.
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The state Ω(A e) has the form T ⊕ λ|0⟩⟨0|, where T ∈ T1(H ) and λ > 0. Note
that

TrA(− log T ) 6 Tr ρA(− log Ω(A e))

= H(ρA∥Ω(A e)) +H(ρA) 6 C(A e) +H(A) + 1, A ∈ A .

For an arbitrary unitary operator U in B(H ) such that UA U∗ = A we have
(U⊕IK )Ω(A e) = Ω(A e)(U⊕IK ) by Corollary 4 in [15], Part II. Hence UT = TU .

Remark 2. Theorem 1 does not assert that if the quantum entropy is finite on
the set Φ(S(H )) it is continuous on this set since the continuity of the function
A 7→ HΦ(A) .= H(Φ(A)) on the noncompact set S(H ) does not imply that the
function A 7→ H(A) is continuous on the set Φ(S(H )). This is confirmed by
the following example.

Let A be a closed convex subset of the set S(H ′) on which the von Neu-
mann entropy is discontinuous but bounded (see examples in [15]). Let {σn}+∞n=1 be
a sequence of states in A converging to the state σ0 such that limn→+∞H(σn) ̸=
H(σ0). Consider the map Φ: A 7→

∑
n>0⟨n|A|n⟩σn, where {|n⟩}n>0 is a particular

orthonormal basis in H . By Theorem 1 the function A 7→ HΦ(A) is continuous on
the set S(H ), but the function A 7→ H(A) is not continuous on the set Φ(S(H ))
containing the sequence {σn}+∞n=1 and the state σ0.

The continuity of the function A 7→ HΦ(A) on the set S(H ) means that the
function A 7→ H(A) is continuous on any set of the form Φ(C ), where C is a compact
subset of the set S(H ).

Remark 3. The main assertion of Theorem 1 (the implication (i) =⇒ (ii)) is based
on the specific properties of the von Neumann entropy, it cannot be proved using
only general properties of entropy type functions such as concavity, lower semicon-
tinuity, etc. The simplest example confirming this assertion is the function

A 7→ R0(Φ(A)) .= ∥Φ(A)∥1 log rank(Φ(A)),

the output 0-order Renyi entropy of the map Φ.
Lemma 3 plays a key role in the proof of Theorem 1; it is based on results related

to the notion of the χ-capacity of subsets of quantum states [15].

Remark 4. Statement (iv) in Theorem 1 can be considered as a continuity criterion
for the output entropy of the map Φ in terms of the dual map Φ∗. Using this
criterion we will prove Proposition 3 in the next subsection.

There are some restrictions on the choice of the basis {|i⟩} in statements (iii)
and (iv) of Theorem 1, which follow from the proof of this theorem and Lemma 3.
Namely, {|i⟩} is the basis of eigenvectors of some operator T in cl(Φ(S(H ))) which
commutes with any unitary operator U such that UΦ(S(H ))U∗ ⊆ Φ(S(H )). In
particular, if the set Φ(S(H )) consists of commuting operators then {|i⟩} is the
basis in which these operators have a diagonal matrix. The last remark can be used
to ‘reformulate’ Theorem 1 for the case of a positive map Φ from T(H ) into ℓ1
since such a map is naturally identified with a map of the form mentioned in this
remark.
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Using Theorem 1 we can obtain a continuity condition for the output entropy of
quantum channels of the following class.

Example 1. Let G be a compact group, {Vg}g∈G a unitary representation of G in
a Hilbert space H ′, M a positive operator-valued measure (POVM) on G taking
values in B(H ). For a given arbitrary state σ in S(H ′) consider the quantum
channel

Φσ(A) =
∫
G

VgσV
∗
g TrAM (dg), A ∈ T(H ).

For an appropriate choice of the parameters (G,Vg,M, σ) this channel possesses
specific properties of infinite-dimensional quantum channels; in particular, it is
an entanglement-breaking channel having no Kraus representation with rank one
operators [17].5

By Theorem 1 and the concavity of the von Neumann entropy the output entropy
of the channel Φσ is continuous if the state

ω(G,Vg, σ) =
∫
G

VgσV
∗
g µH (dg),

where µH is the Haar measure on the group G, has finite entropy. It is easy
to show that this condition is also necessary if the set of probability measures
{Tr ρM( · )}ρ∈S(H ) is weakly dense in the set of all probability measures on G.

By inequality (9) Theorem 1 implies the following assertion.

Corollary 1. Let {Φi}i∈I be a finite or countable collection of maps from
L+

61(H ,H ′) such that

sup
ρ∈S(H )

∑
i∈I

TrΦi(ρ) < +∞.

The output entropy of the map
∑
i∈I Φi is continuous if∑

i∈I
H(Φi(ρ)) < +∞, H({TrΦi(ρ)}i∈I) < +∞, ρ ∈ S(H ).

This is a necessary condition for the output entropy of the map
∑
i∈I Φi to be

continuous if either the set I is finite or for each ρ ∈ S(H ) there is n such that

supp Φi(ρ) ⊥ supp Φj(ρ)

for all i, j > n, i ̸= j.

We complete this subsection by considering a commutative variant of Theo-
rem 1, which can be used to analyse the output Shannon entropy of Markov and
sub-Markov operators.

5An arbitrary finite-dimensional entanglement-breaking channel has Kraus representation with
rank one operators [18].
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Corollary 2. Let ∥φij∥ be a matrix of a positive bounded linear transformation in
the Banach space ℓ1. The following statements are equivalent :

(i) the function {xi} 7→ H({
∑
j φijxj}

+∞
i=1 ) is finite on the set P+∞ ⊂ (ℓ1)+;

(ii) the function {xi} 7→ H({
∑
j φijxj}

+∞
i=1 ) is continuous on the cone (ℓ1)+;

(iii) there exists a sequence {hi}+∞i=1 of non-negative numbers such that

sup
j

+∞∑
i=1

hiφij < +∞ and
+∞∑
i=1

e−hi < +∞.

