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Abstract—We give a detailed description of a low-dimensional quantum channel (input dimen-
sion 4, Choi rank 3) demonstrating the symmetric form of superactivation of one-shot quantum
zero-error capacity. This property means appearance of a noiseless (perfectly reversible) sub-
channel in the tensor square of a channel having no noiseless subchannels. Then we describe
a quantum channel with an arbitrary given level of symmetric superactivation (including the
infinite value). We also show that superactivation of one-shot quantum zero-error capacity of
a channel can be reformulated in terms of quantum measurement theory as appearance of an
indistinguishable subspace for the tensor product of two observables having no indistinguishable
subspaces.
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1. INTRODUCTION

Quantum channels, i.e., completely positive trace-preserving linear maps between spaces of trace-
class operators (spaces of matrices in the finite-dimensional case), can be considered as noncommu-
tative analogs of classical communication channels. There exist various protocols for transmission
of classical and quantum information over quantum channels, determined by used resources, secu-
rity requirements, etc. For each such protocol and for a given quantum channel there is an ultimate
rate of errorless (or asymptotically errorless) information transmission. Similarly to the classical
case, it is called the capacity of this channel (corresponding to this protocol) [1, 2].

The superactivation phenomenon means that a particular capacity of the tensor product of two
quantum channels may be positive despite that the same capacity of each of these channels is zero.
This phenomenon, which has no classical counterpart, has been discovered by G. Smith and J. Yard
in 2008 for the case of quantum capacity [3].

Later it was shown that superactivation may hold for different quantum channel capacities, in
particular, for (one-shot and asymptotic) classical and quantum zero-error capacities [4, 6]. The
effect of (so-called) extreme superactivation of zero-error capacities was also discovered [5].

This paper is devoted to superactivation of one-shot quantum zero-error capacity. This capacity
Q̄0(Φ) (strictly defined in Section 2) characterizes the possibility of zero-error transmission of
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the Russian Academy of Sciences and by the Russian Foundation for Basic Research, project nos. 2-01-
00319-a and 13-01-00295-a).

2 Supported in part by the Danish Research Council through the Centre for Symmetry and Deformation at
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quantum information over quantum channel Φ with one use of this channel. Superactivation of this
capacity means that

Q̄0(Φ1) = Q̄0(Φ2) = 0, but Q̄0(Φ1 ⊗ Φ2) > 0 (1)

for some channels Φ1 and Φ2.

The superactivation property (1) can be reformulated without using the term capacity as ap-
pearance of a noiseless (i.e., perfectly reversible) subchannel in the tensor product of two channels
each of which has no noiseless subchannels. Thus, analysis of property (1) seems to be interesting
for the theory of completely positive maps between operator algebras.

Existence of quantum channels for which (1) holds follows from existence of quantum chan-
nels demonstrating the so-called extreme superactivation of asymptotic zero-error capacities. This
result is shown in [5] in an implicit way, and hence it neither gives an explicit form of channels
demonstrating property (1) nor says anything about their minimal dimensions.

In our recent paper [7] we explicitly describe low-dimensional channels Φ1 �= Φ2 (input di-
mension 8, Choi rank 5) demonstrating the extreme superactivation of one-shot zero-error capac-
ity, which means (1) with the condition Q̄0(Φ1) = Q̄0(Φ2) = 0 replaced by a stronger condition
C̄0(Φ1) = C̄0(Φ2) = 0 (where C̄0 is the one-shot classical zero-error capacity). For these channels,
property (1) obviously holds.

In this paper we use the same approach to construct a simpler example of superactivation (1).
It turns out that the change of prerequisites

C̄0(Φ1) = C̄0(Φ2) = 0 −→ Q̄0(Φ1) = Q̄0(Φ2) = 0

makes it possible to essentially decrease the dimensions (input dimension 4, Choi rank 3) and
construct a symmetrical example Φ1 = Φ2, i.e., a channel Φ such that

Q̄0(Φ) = 0, but Q̄0(Φ⊗ Φ) > 0.

Moreover, this channel Φ is defined via a very simple noncommutative graph, which makes it
possible to write a minimal Kraus representation of Φ in an explicit form.

In Section 3 we explicitly describe a quantum channel Φ such that

Q̄0(Φ) = 0, Q̄0(Φ⊗ Φ) ≥ log n,

where n is any natural number or +∞ (in the last case, Φ is an infinite-dimensional channel).

In Section 4 we show that the superactivation property (1) has a counterpart in quantum
measurement theory. Namely, it can be reformulated as appearance of an indistinguishable subspace
for the tensor product of two quantum observables having no indistinguishable subspaces.

A general way to write the Kraus representation of a channel with a given noncommutative
graph is considered in the Appendix.

2. SUPERACTIVATION OF ONE-SHOT QUANTUM ZERO-ERROR CAPACITY

Let H be a separable Hilbert space, B(H) and T(H) the Banach spaces of all bounded operators
in H and of all trace-class operators in H, respectively, and S(H) the closed convex subset of T(H)
consisting of positive operators with unit trace, called quantum states [1,2]. The support supp ρ of
a state ρ is the orthogonal complement of its kernel ker ρ; the dimension of the support is called
the rank of a state: rank ρ = dim supp ρ. If dimH = n < +∞, then we may identify B(H) and
T(H) with the space Mn of all n× n matrices (endowed with an appropriate norm).

