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Abstract—We develop an approximation approach to infinite-dimensional quantum channels
based on a detailed investigation of continuity properties of entropic characteristics of quantum
channels and operations (trace-nonincreasing completely positive maps) as functions of a pair
“channel, input state.” Obtained results are then applied to the problems of continuity of the
χ-capacity as a function of a channel, strong additivity of the χ-capacity for infinite-dimensional
channels, and approximating representation for the convex closure of the output entropy of an
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1. INTRODUCTION

Though major attention in quantum information theory was so far paid to finite-dimensional
systems and channels, there is an increasing interest in infinite-dimensional generalizations (see
[1–7] and references therein). An essential feature of infinite-dimensional channels is discontinuity
and unboundedness of main entropic characteristics, which makes a straightforward generalization
of results obtained in finite dimensions impossible. A natural way to study infinite-dimensional
quantum channels is to approximate them in an appropriate topology by channels with continuous
characteristics (for example, channels with finite-dimensional output spaces). This approach was
(implicitly) used in [5] to derive strong additivity of the Holevo capacity (χ-capacity in what follows)
for some classes of infinite-dimensional channels from the corresponding finite-dimensional results
and to prove that validity of the additivity conjecture in finite dimensions implies strong additivity
of the χ-capacity for all infinite-dimensional channels.

In the present paper we develop an approximation approach to infinite-dimensional quan-
tum channels based on a detailed investigation of continuity properties of entropic characteris-
tics of quantum channels related to the classical capacity as functions of a pair “channel, in-
put state”. It appears that often it is convenient to approximate a channel by operations, i.e.,
trace-nonincreasing completely positive maps, rather than by channels (from the point of view of
noncommutative probability, an operation is a sub-Markov map, while a channel is a Markov map).
Thus, we have to extend definitions of entropic characteristics to operations and study continuity
properties of these characteristics on the extended domain.

The paper is organized as follows. Section 2 presents basic notions and some results of previous
works used in this paper. In Section 3 we consider the topology of strong convergence on the set of
all quantum operations, which appears to be a proper topology for approximation purposes. It is
1 Supported in part by the program “Modern Problems of Theoretical Mathematics” of the Russian Academy
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shown that it is this topology in which the set of all quantum operations is homeomorphic to a
particular subset of states of a composite system (the generalized Choi–Jamiolkowski isomorphism).
This homeomorphism implies a simple compactness criterion for subsets of quantum operations.
In Section 4, continuity properties of the convex closure of the output entropy and of the constrained
χ-capacity are explored and several sufficient continuity conditions are obtained. In Section 5 these
results are applied to the following problems:
1. Continuity of the χ-capacity as a function of a channel;
2. Strong additivity of the χ-capacity for infinite-dimensional channels;
3. Approximating representation for the convex closure of the output entropy of an arbitrary quan-

tum channel.

Thus, approximation of infinite-dimensional quantum channels by operations in the topology of
strong convergence appears to be a useful tool in studying characteristics related to the classical
capacity. Further we plan to apply it to other characteristics of quantum channels, such as the
entanglement-assisted capacity and quantum capacity.

2. PRELIMINARIES

Let H be a separable Hilbert space, B(H) be the set of all bounded operators on H, and T(H)
be the Banach space of all trace-class operators with the trace norm ‖ · ‖1. Let

T1(H) = {A ∈ T(H) | A ≥ 0, TrA ≤ 1} and S(H) = {A ∈ T1(H) | Tr A = 1}

be closed convex subsets of T(H), which are complete separable metric spaces with the metric
defined by the trace norm. Operators in S(H) are called density operators. Each density operator
uniquely defines a normal state on B(H) (see [8]), so in what follows we for brevity use the term
state.

We denote by coA (coA) the convex hull (closure) of a set A and denote by co f (co f) the
convex hull (closure) of a function f [9]. We denote by extrA the set of all extreme points of a
convex set A.

Let P(A) be the set of all Borel probability measures on a complete separable metric space A
endowed with the topology of weak convergence [10, 11]. This set can also be considered as a
complete separable metric space [11]. The subset of P(A) consisting of measures with finite support
will be denoted by P f(A). In what follows we will also use the abbreviations P = P(S(H)) and
̂P = P(extr S(H)).

The barycenter of a measure μ ∈ P is the state defined by the Bochner integral

ρ̄(μ) =
∫

S(H)

σμ(dσ).

For an arbitrary subset A ⊂ S(H), let PA (respectively, ̂PA) be the subset of P (respectively, ̂P)
consisting of all measures with barycenter in A.

A collection of states {ρi} with a corresponding probability distribution {πi} is conventionally
called an ensemble and is denoted by {πi, ρi}. In this paper we consider an ensemble of states as a
particular case of a probability measure, so that the notation {πi, ρi} ∈ P{ρ} means that ρ =

∑

i
πiρi.

We will use the following two extensions of the von Neumann entropy S(ρ) = −Tr ρ log ρ of a
state ρ to the set T1(H) (cf. [12]):

S(A) = −Tr A log A and H(A) = S(A) − η(Tr A), ∀A ∈ T1(H),

where η(x) = −x log x.
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The nonnegativity, concavity, and lower semicontinuity of the von Neumann entropy S on the
set S(H) imply the same properties of the functions S and H on the set T1(H). The definition and
well-known properties of the von Neumann entropy (see [13]) also imply the following relations:

H(λA) = λH(A), A ∈ T1(H), λ ≥ 0, (1)

H(A) + H(B − A) ≤ H(B) ≤ H(A) + H(B − A) + Tr B h2

(

Tr A

Tr B

)

, (2)

where A,B ∈ T1(H), A ≤ B, and h2(x) = η(x) + η(1 − x).
The subadditivity property of the quantum entropy implies the following inequality:

S(C) ≤ S(TrH C) + S(TrK C) − η(Tr C), ∀C ∈ T1(H⊗K). (3)

The relative entropy for two operators A and B in T1(H) is defined as (cf. [12])

H(A ‖B) =
∑

i

〈i| (A log A − A log B + B − A) |i〉,

where {|i〉} is an orthonormal basis of eigenvectors of A.
Let H and H′ be a pair of separable Hilbert spaces, which we call, respectively, the input

and output space. A quantum operation Φ is a linear positive trace-nonicreasing map from T(H)
to T(H′) such that the dual map Φ∗ : B(H′) �→ B(H) is completely positive [8]. The convex set of
all quantum operations from T(H) to T(H′) will be denoted by F≤1(H,H′). If Φ is trace preserving,
then it is called a quantum channel. The convex set of all channels from T(H) to T(H′) will be
denoted by F=1(H,H′).