3.2. The case of completely positive maps. The simplest completely positive
linear map from T+(H ) into T+(H ′) has the form A 7→ V AV ∗, where V is a linear
bounded operator from H into H ′. Using Theorem 1 it is easy to obtain a nec-
essary and sufficient condition for the output entropy of this map to be continuous
(its special role is motivated by representations (1) and (2)).

Proposition 3. Let V be a bounded linear operator from H into H ′. The function
A 7→ H(V AV ∗) is continuous on the cone T+(H ) if and only if the operator V
is compact and has a sequence of singular values {νi} (eigenvalues of the operator√
V ∗V ) such that

∑+∞
i=1 e

−λ/ν2
i < +∞ for some λ > 0 (e−λ/0 .= 0). If this condition

holds, then
sup

ρ∈S(H )

H(V ρV ∗) = λ∗(V ), (19)

where λ∗(V ) is the unique solution of the equation
∑+∞
i=1 e

−λ/ν2
i = 1 if it exists and

λ∗(V ) = g({ν−2
i }) = inf{λ > 0 |

∑+∞
i=1 e

−λ/ν2
i < +∞} otherwise.6

In what follows we shall use the parameter λ∗(V ) for an arbitrary operator
V ∈ B(H ), under the assumption that λ∗(V ) = +∞ if either the operator V is not
compact or it has a sequence of singular values {νi} such that

∑+∞
i=1 e

−λ/ν2
i = +∞

for all λ > 0. By Theorem 1 relation (19) holds in this case as well.

Proof. We can assume that H = H ′, V =
√
V ∗V , ∥V ∥ 6 1 and KerV = {0}.

Let V =
∑+∞
i=1 νi|i⟩⟨i|. If

∑+∞
i=1 e

−λ/ν2
i < +∞ for some λ > 0 then statement

(iv) in Theorem 1 holds for the basis {|i⟩}+∞i=1 and the sequence {hi = λν−2
i }+∞i=1

(since in this case Φ∗( · ) = V ( · )V and hence Φ∗(|i⟩⟨i|) = ν2
i |i⟩⟨i|).

The assertion concerning the supremum of the function A 7→ H(V AV ) on the
set S(H ) is easily proved using Lemma 6 and inequality (12).

If the function A 7→ H(V AV ) is continuous on the cone T+(H ), then the
entropy is bounded on the convex set {V ρV | ρ ∈ S(H )} and hence this set
is relatively compact by Corollary 7 in [15], Part I (used with the construction
from the proof of Lemma 3). Thus the operator V is compact (since otherwise
there exists a sequence of unit vectors {|ϕn⟩} such that the sequence {V |ϕn⟩} is
not relatively compact). Lemma 3 implies an operator T ∈ T1(H ) exists such
that supρ∈S(H ) TrV ρV (− log T ) < +∞ and UT = TU for any unitary operator
U commuting with the operator V . This last property of the operator T shows

6If g({ν−2
i })<+∞, the equation

∑+∞
i=1 e−λ/ν2

i =1 has no solutions if
∑+∞

i=1 e− g({ν−2
i })/ν2

i <1.
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that this operator is diagonalizable in the basis {|i⟩}+∞i=1 , that is, T =
∑+∞
i=1 τi|i⟩⟨i|,

where {τi}+∞i=1 is a sequence of non-negative numbers such that
∑+∞
i=1 τi 6 1. Thus

sup
ρ∈S(H )

TrV ρV (− log T ) = sup
ρ∈S(H )

+∞∑
i=1

⟨i|ρ|i⟩ν2
i (− log τi) = λ < +∞

and hence ν2
i (− log τi) 6 λ for all i. This shows that λ∗(V ) < +∞.

In Remark 2 we show that the continuity of the quantum entropy on the set
Φ(S(H )) is not a necessary condition for the output entropy of the map Φ to be
continuous. By Proposition 3 the map A 7→ V AV ∗, where

V =
∑
i>1

(log(i))−1/2|i⟩⟨i|,

gives another example confirming this observation, since it is easy to see that the
classical entropy is discontinuous on the set {{(log(i))−1xi}i>1 | {xi}i>1 ∈ P+∞}.

An arbitrary quantum operation Φ: T(H ) → T(H ′) has Kraus representa-
tion (1). Proposition 3 and Corollary 1 imply a necessary and sufficient condition
for the output entropy of a quantum operation having a Kraus representation with
a finite number of nonzero summands to be continuous.

Corollary 3. The output entropy of the map Φ( · ) =
∑m
i=1 Vi( · )V ∗i , where {Vi}mi=1

is a finite set of bounded linear operators from H into H ′, is continuous if and
only if λ∗(Vi) < +∞ for all i = 1, . . . ,m.

This corollary shows, in particular, that any quantum channel with continuous
output entropy has no Kraus representation with a finite number of nonzero sum-
mands, since the condition

∑m
i=1 V

∗
i Vi = IH is inconsistent with the condition that

the operators Vi, i = 1, . . . ,m, be compact.
For a quantum operation having Kraus representation (1) with a countable num-

ber of nonzero summands the condition ‘λ∗(Vi) < +∞ for all i ’ is only a necessary
condition for the output entropy to be continuous. Using Theorem 1, Proposition 3,
Corollary 1 and some other results we can obtain several sufficient conditions for
the output entropy of such quantum operation to be continuous in terms of its
Kraus operators. These conditions, as well as examples where they are applied, are
considered in [19], § 3.2.

Applications in quantum information theory and the results of the next section
(see the remark after Corollary 6 and Corollary 8) require conditions which ensure
the continuity of the output entropy of the quantum operation complementary
to the initial one. Theorem 1 yields the following conditions.