PROBLEMS OF INFORMATION TRANSMISSION Vol. 50 No. 3 2014



234 SHIROKOV, SHULMAN

Let Φ: T(HA) → T(HB) be a quantum channel, i.e., a completely positive trace-preserving
linear map [1, 2]. Stinespring’s theorem implies existence of a Hilbert space HE and an isometry
V : HA → HB ⊗HE such that

Φ(ρ) = TrHE
V ρV ∗, ρ ∈ T(HA). (2)

The quantum channel

T(HA) � ρ 	→ Φ̂(ρ) = TrHB
V ρV ∗ ∈ T(HE) (3)

is said to be complementary to the channel Φ [1,8]. The complementary channel is defined uniquely
up to isometric equivalence [8, Appendix].

By using the Stinespring representation (2), one can obtain the Kraus representation

Φ(ρ) =
∑
k

VkρV
∗
k , ρ ∈ T(HA), (4)

in which {Vk} is a set of bounded linear operators from HA to HB such that
∑
k
V ∗
k Vk = IHA

. These
operators are defined by the relation

〈ϕ|Vkψ〉 = 〈ϕ⊗ k|V ψ〉, ϕ ∈ HB , ψ ∈ HA,

where {|k〉} is an orthonormal basis in HE [1, ch. 6].

Representation (4) with a minimal number of nonzero summands is called the minimal Kraus
representation of a channel Φ. This minimal number is a characteristic of the channel Φ called the
Choi rank [1,2]. In what follows, the Choi rank of Φ will be denoted by dimHE , since it coincides
with the minimal dimension of HE.

The one-shot quantum zero-error capacity Q̄0(Φ) of a channel Φ is defined as sup
H∈q0(Φ)

log dimH,

where q0(Φ) is the set of all subspaces H0 of HA on which the channel Φ is perfectly reversible
(in the sense that there is a channel Θ such that Θ(Φ(ρ)) = ρ for all states ρ supported by H0). The
(asymptotic) quantum zero-error capacity is defined by regularization: Q0(Φ) = sup

n
n−1Q̄0(Φ

⊗n)
[4–6,9, 10].

It is well known that a channel Φ is perfectly reversible on a subspace H0 if and only if the
restriction of the complementary channel Φ̂ to the subset S(H0) is completely depolarizing, i.e.,
Φ̂(ρ1) = Φ̂(ρ2) for all states ρ1 and ρ2 supported by H0 [1, ch 10]. It follows that the one-shot
quantum zero-error capacity Q̄0(Φ) of a channel Φ is completely determined by the set G(Φ) .

=
Φ̂∗(B(HE)), called the noncommutative graph of Φ [9].

Lemma 1. A channel Φ: T(HA) → T(HB) is perfectly reversible on the subspace H0 ⊆ HA

spanned by the family {ϕi}ni=1, n ≤ +∞, of orthogonal unit vectors (which means that Q̄0(Φ) ≥
log n) if and only if

〈ϕi|Aϕj〉 = 0 and 〈ϕi|Aϕi〉 = 〈ϕj |Aϕj〉, ∀i, j, ∀A ∈ L, (5)

where L = G(Φ), or, equivalently, L is any subset of B(HA) such that

w-o-cl(linL) = w-o-cl(G(Φ)), (6)

where w-o-cl(·) is the weak operator closure and linL is the linear span of L.

Proof. It is easy to see that relations (5) with L = G(Φ) mean that the complementary chan-
nel Φ̂ has a completely depolarizing restriction to the subset S(H0).

Validity of relations (5) with any L satisfying condition (6) implies validity of these relations
with L = G(Φ). �
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Remark 1. Since a subspace L of the algebra Mn of n× n matrices is a noncommutative graph
of a particular channel if and only if

L is symmetric (L = L
∗) and contains the unit matrix (7)

(see [6, Lemma 2] or [7, Proposition 2]), Lemma 1 shows that one can construct a channel Φ with
dimHA = n and positive (respectively, zero) one-shot quantum zero-error capacity by taking a
subspace L ⊂ Mn satisfying (7) for which the following condition is valid (respectively, not valid):

∃ϕ,ψ ∈ [Cn]1 such that 〈ψ|Aϕ〉 = 0 and 〈ϕ|Aϕ〉 = 〈ψ|Aψ〉, ∀A ∈ L, (8)

where [Cn]1 is the unit sphere of Cn.

If m is a natural number such that dimL ≤ m2, then Corollary 1 in [7] and Proposition 3 in the
Appendix give explicit expressions for a channel Φ such that G(Φ) = L and dimHE = m.

Superactivation of one-shot quantum zero-error capacity means that

Q̄0(Φ1) = Q̄0(Φ2) = 0 but Q̄0(Φ1 ⊗ Φ2) > 0 (9)

for some channels Φ1 and Φ2. As is mentioned in Section 1, existence of channels Φ1 and Φ2 for
which (9) holds follows from the results in [5], but explicit examples of such channels with minimal
dimensions are not known.

Below we will construct a channel Φ with dimHA = 4, dimHE = 3, and dimHB = 12 such
that (9) holds with Φ1 = Φ2 = Φ.

By Remark 1, the problem of finding channels for which (9) holds reduces to the problem of
finding subspaces L1 and L2 satisfying (7) such that condition (8) is not valid for L = L1 and for
L = L2 but is valid for L = L1 ⊗L2. Now we will consider a symmetric example (L1 = L2) of such
subspaces in M4.

Let U be the unitary operator in C2 determined (in the canonical basis) by the matrix

U =

[
η 0
0 η̄

]
,

where η = exp[iπ/4]. Consider the 5D subspace

L0 =

{
M =

[
A λU∗

λU A

]
, A ∈ M2, λ ∈ C

}

of M4. It obviously satisfies condition (7).