Since the functions ρ �→ HΦ(ρ) = H(Φ(ρ)), ρ �→ SΦ(ρ) = S(Φ(ρ)), and ρ �→ H(Φ(ρ) ‖A),
where Φ is a given quantum operation in F≤1(H,H′) and A is a given operator in T1(H), are
nonnegative and lower semicontinuous on the set S(H), the functionals

̂HΦ(μ) =
∫

S(H)

HΦ(ρ)μ(dρ), ̂SΦ(μ) =
∫

S(H)

SΦ(ρ)μ(dρ),

and
χ

Φ
(μ) =

∫

S(H)

H(Φ(ρ) ‖Φ(ρ̄(μ)))μ(dρ)

are well defined on the set P.

Proposition 1. The functionals ̂HΦ(μ), ̂SΦ(μ), and χ
Φ
(μ) are lower semicontinuous on P.

If SΦ(ρ̄(μ)) < +∞, then
χ

Φ
(μ) = SΦ(ρ̄(μ)) − ̂SΦ(μ). (4)

This proposition can be proved by an obvious modification of arguments used in the proof of
Proposition 1 in [3].

Corollary 1. Let P0 be a subset of P such that the function SΦ is continuous on the set
{ρ̄(μ)}

μ∈P0
. Then the functionals ̂HΦ(μ), ̂SΦ(μ), and χ

Φ
(μ) are continuous on P0.

Corollary 1 implies in particular the continuity of the functionals ̂HΦ(μ), ̂SΦ(μ), and χ
Φ
(μ) on

the set P{ρ} if SΦ(ρ) < +∞.
An important characteristic of a quantum channel Φ is the convex closure co HΦ of the output

entropy HΦ (= SΦ) [7]. In this paper we consider the convex closures co HΦ and co SΦ of the
functions HΦ and SΦ, respectively, for an arbitrary quantum operation Φ in F≤1(H,H′).
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Proposition 2. Let Φ be an arbitrary quantum operation in F≤1(H,H′), and let ρ be an arbi-
trary state in S(H).

(A) We have the expressions

co HΦ(ρ) = inf
μ∈P{ρ}

̂HΦ(μ) = inf
μ∈̂P{ρ}

̂HΦ(μ) (5)

and
co SΦ(ρ) = inf

μ∈P{ρ}

̂SΦ(μ) = inf
μ∈̂P{ρ}

̂SΦ(μ). (6)

The infima in these expressions are attained at some measures in ̂P{ρ}.
(B) We have the inequalities

co HΦ(ρ) ≤ co SΦ(ρ) ≤ co HΦ(ρ) + η(Tr Φ(ρ)).

(C) If co SΦ(ρ) < +∞, then

{SΦ(ρ) < +∞} ⇐⇒ {co SΦ(ρ) = co SΦ(ρ)},

where co SΦ is the convex hull of the function SΦ defined by the expression

co SΦ(ρ) = inf
{πi,ρi}∈Pf

{ρ}

∑

i

πiSΦ(ρi).

Proof. All assertions in (A) follow from Theorem 1 in [14].
The inequalities in (B) are easily deduced from the representations in (A) and the concavity of

the function η.
The implication ⇒ in (C) follows from Lemma 1 in [3] and Corollary 1. Since the set of all

states ρ with finite SΦ(ρ) is convex, SΦ(ρ) = +∞ implies co SΦ(ρ) = +∞. This observation proves
the implication ⇐ in (C). �

The χ-function of a channel Φ is defined by the expression (cf. [3, 15])

χ
Φ
(ρ) = sup

{πi,ρi}∈Pf
{ρ}

χ
Φ
({πi, ρi}) = sup

μ∈P{ρ}

χ
Φ
(μ), (7)

where the last equality follows from the lower semicontinuity of the functional χ
Φ

and Lemma 1
in [3].

In this paper we will consider the χ-function of an arbitrary quantum operation Φ in F≤1(H,H′).
By using Propositions 1 and 2, it is easy to deduce from (7) that

χ
Φ
(ρ) = SΦ(ρ) − co SΦ(ρ) = SΦ(ρ) − co SΦ(ρ) (8)

for an arbitrary state ρ ∈ S(H) such that SΦ(ρ) < +∞.

3. THE TOPOLOGY OF STRONG CONVERGENCE

The set F≤1(H,H′) of all quantum operations from T(H) to T(H′) can be endowed with various
topologies; in particular, with the topology of uniform convergence, defined by the metric

d(Φ,Ψ) = sup
ρ∈S(H)

‖Φ(ρ) − Ψ(ρ)‖1,

or with the topology defined by the norm of complete boundedness [16].
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But to approximate an arbitrary quantum channel by a sequence of quantum operations with
“smooth characteristics,” it is convenient to use a weaker topology of strong convergence on the
set F≤1(H,H′), generated by the strong operator topology on the set of all linear bounded oper-
ators from the Banach space T(H) to the Banach space T(H′). Strong convergence of a sequence
{Φn} ⊂ F≤1(H,H′) to a quantum operation Φ0 ∈ F≤1(H,H′) means that

lim
n→+∞

Φn(ρ) = Φ0(ρ), ∀ρ ∈ S(H).

In what follows we consider the set F≤1(H,H′) as a topological space with the topology of strong
convergence. The separability of the set S(H) implies that the topology of strong convergence on
the set F≤1(H,H′) is metrisable.

Remark 1. Since the operator norm of any quantum operation in F≤1(H,H′) is not greater
than 1, it is easily seen that the topology of strong convergence on the set F≤1(H,H′) coincides
with the topology of uniform convergence on compact subsets of S(H).

The advantage of the topology of strong convergence consists in the possibility to approximate an
arbitrary channel Φ in F=1(H,H′) by a sequence of quantum operations with a finite-dimensional
output space, for example, by the sequence {Φn(·) = PnΦ(·)Pn}, where {Pn} is an arbitrary
sequence of finite rank projectors in B(H′) increasing to the unit operator IH′ .

The following proposition shows that it is the topology of strong convergence that makes the
set of all operations topologically isomorphic to a special subset of states of a composite system
(the generalized Choi–Jamiolkowski isomorphism [17]).

For a given full rank state σ =
∑

i
λi|i〉〈i| in S(K), let T(σ) be the subset of T1(K) consist-

ing of all operators A such that
∥

∥

∥

∥

〈i|A|j〉
√

λiλj

∥

∥

∥

∥

≤ E, where E is the unit matrix (this means that
∑

i,j

〈i|A|j〉
√

λiλj

|i〉〈j| ≤ IK).

Proposition 3. Let H, H′, and K be separable Hilbert spaces. Let |Ω〉 be a unit vector in H⊗K
such that σ = TrH |Ω〉〈Ω| is a full rank state in K. Then the map

Y : Φ �→ AΦ = Φ ⊗ Id(|Ω〉〈Ω|)

is a homeomorphism from F≤1(H,H′) onto the subset

T1(H′) ⊗ T(σ) = {A ∈ T1(H′ ⊗K) | TrH′ A ∈ T(σ)}.