Proposition 4. Let

Φ( · ) =
+∞∑
i=1

Vi( · )V ∗i

be a quantum operation in F61(H ,H ′). The complementary operation Φ̃ has
continuous output entropy if one of the following conditions holds (they are related
by the implications c =⇒ b ⇐⇒ a):
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a) H({TrViρV ∗i }
+∞
i=1 ) < +∞ for all ρ ∈ S(H );

b) there exists a sequence {hi}+∞i=1 of non-negative numbers such that∥∥∥∥+∞∑
i=1

hiV
∗
i Vi

∥∥∥∥ < +∞,

+∞∑
i=1

e−hi < +∞;

c)
H({∥Vi∥2}+∞i=1 ) < +∞.

If RanVi ⊥ RanVj for all sufficiently large i ̸= j, then a ⇐⇒ b is a necessary
condition for the output entropy of the quantum operation Φ̃ to be continuous.

Proof. By Theorem 1 condition a) is equivalent to the continuity of the output
entropy of the map

T(H ) ∋ A 7→ Ψ(A) =
+∞∑
i=1

TrViAV ∗i |i⟩⟨i| ∈ T(H ′′),

where {|i⟩} is the orthonormal basis from representation (4) of the quantum oper-
ation Φ̃. Thus the continuity of the output entropy of the quantum operation Φ̃
follows from condition a) by Proposition 2.

The equivalence of conditions a) and b) follows because (ii) and (iv) in Theorem 1
are equivalent by Remark 4, since the map dual to the map Ψ has the form

Ψ∗(B) =
+∞∑
i=1

⟨i|B|i⟩V ∗i Vi, B ∈ B(H ′′).

That c) =⇒ b) is obvious, because if condition c) holds then the sequence
{hi = − log ∥Vi∥2} has the desired properties.

Let RanVi ⊥ RanVj for all i, j > n, i ̸= j. Then

P Φ̃( · )P =
+∞∑
i=n

TrVi( · )V ∗i |i⟩⟨i|,

where P =
∑+∞
i=n |i⟩⟨i| and {|i⟩}+∞i=1 is the basis from representation (4) of the

quantum operation Φ̃. Using (10), it follows from H(Φ̃(ρ)) < +∞ that

H(P Φ̃(ρ)P ) = H({TrViρV ∗i }+∞i=n) < +∞

for any ρ ∈ S(H ), which is equivalent to condition a).

Condition c) shows that the output entropy of the complementary quantum
operation will be continuous if the rate at which the sequence of norms of the Kraus
operators of the initial operation decreases is sufficiently fast. But this condition
is rather rough, since it does not take into account the ‘geometry’ of this sequence,
that is, the mutual relations between the Kraus operators. This is illustrated by
the following example.
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Example 2. Let {Vi}+∞i=1 be a sequence of operators from B(H ) such that

+∞∑
i=1

V ∗i Vi 6 IH , RanV ∗i ⊥ RanV ∗j

for all sufficiently large i ̸= j and ∥Vi∥2 6 C log−α(i) for all i, where α > 0 and
C > 0. Since V ∗i Vi 6 C log−α(i)Pi, where Pi is the projector on the subspace
RanV ∗i , condition b) of Proposition 4 is valid for the quantum operation Φα( · ) =∑+∞
i=1 Vi( · )V ∗i if α > 1 (one can take the sequence {hi = log(i)}). Hence the output

entropy of the complementary operation Φ̃α is continuous if α > 1.
The last assertion of Proposition 4 shows that the output entropy of the quantum

operation Φ̃α is not continuous if α < 1 and Vi =
√
C log−α(i)Pi.

§ 4. Preserving the continuity of the entropy

The output entropy of a positive linear map being continuous on the whole cone
of input operators is a very strong property provided by the special features of
this map. In this section we consider a significantly weaker property of positive
linear maps, namely the continuity of the output entropy on any subset of the cone
of input operators on which the quantum entropy is continuous. To study this
property we will use the method for approximating concave lower semicontinuous
functions described briefly at the end of § 2.

Let Φ: T(H ) → T(H ′) be a positive linear map and HΦ
.= H ◦Φ be its output

entropy, a concave lower semicontinuous non-negative function on the cone T+(H ).
For each natural k consider the concave function

Hk
Φ(A) .= sup

{πi,Ai}∈Pa
{A}(T

k
+(H ))

∑
i

πiHΦ(Ai) (20)

on the cone T+(H ) (the supremum is taken over all decompositions of the opera-
tor A into a countable convex combination of operators with rank 6 k). Using (6)
it is easy to show that the restriction of the function Hk

Φ to the set S(H ) coincides
with the function (ĤΦ)σk defined by formula (16) with f = HΦ and that

Hk
Φ(λA) = λHk

Φ(A), A ∈ T+(H ), λ > 0.

Thus the results presented at the end of § 2 show that the function Hk
Φ is lower

semicontinuous on the cone T+(H ) for each k and that the increasing sequence
{Hk

Φ} converges pointwise to the function HΦ. We will call the function Hk
Φ the

approximator of the output entropy of the map Φ of order k.
Using spectral decomposition we can show that the sequence {Hk

Φ} converges
uniformly to the function HΦ on those compact subsets of the cone T+(H ) on
which the quantum entropy is continuous.

Lemma 4. If the quantum entropy is continuous on a compact subset A of the
cone T+(H ) then

lim
k→+∞

sup
A∈A ,Φ∈L+

61(H ,H ′)

(HΦ(A)−Hk
Φ(A)) = 0. (21)
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Proof. We can assume that A ⊂ T1(H ). Let λki (A) be the sum of the eigenvalues
λ(i−1)k+1, . . . , λik of the operator A (arranged in nonincreasing order) and let P ki
be the spectral projection of this operator corresponding to the above collection
of eigenvalues. Since the ensemble {πki , (πki )−1P ki A}, where πki = ∥A∥−1

1 λki (A),
belongs to the set Pa

{A}(T
k
+(H )), using inequality (9) and the monotonicity prop-

erty (7) we obtain

HΦ(A)−Hk
Φ(A) 6 H(Φ(A))−

∑
i

πkiH
(
Φ((πki )

−1P ki A)
)

= H(Φ(A))−
∑
i

H(Φ(P ki A)) 6 H({TrΦ(P ki A)}) 6 H({λki (A)})

for any map Φ in L+
61(H ,H ′). Thus the assertion of the lemma follows from

Lemma 9 in [16] showing that limk→+∞ supA∈A H({λki (A)}) = 0.