Theorem 1. Condition (8) is not valid for L = L0 but is valid for L = L0⊗L0 with the vectors

|ϕt〉 =
1√
2

[
|1〉 ⊗ |1〉+ eit|2〉 ⊗ |2〉

]
, |ψt〉 =

1√
2

[
|3〉 ⊗ |3〉 + eit|4〉 ⊗ |4〉

]
, (10)

where {|k〉}4k=1 is the canonical basis in C4 and t is a fixed number in [0, 2π).

Proof. Throughout the proof, we will identify C4 with C2 ⊕ C2.

Assume there exist unit vectors ϕ = [x1, x2] and ψ = [y1, y2], xi, yi ∈ C2, such that 〈ψ|Mϕ〉 = 0
and 〈ψ|Mψ〉 = 〈ϕ|Mϕ〉 for all M ∈ L0. It follows that

〈y1|Ax1〉+ 〈y2|Ax2〉 = 0, ∀A ∈ M2, (11)

〈y1|U∗x2〉+ 〈y2|Ux1〉 = 0, (12)

〈y1|Ay1〉+ 〈y2|Ay2〉 = 〈x1|Ax1〉+ 〈x2|Ax2〉, ∀A ∈ M2, (13)

〈y1|U∗y2〉+ 〈y2|Uy1〉 = 〈x1|U∗x2〉+ 〈x2|Ux1〉. (14)
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If x1 ∦ x2, then there is A0 ∈ M2 such that y1 = A0x1 and y2 = A0x2. Hence, it follows from (11)
that 〈y1|y1〉+ 〈y2|y2〉 = 0, i.e., y1 = y2 = 0. Similarly, if y1 ∦ y2, then (11) implies x1 = x2 = 0.

Thus, we have x1 ‖ x2 and y1 ‖ y2. Now we will obtain a contradiction to (11)–(14) by
considering the following cases:

1. x2 = 0, x1 �= 0. In this case (11) implies 〈y1|Ax1〉 = 0 for all A ∈ M2, which gives y1 = 0.
Then (13) implies 〈x1|Ax1〉 = 〈y2|Ay2〉 for all A ∈ M2, which can be valid only if x1 ‖ y2. By
Lemma 2 below, this and (12) show that y2 = 0. Thus, we obtain y1 = y2 = 0;

2. y2 = 0, y1 �= 0. Similarly to Case 1 we obtain x1 = x2 = 0;

3. x2 �= 0, y2 �= 0. In this case x1 = μx2, y1 = νy2, and (13) implies

(1 + |μ|2)〈x2|Ax2〉 = (1 + |ν|2)〈y2|Ay2〉, ∀A ∈ M2,

which can only be valid if x2 ‖ y2. Hence, we have x1 = αy2 and x2 = βy2 (in addition to y1 = νy2).
We may assume that x1 �= 0 and y1 �= 0, since otherwise (11) implies 〈y2|Ax2〉 = 0 for all A ∈ M2,
which can only be valid if either x2 = 0 or y2 = 0.

It follows from (11) that (ν̄α+ β)〈y2|y2〉 = 0, and hence

β = −ν̄α. (15)

By Lemma 2 below, z0 = 〈y2|Uy2〉 is a nonzero complex number. Thus, (14) and (15) imply
Re(νz0) = Re(αβ̄z0) = −|α|2 Re(νz0), and hence

Re(νz0) = 0. (16)

It follows from (12) and (15) that

ν̄βz̄0 + αz0 = α(−ν̄2z̄0 + z0) = 0.

Since α �= 0 (x1 �= 0), we have ν2z0 = z̄0. This equality implies that νz0 is a real number.
Thus, (16) shows that ν = 0, contradicting y1 �= 0.

Hence, condition (8) is not valid for L = L0.

Now we will show that

〈ψt|M1 ⊗M2ϕt〉 = 0, ∀M1,M2 ∈ L0, (17)

and

〈ψt|M1 ⊗M2ψt〉 = 〈ϕt|M1 ⊗M2ϕt〉, ∀M1,M2 ∈ L0, (18)

where ϕt and ψt are vectors defined in (10). Since we identify C4 with C2 ⊕ C2, these vectors are
represented as follows:

|ϕt〉 =
1√
2

[
|e1, 0〉 ⊗ |e1, 0〉+ eit|e2, 0〉 ⊗ |e2, 0〉

]
,

|ψt〉 =
1√
2

[
|0, e1〉 ⊗ |0, e1〉+ eit|0, e2〉 ⊗ |0, e2〉

]
,

where {|ei〉} is the canonical basis in C2.

By setting α1 = 1 and α2 = eit, we have

M1 ⊗M2|ϕt〉 =
1√
2

2∑
i=1

αi|A1ei, λ1Uei〉 ⊗ |A2ei, λ2Uei〉, (19)
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and hence

〈ψt|M1 ⊗M2ϕt〉 =
1

2

2∑
i,j=1

ᾱiαj〈0, ei| ⊗ 〈0, ei| · |A1ej , λ1Uej〉 ⊗ |A2ej , λ2Uej〉

=
1

2
λ1λ2

2∑
i,j=1

ᾱiαj〈ei|Uej〉〈ei|Uej〉 =
1

2
λ1λ2

[
η2|α1|2 + η̄2|α2|2

]
= 0,

Thus, (17) is valid. It follows from (19) that

〈ϕt|M1 ⊗M2ϕt〉 =
1

2

2∑
i,j=1

ᾱiαj〈ei, 0| ⊗ 〈ei, 0| · |A1ej , λ1Uej〉 ⊗ |A2ej , λ2Uej〉

=
1

2

2∑
i,j=1

ᾱiαj〈ei|A1ej〉〈ei|A2ej〉. (20)