The restriction of the map Y to the set F=1(H,H′) of channels is a homeomorphism from
F=1(H,H′) onto the subset

S(H′) ⊗ {σ} = {ω ∈ S(H′ ⊗K) | TrH′ ω = σ}.

Proof. The second assertion of the proposition obviously follows from the first one.
Let σ =

∑

i
λi|i〉〈i| and |Ω〉 =

∑

i

√
λi|i〉⊗ |i〉, where {|i〉} is an orthonormal basis in H ∼= H′ ∼= K.

Let Φ(·) =
∑

k
Vk(·)V ∗

k be a quantum operation in F≤1(H,H′), so that
∑

k
V ∗

k Vk ≤ IH. We have

〈i|TrH′ Φ ⊗ Id(|Ω〉〈Ω|)|j〉 =
√

λiλj Tr Φ(|i〉〈j|) =
√

λiλj〈j|
∑

k

V ∗
k Vk|i〉.

This implies TrH′ Φ ⊗ Id(|Ω〉〈Ω|) ∈ T(σ).
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It is clear that the map Y is continuous. It is injective since

Φ ⊗ Id(|Ω〉〈Ω|) =
∑

i,j

√

λiλjΦ(|i〉〈j|) ⊗ |i〉〈j| (9)

and hence the operator Φ ⊗ Id(|Ω〉〈Ω|) determines the action of the quantum operation Φ on the
operators |i〉〈j| for all i and j. By generalizing the arguments in [18] to the infinite-dimensional
case, we will show that for each operator A in T1(H′)⊗T(σ) there exists a quantum operation ΦA

in F≤1(H,H′) such that A = Y(ΦA).
Let A =

∑

k
πk|ψk〉〈ψk|, where |ψk〉 =

∑

i,j
ck
ij |i〉 ⊗ |j〉 is a unit vector in H′ ⊗ K for each k. Let

TrH′ A =
∑

i,j
aij |i〉〈j|. The equality

∑

i,j

aij |i〉〈j| = TrH′ A = TrH′
∑

k,i,j,p,t

πkc
k
ijc

k
pt|i〉〈p| ⊗ |j〉〈t| =

∑

k,i,j,t

πkc
k
ijc

k
it|j〉〈t|

implies that
∑

k,i

πkc
k
ijc

k
it = ajt, ∀j, t; (10)

in particular,
∑

k,i

πk|ck
ij |2 = ajj, ∀j. (11)

By using the condition TrH′ A ∈ T(σ) and equality (11), it is easy to show that πk
∑

t
|ck

ti|2 ≤ λi

for any i and k. Hence for each k we can introduce a bounded operator Vk from H to H′ by defining
its action on vectors {|i〉} as follows:

Vk|i〉 =
√

πk

λi

∑

t

ck
ti|t〉.

Direct computation shows that

A =
∑

k

Vk ⊗ IK |Ω〉〈Ω|V ∗
k ⊗ IK = ΦA ⊗ Id(|Ω〉〈Ω|),

where ΦA(·) =
∑

k
Vk(·)V ∗

k is a completely positive map from T(H) to T(H′).

It follows from equality (10) that 〈j|∑
k

V ∗
k Vk|i〉 =

aij
√

λiλj

. Hence, the condition TrH′ A ∈ T(σ)

means
∑

k
V ∗

k Vk ≤ IH, so that ΦA ∈ F≤1(H,H′).

To complete the proof, we have to prove that the map Y is open. By using expression (9), it is
easy to see that for any sequence {An} of operators in T1(H′)⊗T(σ) converging to an operator A0,
the sequence {ΦAn(|i〉〈j|)} of trace class operators converges to the operator ΦA0(|i〉〈j|) (in the trace
norm topology) for each i and j. Since the operator norm of a quantum operation in F≤1(H,H′)
is not greater than 1, this implies the strong convergence of the sequence {ΦAn} to the quantum
operation ΦA0 . �

Remark 2. It follows from the proof of Proposition 3 that in infinite dimensions, the set of all
completely positive maps is not isomorphic to the set of states of a composite quantum system,
in contrast to the finite-dimensional case (cf. [18]).

Proposition 3 makes it possible to study properties of subsets of quantum operations (respec-
tively, channels) by identifying these subsets with subsets of trace class operators (respectively,
states). For example, it implies that the set Fσ �→ρ of all channels transforming a given full rank
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state σ into a given arbitrary state ρ is topologically isomorphic to the set C(ρ, σ) of all states ω in
S(H ⊗H′) such that TrH′ ω = σ and TrH ω = ρ.

Proposition 3 provides a simple proof of the following compactness criterion for subsets of
quantum operations in the topology of strong convergence.

Corollary 2. (1) A subset F0 ⊆ F≤1(H,H′) is compact if there exists a full rank state σ in S(H)
such that {Φ(σ)}

Φ∈F0
is a compact subset of T1(H′).

(2) If a subset F0 ⊆ F≤1(H,H′) is compact, then {Φ(σ)}
Φ∈F0

is a compact subset of T1(H′) for
an arbitrary state σ in S(H).

Proof. (1) For an arbitrary state σ =
∑

i
λi|i〉〈i| in S(K), the set T(σ) is a compact subset

of T1(K). This follows from the compactness criterion for subsets of T1(K) (see Proposition 11 in

the Appendix). Indeed, if Pn =
n
∑

i=1
|i〉〈i|, then

Tr A(IK − Pn) =
∑

i>n

〈i|A|i〉 ≤
∑

i>n

λi, ∀A ∈ T(σ).

Hence, the compactness of the set F0 in the topology of strong convergence follows from Propo-
sition 3 and Corollary 6 (see the Appendix).

(2) This assertion obviously follows from the definition of the topology of strong convergence. �
Example 1. Let σ be a full rank state in S(H), and let A be an arbitrary operator in T1(H′).

By Corollary 2, the set
Fσ �→A = {Φ ∈ F≤1(H,H′) | Φ(σ) = A}

is compact in the topology of strong convergence. Note that this set is not compact in the topology
of uniform convergence. Note also that the set of all completely positive maps transforming the
state σ into the operator A is not compact in the topology of strong convergence.

Example 2. Let σ be a full rank state in S(H), and let H ′ be an H-operator (a positive operator
with eigenvalues of finite multiplicity tending to infinity, which can be interpreted as a Hamiltonian
of a quantum system [3]) in the space H′. Corollary 2 and a lemma in [2] imply that the set of
channels

{Φ ∈ F=1(H,H′) | Tr H ′Φ(σ) ≤ h}
is compact in the topology of strong convergence for any h > 0.

Let H be an arbitrary H-operator in the space H. For a given k > 0, consider the set of channels

FH,H′,k =

{

Φ ∈ F=1(H,H′)
∣

∣

∣

∣

sup
ρ∈S(H)

Tr Hρ<+∞

Tr H ′Φ(ρ)
Tr Hρ

≤ k

}

. (12)

If we consider the H-operators H and H ′ as Hamiltonians of the input and output systems,
respectively, the set FH,H′,k can be treated as the set of channels with energy amplification factor
of at most k. By the above observation, the set FH,H′,k is compact in the topology of strong
convergence for each k.