Note that the concavity of the function η(x) = −x log x implies that

HΦ(A)−Hk
Φ(A) 6 inf

{πi,Ai}∈Pa
{A}(T

k
+(H ))

∑
i

πiH(Φ(Ai)∥Φ(A)), A ∈ T+(H ),

which shows that (21) holds for any subset A of the cone T+(H ) possessing the
UA-property (it need not be compact) if the set L+

61(H ,H ′) of all positive maps
is replaced by the set F61(H ,H ′) of all quantum operations (or by any other
set of positive linear maps for which the relative entropy satisfies the monotonicity
relation given in (15).

Remark 5. Since the function Hk
Φ is lower semicontinuous on the cone T+(H ) for

each k, the generalized Dini lemma (in which the condition that the functions in the
increasing sequence are continuous is replaced by the condition that they are lower
semicontinuous) shows that if HΦ is continuous on a compact set A ⊂ T+(H )
then the sequence {Hk

Φ} is uniformly convergent to the function HΦ on this set.
The converse assertion obviously holds if the functions Hk

Φ are continuous on the
set A for all k.

The above observations give the following result, which answers the second ques-
tion stated in § 1.

Theorem 2. Let Φ be a map in L+
61(H ,H ′). The following properties are equiv-

alent :
(i) the function A 7→ HΦ(A) is continuous on the cone

T1
+(H ) = {A ∈ T+(H ) | rankA 6 1};

(ii) the function A 7→ Hk
Φ(A) is continuous on the cone T+(H ) for each k;

(iii) the function A 7→ HΦ(A) is continuous on any subset A of the cone T+(H )
on which the quantum entropy is continuous.

Property (i) is equivalent the function A 7→ HΦ(A) being bounded and continu-
ous on the set extr S(H ) and hence it follows from the UA-property of the set
Φ(extr S(H )).
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Proof. (i) =⇒ (ii). We first show that (i) implies the function A 7→HΦ(A) is continu-
ous on the cone Tk+(H ) for each k. Suppose there exists a sequence {An}⊂Tk+(H )
converging to an operator A0 such that

lim
n→+∞

HΦ(An) > HΦ(A0). (22)

For each n ∈ N we have An =
∑k
i=1A

n
i , where {Ani }ki=1 is a collection of operators

from T1
+(H ). Since the set {An}n>0 is compact, the compactness criterion for sub-

sets of the cone T+(H ) shows relative compactness of the sequence {Ani }n for each
i = 1, . . . , k (see [16], Lemma 10). Hence we can assume that

lim
n→+∞

Ani = A0
i ∈ T1

+(H )

exists for each i = 1, . . . , k. It is clear that
∑k
i=1A

0
i = A0. It follows from (i) that

limn→+∞HΦ(Ani ) = HΦ(A0
i ). Hence Lemma 1 gives a contradiction to (22).

If HΦ is continuous on Tk+(H ) then it is bounded on Sk(H ) (this can easily
be verified by assuming the converse and taking the fact that 0 ∈ Tk+(H ) into
account). By Corollary 1 in [16] the function Hk

Φ is continuous and bounded on the
set S(H ) (where it coincides with (ĤΦ)σk) and hence this function is continuous
on T+(H ).

The implication (ii) =⇒ (iii) follows directly from Lemma 4 while (iii) =⇒ (i) is
obvious.

The last assertion of the theorem follows from Theorem 2, A) in [16] (since the
quantum entropy is bounded on any bounded set possessing the UA-property).

Remark 6. As in Theorem 1, the main assertion of Theorem 2 (the implication
(i) =⇒ (iii)) is based on the specific properties of the von Neumann entropy, it
cannot be proved if we only use general properties of entropy type functions. In
this case the simplest example is again given by the output 0-order Renyi entropy
of the map Φ,

A 7→ R0(Φ(A)) = ∥Φ(A)∥1 log rank(Φ(A)).

Indeed, if Φ(A)= 1
2 (A+UAU∗), where U is a unitary operator having no eigenvec-

tors, then R0(Φ(A))=∥A∥1 log 2 for all A∈T1
+(H ), but the function A 7→R0(Φ(A))

is not continuous on the set T2
+(H ) \ T1

+(H ), on which R0(A) = ∥A∥1 log 2.
The second inequality in (9) (see the proof of Lemma 4) and the implication

‘⇐=’ in Lemma 1 play essential roles in the proof of Theorem 2.

Using the same terminology as [19] we introduce the following definition.

Definition 2. Property (iii) in Theorem 2 will be called the PCE-property. A posi-
tive linear map (quantum operation or quantum channel) Φ possessing this property
will be called a PCE-map (PCE-operation or PCE-channel, respectively).

The abbreviation ‘PCE’ is used here because a map Φ possessing property (iii)
in Theorem 2 can be called a map ‘preserving the continuity of the entropy’.

The simplest examples of PCE-maps are the completely positive linear maps
with Kraus representation (1) consisting of a finite number of nonzero summands,
for which property (i) in Theorem 2 can be verified directly.
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By the last assertion of Theorem 2, to prove a map Φ has the PCE-property it
suffices to show that

Φ(extr S(H )) ⊆ Λ(A ),

where Λ is a finite composition of transformations preserving the UA-property (see
Proposition 4 in [16]), and A is a compact set on which the entropy is contin-
uous. This gives the following sufficient condition for positive maps to have the
PCE-property.