Since

M1 ⊗M2|ψt〉 =
1√
2

2∑
i=1

αi|λ1U
∗ei, A1ei〉 ⊗ |λ2U

∗ei, A2ei〉,

we have

〈ψt|M1 ⊗M2ψt〉 =
1

2

2∑
i,j=1

ᾱiαj〈0, ei| ⊗ 〈0, ei| · |λ1U
∗ej , A1ej〉 ⊗ |λ2U

∗ej, A2ej〉

=
1

2

2∑
i,j=1

ᾱiαj〈ei|A1ej〉〈ei|A2ej〉.

This equality and (20) imply (18). �
Lemma 2. If y is a nonzero vector in C2, then 〈y|Uy〉 �= 0.

Proof. Let y = [y1, y2]; then Uy = [ηy1, η̄y2] and 〈y|Uy〉 = |y1|2η + |y2|2η̄ �= 0 (since η =
exp[iπ/4]). �

Theorem 1 (with Lemma 1) and Proposition 2 in [7] imply the following assertion.

Corollary 1. There is a pseudo-diagonal3 channel Φ with dimHA = 4, dimHE = 3, and
dimHB = 12, such that G(Φ) = L0, and hence

Q̄0(Φ) = 0 but Q̄0(Φ⊗ Φ) > 0.

For each given t ∈ [0, 2π), the channel Φ ⊗ Φ is perfectly reversible on the 2D subspace Ht =
lin{|ϕt〉, |ψt〉}, where ϕt, ψt are vectors defined in (10).

Remark 2. It is easy to see that the above subspace L0 is not transitive. Thus, by Lemma 2
in [7], the corresponding channel Φ has positive one-shot classical zero-error capacity, and hence
this channel does not demonstrate the extreme superactivation of one-shot zero-error capacity
(in contrast to the channels considered in [7]).

3 A channel Φ: T(HA) → T(HB) is said to be pseudo-diagonal if it has the representation

Φ(ρ) =
∑
i,j

cij〈ψi|ρ|ψj〉|i〉〈j|, ρ ∈ T(HA),

where {cij} is a Gram matrix of a collection of unit vectors, {|ψi〉} is a collection of vectors in HA such
that

∑
i

|ψi〉〈ψi| = IHA , and {|i〉} is an orthonormal basis in HB [11].
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To obtain a minimal Kraus representation for one of the channels having the properties stated

in Corollary 1, we have to find a basis {Ai}5i=1 of L0 such that Ai ≥ 0 for all i and
5∑

i=1
Ai = I4.

Such a basis can easily be found; for instance,

A1 =
1

6

⎡⎢⎢⎢⎣
1 0 η̄ 0
0 2 0 η
η 0 1 0
0 η̄ 0 2

⎤⎥⎥⎥⎦ , A2 =
1

6

⎡⎢⎢⎢⎣
1 0 −η̄ 0
0 2 0 −η
−η 0 1 0
0 −η̄ 0 2

⎤⎥⎥⎥⎦ , A3 =
5

9

⎡⎢⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎥⎦ ,

A4 =
1

18

⎡⎢⎢⎢⎣
1

√
3 0 0√

3 3 0 0

0 0 1
√
3

0 0
√
3 3

⎤⎥⎥⎥⎦ , A5 =
1

18

⎡⎢⎢⎢⎣
1 −

√
3 0 0

−
√
3 3 0 0

0 0 1 −
√
3

0 0 −
√
3 3

⎤⎥⎥⎥⎦ .

We also have to chose a collection {|ψi〉}5i=1 of unit vectors in C3 such that {|ψi〉〈ψi|}5i=1 is a
linearly independent subset of M3. Let

|ψ1〉 = |1〉, |ψ2〉 = |2〉, |ψ3〉 = |3〉, |ψ4〉 =
1√
2
|1 + 3〉, |ψ5〉 =

1√
2
|2 + 3〉,

where {|1〉, |2〉, |3〉} is the canonical basis in C3.

Now, by noting that ri = rankAi = 3 for i = 1, 2 and ri = rankAi = 2 for i = 3, 4, 5, we can
apply Proposition 3 in the Appendix to obtain a minimal Kraus representation for the pseudo-
diagonal channel Φ having the properties stated in Corollary 1. Direct computation gives the
following Kraus operators:

V1 =
1

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
6 0

√
6η̄ 0

0 α 0 β
0 β̄ 0 α
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1

√
3 0 0

0 0 1
√
3

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V2 =
1

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0√
6 0 −

√
6η̄ 0

0 α 0 −β
0 −β̄ 0 α
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 −

√
3 0 0

0 0 1 −
√
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V3 =
1

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2
√
5 0 0 0

0 0 2
√
5 0

1
√
3 0 0

0 0 1
√
3

1 −
√
3 0 0

0 0 1 −
√
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where α =
3 +

√
3√

2
and β = η

3−
√
3√

2
(η = eiπ/4). Thus, Φ(ρ) =

3∑
k=1

VkρV
∗
k is a minimal Kraus

representation of Φ.
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3. SUPERACTIVATION WITH Q̄0(Φ⊗ Φ) ≥ log n

By generalizing the above construction, one can obtain the following result.

