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Reversibility conditions for quantum
channels and their applications

M. E. Shirokov

Abstract. Conditions for a quantum channel (noncommutative Markov
operator) to be reversible with respect to complete families of quantum
states with bounded rank are obtained. A description of all quantum
channels reversible with respect to a given (orthogonal or nonorthogonal)
complete family of pure states is given. Some applications in quantum
information theory are considered.
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§ 1. Introduction

Quantum channels are linear trace-preserving completely positive maps between
Banach spaces of trace class operators (Schatten class of order 1), and they play
the role of dynamical maps in quantum theory [1]. They can be considered as
noncommutative analogues of Markov operators in classical probability theory.

The notion of reversibility (sufficiency) of a quantum channel with respect to
a given family of states arose in the 1980s, in the analysis of various general ques-
tions in quantum theory, in particular, the question of preserving certain quanti-
tative characteristics of states under the action of a quantum channel [2]–[4]. The
reversibility of a quantum channel Φ with respect to a family of input states S
means there exists a quantum channel Ψ from the output space of the channel Φ
into its input space such that Ψ(Φ(ρ)) = ρ for any state ρ in S.

The notion of reversibility of a quantum channel is related to Petz’s theorem,
which states that equality holds in the general inequality

H(Φ(ρ) ∥Φ(σ)) 6 H(ρ ∥σ)

(this expresses the fundamental monotonicity property of the quantum relative
entropy H(ρ∥σ) of the states ρ and σ under the action of the quantum channel Φ)
if and only if Φ is reversible with respect to the family S={ρ, σ} ([2], Theorem 5).
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An important corollary to this theorem is related to the notion of the χ-quantity1

χ({πi, ρi}) of an ensemble of quantum states {πi, ρi} (a collection of states {ρi} with
the corresponding probability distribution {πi}). It plays a key role in quantum
information theory. This corollary states that a necessary and sufficient condition
for the χ-quantity of an ensemble {πi, ρi} to be preserved under the action of
a quantum channel Φ, that is, for there to be equality in the general inequality

χ({πi,Φ(ρi)}) 6 χ({πi, ρi}),

is that the channel Φ be reversible with respect to the family S = {ρi}.
It has recently been shown that criteria for many other important character-

istics to be preserved under the action of a quantum channel also reduce to the
reversibility condition [5], [6]. It was also observed that necessary and sufficient
conditions for the capacities of two different transmission protocols for classical
information through a quantum channel Φ to coincide can be formulated in terms
of the reversibility of the complementary channel Φ̂ (for the definition see § 2) with
respect to certain families of pure states [7].

Starting with Petz’s works, conditions for quantum channels (and more general
maps) to be reversible with respect to families of two states and many states have
been studied by many authors (see [6], [8] and the references there). A distinguish-
ing feature of this paper is that in the analysis of reversibility we use results related
to the notion of a complementary channel. The importance of its role in various
questions in quantum information theory was observed recently [9].

The paper is organized as follows. In §§ 2, 3 we give an overview of the nec-
essary concepts and preliminary results. In § 4 we prove necessary conditions for
a quantum channel to be reversible with respect to families of bounded rank states
expressed in terms of the complementary channel (Theorem 3) and give a descrip-
tion of the class of quantum channels reversible with respect to a given family of
pure states (orthogonal and nonorthogonal) possessing the completeness property
(Proposition 1 and Theorem 4). In § 5 we look at some applications of these results
in quantum information theory. A condition for the χ-quantity of an arbitrary
(discrete or continuous) ensemble of bounded rank states to be preserved under the
action of a quantum channel is obtained (Theorem 5) and some its corollaries are
considered.

We present a possible generalization of Petz’s theorem to the case of arbitrary
quantum states in the Appendix.

§ 2. Preliminaries

Let H be a separable Hilbert space, B(H ) and T(H ) the Banach spaces of all
bounded operators in H with the operator norm ∥ · ∥ and all trace-class operators
in H with the trace norm ∥ · ∥1 = Tr | · | [1], [10]. The closed convex subset

S(H ) = {A ∈ T(H ) | A > 0, TrA = 1}

of T(H ) is a complete separable metric space with the metric defined by the trace
norm. By convention we denote operators in S(H ) by the Greek letters ρ, σ, ω and

1This characteristic is often called the Holevo quantity; it plays the basic role in quantum
information theory, see [4], Ch. 5.
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call them states, since any such operator ρ determines a normal linear functional
A 7→ TrAρ with unit norm on the algebra B(H ) [11]. Pure states are rank one
projectors, they are extreme points of the set S(H ). The support supp ρ of a state
ρ is the orthogonal complement of its kernel ker ρ; the dimension of the support is
called the rank of a state: rank ρ = dim supp ρ. A state ρ for which ker ρ = {0}, is
called nondegenerate.

For vectors and rank one operators in a Hilbert space we will use the Dirac
notations |ϕ⟩, |χ⟩⟨ψ|, . . . (in which the action of the operator |χ⟩⟨ψ| on the vector
|ϕ⟩ gives the vector ⟨ψ,ϕ⟩|χ⟩). For brevity, orthonormal sets of vectors {|ϕi⟩}i∈I ,
where I = {1, 2, . . . , n} or I = N, will be denoted by {|i⟩}i∈I .

The identity operator in a Hilbert space H and the identity transformation of
the Banach space T(H ) will be denoted by IH and IdH , respectively.

A set of vectors {|ψi⟩} in a Hilbert space H is called an overcomplete system if∑
i

|ψi⟩⟨ψi| = IH .

An orthonormal basis in H is an example of an overcomplete system.
A Hilbert space of finite dimension d (it can be identified with Cd) will be denoted

by Hd.
Let HA and HB be Hilbert spaces called input and output, respectively. Let

Φ: T(HA) → T(HB) be a linear map which is positive and trace-preserving
(Φ(A) > 0 and TrΦ(A) = TrA for any A > 0). The dual map Φ∗ : B(HB) →
B(HA) (defined by the relation TrΦ(A)B = TrAΦ∗(B), A ∈ T(HA), B ∈ B(HB))
is the positive map such that Φ∗(IHB

) = IHA
.

A linear map Φ: T(HA) → T(HB) is called completely positive if the map
Φ⊗ IdHd

from T(HA⊗Hd) into T(HB⊗Hd) is positive for each natural number d
(equivalent definitions of complete positivity can be found in [4], § 6.2).

Definition 1. A linear completely positive trace-preserving map Φ: T(HA) →
T(HB) is called a quantum channel.

This definition of a quantum channel corresponds to the Schrodinger picture in
which the dynamics of a quantum system is described via the evolution of states.
A quantum channel in the Heisenberg picture is the dual map Φ∗ : B(HB) →
B(HA) describing the evolution of quantum observables [1], Ch. 3.

An important example of a quantum channel is the operation of partial trace

T(H ⊗K ) ∋ C 7→ TrK C ∈ T(H ),

which transforms the operator A ⊗ B into the operator ATrB and is extended
to operators of general form by linearity and continuity (see the strict definition
in [1], [4]). This operation is a noncommutative analogue of the transition from
a joint distribution of random variables to their partial distributions in classical
probability theory.

Using Stinespring’s theorem on representations of completely positive maps on
C∗-algebras and some properties of the algebra B(H ) one can obtain the following
representation of an arbitrary quantum channel Φ: T(HA) → T(HB): there exist
a Hilbert space HE and an isometry V : HA → HB ⊗HE such that

Φ(A) = TrHE
V AV ∗ ∀A ∈ T(HA) (2.1)
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(see [1], [4]). This representation will be called the Stinespring representation of
the channel Φ, while the operator V is the Stinespring isometry.

The quantum channel

T(HA) ∋ A 7→ Φ̂(A) = TrHB
V AV ∗ ∈ T(HE) (2.2)

is said to be complementary to the channel Φ (see [4], § 6.6, [9])2. The complemen-
tary channel is uniquely defined: if Φ̂′ : T(HA) → T(HE′) is the channel defined
by (2.2) via the Stinespring isometry V ′ : HA → HB ⊗HE′ then the channels Φ̂
and Φ̂′ are isometrically equivalent in the sense of the following definition (see the
Appendix in [9]).