4. CONTINUITY PROPERTIES OF ENTROPIC CHARACTERISTICS

To realize the approximation procedures described in Section 1, we have to obtain sufficient con-
ditions of continuity of the characteristics in question as functions of a pair “channel, state.” In this
section we consider analytical properties of the functions (Φ, ρ) �→ χ

Φ
(ρ) and (Φ, ρ) �→ co HΦ(ρ)

defined on the Cartesian product of the set F≤1(H,H′) of quantum operations (with the topology
of strong convergence) and the set S(H) (with the trace norm topology).
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Proposition 4. The functions (Φ, ρ) �→ χ
Φ
(ρ) and (Φ, ρ) �→ co HΦ(ρ) are lower semicontinuous

on the set F≤1(H,H′) × S(H).

Proof. The lower semicontinuity of the function (Φ, ρ) �→ χ
Φ
(ρ) can be proved by a simple

modification of the proof of the lower semicontinuity of the function ρ �→ χ
Φ
(ρ) (see [5, Proposi-

tion 3]).
The proof of the lower semicontinuity of the function (Φ, ρ) �→ co HΦ(ρ) is based on Lemma 1,

given below, and on the compactness criterion for subsets of P.
Assume that the function (Φ, ρ) �→ co HΦ(ρ) is not lower semicontinuous. This means the

existence of sequences {Φn} ⊂ F≤1(H,H′) and {ρn} ⊂ S(H) converging to an operation Φ0 and a
state ρ0, respectively, such that

lim
n→+∞

co HΦn(ρn) < co HΦ0(ρ0). (13)

For each n > 0, Proposition 2 guarantees the existence of a measure μn ∈ P{ρn} such that

co HΦn(ρn) = ̂HΦn(μn).

By the compactness criterion for subsets of P (Proposition 2 in [3]), the sequence {μn}n>0
is

relatively compact, and hence there exists a subsequence {μnk
}

k
converging to some measure μ0.

The continuity of the map μ �→ ρ̄(μ) implies that μ0 ∈ P{ρ0}. By using Lemma 1, we obtain

lim inf
k→+∞

co HΦnk
(ρnk

) = lim inf
k→+∞

̂HΦnk
(μnk

) ≥ ̂HΦ0(μ0) ≥ co HΦ0(ρ0),

which contradicts (13). �
Lemma 1. The functional (Φ, μ) �→ ̂HΦ(μ) is lower semicontinuous on the set F≤1(H,H′)×P.

Proof. Assume that there exist sequences {Φn} ⊂ F≤1(H,H′) and {μn} ⊂ P converging to an
operation Φ0 and a measure μ0, respectively, such that

lim
n→+∞

̂HΦn(μn) < ̂HΦ0(μ0). (14)

Let νn = μn ◦Φ−1
n be the image of the measure μn under the map Φn for each n. By Theorem 6.1

in [11], to prove that the sequence {νn} of measures in P(T1(H′)) weakly converges to the measure
ν0 = μ0 ◦ Φ−1

0 , it is sufficient to show that

lim
n→+∞

∫

T1(H′)

f(A)νn(dA) =
∫

T1(H′)

f(A)ν0(dA) (15)

for any bounded uniformly continuous function f on the set T1(H′). By the construction of the
sequence {νn}, relation (15) is equivalent to

lim
n→+∞

∫

S(H)

f(Φn(ρ))μn(dρ) =
∫

S(H)

f(Φ0(ρ))μ0(dρ). (16)

By Prohorov’s theorem (cf. [10,11]), compactness of the sequence {μn}n≥0
(taking into account

the separability and completeness of the space S(H)) implies that this sequence is tight, which
means that for each ε > 0 there exists a compact set Cε ⊂ S(H) such that μn(Cε) > 1 − ε for
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all n ≥ 0. For each n, we have
∣

∣

∣

∣

∣

∣

∣

∫

S(H)

f(Φn(ρ))μn(dρ) −
∫

S(H)

f(Φ0(ρ))μ0(dρ)

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∫

Cε

f(Φn(ρ))μn(dρ) −
∫

Cε

f(Φ0(ρ))μ0(dρ)

∣

∣

∣

∣

∣

∣

∣

+ 2ε sup
A∈T1(H)

|f(A)|

≤ sup
ρ∈Cε

|f(Φn(ρ)) − f(Φ0(ρ))| +

∣

∣

∣

∣

∣

∣

∣

∫

Cε

f(Φ0(ρ))μn(dρ) −
∫

Cε

f(Φ0(ρ))μ0(dρ)

∣

∣

∣

∣

∣

∣

∣

+ 2ε sup
A∈T1(H)

|f(A)|.

The first term on the right-hand side of this inequality tends to zero as n → +∞ due to the
uniform continuity of the function f and uniform convergence of the sequence {Φn} to the quantum
operation Φ0 on the compact set Cε, which follows from the strong convergence (see Remark 1).
The second term tends to zero as n → +∞ due to the weak convergence of the sequence {μn} to the
measure μ0. Since ε is arbitrary, this observation proves (16) and hence (15). The weak convergence
of the sequence {νn = μn ◦Φ−1

n } to the measure ν0 = μ0 ◦Φ−1
0 and the lower semicontinuity of the

functional ̂H(ν) =
∫

T1(H′)
H(A)ν(dA) on the set P(T1(H′)) (which follows from the nonnegativity

and lower semicontinuity of the function H(A) on the set T1(H′)) imply

lim inf
n→+∞

̂HΦn(μn) = lim inf
n→+∞

̂H(νn) ≥ ̂H(ν0) = ̂HΦ0(μ0),

which contradicts (14). �
By the concavity of the entropy and convexity of the relative entropy, Proposition 4 implies the

following observation.

Corollary 3. For an arbitrary state σ in S(H), the functions

Φ �→ χ
Φ
(σ) and Φ �→ co HΦ(σ)

are lower semicontinuous convex and concave functions on the set F≤1(H,H′), respectively.

By Corollary 3, the function Φ �→ co HΦ(σ) attains its infimum on any convex compact subset
of F=1(H,H′) at some extreme point of this subset. Hence, the set Fσ �→ρ of all channels mapping a
given full rank state σ in S(H) to a given state ρ in S(H′) (see Example 1 in Section 3) contains
a channel Φσ,ρ such that

co HΦσ,ρ(σ) ≤ co HΦ(σ), ∀Φ ∈ Fσ �→ρ.