Theorem 2. Let dimHA = 2n ≤ +∞, {|k〉}2nk=1 be an orthonormal basis in HA, and m the
minimal natural number such that n2 − n+ 4 ≤ m2 if n < +∞ and m = +∞ otherwise.

There exists a pseudo-diagonal channel Φ: T(HA) → T(HB) with dimHE = m such that
Q̄0(Φ) = 0 while the channel Φ⊗Φ is perfectly reversible on the subspace of HA ⊗HA spanned by
the vectors

|ϕt
k〉 =

1√
2

[
|2k − 1〉 ⊗ |2k − 1〉+ eit|2k〉 ⊗ |2k〉

]
, k = 1, 2, . . . , n, (21)

where t is a fixed number in [0, 2π), and hence Q̄0(Φ⊗ Φ) ≥ log n.

Proof. Assume first that n < +∞. Consider the subspace

Ln =

⎧⎪⎪⎪⎨⎪⎪⎪⎩M =

⎡⎢⎢⎢⎣
A λ12U

∗ . . . λ1nU
∗

λ21U A . . . λ2nU
∗

. . . . . . . . . . . . . . . . . . . . . . . . . .
λn1U λn2U . . . A

⎤⎥⎥⎥⎦ , A ∈ M2, λij ∈ C

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (22)

of M2n, where U is the unitary operator in C2 defined in Section 2 (it has the matrix diag{η, η̄} in
the canonical basis of C2, η = exp[iπ/4]).

The subspace Ln satisfies condition (7) and dimLn = n2 −n+4. Thus, by Proposition 2 in [7],
there is a pseudo-diagonal channel Φ with dimHA = 2n and dimHE = m such that G(Φ) = Ln.

We will prove that Q̄0(Φ) = 0 by showing that condition (8) is not valid for L = Ln.

Assume that there exist unit vectors ϕ = [x1, x2, . . . , xn] and ψ = [y1, y2, . . . , yn], xi, yi ∈ C2,
such that 〈ψ|Mϕ〉 = 0 and 〈ψ|Mψ〉 = 〈ϕ|Mϕ〉 for all M ∈ Ln. It follows that

n∑
i=1

〈yi|Axi〉 = 0, ∀A ∈ M2, (23)

〈yi|U∗xk〉 = 0, ∀k > 1, i < k, (24)

〈yi|Uxk〉 = 0, ∀k < n, i > k, (25)
n∑

i=1

〈yi|Ayi〉 =
n∑

i=1

〈xi|Axi〉, ∀A ∈ M2. (26)

Note that (26) means that
n∑

i=1

|yi〉〈yi| =
n∑

i=1

|xi〉〈xi|. (27)

It suffices to show that

either x1 ‖ x2 ‖ x3 ‖ . . . ‖ xn or y1 ‖ y2 ‖ y3 ‖ . . . ‖ yn, (28)

since this and (27) imply xi ‖ yj for all i, j, which, by Lemma 2 in Section 2, contradicts (24)
and (25) (if xi = yi = 0 for all i �= k, then 〈yk|xk〉 = 〈ψ|ϕ〉 = 0).

We will assume that both vectors ϕ and ψ have at least two nonzero components (since (28)
obviously holds otherwise).

Let k be the minimal number such that xi = yi = 0 for all i < k and either xk �= 0 or yk �= 0.

By symmetry, we may assume that xk �= 0. Then (25) implies

yk+1 ‖ yk+2 ‖ . . . ‖ yn. (29)
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If yk = 0, then (29) means (28). If yk �= 0, then we have the following three cases:

1. xi �= 0 and yj �= 0, where i > j > k. In this case (24) with k = i implies

yk ‖ yk+1 ‖ . . . ‖ yi−1.

This and (29) imply (28) (since yj �= 0 and i ≥ k + 2);

2. xi �= 0 yj �= 0, where j > i > k. Since xk �= 0 and yk �= 0, this case is reduced to the previous
one by permuting ϕ and ψ;

3. xi = yi = 0 for all i > k excluding i = � > k. In this case (23) implies

〈yk|Axk〉+ 〈y�|Ax�〉 = 0, ∀A ∈ M2.

If xk ∦ x�, then there is A0 ∈ M2 such that yk = A0xk and y� = A0x�. Thus, the above equality
implies 〈yk|yk〉 + 〈y�|y�〉 = 0, which contradicts the assumption yk �= 0. Thus, xk ‖ x�, and (28)
holds.

Hence, condition (8) is not valid for L = Ln.

Now we will show that

〈ϕt
k|M1 ⊗M2ϕ

t
�〉 = 0, ∀M1,M2 ∈ Ln, k �= �, (30)

and
〈ϕt

k|M1 ⊗M2ϕ
t
k〉 = 〈ϕt

�|M1 ⊗M2ϕ
t
�〉, ∀M1,M2 ∈ Ln, k �= �, (31)

for the family
{
ϕt
k

}n
k=1 of vectors defined in (21). By Lemma 1 these relations mean perfect

reversibility of the channel Φ⊗ Φ on the subspace spanned by this family.

Let |ξki 〉 = |0, . . . , 0, ei, 0, . . . , 0〉 be a vector in C2n = [C2 ⊕C2 ⊕ . . .⊕C2], where ei is in the kth
position ({e1, e2} is the canonical basis in C2). Then

|ϕt
k〉 =

1√
2

[
|ξk1 〉 ⊗ |ξk1 〉+ eit|ξk2 〉 ⊗ |ξk2 〉

]
, k = 1, 2, . . . , n.