Definition 2. Two channels Φ: T(HA) → T(HB) and Φ′ : T(HA) → T(H ′
B) are

isometrically equivalent if there is a partial isometry W : HB → HB′ such that

Φ′(A) = WΦ(A)W ∗, Φ(A) = W ∗Φ′(A)W, A ∈ T(HA). (2.3)

The notion of isometrical equivalence is very close to the notion of unitary equiv-
alence. Indeed, if the channels Φ, Φ′ are isometrically equivalent, they are unitary
equivalent, provided that the output spaces HB , HB′ are replaced by the subspaces

H Φ
B =

∨
ρ∈S(HA)

supp Φ(ρ), H Φ′

B′ =
∨

ρ∈S(HA)

supp Φ′(ρ).

The concept of isometrical equivalence is convenient, since when we deal with a par-
ticular representation of a quantum channel Φ it is not always easy to determine
the corresponding subspace H Φ

B .
A Stinespring representation (2.1) is called minimal if the set

M =
{
(X ⊗ IHE

)V |ϕ⟩ | ϕ ∈ HA, X ∈ B(HB)
}

is dense in HB⊗HE . The complementary channel Φ̂ defined by (2.2) via a minimal
Stinespring representation has the following property:

ker ρ = {0} =⇒ ker Φ̂(ρ) = {0}. (2.4)

By using the Stinespring representation (2.1) it is easy to obtain the Kraus
representation

Φ(A) =
∑

k

VkAV
∗
k , A ∈ T(HA), (2.5)

where {Vk} is a collection of linear bounded operators from HA into HB such that∑
k V

∗
k Vk = IHA

. These operators are defined by the relation

⟨ϕ|Vkψ⟩ = ⟨ϕ⊗ k|V ψ⟩, ϕ ∈ HB , ψ ∈ HA,

where {|k⟩} is an orthonormal basis in the space HE . It is easy to see that the
complementary channel (2.2) has the representation

Φ̂(A) =
∑
k,l

Tr[VkAV
∗
l ]|k⟩⟨l|, A ∈ T(HA). (2.6)

2The quantum channel Φ̂ is also called conjugate to the channel Φ [12].
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The following class of quantum channels plays an essential role in this
paper [4], [13].

Definition 3. A quantum channel Φ: T(HA) → T(HB) is called classical-
quantum (briefly, a c-q channel) if it has the representation

Φ(A) =
dim HA∑

k=1

⟨k|Ak⟩σk, A ∈ T(HA),

where {|k⟩} is an orthonormal basis in HA and {σk} is a collection of states in
S(HB).

Following [6], [8], we now introduce the basic notion of the paper.

Definition 4. A quantum channel Φ: T(HA) → T(HB) is called reversible with
respect to a family S ⊆ S(HA) if there exists a quantum channel Ψ: T(HB) →
T(HA) such that ρ = Ψ ◦ Φ(ρ) for all ρ ∈ S.3

The channel Ψ in this definition will be called a reversing channel for the channel
Φ with respect to the family S.

Note that reversibility is a property common to isometrically equivalent channels.

Lemma 1. Let Φ: T(HA) → T(HB) and Φ′ : T(HA) → T(HB′) be isometrically
equivalent quantum channels. The channel Φ being reversible with respect to a fam-
ily S ⊆ S(HA) is equivalent to Φ′ being reversible with respect to this family.

Proof. Let Ψ be a reversing channel for the channel Φ with respect to the fam-
ily S. Let Θ( · ) = W ∗( · )W + σTr(IHB′ −WW ∗)( · ) be a channel from T(HB′)
into T(HB), where W is a partial isometry from (2.3) and σ is a fixed state
in S(HB). Then Ψ ◦ Θ is a reversing channel for the channel Φ′ with respect
to the family S.

The von Neumann entropy of a state ρ in S(H ) is defined as follows:4

H(ρ) = −Tr ρ log ρ = −
+∞∑
i=1

λi log λi,

where {λi} is the set of eigenvalues of the state ρ (see [3], [4], [15]).
The quantum relative entropy of states ρ and σ in S(H ) is defined as follows

H(ρ∥σ) =
+∞∑
i=1

⟨i|[ρ log ρ− ρ log σ]i⟩,

where {|i⟩}+∞i=1 is an orthonormal basis of eigenvectors of the state ρ (or σ) and it
is assumed that H(ρ∥σ) = +∞ if supp ρ * suppσ (see [3], [4], [15]).

We will use the following concept concerning the structure of the set of states in
a Hilbert space H ⊗K describing composite quantum systems.

3In most early papers this property was called the sufficiency of the channel Φ with respect to
the family S (see [2], [14]).

4Here and in what follows log denotes the natural logarithm.
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The Schmidt rank of a pure state |ψ⟩⟨ψ| in S(H ⊗K ) is defined as the number
of nonzero summands in the Schmidt decomposition

|ψ⟩ =
∑

i

λi|αi⟩ ⊗ |βi⟩,

where {|αi⟩} and {|βi⟩} are orthonormal bases in H and K ; it coincides with the
rank of partial states TrH |ψ⟩⟨ψ| and TrK |ψ⟩⟨ψ| (see [16]).

The Schmidt class Sr of order r ∈ N is the minimal closed convex subset of
S(H ⊗K ) containing all pure states with Schmidt rank not exceeding r, that is,
Sr is the convex closure of these pure states [16], [17].5 In this notation S1 is the
set of all separable (nonentangled) states in S(H ⊗K ) (see [4], [15]).

A quantum channel Φ: T(HA) → T(HB) is called entanglement-breaking if for
any Hilbert space K the state Φ⊗IdK (ω) is separable in S(HB⊗K ) for each state
ω ∈ S(HA ⊗K ) (see [13]). This notion has the following natural generalization
given in [16].

Definition 5. A quantum channel Φ: T(HA) → T(HB) is called partially
entanglement-breaking of order r (briefly, an r-PEB channel) if for any Hilbert
space K the state Φ⊗ IdK (ω) belongs to the Schmidt class Sr ⊂ S(HB ⊗K ) for
each state ω ∈ S(HA ⊗K ).

In this notation entanglement-breaking quantum channels are 1-PEB channels.
Properties of finite-dimensional r-PEB channels are studied in [16], where it is
proved, in particular, that the class of r-PEB channels coincides with the class of
channels having Kraus representation (2.5) such that rankVk 6 r for all k. But in
infinite dimensions the first class is essentially wider than the second; moreover, for
each r there exist r-PEB channels such that all the operators in any of their Kraus
representations have infinite rank [17].

§ 3. Petz’s theorem and reversibility criteria

A fundamental property of quantum relative entropy is its monotonicity (non-
increasing) under the action of a quantum channel; this is expressed by the inequal-
ity

H(Φ(ρ)∥Φ(σ)) 6 H(ρ∥σ), (3.1)

which is valid for an arbitrary channel Φ: T(HA) → T(HB) and any states ρ and σ
in S(HA).

We will consider states ρ and σ such that H(ρ∥σ) < +∞. This implies supp ρ ⊆
suppσ. Thus, we will assume that σ and Φ(σ) are nondegenerate states in S(HA)
and in S(HB), respectively (the general case is reduced to this one by replacing
HA by suppσ and HB by supp Φ(σ)).

Petz’s theorem, which follows, characterizes the case of equality in (3.1).

5In finite dimensions the convex closure coincides with the convex hull by Carathéodory’s
theorem, but in infinite dimensions even the set of all countable convex mixtures of pure states
with Schmidt rank 6 r is a proper subset of Sr for each r [17].



Reversibility conditions for quantum channels 1221

Theorem 1. Let Φ: T(HA) → T(HB) be a quantum channel, and ρ and σ states
in S(HA) such that H(ρ∥σ) < +∞. Let Θσ : T(HB) → T(HA) be the quantum
channel predual to the map

B(HA) ∋ A 7→ Θ∗σ(A) = CΦ(BAB)C ∈ B(HB), B = [σ]1/2, C = [Φ(σ)]−1/2.