If ρ ∼= σ, then Φσ,ρ(·) = U(·)U∗ and co HΦσ,ρ(σ) = 0, where U is any unitary map from H onto H′

such that UσU∗ = ρ. In the general case, the channel Φσ,ρ is the image of some extreme point of
the compact convex set C(σ, ρ) (defined before Corollary 2) under the map Y−1 and, in a sense,
can be considered as a channel with minimal noise transforming the state σ into the state ρ.

Propositions 2(B) and 4 and relation (8) imply the following sufficient condition2 of continuity
of the functions (Φ, ρ) �→ χ

Φ
(ρ) and (Φ, ρ) �→ co HΦ(ρ).

Proposition 5. Let {Φn} be a sequence of operations in F≤1(H,H′) strongly converging to a
channel Φ0, and let {ρn} be a sequence of states in S(H) converging to a state ρ0. If

lim
n→+∞

HΦn(ρn) = HΦ0(ρ0) < +∞,

2 Proposition 5 is a generalization of Theorem 1 in [6].
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then

lim
n→+∞

co HΦn(ρn) = lim
n→+∞

co SΦn(ρn) = co HΦ0(ρ0) and lim
n→+∞

χ
Φn

(ρn) = χ
Φ0

(ρ0).

As an application of this condition, consider the compact set FH,H′,k × KH,h, where FH,H′,k is
the compact subset of F(H,H′) consisting of channels with a bounded energy amplification factor
(defined in Example 2) and KH,h is the compact subset of S(H) consisting of states with bounded
mean energy (defined by the inequality Tr Hρ ≤ h). Assume that Tr exp(−λH ′) < +∞ for all
λ > 0. By using an observation made in [19] (presented in [13, Proposition 6.6]), it is easy to
see that the function (Φ, ρ) �→ HΦ(ρ) is continuous on the set FH,H′,k × KH,h for each k and h.
Proposition 5 implies that the functions (Φ, ρ) �→ co HΦ(ρ) and (Φ, ρ) �→ χ

Φ
(ρ) are continuous on

the set FH,H′,k ×KH,h.
A special choice of approximating sequences ensures the convergence of the functions co HΦ,

co SΦ, and χ
Φ

without extra conditions on the output entropy.

Proposition 6. Let {Φn} be a sequence of operations strongly converging to a channel Φ0. The
relations

lim
n→+∞

co HΦn(ρ) = lim
n→+∞

co SΦn(ρ) = co HΦ0(ρ) and lim
n→+∞

χ
Φn

(ρ) = χ
Φ0

(ρ)

hold for any state ρ in S(H) in the following cases:
(A) Φn(·) = PnΦ0(·)Pn for some sequence {Pn} of projectors in B(H′) increasing to the unit

operator IH′ ;
(B) Φn(ρ) ≤ Φ0(ρ) for all ρ in S(H).

Proof. (A) For an arbitrary state ρ in S(H), Lemma 3 in [12] and the monotonicity of the
relative entropy imply that co HΦn(ρ) ≤ co HΦ0(ρ) and χ

Φn
(ρ) ≤ χ

Φ0
(ρ), respectively. Hence, the

limit relations in the proposition follow from Proposition 4.
(B) For an arbitrary state ρ in S(H), inequality (2) and Lemma 2 (given below) imply that

co HΦn(ρ) ≤ co HΦ0(ρ) and χ
Φn

(ρ) ≤ χ
Φ0

(ρ)+η(Tr Φn(ρ))+h2(Tr Φn(ρ)), respectively. Hence, the
limit relations in the proposition follow from Proposition 4. �

Lemma 2. Let {πi, Ai} and {πi, Bi} be two (finite) ensembles of operators in T1(H) such that
Ai ≤ Bi, ∀i. Then

∑

i

πiH(Ai ‖A) ≤
∑

i

πiH(Bi ‖B) + η(Tr A) + Tr B h2

(

Tr A

Tr B

)

,

where A =
∑

i
πiAi and B =

∑

i
πiBi.

Proof. First assume that H(B) < +∞. Then, by using inequality (2) and the concavity of the
functions H, h2, and η, we obtain

∑

i

πiH(Bi ‖B) = S(B) −
∑

i

πiS(Bi) =

[

H(B) −
∑

i

πiH(Bi)

]

+

[

η(Tr B) −
∑

i

πiη(Tr Bi)

]

≥
[

H(A) −
∑

i

πiH(Ai)

]

−
∑

i

πi Tr Bi h2

(

Tr Ai

Tr Bi

)

+

[

η(Tr B) −
∑

i

πiη(Tr Bi)

]

+

[

H(B − A) −
∑

i

πiH(Bi − Ai)

]
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≥
[

S(A) −
∑

i

πiS(Ai)

]

−
[

η(Tr A) −
∑

i

πiη(Tr Ai)

]

−
∑

i

πi Tr Bi h2

(

Tr Ai

Tr Bi

)

≥
∑

i

πiH(Ai ‖A) − TrB h2

(

Tr A

Tr B

)

− η(Tr A).

In the case H(B) = +∞, the above observation applied to the ensembles {πi, PnAiPn} and
{πi, PnBiPn} for each n, where {Pn} is an arbitrary sequence of finite rank projectors increasing
to the unit operator IH, implies the inequality

∑

i

πiH(PnAiPn ‖PnAPn) ≤
∑

i

πiH(PnBiPn ‖PnBPn) + η(Tr PnA) + Tr PnB h2

(

Tr PnA

Tr PnB

)

.

By using Lemma 4 in [12], we can pass to the limit in this inequality and obtain the assertion
of the lemma. �

Remark 3. Theorem 1 in [6] and Proposition 6(A) imply that the χ-function (respectively, the
convex closure of the output entropy) of an arbitrary quantum channel can be represented as the
least upper bound of an increasing sequence of concave (respectively, convex) continuous bounded
functions.

5. SOME APPLICATIONS OF THE APPROXIMATION APPROACH

5.1. On Continuity of the χ-Capacity as a Function of a Channel

The χ-capacity of a quantum channel Φ ∈ F=1(H,H′) constrained by an arbitrary subset
A ⊆ S(H) can be defined as (cf. [2, 3])

C̄(Φ,A) = sup
{πi,ρi}∈Pf

A

∑

i

πiH(Φ(ρi) ‖Φ(ρ̄)) = sup
ρ∈A

χ
Φ
(ρ). (17)

By using the lower semicontinuity of the relative entropy, it is easy to show that the function
F=1(H,H′) � Φ �→ C̄(Φ,A) is lower semicontinuous, i.e.,

lim inf
n→+∞

C̄(Φn,A) ≥ C̄(Φ0,A) (18)

for an arbitrary sequence {Φn} of channels in F=1(H,H′) strongly converging to a channel Φ0.
There are examples showing that the strict inequality in (18) can take place even in the case of
uniform convergence of a sequence {Φn} to a channel Φ0 and that the difference between the left-
and right-hand sides can be arbitrarily large [5].