By setting α1 = 1 and α2 = eit, we have

M1 ⊗M2|ϕt
k〉 =

1√
2

2∑
j=1

αj |ψ(1, k, j)〉 ⊗ |ψ(2, k, j)〉, (32)

where

|ψ(r, k, j)〉 = |λr
1kU

∗ej , λ
r
2kU

∗ej , . . . , λ[k−1]kU
∗ej , A

rej , λ
r
[k+1]kUej , . . . , λ

r
nkUej〉,

r = 1, 2 (Ar and λr
ij correspond to the matrix Mr). If � > k, then

〈ϕt
�|M1 ⊗M2ϕ

t
k〉 =

1

2

2∑
i,j=1

ᾱiαj〈ξ�i | ⊗ 〈ξ�i | · |ψ(1, k, j)〉 ⊗ |ψ(2, k, j)〉

=
1

2
λ1
�kλ

2
�k

2∑
i,j=1

ᾱiαj〈ei|Uej〉〈ei|Uej〉 =
1

2
λ1
�kλ

2
�k

[
η2|α1|2 + η̄2|α2|2

]
= 0.

Thus, (30) holds for all � > k and hence for all � �= k. It follows from (32) that

〈ϕt
k|M1 ⊗M2ϕ

t
k〉 =

1

2

2∑
i,j=1

ᾱiαj〈ξki | ⊗ 〈ξki | · |ψ(1, k, j)〉 ⊗ |ψ(2, k, j)〉

=
1

2

2∑
i,j=1

ᾱiαj〈ei|A1ej〉〈ei|A2ej〉 (33)
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and that

〈ϕt
�|M1 ⊗M2ϕ

t
�〉 =

1

2

2∑
i,j=1

ᾱiαj〈ξ�i | ⊗ 〈ξ�i | · |ψ(1, �, j)〉 ⊗ |ψ(2, �, j)〉

=
1

2

2∑
i,j=1

ᾱiαj〈ei|A1ej〉〈ei|A2ej〉.

This equality and (33) imply (31).

Consider the case n = +∞. Let HA be a separable Hilbert space represented as a countable
direct sum of 2D Hilbert spaces C2. Each operator in B(HA) can be identified with an infinite
block matrix satisfying a particular “boundedness” condition.

Let L∗ be the set of all infinite block matrices M defined in (22) with n = +∞ satisfying the
condition

Λ2 =
+∞∑
i=1

∑
j �=i

|λij |2 < +∞. (34)

This condition guarantees boundedness of the corresponding operator due to the following easily-
derived inequality:

‖M‖2B(HA) ≤ 2
[
‖A‖2B(C2) +Λ2]. (35)

Let L∗ be the operator norm closure of L∗. It is clear that L∗ is a symmetric subspace of B(HA)
containing the unit operator IHA

. By using inequality (35) it is easy to show separability of the
subspace L∗ in the operator norm topology (as a countable dense subset of L∗, one can take the
set of all matrices M in which A and all λij have rational components).

Symmetricity and separability of L∗ imply (by the proof of Proposition 2 in [7]) existence

of a countable subset {M̃i}
+∞
i=2

⊂ L∗ of positive operators generating L∗ (i.e., such that the

operator norm closure of all linear combinations of the operators M̃i coincides with L∗). Let

Mi = 2−i‖M̃i‖−1M̃i, i = 2, 3, . . . Since IHA
∈ L∗ and the series

+∞∑
i=2

Mi converges in the operator

norm topology, the positive operator M1 = IHA
−

+∞∑
i=2

Mi lies in L∗. Thus, {Mi}+∞
i=1 is a countable

subset of positive operators generating the subspace L∗ such that

+∞∑
i=1

Mi = IHA
, (36)

where the series converges in the operator norm topology.

Let {|ei〉}+∞
i=1 be an orthonormal basis in a separable Hilbert space HB. Consider the unital

completely positive map

B(HB) � X 	→ Ψ∗(X) =
+∞∑
i=1

〈ei|Xei〉Mi ∈ B(HA).

Apparently, all Mi lie in RanΨ∗ .
= Ψ∗(B(HB)). Since the series in (36) converges in the operator

norm topology, RanΨ∗ ⊆ L∗. Hence, RanΨ∗ is a dense subset of L∗.

The predual map

T(HA) � ρ 	→ Ψ(ρ) =
+∞∑
i=1

[TrMiρ]|ei〉〈ei| ∈ T(HB)

is an entanglement-breaking quantum channel [1, ch. 6]. Let Φ be the complementary channel to Ψ,
so that Φ is a pseudo-diagonal channel (see [11]) and G(Φ) = RanΨ∗.
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To prove that Q̄0(Φ) = 0, it suffices to show, by Lemma 1, that condition (8) is not valid for
L = L∗ (since L∗ and RanΨ∗ are dense in L∗). This can be done by repeating the arguments from
the proof of the same assertion in the case n < +∞.

The vectors defined in (21) with n = +∞ are represented as follows:

|ϕt
k〉 =

1√
2

[
|ξk1 〉 ⊗ |ξk1 〉+ eit|ξk2 〉 ⊗ |ξk2 〉

]
, k = 1, 2, 3, . . . ,

where |ξki 〉 = |0, . . . , 0, ei, 0, 0, . . .〉 is a vector in HA = [C2⊕C2⊕ . . .⊕C2⊕ . . .] containing ei in the
kth position ({e1, e2} is the canonical basis in C2).