Corollary 4. A map Φ in L+
61(H ,H ′) has the PCE-property if there exists a sep-

arable Hilbert space K , a family {Aψ}ψ∈H ,∥ψ∥=1 of operators belonging to some
compact subset A of the cone T+(K ), on which the quantum entropy is contin-
uous, and a family {Vψ}ψ∈H ,∥ψ∥=1 of linear contractions from K into H ′ such
that Φ(|ψ⟩⟨ψ|) = VψAψV

∗
ψ for each unit vector ψ in H .

If Φ is a quantum operation with Kraus representation (1) consisting of k nonzero
summands then it is easy to verify that the hypothesis in Corollary 4 holds if we
take a k-dimensional Hilbert space K . A nontrivial application of Corollary 4 is
proving that the following family of quantum channels has the PCE-property.

Example 3. Let Ha be the Hilbert space L2([−a,+a]), where a < +∞, and let
{Ut}t∈R be the group of unitary operators in Ha defined by

(Utϕ)(x) = e−itxϕ(x), ϕ ∈ Ha.

For a given probability density function p(t) consider the quantum channel

Φap : T(Ha) ∋ A 7→
∫ +∞

−∞
UtAU

∗
t p(t) dt ∈ T(Ha).

In Appendix 5.2 in [20] it is shown that the channel Φap satisfies the hypothesis of
Corollary 4 with the Hilbert space K = L2(R) and a particular family of unit-
ary operators {Vψ} from K into Ha provided that the differential entropy of the
distribution p(t) is finite and the function p(t) is bounded on R and monotonic on
(−∞,−b] and [+b,+∞) for sufficiently large b.

If the PCE-property holds for two positive maps then it also holds for their
composition. Hence Theorem 2 implies the following result.

Corollary 5. If property (i) in Theorem 2 holds for the positive linear maps

Φ: T(H ) → T(H ′) and Ψ: T(H ′) → T(H ′′),

then it holds for the map Ψ ◦ Φ: T(H ) → T(H ′′).

In quantum information theory the notion of the convex closure of the output
entropy (CCoOE) of a quantum channel is used. It is defined as the maximal con-
vex closed (that is, lower semicontinuous) function on the set of input states of this
channel not exceeding the output entropy, see [20], [21]. By generalizing the proof of
Proposition 2 in [20] we can show that property (i) in Theorem 2 is equivalent to the
CCoOE of the map Φ being continuous and bounded on the set S(H ). Thus Corol-
lary 5 shows that if the CCoOE of the positive linear maps Φ: T(H ) → T(H ′)
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and Ψ: T(H ′) → T(H ′′) are continuous and bounded then so is the CCoOE of
the map Ψ ◦ Φ: T(H ) → T(H ′′).

If Φ is a quantum operation (a completely positive trace-nonincreasing linear
map) having representation (2) then the complementary operation Φ̃ has represen-
tation (3). Since by Lemma 2 the output entropies of the quantum operations Φ
and Φ̃ coincide on the set of rank one operators, Theorem 2 implies the following
assertion.

Corollary 6. A quantum operation Φ has the PCE-property if and only if the
complementary operation Φ̃ has the PCE-property.

According to this corollary to prove a quantum operation Φ has the PCE-
property it suffices to show that the output entropy of the complementary operation
Φ̃ is continuous, which can be done using the sufficient conditions in Proposition 4.

§ 5. The output entropy of complementary completely positive maps

The output entropies of two complementary quantum operations (completely
positive trace-nonincreasing linear maps related via representations (2) and (3))
coincide on the set of input operators of rank 1 (by Lemma 2), but in general these
are different functions on the cone of input operators, whose analytical proper-
ties may be essentially different (one can confirm this remark by considering the
identity map, since its complementary map is the completely depolarizing map [3],
Example 6.4.1). Nevertheless the following relationship between local continuity
properties of these functions holds.

Theorem 3. Let

Φ: T(H ) → T(H ′) and Φ̃ : T(H ) → T(H ′′)

be complementary quantum operations and let A be a subset of the cone T+(H )
on which min{HΦ(A), HΦ̃(A)} < +∞. If the quantum entropy is continuous on the
set A then A 7→ (HΦ(A)−HΦ̃(A)) is continuous on the set A .

Remark 7. It follows from (10), where V is the contraction from representations
(2) and (3), and (13) that

|HΦ(A)−HΦ̃(A)| 6 H(A), A ∈ T+(H ). (23)

Theorem 3 shows that if the right-hand side of this inequality is continuous on
a particular subset of the cone T+(H ) then the expression within the modulus
sign in the left-hand side is continuous on this subset. The condition

min{HΦ(A), HΦ̃(A)} < +∞

in Theorem 3 can be removed if we include operators A such that

HΦ(A) = HΦ̃(A) = +∞ but H(A) < +∞

in the domain of the function A 7→ (HΦ(A)−HΦ̃(A)).
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Remark 8. If Φ is a quantum channel then HΦ(ρ)−HΦ̃(ρ) is the coherent informa-
tion Ic(ρ,Φ) of this channel at the state ρ; see [3], [14].

Proof. Let {ρn} be a sequence of states from S(H ) converging to a state ρ0

such that H(ρn) < +∞ and min{HΦ(ρn), HΦ̃(ρn)} < +∞ for all n > 0, and
limn→+∞H(ρn) = H(ρ0). Inequality (23) implies the values of HΦ(ρn) and HΦ̃(ρn)
are finite for all n > 0.