If a sequence {Φn} is such that the inequality C̄(Φn,A) ≤ C̄(Φ0,A) can be proved for each n,
then (18) implies that

lim
n→+∞

C̄(Φn,A) = C̄(Φ0,A). (19)

For example, by the monotonicity property of the relative entropy, this holds if Φn = Πn ◦ Φ0 for
each n, where {Πn} is a sequence of channels in F=1(H′,H′) strongly converging to a noiseless
channel.

The results of Section 4 make it possible to prove the following continuity condition for the
χ-capacity.

Proposition 7. Let {Φn} be a sequence of channels in F=1(H,H′) strongly converging to a
channel Φ0, and let A be a compact subset of S(H).

If lim
n→+∞

HΦn(ρn) = HΦ0(ρ0) < +∞ for an arbitrary sequence {ρn} of states in A converging

to a state ρ0, then (19) holds.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 44 No. 2 2008



84 SHIROKOV, HOLEVO

Proof. To prove (19), it suffices to show that the assumption

lim
n→+∞

C̄(Φn,A) > C̄(Φ0,A)

leads to a contradiction. For each n, let ρn be a state in A such that

χ
Φn

(ρn) > C̄(Φn,A) − 1/n. (20)

The compactness of the set A implies the existence of a subsequence {ρnk
} converging to some

state ρ0 ∈ A. By the condition, we have lim
k→+∞

HΦnk
(ρnk

) = HΦ0(ρ0) < +∞, and Proposition 5
implies that

lim
k→+∞

χ
Φnk

(ρnk
) = χ

Φ0
(ρ0) ≤ C̄(Φ0,A).

This, together with (20), leads to a contradiction. �
By using Proposition 7, it is possible to show that the χ-capacity of a channel with an energy

constraint is continuous on the set of channels with a bounded energy amplification factor considered
in Example 2.

Corollary 4. Let H and H ′ be H-operators in the spaces H and H′, respectively, such that
Tr exp(−λH ′) < +∞ for all λ > 0. The function Φ �→ C̄(Φ,KH,h) is continuous on the set FH,H′,k

(defined in (12)).

Proof. By a lemma in [2], the set KH,h is compact. Let h and k be fixed positive numbers.
For arbitrary sequences {Φn} ⊂ FH,H′,k and {ρn} ⊂ KH,h, the sequence {Φn(ρn)} belongs to the
set KH′,kh, on which the entropy is continuous by an observation in [19] (see also [13, Proposi-
tion 6.6]). �

For an arbitrary quantum channel Φ ∈ F=1(H,H′) and an arbitrary convex subset A ⊆ S(H)
such that C̄(Φ,A) < +∞, there exists a unique state Ω(Φ,A) in S(H′), called the output optimal
average for the A-constrained channel Φ (see [6, Proposition 1]). This state inherits main properties
of the image of the average state of an optimal ensemble for a finite-dimensional A-constrained
channel Φ [15, 20]. If there exists an optimal measure μ for an A-constrained channel Φ (see [3]
for a definition), then Ω(Φ,A) = Φ(ρ̄(μ)). It is interesting to note that continuity of the function
Φ �→ C̄(Φ,A) on some set of channels implies continuity of the function Φ �→ Ω(Φ,A) on this set.

Proposition 8. Let {Φn} be a sequence of channels in F=1(H,H′) strongly converging to a
channel Φ0, and let A be a convex subset of S(H).

If lim
n→+∞

C̄(Φn,A) = C̄(Φ0,A) < +∞, then lim
n→+∞

Ω(Φn,A) = Ω(Φ0,A).

Proof. By Proposition 1 in [6], for an arbitrary ε > 0 there exists an ensemble {πi, ρi} with
average state in A such that

χ
Φ0

({πi, ρi}) ≥ C̄(Φ0,A) − ε and
∥

∥

∥

∥

∑

i

πiΦ0(ρi) − Ω(Φ0,A)
∥

∥

∥

∥

1

< ε. (21)

The lower semicontinuity of the relative entropy implies that

χ
Φn

({πi, ρi}) ≥ χ
Φ0

({πi, ρi}) − ε

for all sufficiently large n. By the assumption, we have

C̄(Φn,A) ≤ C̄(Φ0,A) + ε

for all sufficiently large n.
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Thus, for all sufficiently large n we have

0 ≤ C̄(Φn,A) − χ
Φn

({πi, ρi}) ≤ C̄(Φ0,A) − χ
Φ0

({πi, ρi}) + 2ε ≤ 3ε,

and by using Proposition 3 in [6], we obtain

1
2

∥

∥

∥

∥

∑

i

πiΦn(ρi) − Ω(Φn,A)
∥

∥

∥

∥

2

1

≤ H

(

∑

i

πiΦn(ρi) ‖Ω(Φn,A)
)

≤ C̄(Φn,A) − χ
Φn

({πi, ρi}) ≤ 3ε. (22)

By the strong convergence of the sequence {Φn} to the channel Φ0, we have
∥

∥

∥

∥

∑

i

πiΦn(ρi) −
∑

i

πiΦ0(ρi)
∥

∥

∥

∥

1

≤ ε (23)

for all sufficiently large n.
By using (21), (22), and (23), we obtain

‖Ω(Φn,A) − Ω(Φ0,A)‖1 ≤
∥

∥

∥

∥

Ω(Φn,A) −
∑

i

πiΦn(ρi)
∥

∥

∥

∥

1

+
∥

∥

∥

∥

∑

i

πiΦn(ρi) −
∑

i

πiΦ0(ρi)
∥

∥

∥

∥

1

+
∥

∥

∥

∥

∑

i

πiΦ0(ρi) − Ω(Φ0,A)
∥

∥

∥

∥

1

≤ 2ε +
√

6ε

for all sufficiently large n. �

5.2. On Additivity of the χ-Capacity

The approximation procedure is an essential part of the proof that the additivity conjecture
in finite dimensions implies strong additivity of the χ-capacity for all infinite-dimensional chan-
nels [5]. It also provides the possibility to derive strong additivity of the χ-capacity for two infinite-
dimensional channels, one of them being noiseless or entanglement-breaking, from the corresponding
finite-dimensional results3 [15, 21].

In [7], strong additivity of the χ-capacity for two infinite-dimensional channels, one of them
being complementary to an entanglement-breaking channel, is proved under the condition that
output entropies of both channels are finite on the set of pure input states. This condition seems
to be essential since it is the coincidence of the output entropies of two complementary channels on
the set of pure states which provides the “transition” of the additivity properties between pairs of
complementary channels (see [22, proof of Theorem 1]), and infinite values of these output entropies
make this transition impossible. But the condition of finiteness of the output entropy on the set of
pure states for a given channel is difficult to verify in general, which is a real obstacle in applying the
above result. Moreover, this condition is not valid for a large class of infinite-dimensional channels.
Below we show that the approximation approach makes it possible to overcome the problem of
infinite output entropies and prove the strong additivity of the χ-capacity for two infinite-dimen-
sional channels, one of them being complementary to an entanglement-breaking channel, even in
the case where the output entropies of these channels are everywhere infinite.