Since RanΨ∗ is a dense subset of L∗, Ran [Ψ∗ ⊗Ψ∗] is a dense subset of L∗⊗̄L∗ (where ⊗̄ denotes
the spacial tensor product). Thus, to prove that the channel Φ ⊗ Φ is perfectly reversible on the
subspace spanned by the family {|ϕt

k〉}+∞
k=1, it suffices to show, by Lemma 1, that relations (5) hold

for any pair |ϕt
k〉, |ϕt

�〉 and L = {M1 ⊗M2 | M1,M2 ∈ L∗}. This can be done by the same way as
in the proof of the similar relations in the case of n < +∞. �

4. ONE PROPERTY OF QUANTUM MEASUREMENTS

In this section we will show that the effect of superactivation of one-shot quantum zero-error
capacity has a counterpart in quantum measurement theory.

In accordance with the basic postulates of quantum mechanics, any measurement of a quan-
tum system associated with a Hilbert space H corresponds to a positive operator-valued measure
(POVM), also called a (generalized) quantum observable [1, 2]. A quantum observable with a fi-
nite or countable set of outcomes is a discrete resolution of identity in B(H), i.e., a set {Mi}mi=1,

m ≤ +∞, of positive operators in H such that
m∑
i=1

Mi = IH. An observable is said to be sharp if

it corresponds to an orthogonal resolution of identity (in this case, {Mi}mi=1 consists of mutually
orthogonal projectors).

If an observable M = {Mi}mi=1 is applied to a quantum system in a given state ρ, then the
probability of the ith outcome is TrMiρ. Thus, we may consider the observable M as the quantum-
classical channel

S(H) � ρ 	→ πM(ρ) = {TrMiρ}mi=1 ∈ Pm,

where Pm is the set of all probability distributions with m outcomes.

In quantum measurement theory, the notion of informational completeness of an observable and
its modifications are widely used [12–14]. An observable M is said to be informational complete if
for any two different states ρ1 and ρ2 the probability distributions πM(ρ1) and πM(ρ2) are different.

Informational noncompleteness of an observable can be characterized by the following notion.

Definition. A subspaceH0 ⊂ H is said to be indistinguishable for an observableM if πM(ρ1) =
πM(ρ2) for any states ρ1 and ρ2 supported by H0.

If M = {Mi} is a sharp observable, then all its indistinguishable subspaces coincide with the
ranges of the projectorsMi of rank≥ 2. Thus, a sharp observable has no indistinguishable subspaces
if and only if it consists of rank-one projectors. This is not true for unsharp observables (see the
example after Corollary 2).

To describe indistinguishable subspaces of a given observable, one can use the following charac-
terization of such subspaces.

Proposition 1. Let M = {Mi}mi=1, m ≤ +∞, be an observable in a Hilbert space H, and let H0

be a subspace of H. The following statements are equivalent :
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(i) H0 is an indistinguishable subspace for the observable M;
(ii) 〈ψ|Miϕ〉 = 0 for all i and any orthogonal vectors ϕ and ψ in H0;
(iii) There exists an orthonormal basis {|ϕk〉} in H0 such that

〈ϕk|Miϕj〉 = 0 and 〈ϕk|Miϕk〉 = 〈ϕj |Miϕj〉, ∀i, j, k.
Proof. Note that the subspace H0 is indistinguishable for the observable M if and only if the

quantum channel

T(H) � ρ 	→
m∑
i=1

[TrMiρ]|i〉〈i| ∈ T(Hm), (37)

where {|i〉} is an orthonormal basis in the m-dimensional Hilbert space Hm, has a completely
depolarizing restriction to the subset S(H0) ⊂ S(H). Thus, assertions of the proposition follow
from the well-known characterizations of completely depolarizing channels [1]. �

Nonexistence of indistinguishable subspaces for a quantum observable can be treated as recog-
nition quality of this observable. Thus, if we have two observables, M1 and M2, having no indis-
tinguishable subspaces, it is natural to ask about existence of indistinguishable subspaces for their
tensor product M1 ⊗M2.

4 It turns out that this question is closely related to the superactivation
of one-shot quantum zero-error capacity.

Proposition 2. Let H1
A and H2

A be finite-dimensional Hilbert spaces. The following statements
are equivalent :

(i) There exist channels Φ1 : T(H1
A) → T(H1

B) and Φ2 : T(H2
A) → T(H2

B) with dimG(Φ1) = m1

and dimG(Φ2) = m2 such that

Q̄0(Φ1) = Q̄0(Φ2) = 0 and Q̄0(Φ1 ⊗ Φ2) ≥ log n;

(ii) There exist observables M1 =
{
M1

i

}m1

i=1 and M2 =
{
M2

i

}m2

i=1 in the spaces H1
A and H2

A

having no indistinguishable subspaces such that the observable M1⊗M2 has an n-dimensional
indistinguishable subspace.

If Φ1 = Φ2 in (i), then M1 = M2 in (ii), and vice versa.

Proof. An observable M = {Mi}mi=1 has an n-dimensional indistinguishable subspace if and
only if the one-shot quantum zero-error capacity of the channel complementary to channel (37) is
not less than log n, and this observable M has no indistinguishable subspaces if and only if the
above capacity is zero. This follows from Lemma 1 and Proposition 1, since the output set of
the channel dual to channel (37) coincides with the subspace of B(HA) generated by the family
{Mi}mi=1.

This observation directly implies (ii) ⇒ (i).