Then the following statements are equivalent:
(i) H(Φ(ρ)∥Φ(σ)) = H(ρ∥σ);
(ii) ρ = Θσ(Φ(ρ));
(iii) the channel Φ is reversible with respect to the states ρ and σ .

Note that the implication (iii) =⇒ (i) in this theorem follows immediately from
the monotonicity of relative entropy, while the implication (ii) =⇒ (iii) is obvious,
since it is easy to verify that σ = Θσ(Φ(σ)).

Note also that the action of the channel Θσ on states ϱ in S(HB) such that
λϱ 6 Φ(σ) for some λ > 0 is given by the explicit formula

Θσ(ϱ) = BΦ∗(CϱC)B, B = [σ]1/2, C = [Φ(σ)]−1/2

(the condition λϱ 6 Φ(σ) guarantees the operator CϱC is bounded).
Theorem 1 was formulated and proved in [2] in terms of von Neumann algebras

and normal states on these algebras. In [2] both ρ and σ were assumed to be faithful
(nondegenerate in our notation). So the assertion of Theorem 1 follows directly
from the theorem in [2] only for nondegenerate states ρ. A possible generalization
to the case of arbitrary states ρ is presented in the Appendix. Note that in finite
dimension this generalization follows from the theorem in [5], § 5.1.

Definition 6. A family S of states in S(H ) is called complete if for any positive
operator A in B(H ) there exists a state ρ in S such that TrAρ > 0.

A family {|ϕλ⟩⟨ϕλ|}λ∈Λ of pure states in S(H ) is complete if and only if the
linear hull of the family {|ϕλ⟩}λ∈Λ is dense in H . It is easy to show that an
arbitrary complete family of any states in S(H ) contains a countable complete
subfamily [14], Lemma 2.

A general criterion for the reversibility of a channel with respect to complete
families of states was obtained in [14]. We will use this criterion in the following
restricted form (in which Θρ is the channel defined in Theorem 1 with σ = ρ).

Theorem 2. A quantum channel Φ: T(HA) → T(HB) is reversible with respect to
a complete countable family {ρi} of states in S(HA) if and only if ρi = Θρ(Φ(ρi))
for all i, where ρ =

∑
i πiρi and {πi} is any nondegenerate probability distribution.

Note that the assertion of Theorem 2 can be deduced from Theorem 1, since
using properties of the quantum relative entropy we can show that H(ρi∥ρ) < +∞
for all i.

§ 4. Conditions for the reversibility of a quantum
channel with respect to complete families of states

4.1. Families of states with bounded rank. Using Theorem 2 we can obtain
a necessary condition for a quantum channel to be reversible with respect to com-
plete families of states with bounded rank, expressed in terms of the complementary
channel.
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Theorem 3. Let S = {ρi}n
i=1 , n 6 +∞, be a complete family of states in S(HA)

such that rank ρi 6 r for all i. If a quantum channel Φ: T(HA) → T(HB) is
reversible with respect to the family S then its complementary channel Φ̂ : T(HA) →
T(HE) has a Kraus representation (2.5) with n · min{dim kerΦ∗ + r2,dim HB}
summands, such that rankVk 6 r for all k , and hence Φ̂ is a PEB-channel of
order r .

If the above condition holds for r = 1, that is, ρi = |ϕi⟩⟨ϕi| for all i, then

Φ̂(A) =
n∑

i=1

⟨φi|Aφi⟩
m∑

k=1

|ψik⟩⟨ψik|, A ∈ T(HA), (4.1)

where m = min{dim kerΦ∗ + 1,dim HB}, {|φi⟩}n
i=1 is an overcomplete system of

vectors in HA defined by means of an arbitrary nondegenerate probability distribu-
tion {πi}n

i=1 as follows:

|φi⟩ =
√
πiρ

−1
π |ϕi⟩, ρπ =

n∑
i=1

πi|ϕi⟩⟨ϕi|, (4.2)

and {|ψik⟩} is a collection of vectors in a Hilbert space HE such that
∑m

k=1 ∥ψik∥2 =1
and ⟨ψil|ψik⟩ = 0 for all k ̸= l for each i = 1, . . . , n. Hence the channel Φ is iso-
metrically equivalent to the channel

Φ′(A) =
n∑

i,j=1

⟨φi|Aφj⟩|i⟩⟨j| ⊗
m∑

k,l=1

⟨ψjl|ψik⟩|k⟩⟨l| (4.3)

from T(HA) into T(Hn⊗Hm), where {|i⟩}n
i=1 and {|k⟩}m

k=1 are arbitrary orthonor-
mal bases in Hn and in Hm , respectively.

The first assertion in Theorem 3 means that the channel Φ̂ has the following
property: for an arbitrary Hilbert space K and any state ω in S(HA ⊗K ) the
state Φ̂ ⊗ IdK (ω) is a countably decomposable state in the Schmidt class Sr ⊂
S(HE ⊗K ), that is, it can be represented as a countable convex mixture of pure
states with Schmidt rank 6 r (there exist states in Sr which are not countably
decomposable [17]).

Proof. Let Φ̂(ρ) =
∑d

k=1 VkρV
∗
k , d 6 +∞, be the Kraus representation of the

channel Φ̂ : T(HA) → T(HE), obtained via its minimal Stinespring representation
with the isometry V : HA → HE ⊗ HC (see § 2). The complementary channel

Ψ = ̂̂Φ to the channel Φ̂ determined by means of this representation has the form

T(HA) ∋ A 7→ Ψ(A) =
d∑

k,l=1

[TrVkAV
∗
l ]|k⟩⟨l| ∈ T(HC),

where {|k⟩}d
k=1 is an orthonormal basis in d-dimensional Hilbert space HC .

Since Ψ = ̂̂Φ, the channels Φ are Ψ isometrically equivalent (see § 2). By Lemma 1
the channel Ψ is reversible with respect to the family {ρi}.
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Let {πi}n
i=1 be an arbitrary nondegenerate probability distribution and ρπ =∑n

i=1 πiρi. It follows from (2.4) that Ψ(ρπ) is a nondegenerate state in S(HC).
By Theorem 2 the reversibility of Ψ implies Ai = Ψ∗(Bi) for all i, where Ai =
πi[ρπ]−1/2ρi[ρπ]−1/2 and Bi = πi[Ψ(ρπ)]−1/2Ψ(ρi)[Ψ(ρπ)]−1/2 are positive opera-
tors in B(HA) and in B(HC), respectively.

Note that

Ψ∗(C) =
d∑

k,l=1

⟨l|Ck⟩V ∗l Vk, C ∈ B(HC).

Since Ai = Ψ∗(Bi) is an operator of rank 6 r, Lemma 2 below implies that
Bi =

∑m
j=1 |ψij⟩⟨ψij |, where m = min{dim ker Ψ∗ + r2,dim HC} and {|ψij⟩}m

j=1 is
a set of vectors in HC , for each i = 1, . . . , n. Since the state Ψ(ρπ) ∈ S(HC) is
nondegenerate it follows that

n∑
i=1

m∑
j=1

|ψij⟩⟨ψij | =
n∑

i=1

Bi = IHC
.

By Lemma 3 below

Φ̂( · ) =
n∑

i=1

m∑
j=1

Wij( · )W ∗
ij , (4.4)

where Wij =
∑d

k=1⟨ψij |k⟩Vk. Since Ai = Ψ∗(
∑m

j=1 |ψij⟩⟨ψij |) is an operator of
rank 6 r for each i and

Ψ∗(|ψij⟩⟨ψij |) =
d∑

k,l=1

⟨l|ψij⟩⟨ψij |k⟩V ∗l Vk = W ∗
ijWij , (4.5)

the collection {Wij} consists of operators of rank 6 r. To complete the proof of the
first part of the theorem it suffices to note that the partial isometry in the relation
similar to (2.3), which expresses the isometrical equivalence of the channels Φ and Ψ,
is an isometrical embedding of HC into HB (since Ψ(ρπ) is a nondegenerate state
in S(HC)). Hence dim HC 6 dim HB and dim ker Ψ∗ 6 dim kerΦ∗.