3 Note that a direct generalization of the proofs of these results to the infinite-dimensional case seems to be
nontrivial. For example, the proof of Theorem 2 in [21] is based on the finiteness of the output entropy and
on the decomposition of an arbitrary separable state into a discrete convex combination of pure product
states, which is not valid in the infinite-dimensional case [4].
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Proposition 9. Let Φ ∈ F=1(H,H′) be a channel such that its complementary channel is
entanglement-breaking, and let Ψ ∈ F=1(K,K′) be an arbitrary channel. Then the strong addi-
tivity of the χ-capacity holds for the channels Φ and Ψ.

Proof. By using Lemma 5 and Proposition 6 in [5], it is possible to reduce the proof to the case
of dimK < +∞ and dimK′ < +∞. By Proposition 6 in [5], it is sufficient to prove the inequality

χ
Φ⊗Ψ

(ω) ≤ χ
Φ
(ωH) + χ

Ψ
(ωK) (24)

for an arbitrary state ω in S(H ⊗ K) such that rankωH < +∞. Let ω be such a state, and let
Hω = suppωH be the corresponding finite-dimensional subspace.

Let Φ(ρ) = TrH′′ V ρV ∗, where V is the Stinespring isometry from H to H′ ⊗H′′ [8,22]. By the
condition, the complementary channel ̂Φ(ρ) = TrH′ V ρV ∗ is entanglement-breaking.

Let {Pn} be an arbitrary sequence of finite rank projectors in B(H′′) increasing to the unit
operator IH′′ . Consider the quantum operations

Φn(ρ) = TrH′′ IH′ ⊗ Pn · V ρV ∗ · IH′ ⊗ Pn = TrH′′ IH′ ⊗ Pn · V ρV ∗, ρ ∈ S(H),

and
̂Φn(ρ) = TrH′ IH′ ⊗ Pn · V ρV ∗ · IH′ ⊗ Pn = Pn

̂Φ(ρ)Pn, ρ ∈ S(H).

Let ̂Ψ be the channel complementary to Ψ. Note that the restriction of the quantum oper-
ation ̂Φn to the set S(Hω) is a finite-dimensional entanglement-breaking operation. By using
Proposition 2(C) and repeating arguments from the proof of Theorem 2 in [21], it is possible to
show that there exists a sequence {σn} ⊂ S(K) converging to the state ωK such that for each n we
have the inequality

co S
̂Φn⊗̂Ψ

(ω) = co S
̂Φn⊗̂Ψ

(ω) ≥ co S
̂Φn

(ωH) + αn co S
̂Ψ
(σn), (25)

where αn = inf
ρ∈S(Hω)

Tr ̂Φn(ρ).

Since

S
̂Φn

(ρ) = SΦn(ρ), ∀ρ ∈ extr S(H), S
̂Ψ
(σ) = SΨ(σ), ∀σ ∈ extr S(K),

and
S

̂Φn⊗̂Ψ
(ω) = SΦn⊗Ψ(ω), ∀ω ∈ extr S(H⊗K),

Proposition 2(A) implies that inequality (25) is equivalent to

co SΦn⊗Ψ(ω) ≥ co SΦn(ωH) + αn co SΨ(σn). (26)

Note that inequality (3) implies that

SΦn⊗Ψ(ω) ≤ SΦn(ωH) + S(TrH′ Φn ⊗ Ψ(ω)) − εn, (27)

where εn = η(Tr Φn(ωH)).
By using (8), (26), and (27), we obtain

χ
Φn⊗Ψ

(ω) = SΦn⊗Ψ(ω) − co SΦn⊗Ψ(ω)

≤ SΦn(ωH) − co SΦn(ωH) + S(TrH′ Φn ⊗ Ψ(ω)) − co SΨ(σn) + (1 − αn) co SΨ(σn)

≤ χ
Φn

(ωH) + χ
Ψ
(ωK) + [(1 − αn)SΨ(σn)] + [S(TrH′ Φn ⊗ Ψ(ω)) − SΨ(ωK)]

+ [co SΨ(ωK) − co SΨ(σn)].
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The sequence of quantum operations {Φn} strongly converges to the channel Φ and satisfies con-
dition (B) of Proposition 6. Propositions 6(B) and 4 make it possible to prove inequality (24)
by passing to the limit in the above inequality since the terms in square brackets tend to zero as
n → +∞ due to the assumed finite dimensionality of the spaces Hω and K′. �

Example 3. By Proposition 9, the strong additivity of the χ-capacity holds for an arbitrary
channel Ψ and the channel Φa

p considered in an example in [7] with an arbitrary probability density
function p(t) and a ≤ +∞. This implies in particular that the classical capacity of the channel Φa

p

with an arbitrary constraint coincides with the χ-capacity.

5.3. Approximating Representation for the Convex Closure of the Output Entropy

The convex closure of the output entropy (CCoOE) of a quantum channel is an important
characteristic related to the classical capacity of the channel [6]. This notion also plays an essential
role in the theory of entanglement: an important entanglement measure of a state of a composite
quantum system, the entanglement of formation (EoF), can be defined as the CCoOE of a partial
trace [23].

By Proposition 2, the CCoOE of a quantum channel Φ ∈ F=1(H,H′) is given by the expression

co HΦ(ρ) = inf
μ∈̂P{ρ}

∫

extr S(H)

HΦ(σ)μ(dσ), ρ ∈ S(H). (28)

In [6] it is shown that for an arbitrary state ρ with a finite output entropy HΦ(ρ), the infimum
in this expression can be taken over atomic measures only, which means that

co HΦ(ρ) = inf
{πi,ρi}∈̂P{ρ}

∑

i

πiHΦ(ρi) (29)

(where the infimum is over all countable ensembles {πi, ρi} of pure states with average state ρ).
But validity of expression (29) for an arbitrary state ρ remains an open question. The second

example in [14, Remark 2] shows that a positive answer to this question cannot be obtained by
using only general analytical properties of the (output) entropy. For a given channel Φ, the validity
of expression (29) for an arbitrary state ρ is equivalent to the lower semicontinuity of the right-hand
side of this expression as a function on the input state space S(H).

Thus, in the case of the general quantum channel Φ, we have to use representation (28), which
involves optimization over all measures with a given barycenter ρ. This provides some technical
problems in dealing with CCoOE. Moreover, this expression looks unnatural from the physical
point of view since for a given state ρ with finite mean energy produced in a physical experiment,
the above optimization involves measures supported by states with infinite mean energy.4

In this section we obtain a representation for the CCoOE of an arbitrary quantum channel
Φ ∈ F=1(H,H′) as a limit of an increasing sequence of continuous bounded convex functions
on S(H) defined via expressions similar to (29).