(i) ⇒ (ii). By the proof of Proposition 2 in [7], there exist bases
{
A1

i

}m1

i=1 and
{
A2

i

}m2

i=1 of the

subspaces G(Φ1) and G(Φ2) consisting of positive operators such that
m1∑
i=1

A1
i = IH1

A
and

m2∑
i=1

A2
i =

IH2
A
. If we consider these bases as observables M1 and M2, then validity of (ii) can be shown by

using the above observation. �
Remark 3. By the above proof, the implication (ii) ⇒ (i) in Proposition 2 holds for infinite-

dimensional Hilbert spaces H1
A,H2

A and n ≤ ∞. The implication (i) ⇒ (ii) can be generalized to
this case if the noncommutative graphs G(Φ1),G(Φ2) are separable (in the operator norm). This
can be done by using the arguments at the end of the proof of Theorem 2 instead of Proposition 2
in [7].

4 If H1 and H2 are indistinguishable subspaces for observables M1 and M2, then it is easy to see that
H1 ⊗ H2 is an indistinguishable subspaces for the observable M1 ⊗ M2, but there is a possibility of
existence of entangled indistinguishable subspaces for the observable M1 ⊗M2.
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Proposition 2 and Corollary 1 imply the following result.

Corollary 2. There exists a quantum observable M = {Mi}5i=1 in a 4D Hilbert space with
no indistinguishable subspaces such that the observable M ⊗ M has a continuous family of 2D
indistinguishable subspaces.

As a concrete example of such an observable M, one can take the resolution of identity {Ai}5i=1

described after Corollary 1. In this case each 2D subspace of C4 ⊗C4 spanned by the vectors (10)
is indistinguishable for M⊗M.

Proposition 2 (with Remark 3) and Theorem 2 imply the following observation.

Corollary 3. Let n ∈ N or n = +∞. There exists a quantum observable M = {Mi}n
2−n+4

i=1 in
a 2n-dimensional Hilbert space with no indistinguishable subspaces such that the observable M⊗M
has a continuous family of n-dimensional indistinguishable subspaces.5

Remark 4. The above effect of appearance of (entangled) indistinguishable subspace for the
tensor product of two observables M1 and M2 having no indistinguishable subspaces does not
hold for sharp observables M1 and M2 (since the tensor product of two observables consisting of
mutually orthogonal rank-1 projectors is an observable consisting of mutually orthogonal rank-1
projectors as well).

APPENDIX

The Kraus representation of a channel with a given noncommutative graph. The
following proposition is a modification of Corollary 1 in [7].

Proposition 3. Let L be a subspace of Mn, n ≥ 2, satisfying condition (7), and {Ai}di=1 a

basis of L such that Ai ≥ 0 for all i and
d∑

i=1
Ai = In.

6 Let m be a natural number such that

d = dimL ≤ m2, and {|ψi〉}di=1 a collection of unit vectors in Cm such that {|ψi〉〈ψi|}di=1 is a
linearly independent set of matrices.

For each k = 1,m, let Vk be a linear operator from HA
.
= Cn to HB

.
=

d⊕
i=1

Cri , where ri =
rankAi, defined as

Vk =
d∑

i=1

〈k|ψi〉WiA
1/2
i ,

where {|k〉} is the canonical basis in Cm and Wi is a partial isometry from HA to HB with the
initial subspace RanAi and final subspace Cri. Then the channel

Mn � ρ 	→ Φ(ρ) =
m∑
k=1

VkρV
∗
k ∈ Mr1+...+rd (38)

is pseudo-diagonal, and its noncommutative graph G(Φ) coincides with L.

Proof. In the proof of Corollary 1 in [7] it is shown that the channel

Mn � ρ 	→ Ψ(ρ) =
d∑

i=1

[TrAiρ]|ψi〉〈ψi| ∈ Mm

5 If n = +∞, then n2 − n + 4 = +∞, and the n-dimensional Hilbert space (subspace) means a separable
Hilbert space (subspace).

6 Existence of a basis {Ai}di=1 with the stated properties for any subspace L satisfying condition (7) is shown
in the proof of Proposition 2 in [7].
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has the Stinespring representation

Ψ(ρ) = TrCn⊗Cd V ρV ∗,

where

V : |ϕ〉 	→
d∑

i=1

A
1/2
i |ϕ〉 ⊗ |i〉 ⊗ |ψi〉

is an isometry from Cn to Cn ⊗ Cd ⊗ Cm (here {|i〉} is the canonical basis in Cd).

Since the channel Ψ is entanglement-breaking and Ψ∗(Mm) = L, its complementary channel

Ψ̂(ρ) = TrCm V ρV ∗

is pseudo-diagonal (see [11]), and G(Ψ̂) = L. Its Kraus representation is Ψ̂(ρ) =
m∑
k=1

ṼkρṼ
∗
k , where

the operators Ṽk are defined by the relation

〈φ|Ṽkϕ〉 = 〈φ⊗ k|V ϕ〉, ϕ ∈ Cn, φ ∈ Cn ⊗ Cd,

so that

Ṽk|ϕ〉 =
d∑

i=1

〈k|ψi〉A1/2
i |ϕ〉 ⊗ |i〉.

By identifying Cn ⊗ Cd with
d⊕

i=1
Cn, it is easy to show that the channel Φ defined in (38) is

isometrically equivalent to the channel Ψ̂ (see [8, Appendix]), and hence G(Φ) = G(Ψ̂) = L.

The authors are grateful to A.S. Holevo and participants of the Quantum Probability, Statistics,
and Information seminar (Steklov Mathematical Institute, Russian Academy of Sciences) for useful
discussions.
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