If ρi = |ϕi⟩⟨ϕi| then Ai = |φi⟩⟨φi| for each i, where |φi⟩ is the vector defined
in (4.2). So, it follows from (4.5) that

|φi⟩⟨φi| =
m∑

j=1

Ψ∗(|ψij⟩⟨ψij |) =
m∑

j=1

W ∗
ijWij ,

and hence Wij = |ηij⟩⟨φi| for all j = 1, . . . ,m, where {|ηij⟩} is a set of vectors in
HE such that

∑m
j=1 ∥ηij∥2 = 1 for each i.

It follows from (4.4) that

Φ̂(A) =
n∑

i=1

⟨φi|Aφi⟩
m∑

j=1

|ηij⟩⟨ηij |, A ∈ T(HA).

Using the spectral decomposition of the states
∑m

j=1 |ηij⟩⟨ηij |, i = 1, . . . , n, we
obtain the representation (4.1).

The representation (4.3) is derived from (4.1) by means of the representation (2.6).
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Lemma 2. Let Φ: T(HA) → T(HB) be a quantum channel. If B is a positive
operator in B(HB) such that rank Φ∗(B) = r < +∞ then B =

∑m
j=1 |ψj⟩⟨ψj |,

where m = min{dim kerΦ∗+ r2, dim HB} and {|ψj⟩}m
j=1 is a set of vectors in HB .

Proof. Note that B =
∑dim HB

j=1 |ψj⟩⟨ψj |, where |ψj⟩ = B1/2|j⟩, for any orthonormal
basis {|j⟩} in HB . So, it suffices to consider the casem = dimkerΦ∗+r2 < dim HB .

We may assume that the first n = rankB vectors in {|ψj⟩} are linearly inde-
pendent, and hence the operators |ψj⟩⟨ψj |, j = 1, . . . , n, generate an n-dimensional
subspace Bn ⊂ B(HA). Now, B >

∑n
j=1 |ψj⟩⟨ψj | and the support of the operator

Φ∗(B) is contained in some r-dimensional subspace Hr⊂HA, and so Φ∗(|ψj⟩⟨ψj |)∈
B(Hr), j = 1, . . . , n. Thus, Φ∗(Bn) ⊆ B(Hr) and hence

rankB = n = dimBn 6 dim ker Φ∗ + dim B(Hr) = dim ker Φ∗ + r2 = m.

It follows from the finite-dimensional spectral theorem that B =
∑m

j=1 |ψ′j⟩⟨ψ′j |,
where {|ψ′j⟩} is an orthogonal set of eigenvectors for the operator B.

Lemma 3. Let Φ(A) =
∑d

k=1 VkAV
∗
k be a quantum channel and {|k⟩}d

k=1 an
orthonormal basis in the Hilbert space Hd , d 6 +∞. An arbitrary overcomplete sys-
tem {|ψi⟩} of vectors in Hd generates the Kraus representation Φ(A) =

∑
iWiAW

∗
i

of the channel Φ in which Wi =
∑d

k=1⟨ψi|k⟩Vk .

Proof. Since
∑

i |ψi⟩⟨ψi| = IHd
, we have

∑
i

WiAW
∗
i =

d∑
k,l=1

VkAV
∗
l

∑
i

⟨ψi|k⟩⟨l|ψi⟩

=
d∑

k,l=1

VkAV
∗
l

∑
i

Tr |k⟩⟨l||ψi⟩⟨ψi| =
d∑

k=1

VkAV
∗
k .

4.2. Orthogonal families of pure states. From Theorem 3 we can obtain the
following description of the class of all quantum channels reversible with respect to
a given complete family of orthogonal pure states.

Proposition 1. Let Φ: T(HA) → T(HB) be a quantum channel,

m = min{dim kerΦ∗ + 1, dim HB},

and S = {|ϕi⟩⟨ϕi|} a complete family of orthogonal pure states in S(HA). The
following statements are equivalent:

(i) the channel Φ is reversible with respect to the family S;
(ii) Φ̂ is a c-q channel with the representation Φ̂(A) =

∑dim HA

i=1 ⟨ϕi|Aϕi⟩σi ,
where {σi} is a set of states in S(HE) such that rankσi 6 m for all i;

(iii) the channel Φ is isometrically equivalent to the channel

Φ′(A) =
dim HA∑
i,j=1

⟨ϕi|Aϕj⟩|ϕi⟩⟨ϕj | ⊗
m∑

k,l=1

⟨ψjl|ψik⟩|k⟩⟨l|

from T(HA) into T(HA ⊗Hm), where {|ψik⟩} is a set of vectors in a sepa-
rable Hilbert space such that

∑m
k=1 ∥ψik∥2 = 1 and ⟨ψil|ψik⟩ = 0 for all k ̸= l

for each i and {|k⟩} is an orthonormal basis in Hm .
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Proof. The implication (i) =⇒ (ii) follows from Theorem 3, since in this case φi = ϕi

for all i.
(ii) =⇒ (iii). If σi =

∑m
k=1 |ψik⟩⟨ψik| then Φ̂(ρ) =

∑
i,k WikρW

∗
ik, where Wik =

|ψik⟩⟨ϕi|, and then (2.6) shows that ̂̂Φ = Φ′.
The implication (iii) =⇒ (i) follows from Lemma 1, since Ψ( · ) = TrHm

( · ) is
a reversing channel for the channel Φ′ with respect to the family S.

Proposition 1 makes it possible to obtain the following criterion for reversibility
in terms of the dual map to a quantum channel.

Corollary 1. A quantum channel Φ: T(HA) → T(HB) is reversible with respect
to a complete family of orthogonal pure states {|ϕi⟩⟨ϕi|} if and only if there exists
a partial isometry W : HA ⊗Hm → HB such that

|ϕi⟩⟨ϕi| = Φ∗(W [|ϕi⟩⟨ϕi| ⊗ IHm
]W ∗) ∀ i, (4.6)

where m = min{dim ker Φ∗+1, dim HB} and Φ∗ : B(HB) → B(HA) is a dual map
to the channel Φ.

Note that condition (4.6) implies that Φ∗(WW ∗) = IHA
, and hence WW ∗ is the

projector on a subspace containing the supports of all states Φ(ρ), ρ ∈ S(HA).

Proof. The necessity of condition (4.6) directly follows from Proposition 1.
To prove its sufficiency consider the channel Φ′(A) = W ∗Φ(A)W from T(HA)

into T(HA ⊗Hm). By the above remark

WΦ′(A)W ∗ = WW ∗Φ(A)WW ∗ = Φ(A), A ∈ T(HA),

and hence the channels Φ and Φ′ are isometrically equivalent. By Lemma 1 it
suffices to show that Φ′ is reversible with respect to the family {|ϕi⟩⟨ϕi|}.

Condition (4.6) implies

Tr[|ϕi⟩⟨ϕi| ⊗ IHm
]Φ′(|ϕj⟩⟨ϕj |) = Tr Φ∗(W [|ϕi⟩⟨ϕi| ⊗ IHm

]W ∗)|ϕj⟩⟨ϕj | = δij .

So, the support of Φ′(|ϕi⟩⟨ϕi|) is contained in the subspace {λ|ϕi⟩} ⊗Hm, and
hence TrHm

Φ′(|ϕi⟩⟨ϕi|) = |ϕi⟩⟨ϕi| for all i.

4.3. Arbitrary families of pure states. Consider the structure of any quantum
channel reversible with respect to an arbitrary complete family S = {|ϕλ⟩⟨ϕλ|}λ∈Λ

of pure states.
It is well known that a quantum channel Φ: T(HA) → T(HB) is reversible with

respect to the family of all pure states in S(HA) (which means it is reversible
with respect to S(HA)) if and only if its complementary channel is completely
depolarizing, that is, it maps all states in S(HA) into a fixed state in S(HE) (see
[4], Proposition 10.1.2). This means that the channel Φ is isometrically equivalent
to the channel

Φ′(A) = A⊗ σ (4.7)

from T(HA) into T(HA ⊗K ), where K is a Hilbert space and σ is a given state
in S(K ).