Let an=HΦ(ρn)−HΦ̃(ρn) for each n>0. By symmetry, to prove limn→+∞ an=a0

it suffices to show that
lim inf
n→+∞

an > a0. (24)

Let K be a separable Hilbert space and {|ϕn⟩} a sequence of unit vectors from
H ⊗K converging to the vector |ϕ0⟩ such that TrK |ϕn⟩⟨ϕn| = ρn for all n > 0
(see Lemma 3 in [16]). Lemma 2 implies that

H(Φ⊗ IdK (|ϕn⟩⟨ϕn|)) = H(Φ̃(ρn)) (25)

for each n. Indeed, by representation (2) the operator Φ⊗ IdK (|ϕn⟩⟨ϕn|) coincides
with the partial trace of the operator V ⊗IK |ϕn⟩⟨ϕn|V ∗⊗IK in T1

+(H ′⊗K ⊗H ′′)
over the space H ′′, while by representation (3) the operator Φ̃(ρn) coincides with
the partial trace of the same operator over the space H ′ ⊗K .

As the values HΦ(ρn) and HΦ̃(ρn) are finite, by (11) and (25) we obtain

bn
.= H

(
Φ⊗ IdK (|ϕn⟩⟨ϕn|)∥Φ(ρn)⊗ ρn

)
= Tr Φ⊗ IdK (|ϕn⟩⟨ϕn|)

(
− log(Φ(ρn)⊗ ρn)

)
− TrΦ⊗ IdK (|ϕn⟩⟨ϕn|)

(
− log(Φ⊗ IdK (|ϕn⟩⟨ϕn|))

)
= H(Φ(ρn)) + cn −H(Φ⊗ IdK (|ϕn⟩⟨ϕn|)) = an + cn,

where cn = Tr Φ⊗ IdK (|ϕn⟩⟨ϕn|)(IH ′ ⊗ (− log ρn)).
The relative entropy in both arguments is lower semicontinuous and so

lim inf
n→+∞

bn > b0.

Thus one can prove (24) by showing that

lim sup
n→+∞

cn 6 c0. (26)

Consider the quantum channel Ψ = Φ + ∆, where

∆( · ) = σTr((IH − Φ∗(IH ′))( · ))

is a quantum operation in F61(H ,H ′) defined by means of a particular state σ in
S(H ′). Since limn→+∞H(ρn) = H(ρ0) < +∞ and

H(ρn) = Tr Ψ⊗ IdK (|ϕn⟩⟨ϕn|)(IH ′ ⊗ (− log ρn)) = cn + dn, n = 0, 1, 2, . . . ,

where dn = Tr∆ ⊗ IdK (|ϕn⟩⟨ϕn|)(IH ′ ⊗ (− log ρn)), to prove (26) it suffices to
show that

lim inf
n→+∞

dn > d0. (27)
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We have dn = TrBn(− log ρn), where Bn = TrH ′ ∆⊗IdK (|ϕn⟩⟨ϕn|) is an operator
in T+(K ). Since Bn 6 Bn + TrH ′ Φ ⊗ IdK (|ϕn⟩⟨ϕn|) = ρn, the value H(Bn) is
finite and hence dn = H(Bn)+H(Bn∥ρn)+η(TrBn)+TrBn−1. Since the quantum
entropy and the relative entropy are lower semicontinuous, this gives (27).

Thus the assertion of the theorem is proved in the case A ⊂ S(H ). The general
assertion is easily reduced to this case using property (6), since for an arbitrary
sequence {An} converging to zero inequality (23) implies that

lim
n→+∞

H(An) = 0 =⇒ lim
n→+∞

(HΦ(An)−HΦ̃(An)) = 0.

Corollary 7. Let
Φ: T(H ) → T(H ′)

be a quantum channel and
Φ̃ : T(H ) → T(H ′′)

the complementary channel. If any two functions from the triple {H,HΦ, HΦ̃} are
continuous on a set A ⊂ T+(H ) then the third function is also continuous on
this set.

This assertion holds for any quantum operation Φ: T(H ) → T(H ′) such that

λ∗
(√

IH − Φ∗(IH ′)
)
< +∞.7 (28)

Since Φ∗(IH ′) 6 IH for any quantum operation Φ and the equality in this
inequality holds if and only if Φ is a quantum channel, (28) can be treated as
a condition on the ‘closeness’ of the quantum operation to a quantum channel,
which provides the corresponding behaviour of its output entropy. This condition
is symmetric with respect to (Φ, Φ̃) since Φ∗(IH ′) = Φ̃∗(IH ′′) by representations
(2), (3) and (5).

Proof. By representations (2) and (3) the first assertion in the corollary can be
derived directly from Theorem 3 and Proposition 5.

The second assertion in the corollary is derived from the first by means of
Lemma 5 below since by representations (2), (3) and (5) we have Φ = Θ ◦ Λ,
Φ̃ = Θ̃ ◦ Λ and Φ∗(IH ′) = V ∗V , where Θ( · ) = TrH ′′( · ) is a quantum channel
from T(H ′ ⊗H ′′) into T(H ′) and Λ( · ) = V ( · )V ∗ is a quantum operation from
T(H ) into T(H ′ ⊗H ′′).

Lemma 5. If V is a linear contraction from H into H ′ such that

λ∗
(√

IH − V ∗V
)
< +∞,

then the quantum entropy is continuous on the set A ⊂ T+(H ) provided that the
function A 7→ H(V AV ∗) is continuous on this set.

Note that the converse assertion holds for an arbitrary linear contraction V by
Theorem 2.

7The parameter λ∗( · ) is defined in Proposition 3.
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Proof. Consider the quantum channel

T(H ) ∋ A 7→ Ψ(A) = V AV ∗ ⊕
√
IH − V ∗V A

√
IH − V ∗V ∈ T(H ′ ⊕H ).

By Proposition 3 the function A 7→ H
(√

IH − V ∗V A
√
IH − V ∗V

)
is continu-

ous on the set T+(H ). Hence the function A 7→ HΨ(A) is continuous on the
set A . Since the complementary channel Ψ̃ has a two-dimensional output space
(by representation (4)), the assertion of the lemma follows from the first assertion
of Corollary 7.