Let n > 1 be a fixed natural number. Consider the function

Hn
Φ(ρ) = −

n
∑

i=1

λi log λi +

(

n
∑

i=1

λi

)

log

(

n
∑

i=1

λi

)

,

where {λi}
n

i=1
is the set of n maximal eigenvalues of the state Φ(ρ), which can be called the truncated

output entropy. By Lemma 4 in [12], the sequence {Hn
Φ} of continuous bounded functions on S(H)

is nondecreasing and converges pointwise to the output entropy HΦ.
4 Any countable ensemble having an average state with finite mean energy consists of states with finite

mean energy.
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Let
Ȟn

Φ(ρ) = inf
{πi,ρi}∈̂P{ρ}

∑

i

πiH
n
Φ(ρi), ∀ρ ∈ S(H).

By Proposition 5 in [14], the function Ȟn
Φ (= (Hn

Φ)∗) is the convex continuous extension of the
function extr S(H) � ρ �→ Hn

Φ(ρ) to the set S(H).5

The sequence {Ȟn
Φ}n

of convex continuous bounded functions on S(H) is an increasing sequence
and is majorized by the function co HΦ. The results of Section 4 make it possible to prove the
following observation.6

Proposition 10. For an arbitrary channel Φ ∈ F=1(H,H′), the function co HΦ coincides
with the pointwise limit of the increasing sequence {Ȟn

Φ} of convex continuous bounded functions
on S(H).

Remark 4. This proposition does not imply the validity of expression (29). There exists an in-
creasing sequence {fn} of concave continuous bounded functions on S(H) converging to a (concave,
lower semicontinuous) bounded function f such that

lim
n→+∞

inf
{πi,ρi}∈̂P{ρ}

∑

i

πifn(ρi) = 0 and inf
{πi,ρi}∈̂P{ρ}

∑

i

πif(ρi) = 1

for some state ρ ∈ S(H) (see [14, the second example in Remark 2]).

Proof. By the above observation, it suffices to show that

lim inf
n→+∞

Ȟn
Φ(ρ) ≥ co HΦ(ρ) (30)

for an arbitrary state ρ ∈ S(H).
Let {Pn} be a sequence of projectors in B(H′) increasing to the unit operator IH such that

rankPn = n. Consider the sequence {Φn(·) = PnΦ(·)Pn} of operations in F≤1(H,H′).
Let ρ be an arbitrary pure state in S(H). If {λi}

n

i=1
and {λn

i }
n

i=1
are the sets of maximal

eigenvalues (in descending order) of the operators Φ(ρ) and Φn(ρ), then the Ritz principle implies
that λi ≥ λn

i for each i = 1, n. Hence, by using (2), we obtain

Hn
Φ(ρ) = H({λi}

n

i=1
) ≥ H({λn

i }
n

i=1
) = HΦn(ρ).

It follows that

inf
{πi,ρi}∈̂P{ρ}

∑

i

πiH
n
Φ(ρi) ≥ inf

{πi,ρi}∈̂P{ρ}

∑

i

πiHΦn(ρi), ∀ρ ∈ S(H).

Since the function HΦn is concave, continuous, and bounded on S(H), Corollary 10 in [14] implies
that the right-hand side of the above inequality coincides with co HΦn(ρ).

The sequence {Φn} satisfies condition (A) of Proposition 6. Hence, for an arbitrary state ρ
in S(H), we obtain

lim inf
n→+∞

inf
{πi,ρi}∈̂P{ρ}

∑

i

πiH
n
Φ(ρi) ≥ lim

n→+∞
co HΦn(ρ) = co HΦ(ρ),

which means (30). �

5 Since in the general case the function Hn
Φ is not concave on S(H), we cannot claim that Ȟn

Φ = coHn
Φ.

6 This observation is nontrivial since the set S(H) is not compact.
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Corollary 5. Let Φ ∈ F=1(H,H′) be an arbitrary channel, and let A be a compact subset
of S(H) such that the output entropy HΦ is continuous on A. Then the increasing sequence {Ȟn

Φ}
of continuous functions converges to the function co HΦ uniformly on A.

Proof. Theorem 1 in [6] implies the continuity of the function co HΦ on the set A. Hence, the
assertion of the corollary follows from Proposition 10 and Dini’s lemma. �

Corollary 5 shows that for an arbitrary Gaussian channel Φ, the sequence {Ȟn
Φ} provides a

uniform approximation of the function co HΦ on the set of states with bounded mean energy
(see [3, remark after Proposition 3]).

Let H and K be separable Hilbert spaces. Consider the channel Θ: S(H ⊗ K) � ω �→
TrK ω ∈ S(H). The entanglement of formation of a state ω ∈ S(H⊗K) can be defined (see [6]) by

EF(ω) = co HΘ(ω) = inf
μ∈̂P{ω}

∫

extr S(H⊗K)

HΘ(σ)μ(dσ).

Proposition 10 implies that the function EF coincides with the increasing sequence of convex
continuous bounded functions

Ȟn
Θ(ω) = inf

{πi,ωi}∈̂P{ω}

∑

i

πiH
n
Θ(ωi).

This proves the conjecture that EF is a function of the class ̂P (S(H ⊗K)) (cf. [14]).
By Corollary 5 (taking into account Proposition 3 in [1]), the sequence {Ȟn

Θ} provides a uniform
approximation of the function EF on the set of states of a composite system with bounded mean
energy.

APPENDIX

The following compactness criterion for subsets of T1(H) can be proved by a simple modification
of arguments used in the proof of the compactness criterion for subsets of S(H) presented in
[3, Appendix].

Proposition 11. A closed subset A of T1(H) is compact if and only if for an arbitrary ε > 0
there exists a finite rank projector Pε such that Tr(IH − Pε)A < ε for all A ∈ A.

Corollary 6. Let A and B be subsets of T1(H) and T1(K), respectively. The subset A⊗B of
T1(H ⊗ K) consisting of all operators C such that TrK C ∈ A and TrH C ∈ B is compact if and
only if the sets A and B are compact.

Proof. The compactness of the set A⊗ B implies the compactness of the sets A and B due to
continuity of the partial trace.

Let A and B be compact. By Proposition 11, for an arbitrary ε > 0 there exist finite rank
projectors Pε and Qε such that

TrPεA > Tr A − ε, ∀A ∈ A, and Tr QεB > Tr B − ε, ∀B ∈ B.

Since CH = TrK C ∈ A and CK = TrH C ∈ B for an arbitrary C ∈ A⊗ B, we have

Tr((Pε ⊗ Qε) · C) = Tr((Pε ⊗ IK) · C) − Tr(Pε ⊗ (IK − Qε) · C)

≥ Tr PεC
H − Tr(IK − Qε)CK > Tr C − 2ε.

Proposition 11 implies the compactness of the set A⊗ B. �
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