We first give a characterization of family S = {|ϕλ⟩⟨ϕλ|}λ∈Λ ⊂ S(HA) such
that if the channel Φ: T(HA) → T(HB) is reversible with respect to S then it is
reversible with respect to S(HA).
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Definition 7. A family {|ϕλ⟩}λ∈Λ of vectors in H (a family {|ϕλ⟩⟨ϕλ|}λ∈Λ of pure
states in S(H )) is called orthogonally decomposable if there is a proper subspace
H0 ⊂ H such that some vectors of this family lie in H0 and all the others in H ⊥

0 .

A family of pure states which is not orthogonally decomposable will be called
orthogonally nondecomposable.

Proposition 2. Let {|ϕλ⟩⟨ϕλ|}λ∈Λ be a complete family of pure states in S(HA).
The following statements are equivalent:

(i) the family {|ϕλ⟩⟨ϕλ|}λ∈Λ is orthogonally nondecomposable;
(ii) any channel Φ: T(HA) → T(HB) reversible with respect to the family

{|ϕλ⟩⟨ϕλ|}λ∈Λ , is isometrically equivalent to the channel (4.7).

Proof. (i) =⇒ (ii). If Ψ: T(HB) → T(HA) is a reversing channel for Φ then
Lemma 4 below shows that Ψ ◦ Φ = IdHA

. Thus the channel Φ is reversible with
respect to S(HA) and hence its complementary channel Φ̂ is completely depolar-
izing.

(ii) =⇒ (i). If H0 is a proper subspace of HA such that for each λ ∈ Λ the
vector |ϕλ⟩ lies either in H0 or in H ⊥

0 , then the channel A 7→ P0AP0 + P 0AP 0,
where P0 is the projector onto the subspace H0 and P 0 = IHA

− P0, is reversible
with respect to the family {|ϕλ⟩⟨ϕλ|}λ∈Λ (since no state of this family is changed
under the action of this channel).

Lemma 4. Let Φ: T(H ) → T(H ) be a quantum channel (dim H 6 +∞) and
{|ϕλ⟩⟨ϕλ|}λ∈Λ an orthogonally nondecomposable family of pure states in S(H ).
If Φ(|ϕλ⟩⟨ϕλ|) = |ϕλ⟩⟨ϕλ| for all λ ∈ Λ then Φ|T(H0) = IdH0 , where H0 is the
subspace generated by the family {|ϕλ⟩}λ∈Λ .

Proof. Let Φ(A) = TrK V AV ∗ be the Stinespring representation of the channel Φ
in which V is an isometry from H into H ⊗K .

Using the standard arguments based on Zorn’s lemma, we can show that any
complete orthogonally nondecomposable family of pure states contains a countable
complete orthogonally nondecomposable subfamily (Lemma 7 in the Appendix).

Let {|ϕi⟩⟨ϕi|} be a countable orthogonally nondecomposable subfamily of the
family {|ϕλ⟩⟨ϕλ|}λ∈Λ such that the vectors of the family {|ϕi⟩} generate the sub-
space H0. The hypothesis of the lemma implies

V |ϕi⟩ = |ϕi⟩ ⊗ |ψi⟩ ∀ i,

where {|ψi⟩} is a family of unit vectors in K . Since V is an isometry, we have

⟨ϕi|ϕj⟩ = ⟨V ϕi|V ϕj⟩ = ⟨ϕi|ϕj⟩⟨ψi|ψj⟩ ∀ i, j

and hence ⟨ϕi|ϕj⟩ ≠ 0 =⇒ ⟨ψi|ψj⟩ = 1.
It follows that |ψi⟩ = |ψj⟩ for all i, j. Otherwise, we could decompose the set of

all indices into two subsets I and J such that |ψi⟩ ̸= |ψj⟩ for all i ∈ I, j ∈ J and
the above implication implies ⟨ϕi|ϕj⟩ = 0 for all i ∈ I, j ∈ J , and this contradicts
the fact that the family {|ϕi⟩⟨ϕi|} is orthogonally nondecomposable.

Thus V |ϕi⟩ = |ϕi⟩ ⊗ |ψ⟩ for all i and hence V |ϕ⟩ = |ϕ⟩ ⊗ |ψ⟩ for all |ϕ⟩ ∈ H0

since the family of vectors {|ϕi⟩} generates the subspace H0. Hence Φ(A) = A for
any operator A ∈ T(H0).
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In analysing the reversibility of a channel with respect to orthogonally decom-
posable families of pure states the following simple observation plays an essential
role.

Lemma 5. An arbitrary family S of pure states in S(H ) can be decomposed as
S =

⋃
k Sk , where {Sk} is a finite or countable collection of disjoint orthogonally

nondecomposable subfamilies of S such that ρ ⊥ ρ′ for all ρ ∈ Sk, ρ
′ ∈ Sk′ , k ̸= k′ .

This decomposition is unique (up to permutations of the subfamilies).

Proof. For a given state ρ ∈ S consider the monotonic sequence {Cρ
n} of subfamilies

of S constructed as follows. Let Cρ
1 = {ρ}, let Cρ

2 be the family of all states in S
nonorthogonal to the state ρ, Cρ

n+1 the family of all states in S nonorthogonal to at
least one state in Cρ

n, n = 2, 3, . . . . Let Cρ
∗ =

⋃
n Cρ

n. It is easy to verify by induction
that Cρ

n is an orthogonally nondecomposable family for each n and hence Cρ
∗ is an

orthogonally nondecomposable family. Note that any state in Cρ
∗ is orthogonal to

any state in S \ Cρ
∗. Indeed, if ρ ∈ Cρ

∗ then ρ ∈ Cρ
n for some n. So, if a state σ is

nonorthogonal to the state ρ then it lies in Cρ
n+1 ⊆ Cρ

∗.
It is easy to see that the families Cρ

∗ and Cρ′

∗ , ρ, ρ′ ∈ S either coincide or have
empty intersection. Since the Hilbert space H is separable and each family Cρ

∗
corresponds to a nontrivial subspace of H , the collection {Cρ

∗}ρ∈S contains either
a finite or countable number of different families. These families form the required
decomposition.

The above decomposition of a complete family S of pure states provides a des-
cription of the class of all channels which are reversible with respect to S.

Theorem 4. Let Φ: T(HA) → T(HB) be a quantum channel, S a complete family
of pure states in S(HA) and let m = min{dim ker Φ∗ + 1, dim HB}. Let S =⋃

k Sk be the decomposition of S into orthogonally nondecomposable subfamilies
(from Lemma 5) and Pk the projector onto the subspace generated by the states
in Sk . The following statements are equivalent:

(i) the channel Φ is reversible with respect to the family S;
(ii) the channel Φ is reversible with respect to the family

Ŝ =
{
ρ ∈ S(HA)

∣∣∣∣ ρ =
∑

k

PkρPk

}
;

(iii) Φ̂ is a c-q channel with the representation Φ̂(A) =
∑

k[TrAPk]σk , where
{σk} is a collection of states in S(HE) such that rankσk 6 m for all k ;

(iv) the channel Φ is isometrically equivalent to the channel

Φ′(A) =
∑
k,l

PkAPl ⊗
m∑

p,t=1

⟨ψl
t|ψk

p⟩|p⟩⟨t|

from T(HA) into T(HA⊗Hm), where {|ψk
p⟩} is a set of vectors in a separable

Hilbert space such that
∑m

p=1 ∥ψk
p∥2 = 1 and ⟨ψk

t |ψk
p⟩ = 0 for all p ̸= t for

each k and {|p⟩} is an orthonormal basis in Hm .
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Proof. (i) =⇒ (ii). Let Ψ be a reversing channel for the channel Φ with respect to
the family S and Hk the subspace of H generated by the states in Sk. Since Sk is
an orthogonally nondecomposable family, Lemma 4 shows that Ψ◦Φ|T(Hk) = IdHk

for all k.
(ii) =⇒ (iii). Let {|φi⟩} be an orthonormal basis corresponding to the decompo-

sition HA =
⊕

k Hk (such that each vector |φi⟩ lies in some Hk). Let Ik be the set
of all i such that |φi⟩ ∈ Hk. Since |φi⟩⟨φi| ∈ Ŝ for all i, the channel Φ is reversible
with respect to the family {|φi⟩⟨φi|}. By Proposition 1 we have

Φ̂(A) =
∑

k

∑
i∈Ik

⟨φi|Aφi⟩σi,

where {σi} is a collection of states in S(HE) such that rankσi 6 m for all i.
Since Sk is an orthogonally nondecomposable family, Proposition 2 shows that
the restriction of Φ̂ to the set S(Hk) is a completely depolarizing channel. Thus
σi = σk for all i ∈ Ik and hence Φ̂(A) =

∑
k[TrAPk]σk.