Corollary 8. Let Φ: T(H ) → T(H ′) be a quantum channel (or a quantum oper-
ation satisfying condition (28)) such that the complementary channel (operation)
Φ̃ has continuous output entropy. The function A 7→ HΦ(A) is continuous on the
set A ⊂ T+(H ) if and only if the quantum entropy is continuous on this set.

The condition in Corollary 8 holds for quantum channels having Kraus represen-
tation (1) with a finite number of nonzero summands, since their complementary
channels have a finite-dimensional output space (by representation (4)).

Sufficient conditions, expressed in terms of the Kraus operators of the quantum
operation Φ, for the output entropy of the quantum operation Φ̃ to be continuous
(which is equivalent to it being finite by Theorem 1) are represented in Proposi-
tion 4.

The following assertion can be considered as a generalization of Proposition 2
(since if we apply it to the channel Φ(A) =

∑+∞
i=1 ⟨i|A|i⟩|i⟩⟨i| it gives the assertion

of this proposition).

Corollary 9. Let Φ( · ) =
∑+∞
i=1 Vi( · )V ∗i be a quantum channel (or a quantum

operation satisfying condition (28)) in F61(H ,H ′) such that RanVi ⊥ RanVj for
all sufficiently large i ̸= j. If A 7→ HΦ(A) is continuous on a set A ⊂ T+(H ) then
the quantum entropy is continuous on the set A .

Proof. Suppose that RanVi ⊥ RanVj for all i, j > n, i ̸= j. Consider the quantum
operations Φ1( · ) =

∑n−1
i=1 Vi( · )V ∗i and Φ2( · ) =

∑+∞
i=n Vi( · )V ∗i . By Lemma 1 if

A ∋ A 7→ H(Φ(A)) = H(Φ1(A) + Φ2(A)) is continuous, then so is the function
A ∋ A 7→ H(Φ2(A)). By hypothesis

H(Φ2(A)) =
+∞∑
i=n

H(ViAV ∗i ) +H({TrViAV ∗i }+∞i=n) =
+∞∑
i=n

H(ViAV ∗i ) +H(Φ̃2(A)),

where Φ̃2(A) =
∑+∞
i=n Tr[ViAV ∗i ]|i⟩⟨i|, and {|i⟩} is the basis from the representation

(4) of the operation Φ̃. Since both the terms on the right-hand side of this expression
are lower semicontinuous functions of the operator A, if A ∋ A 7→ H(Φ2(A)) is
continuous, so is A ∋ A 7→ H(Φ̃2(A)).

Consider the quantum channel Π( · ) = P ( · )P + (IH ′′ − P )( · )(IH ′′ − P ) in
F=1(H ′′,H ′′), where P =

∑n−1
i=1 |i⟩⟨i|. Since

Π(Φ̃(A)) =
n−1∑
i,j=1

Tr[ViAV ∗j ]|i⟩⟨j|+ Φ̃2(A),
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if A ∋A 7→ H(Φ̃2(A)) is continuous then, by Lemma 1, so is A ∋A 7→H(Π(Φ̃(A))),
and by Corollary 8 this is equivalent to the function A ∋ A 7→ H(Φ̃(A)) being
continuous. Hence Corollary 7 implies that A ∋ A 7→ H(A) is too.

Remark 9. The assertions of Corollaries 7, 8 and 9 are not valid for a quantum
operation Φ unless it satisfies (28). This is confirmed by the following assertion.

Corollary 10. Let Φ be a quantum operation in F61(H ,H ′) and let

TΦ =
{
A ∈ T+(H ) | min{HΦ(A), HΦ̃(A)} < +∞

}
.

If λ∗(
√

Φ∗(IH ′)) < +∞, then the function A 7→ (HΦ(A)−HΦ̃(A)) is continuous
on the cone TΦ and its absolute value does not exceed λ∗(

√
Φ∗(IH ′))∥A∥1.

If the functions A 7→ HΦ(A) and A 7→ HΦ̃(A) are continuous on the cone T+(H )
then the operator Φ∗(IH ′) satisfies the above condition.

Proof. Representation (5) shows that Φ∗(IH ′) = V ∗V , where V is the contraction
from representation (2) of the quantum operation Φ. Thus using representations
(2) and (3) one can derive the first assertion of the corollary from Proposition 3
and Theorem 3, while the second comes from Proposition 3 and Proposition 5.

§ 6. The output entropy as a function of the pair (map, input operator)

When we analyse the physically motivated question about the continuity of the
information characteristics of a quantum channel as a function of the channel (that
is continuity with respect to ‘perturbations’ of the channel) we need to consider
the output entropy as a function of the pair (channel, input state) and to explore
the continuity of this function in the topology of the Cartesian product on the set
of such pairs, under the assumption that the set of quantum channels is endowed
with an appropriate (sufficiently weak) topology (see [5], [6]). The same problem
arises when we study quantum channels by means of an approximation to them by
quantum operations with ‘good’ analytical properties [5].

We will assume that the set L+
61(H ,H ′) is endowed with the topology of strong

convergence generated by the strong operator topology on the set of all bounded
linear maps between the Banach spaces T(H ) and T(H ′) (the properties of this
topology on the set F61(H ,H ′) of quantum operations are investigated in [5]).
A sequence {Φn} ∈ L+

61(H ,H ′) converges to a map Φ0 ∈ L+
61(H ,H ′) in the

topology of strong convergence if and only if

lim
n→+∞

Φn(A) = Φ0(A), A ∈ T(H ).

Several of our earlier results concerning the properties of the function
A 7→ HΦ(A) can be generalized to give continuity conditions for the function
(Φ, A) 7→ HΦ(A).

The following assertion is a generalization of the main result of Theorem 2.
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Theorem 4. Let {Φn} ⊂ L+
61(H ,H ′) be a sequence of maps converging to

a map Φ0. The following properties are equivalent :
(i) limn→+∞HΦn

(An) = HΦ0(A0) < +∞ for any sequence {An} ⊂ T1
+(H )

converging to the operator A0;8

(ii) limn→+∞HΦn
(An) = HΦ0(A0) < +∞ for any sequence {An} ⊂ T+(H )

converging to an operator A0 such that

lim
n→+∞

H(An) = H(A0) < +∞.

Theorem 4 implies, in particular, that the function (Φ, A) 7→ HΦ(A) is continuous
on the set Fn61(H ,H ′) × A for each n ∈ N, where Fn61(H ,H ′) is the set of all
quantum operations having Kraus representation (1) with the number of nonzero
summands 6 n and A is a subset of the cone T+(H ) on which the quantum
entropy is continuous.

The following assertion is a generalization of Theorem 3.

Theorem 5. Let {Φn} and {Φ̃n} be sequences of quantum operations from
F61(H ,H ′) and from F61(H ,H ′′), respectively, converging to operations Φ0 and
Φ̃0 such that (Φn, Φ̃n) is a complementary pair for each n = 0, 1, 2, . . . and let {An}
be a sequence of operators from T+(H ) converging to an operator A0 such that

lim
n→+∞

H(An) = H(A0) < +∞ and min{HΦn(An), HΦ̃n
(An)} < +∞, n > 0.

Then

lim
n→+∞

(
HΦn

(An)−HΦ̃n
(An)

)
= HΦ0(A0)−HΦ̃0

(A0) < +∞.

The hypotheses of Theorem 5 hold in the case

Φn( · ) =
+∞∑
i=1

V ni ( · )(V ni )∗ and Φ̃n( · ) =
+∞∑
i,j=1

TrV ni ( · )(V nj )∗|i⟩⟨j|, n > 0,

where {V ni }n is a sequence of operators from H into H ′ converging strongly to
an operator V 0

i for each i such that

lim
n→+∞

+∞∑
i=1

(V ni )∗V ni =
+∞∑
i=1

(V 0
i )∗V 0

i

in the weak operator topology9 and {|i⟩}+∞i=1 is an orthonormal basis in a separable
Hilbert space H ′′. Using the above generalization of Theorem 3 and Proposition 2
it is easy to obtain the following continuity condition.

8T1
+(H ) is the cone of positive trace-class operators in H with rank 6 1.

9This condition guarantees the sequences {Φn} and {Φ̃n} converge to the quantum operations

Φ0 and Φ̃0. It always holds if these sequences consist of quantum channels.
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Corollary 11. Let {An} be a sequence of operators from T+(H ) converging to an
operator A0 such that limn→+∞H(An) = H(A0) < +∞. To prove that

lim
n→+∞

HΦn
(An) = HΦ0(A0)

it suffices to show that

lim
n→+∞

H
(
{TrV ni An(V

n
i )∗}+∞i=1

)
= H

(
{TrV 0

i A0(V 0
i )∗}+∞i=1

)
< +∞.

This condition has a clear physical interpretation in terms of the theory of quan-
tum measurements (see [19], Example 7).

The proofs of all the results presented in this section can be found in [19], § 6.

§ 7. Appendix

Proposition 5. Let C be a subset of the cone T+(H ⊗ K ). If the quantum
entropy is continuous on the sets TrK C ⊂ T+(H ) and TrH C ⊂ T+(K ) then the
quantum entropy is continuous on the set C .

Proof. Let {Cn} ⊆ C be a subsequence converging to an operator C0 ∈ C . If
C0 ̸= 0, then by hypothesis we have

lim
n→+∞

H

(
CH
n

TrCn

)
= H

(
CH

0

TrC0

)
and lim

n→+∞
H

(
CK
n

TrCn

)
= H

(
CK

0

TrC0

)
,

where CH
n = TrK Cn and CK

n = TrH Cn for all n. Proposition 8 from [15], Part II
shows that

lim
n→+∞

H

(
Cn

TrCn

)
= H

(
C0

TrC0

)
and hence

lim
n→+∞

H(Cn) = H(C0).

If C0 = 0 then the sequence {H(Cn)} converges to zero if the sequences {H(CH
n )}

and {H(CK
n )} converge to zero, by the subadditivity of the quantum entropy, that

is, using the inequality H(Cn) 6 H(CH
n ) +H(CK

n ), n ∈ N.

In the proof of Proposition 3 we used the following lemma.

Lemma 6. Let {πi}+∞i=1 be a sequence of positive numbers. Then

sup
{xi}∈P+∞

H({πixi}+∞i=1 ) = λ∗,

where λ∗ is the unique finite solution of the equation
∑+∞
i=1 e

−λ/πi = 1 if it exists
and λ∗ = g({π−1

i }) = inf{λ > 0 |
∑+∞
i=1 e

−λ/πi < +∞} otherwise.10

10We assume that inf ∅ = +∞. The equation
∑+∞

i=1 e−λ/πi = 1 has no solutions if either

g({π−1
i }) = +∞ or

∑+∞
i=1 e− g({π−1

i })/πi < 1.
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Proof. Using the Lagrange method it is easy to show that the function

Pn ∋ {xi}ni=1 7→ H({πixi}ni=1)

attains its maximum at the vector

{x∗i = cπ−1
i e−λ

∗
n/πi},

where λ∗n is a solution of the equation
∑n
i=1 e

−λ/πi = 1 and

c =
[ n∑
i=1

π−1
i e−λ

∗
n/πi

]−1

.

Hence
max

{xi}∈Pn

H({πixi}ni=1) = λ∗n. (29)

Since the classical entropy is lower semicontinuous the assertion of the lemma
follows from (29) and the remark that sequence {λ∗n} converges to λ∗ as n→ +∞.

Applications of the continuity conditions we have obtained for the output entropy
of positive maps in quantum information theory are investigated in [19], §§ 7 and 8.
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to A. S. Holevo and to the participants his seminar “Quantum probability, statis-
tics, information” (the Steklov Mathematical Institute) for their interest in this
work and the useful discussions we had.
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