(iii) =⇒ (iv). Let k(i) be the index of the set Ik containing i, that is, i ∈ Ik(i) for
all i. If σk =

∑m
p=1 |ψk

p⟩⟨ψk
p | then Φ̂(A) =

∑
i,pWipAW

∗
ip, where Wip = |ψk(i)

p ⟩⟨φi|
and hence the representation (2.6) implies

̂̂Φ(A) =
∑

i,j,p,t

[TrWipAW
∗
jt]|φi⟩⟨φj | ⊗ |p⟩⟨t|

=
∑

k,l,p,t

∑
i∈Ik,j∈Il

⟨φi|Aφj⟩|φi⟩⟨φj | ⊗ ⟨ψl
t|ψk

p⟩|p⟩⟨t| =
∑
k,l

PkAPl ⊗
∑
p,t

⟨ψl
t|ψk

p⟩|p⟩⟨t|,

where {|p⟩} is an orthonormal basis in Hm.
(iv) =⇒ (i) follows from Lemma 1, since Ψ( · ) = TrHm

( · ) is a reversing channel
for the channel Φ′ with respect to the family S.

We can deduce the following useful observation from Theorem 4.

Corollary 2. If a quantum channel Φ: T(HA) → T(HB) is reversible with respect
to a complete family S of pure states in S(HA) then it is reversible with respect to
some complete family of orthogonal pure states in S(HA).

Remark 1. If a complete family of pure states S contains a subfamily S0 ={|ϕi⟩⟨ϕi|}
such that {|ϕi⟩} is a basis in HA (in the sense that any vector |ψ⟩ in HA has a unique
decomposition |ψ⟩ =

∑
i ci|ϕi⟩),6 then the family of orthogonal pure states men-

tioned in Corollary 2 is given explicitly by Theorem 3. Indeed, by Lemma 8 in
the Appendix {|φi⟩}, the set of vectors defined in (4.2) by means of an arbitrary
nondegenerate probability distribution {πi}, forms an orthonormal basis in HA. It
is easy to see that the channel Φ′ defined by (4.3) is reversible with respect to the
family {|φi⟩⟨φi|}. By Theorem 3 and Lemma 1 the same reversibility holds for the
channel Φ.

6The existence of this subfamily S0 is obvious if HA is finite-dimensional. Conditions which
guarantee that a complete countable family of unit vectors in an infinite-dimensional Hilbert space
forms a basis can be found in [10], Ch. 1.
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Theorem 4 gives the following description of the class of all reversible channels
between finite-dimensional quantum systems of the same dimensions.

Corollary 3. Let H be a finite-dimensional Hilbert space and S a complete family
of pure states in S(H ). Let S =

⋃
k Sk be the decomposition of S into orthogo-

nally nondecomposable subfamilies (from Lemma 5) and Pk the projector onto the
subspace generated by the states in Sk .

A quantum channel Φ: T(H ) → T(H ) is reversible with respect to the family S
if and only if it is unitarily equivalent to the channel

Φ′(A) =
∑
k,l

cklPkAPl, A ∈ T(H ),

where ∥ckl∥ is the Gram matrix of a set of unit vectors in a finite-dimensional
Hilbert space.

Proof. Since Φ′(ρ) = ρ for all ρ ∈ S, if the channels Φ and Φ′ are unitarily equiva-
lent then Φ is reversible with respect to the family S.

By Corollary 2 if Φ is reversible with respect to S it is reversible with respect to
some family {ρi}n

i=1 of orthogonal pure states in S(H ) (where n = dim H ). As
relative entropy is monotonic we have

1
n

n∑
i=1

H(Φ(ρi)∥Φ(ρ)) =
1
n

n∑
i=1

H(ρi∥ρ) = log n,

where ρ = n−1
∑n

i=1 ρi = n−1IH . The left-hand side of this equality is the
χ-quantity of the family of states {Φ(ρi)}n

i=1 with the uniform probability dis-
tribution (see § 5). It follows from the general properties of the χ-quantity (see [4],
Ch. 5) that this family consists of orthogonal pure states and that Φ(IH ) = IH .

By (2.2), which gives the definition of the complementary channel, {Φ̂(ρi)}n
i=1 is

a family of pure states. Theorem 4 shows that Φ̂(A) =
∑

k[TrAPk]|ψk⟩⟨ψk|, where
{|ψk⟩} is a set of unit vectors in HE . Hence the channel Φ is isometrically equivalent

to the channel ̂̂Φ = Φ′ with matrix ckl = ⟨ψl|ψk⟩. Since Φ(IH ) = Φ′(IH ) = IH , if
Φ and Φ′ are isometrically equivalent they are unitarily equivalent.

Remark 2. Corollary 3 shows that if dim HA = dim HB < +∞ then a quantum
channel Φ: T(HA) → T(HB) is reversible with respect to a complete family S
of pure states if and only if Φ(ρ) = UρU∗ for all ρ ∈ S, where U is a unitary
operator; that is, Φ being reversible with respect to a complete family of pure
states is equivalent to all the states of this family being preserved by Φ (up to
a unitary transformation).

§ 5. A condition for the χ-quantity
to be preserved and some corollaries

We consider some applications of the results obtained in § 4 to quantum infor-
mation theory.

A finite or countable set {ρi} of states in S(H ) with the corresponding prob-
ability distribution {πi} is called an ensemble and denoted by {πi, ρi}, the state
ρ =

∑
i πiρi is called the average state of this ensemble.
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The χ-quantity of an ensemble {πi, ρi} is defined as follows:

χ({πi, ρi})
.=

∑
i

πiH(ρi∥ρ) = H(ρ)−
∑

i

πiH(ρi),

where the second formula is valid provided that H(ρ) < +∞. It is proved in [18]
that this quantity provides an upper bound for the accessible classical informa-
tion which can be obtained by distinguishing the set of states {ρi} using quantum
measurements (see details in [4], Ch. 5). The χ-quantity plays a central role in
the analysis of different protocols of classical information transmissions through
a quantum channel and is involved in the expressions for the capacities of these
protocols.

Let Φ be a quantum channel from T(HA) into T(HB). Since the relative entropy
is monotonic, for an arbitrary ensemble {πi, ρi} of states in S(HA) the following
inequality holds

χ({πi,Φ(ρi)}) 6 χ({πi, ρi}). (5.1)

Remark 3. If H(ρ) < +∞ and H(Φ(ρ)) < +∞ then (5.1) means that the function
ρ 7→ H(Φ(ρ))−H(ρ), the entropy gain of the channel Φ, is convex.

Using the monotonicity of the relative entropy and Theorem 1 equality in (5.1)
(under the condition that the right-hand side is finite) is equivalent to the channel
Φ being reversible with respect to the family {ρi}. So, using the results from § 4
we can obtain conditions for equality, and this can be interpreted as preserving the
χ-quantity of the ensemble {πi, ρi} under the action of Φ.

When we analyse infinite-dimensional quantum systems and channels we have to
consider generalized (or continuous) ensembles, defined as Borel probability mea-
sures on the set of quantum states (from this point of view the ensemble {πi, ρi}
is the purely atomic measure

∑
i πiδρi

, where δρ is the Dirac measure concentrated
at the state ρ) [4], [19].

The set of all Borel probability measures on S(H ) whose support lies in a closed
subset A ⊆ S(H ) will be denoted by P(A ). We will call such measures general-
ized ensembles of states in A .

The average state of a generalized ensemble µ is the barycenter of µ defined by
the Bochner integral

ρ(µ) =
∫

S(H )

ρµ(dρ).

The χ-quantity of a generalized ensemble µ is defined as follows:

χ(µ) =
∫

S(H )

H(ρ∥ρ(µ))µ(dρ) = H(ρ(µ))−
∫

S(H )

H(ρ)µ(dρ), (5.2)

where the second formula is valid provided that H(ρ(µ)) < +∞ [19].
The image of a generalized ensemble µ ∈ P(S(HA)) under the action of a quan-

tum channel Φ: T(HA) → T(HB) is the generalized ensemble

Φ(µ) .= µ ◦ Φ−1 ∈ P(S(HB)).
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This has χ-quantity equal to

χ(Φ(µ)) =
∫

S(HA)

H(Φ(ρ)∥Φ(ρ(µ)))µ(dρ) = H(Φ(ρ(µ)))−
∫

S(HA)

H(Φ(ρ))µ(dρ),

(5.3)
where the second formula is valid provided that H(Φ(ρ(µ))) < +∞.

Similarly to the discrete case, as the relative entropy is monotonic this implies
the χ-quantity for generalized ensembles is too:

χ(Φ(µ)) 6 χ(µ). (5.4)

Theorem 1 gives the following criterion for equality in (5.4), which is a modifi-
cation of Theorem 3 in [14] for the von Neumann algebra M = B(H ).

Proposition 3. Let Φ: T(HA) → T(HB) be a quantum channel and µ a general-
ized ensemble of states in S(HA) with the nondegenerate average state ρ(µ) such
that χ(µ) < +∞. The following statements are equivalent:

(i) χ(Φ(µ)) = χ(µ);
(ii) H(Φ(ρ)∥Φ(ρ(µ))) = H(ρ∥ρ(µ)) for µ-almost all ρ in S(HA);
(iii) ρ = Θρ(µ)(Φ(ρ)) for µ-almost all ρ in S(HA);
(iv) the channel Φ is reversible with respect to µ-almost all ρ in S(HA).

By contrast with Theorem 3 in [14], in Proposition 3 it is not assumed that the
state ρ(µ) is a countable convex mixture of states of the ensemble µ.

Using this proposition, Theorem 3, Corollary 2 and Proposition 1 (taking [14],
Lemma 2 into account) we obtain the following necessary conditions for equality
in (5.4).

Theorem 5. Let Φ: T(HA) → T(HB) be a quantum channel. If there exists a gen-
eralized ensemble µ ∈ P(Sr), where Sr = {ρ ∈ S(HA) | rank ρ 6 r}, with the
nondegenerate average state ρ(µ) such that

χ(Φ(µ)) = χ(µ) < +∞, (5.5)

then the complementary channel Φ̂ has a Kraus representation (2.5) with the number
of summands dim HA · min{dim ker Φ∗ + r2,dim HB}, such that rankVk 6 r for
all k , and hence it is a PEB-channel of order r .

If this condition holds with r = 1 then assertions (i)–(iii) of Proposition 1 are
valid for the channel Φ with a particular orthonormal basis {|ϕi⟩} for the space HA .

We consider some corollaries of this theorem below, which are related to different
characteristics of quantum systems and channels.

5.1. The Holevo capacity and the minimal output entropy of a finite-
dimensional quantum channel. Let Φ: T(HA) → T(HB) be a channel between
finite-dimensional quantum systems (dim HA,dim HB < +∞).

The Holevo capacity of the channel Φ (which is closely related to its classical
capacity [4], Ch. 8) is defined as follows:

C(Φ) = max
{πi,ρi}

χ({πi,Φ(ρi)}), (5.6)

where the maximum is taken over all ensembles of states in S(HA).
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Using inequality (5.1), one can show that

C(Φ) 6 log dim HA (5.7)

for any channel Φ. Theorem 5 gives the following criterion for equality to hold in
this inequality.

Corollary 4. Let Φ: T(HA) → T(HB) be a quantum channel such that

dim HA,dim HB < +∞.

A) Equality holds in (5.7) if and only if the equivalent statements (i)–(iii) in Pro-
position 1 hold for Φ for some particular orthonormal basis {|ϕi⟩} of the space HA .

B) If HB = HA then equality holds in (5.7) if and only if the channel Φ is
unitarily equivalent to the channel Φ′ described in Corollary 3 with a particular
collection {Pk} of mutually orthogonal projectors such that

∑
k Pk = IHA

.

Another important characteristic of a quantum channel Φ is its minimal output
entropy

Hmin(Φ) = min
ρ∈S(HA)

H(Φ(ρ)).

(The role of this characteristic in analysing the informational properties of quantum
channels is considered in [4], Ch. 8.)

Corollary 4 leads to the following criterion for the minimal output entropy of
covariant channels to take the value zero.

Corollary 5. Let HB = HA be a finite-dimensional space and let Φ: T(HA) →
T(HB) be a quantum channel covariant with respect to some irreducible represen-
tation {Vg}g∈G of a compact group G (in the sense that Φ(VgAV

∗
g ) = VgΦ(A)V ∗g

for all g ∈ G and all A ∈ T(HA)).
The equality Hmin(Φ) = 0 holds if and only if Φ is unitarily equivalent to the

channel Φ′ described in Corollary 3 with a particular collection {Pk} of mutually
orthogonal projectors such that

∑
k Pk = IHA

.

To derive this assertion from Corollary 4 it suffices to note that the covariance
condition implies C(Φ) = log dim HB −Hmin(Φ) (see [4], Ch. 6).

All the assumptions of Corollary 5 hold for any unital qubit channel Φ, that is,
a channel Φ: T(HA)→T(HB) such that dim HA =dimHB =2 and Φ(IHA

)=IHB

(see [4], Ch. 6).

5.2. On the strict decrease of the χ-quantity under partial trace and
the strict concavity of the quantum conditional entropy. The operation of
partial trace T(H ⊗ K ) ∋ A 7→ TrK A ∈ T(H ) is a noncommutative analogue
of the transition from a joint probability distribution to their partial distributions.
This operation can be considered as a quantum channel from T(H ⊗K ) into T(H ).
Its complementary channel is the operation of partial trace A 7→ TrH A over the
other space.

Noting that the map A 7→ TrH A is not a r-PEB channel for any r < dim K ,
from Theorem 5 we obtain the following assertion.
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Proposition 4. Let HA = HB ⊗HE and Φ(A) = TrHE
A, A ∈ T(HA).

A) χ({πi,Φ(ρi)}) < χ({πi, ρi}) for any ensemble {πi, ρi} of states in S(HA) with
nondegenerate average state such that supi rank ρi<dim HE and χ({πi, ρi})<+∞.

B) χ(Φ(µ)) < χ(µ) for any generalized ensemble µ in P(S(HA)) with non-
degenerate average state such that supρ∈supp µ rank ρ < dim HE and χ(µ) < +∞.

Remark 4. By the Stinespring representation (2.1) every quantum channel is uni-
tarily equivalent to a restriction of the channel Φ(A) = TrHE

A to the set of states
supported by some subspace of HB ⊗HE . Since the χ-quantity does not necessar-
ily strictly decrease under the action of the quantum channel, the nondegeneracy
condition for the average state is necessary in Proposition 4 and hence also in
Theorem 5.

The quantum conditional entropy of a state ρ of a composite system AB is
defined as follows:

HA|B(ρ) .= H(ρ)−H(TrHA
ρ)

provided that
H(ρ) < +∞ and H(TrHA

ρ) < +∞. (5.8)

By Remark 3 the concavity of the function ρ 7→ HA|B(ρ) on the convex set
defined by (5.8) is equivalent to the χ-quantity being nonincreasing under partial
trace. Proposition 4, A) gives the following sufficient condition for the conditional
entropy to be strictly concave.

Corollary 6. Let ρ be a nondegenerate state in S(HA⊗HB) satisfying condition
(5.8). Then

HA|B(ρ) >
∑

i

πiHA|B(ρi)

for any ensemble {πi, ρi} with the average state ρ such that supi rank ρi < dim HA .

Using Proposition 4, B) one can obtain a continuous (integral) version of Corol-
lary 6.

It is easy to construct examples showing that the property of strict concavity for
the conditional entropy does not hold for any convex decomposition of an arbitrary
state ρ.

An important consequence of Theorem 5 is its use in the proof of the criterion for
the capacities of two protocols for the transmission of classical information through
a quantum channel to coincide, which was considered in [7].

§ 6. Appendix

6.1. The proof of Theorem 1. It suffices to show that (i) =⇒ (ii). Consider
the ensemble of two states ρ and σ with probabilities t and 1 − t where t ∈ (0, 1).
Let σt = tρ+ (1− t)σ. By Donald’s identity (see [3], Proposition 5.22) we have

tH(ρ∥σ) + (1− t)H(σ∥σ) = tH(ρ∥σt) + (1− t)H(σ∥σt) +H(σt∥σ), (6.1)

tH(Φ(ρ)∥Φ(σ)) + (1− t)H(Φ(σ)∥Φ(σ))
= tH(Φ(ρ)∥Φ(σt)) + (1− t)H(Φ(σ)∥Φ(σt)) +H(Φ(σt)∥Φ(σ)), (6.2)
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where the left-hand sides are finite and, by assumption, they coincide. Since all the
terms on the right-hand side of (6.1) are no smaller than the corresponding terms
on the right-hand side of (6.2), as the relative entropy is monotonic

H(Φ(ρ)∥Φ(σt)) = H(ρ∥σt), H(Φ(σ)∥Φ(σt)) = H(σ∥σt). (6.3)

It follows from [14], Theorem 3 and Proposition 4 that ρ = Θt(Φ(ρ)) for all t ∈ (0, 1)
where

Θt(B) = [σt]1/2Φ∗
(
[Φ(σt)]−1/2B[Φ(σt)]−1/2

)
[σt]1/2, B ∈ T(HB).

To complete the proof it suffices to show that

lim
t→+0

Θt = Θσ (6.4)

in the strong convergence topology on the set of quantum channels; in this topology
(see [20]) Φn → Φ means that Φn(ρ) → Φ(ρ) for all ρ, since (6.4) implies that

ρ = lim
t→+0

Θt(Φ(ρ)) = Θσ(Φ(ρ)).

Now, Θt(Φ(σ)) = σ for all t ∈ (0, 1) and so the set of channels {Θt}t∈(0,1)

is relatively compact in the topology of strong convergence by [20], Corollary 2.
Hence there exists a sequence {tn} converging to zero such that

lim
n→+∞

Θtn
= Θ0, (6.5)

where Θ0 is a particular channel. We will show that Θ0 = Θσ.
Note that (6.5) means the sequence {Θ∗tn

(A)} converges to the operator Θ∗0(A)
in the weak operator topology for any positive operator A ∈ B(HA).7 By Lemma 6
below we have

lim
n→+∞

[Φ(σtn
)]1/2Θ∗tn

(A)[Φ(σtn
)]1/2 = [Φ(σ)]1/2Θ∗0(A)[Φ(σ)]1/2 (6.6)

in the Hilbert-Schmidt norm. The explicit form of the map Θ∗tn
shows that

[Φ(σtn
)]1/2Θ∗tn

(A)[Φ(σtn
)]1/2 = Φ

(
[σtn

]1/2A[σtn
]1/2

)
and, since limn→+∞[σtn

]1/2A[σtn
]1/2 = [σ]1/2A[σ]1/2 in the trace norm, the limit

in (6.6) coincides with Φ([σ]1/2A[σ]1/2). Thus, Θ∗0(A) = Θ∗σ(A) for all A in B(HA)
and hence Θ0 = Θσ.

The above arguments show that for any sequence {tn} converging to zero any
partial limit of the sequence {Θtn} coincides with Θσ. This is equivalent to (6.4).

Lemma 6. Let {ρn} be a sequence of states in S(H ) converging to a state ρ0

and let {An} be a sequence of operators from the unit ball of B(H ) converging to
an operator A0 in the weak operator topology. Then the sequence {√ρnAn

√
ρn}

converges to the operator √ρ0A0
√
ρ0 in the Hilbert-Schmidt norm.

7This is because this topology coincides with the σ-weak operator topology on the unit ball of
the space B(HB) (see [11]).
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Proof. Since {ρn}n>0 is a compact set, the compactness criterion for subsets of
S(H ) (see [19], the Appendix) shows that for any ε > 0 there exists a projector Pε

of finite rank such that TrP ερn < ε for all n > 0, where P ε = IH − Pε. We have
√
ρnAn

√
ρn =

√
ρnPεAnPε

√
ρn +

√
ρnPεAnP ε

√
ρn

+
√
ρnP εAnPε

√
ρn +

√
ρnP εAnP ε

√
ρn, n > 0. (6.7)

Since Pε is a finite rank projector, the sequence {PεAnPε} converges to the operator
PεA0Pε in the norm of the space B(H ) and hence the sequence {√ρnPεAnPε

√
ρn}

converges to the operator √ρ0PεA0Pε
√
ρ0 in the trace norm. Further, it is easy

to see that the Hilbert-Schmidt norm of the other terms in the right-hand side of
(6.7) tends to zero as ε→ 0 uniformly in n.

6.2. Some auxiliary results.

Lemma 7. An arbitrary complete orthogonally nondecomposable family of pure
states in a separable Hilbert space H contains a countable complete orthogonally
nondecomposable subfamily.

Proof. Let H be the set of all subspaces of H generated by countable orthogonally
nondecomposable subfamilies of S endowed with partial ordering by inclusion. Let
H0 be a chain in H and H0 =

⋃
K ∈H0

K . Since there is a countable chain {Hk}
in H such that H0 =

⋃
k Hk, and a countable union of countable orthogonally non-

decomposable subfamilies is a countable orthogonally nondecomposable subfamily,
the subspace H0 lies in H. Hence H0 is an upper bound for the chain H0, and
Zorn’s lemma implies the existence of a maximal element Hm in H. Suppose that
Hm  H . Since the family S is complete and orthogonally nondecomposable,
it contains a pure state |ϕ⟩⟨ϕ| such that the vector |ϕ⟩ lies neither in Hm nor in
H ⊥

m . By adding the state |ϕ⟩⟨ϕ| to the countable orthogonally nondecomposable
subfamily corresponding to the subspace Hm we obtain a countable orthogonally
nondecomposable subfamily. Hence Hm∨{λ|ϕ⟩} ∈ H, contradicting the maximality
of Hm.

Lemma 8. Let {|ϕi⟩} be a basis in a separable Hilbert space H (in the sense that
any vector |ψ⟩ in H has a unique decomposition |ψ⟩ =

∑
i ci|ϕi⟩). The set of vec-

tors {|φi⟩}, defined in (4.2) by means of any nondegenerate probability distribution
{πi}, forms an orthonormal basis in H .

Proof. Since
∑

i |φi⟩⟨φi| = IH for any j, we have

|φj⟩ =
∑

i

⟨φi|φj⟩|φi⟩

and hence
(∥φj∥2 − 1)|φj⟩+

∑
i̸=j

⟨φi|φj⟩|φi⟩ = 0.

By applying the operator
√
ρπ (defined in (4.2)) to all the terms of this vector

equality we obtain
√
πj(∥φj∥2 − 1)|ϕj⟩+

∑
i̸=j

√
πi⟨φi|φj⟩|ϕi⟩ = 0.
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Since {|ϕi⟩} is a basis and πi > 0 for all i, we have ∥φj∥2 = 1 and ⟨φi|φj⟩ = 0 for
all i ̸= j. So, {|φi⟩} is an orthonormal set of vectors in H . This set is a basis since∑

i |φi⟩⟨φi| = IH .

The author is grateful to A. S. Holevo and the participants in his seminar “Quan-
tum probability, statistics and information” (the Steklov Mathematical Institute)
for their interest in this work and for some useful discussions. The author is also
grateful to A. Jenčová for her help in solving a particular problem, and to the
referee for useful suggestions for improving the paper and for pointing out some
misprints.
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