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1. GENERAL OBSERVATIONS

Superactivation of quantum channel capacities is one of the most impressive quantum effects
having no classical counterpart. It means that the particular capacity C of a tensor product of two
quantum channels Φ1 and Φ2 can be positive despite the same capacity of each of these channels
is zero; i.e.,

C(Φ1 ⊗ Φ2) > 0 while C(Φ1) = C(Φ2) = 0. (1)

This effect was originally observed by G. Smith and J. Yard for the case of quantum ε-error
capacity [1]. Then the possibility of superactivation of other capacities, in particular classical and
quantum zero-error capacities, was shown [2–5].

A natural generalization of the superactivation effect (1) to the case of n channels Φ1, . . . ,Φn

consists in the validity of the following property:

C(Φ1 ⊗ . . .⊗ Φn) > 0 while C(Φi1 ⊗ . . .⊗ Φik) = 0, (2)

for any proper subset Φi1 , . . . ,Φik (k < n) of the set Φ1, . . . ,Φn. This property will be called
n-partite superactivation of the capacity C.

Property (2) means that all the channels Φ1, . . . ,Φn are required to transmit (classical or quan-
tum) information by using a protocol corresponding to the capacity C; i.e., excluding any channel
from the set Φ1, . . . ,Φn makes other channels useless for information transmission.

The obvious difficulty in finding channels Φ1, . . . ,Φn that demonstrate property (2) for a given
capacity C consists in the necessity of proving the vanishing of C(Φi1 ⊗ . . . ⊗ Φik) for any subset
Φi1 , . . . ,Φik .

In this paper we construct an example of tripartite superactivation in the case where C = Q̄0 is
the 1-shot quantum zero-error capacity (its definition is given in Section 2).

In [6] it is shown how a channel Ψn for a given n can be constructed such that

Q̄0(Ψ
⊗n
n ) = 0 and Q̄0(Ψ

⊗m
n ) > 0, (3)

1 The research was founded by the Russian Science Foundation, project no. 14-21-00162.
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where m is a natural number satisfying the inequality

n/m ≤ 2 ln(3/2)/π < 1.

Relations (3) imply the existence of ñ > n not greater than m such that (2) holds for n = ñ,
C = Q̄0, and Φ1 = . . . = Φñ = Ψn. Unfortunately, the approach used in [6] does not allow to
determine this number ñ.

In this paper we modify the example in [6] (by appropriately extending its noncommutative
graph) to construct a family of channels {Φθ} with dA = 4 and dE = 3 having the following
property:

Q̄0(Φθ1 ⊗ Φθ2 ⊗ Φθ3) > 0 while Q̄0(Φθi ⊗ Φθj ) = 0, ∀i �= j, (4)

where θ1, θ2, and θ3 are positive numbers such that θ1 + θ2 + θ3 = π. Thus, the channels Φθ1 , Φθ2 ,
and Φθ3 demonstrate the 3-partite superactivation of the 1-shot quantum zero-error capacity.

Property (4) means that all the channels Φθi and all the bipartite channels Φθi ⊗ Φθj have no
ideal (perfectly reversible) subchannels, but the tripartite channel Φθ1 ⊗ Φθ2 ⊗ Φθ3 has.

By using the observation in [7, Section 4], the superactivation property (4) can be reformulated
in terms of quantum measurement theory as the existence of quantum observables Mθ1 , Mθ2 ,
and Mθ3 such that all the observables Mθi and all the bipartite observables Mθi ⊗Mθj have no
indistinguishable subspaces but the tripartite observable Mθ1 ⊗Mθ2 ⊗Mθ3 has (see Corollary 2).

2. PRELIMINARIES

Let H be a finite dimensional Hilbert space, B(H) the algebra of all linear operators in H, and
S(H) the closed convex subset of B(H) consisting of positive operators with unit trace, called
states [8,9]. The algebra B(H) can be identified with the algebra Mn of all n× n matrices, where
n = dimH.

Let Φ: B(HA) → B(HB) be a quantum channel, i.e., a completely positive trace-preserving
linear map [8,9]. This map has the Kraus representation

Φ(A) =
∑

k

VkAV
∗
k , A ∈ B(HA), (5)

where {Vk} is a set of linear operators from HA into HB such that
∑

k
V ∗
k Vk = IHA

is the identity

operator in HA. The minimal number of terms in such representation is called the Choi rank of Φ
and is denoted by dE (since dE is the minimal dimension of an environment space HE [8, Ch. 6]).
We will also use the notation dA

.
= dimHA and dB

.
= dimHB .

The 1-shot quantum zero-error capacity Q̄0(Φ) of a channel Φ is defined as sup
H∈q0(Φ)

log2 dimH,

where q0(Φ) is the set of all subspaces H0 of HA on which the channel Φ is perfectly reversible
(in the sense that there is a channel Θ such that Θ(Φ(ρ)) = ρ for all states ρ supported by H0). The
(asymptotic) quantum zero-error capacity is defined by regularization: Q0(Φ) = sup

n
n−1Q̄0(Φ

⊗n)
[3, 10,11].

The capacities Q̄0(Φ) and Q0(Φ) are completely determined by the noncommutative graph G(Φ)
of the channel Φ, which can be defined as the subspace of B(HA) spanned by the operators V ∗

k Vl,
where Vk are the operators from any Kraus representation (5) of Φ [11]. In particular, the Knill–
Laflamme error-correcting condition (see [12]) implies the following lemma.

Lemma 1. A channel Φ: B(HA) → B(HB) is perfectly reversible on a subspace H0 ⊆ HA

spanned by vectors {ϕi}ni=1 (which means that Q̄0(Φ) ≥ log n) if and only if

〈ϕi|A|ϕj〉 = 0 and 〈ϕi|A|ϕi〉 = 〈ϕj |A|ϕj〉, ∀ i �= j, ∀A ∈ L, (6)

where L is any subset of B(HA) such that linL = G(Φ).
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Since a subspace L of the algebra Mn of n×nmatrices is a noncommutative graph of a particular
channel if and only if

L is symmetric (L = L
∗) and contains the unit matrix (7)

(see [4, Lemma 2] or [7, Appendix]), Lemma 1 shows that one can “construct” a channel Φ with
dimHA = n having positive (correspondingly, zero) 1-shot quantum zero-error capacity by taking
a subspace L ⊂ Mn satisfying (7) for which the following condition is valid (correspondingly, not
valid):

∃ϕ,ψ ∈ [Cn]1 such that 〈ψ|A|ϕ〉 = 0 and 〈ϕ|A|ϕ〉 = 〈ψ|A|ψ〉, ∀A ∈ L, (8)

where [Cn]1 is the unit sphere of Cn.

3. EXAMPLE OF TRIPARTITE SUPERACTIVATION

For a given θ ∈ (−π, π], consider the 8-D subspace

Nθ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

M =

⎡

⎢

⎢

⎢

⎣

a b e f
c d f γ̄e
g h a b
h γg c d

⎤

⎥

⎥

⎥

⎦

, a, b, c, d, e, f, g, h ∈ C

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(9)

of M4 satisfying condition (7), where γ = exp[iθ].

Denote by ̂Nθ the set of all channels whose noncommutative graph coincides with Nθ. In [7, Ap-
pendix] it is shown how to explicitly construct pseudo-diagonal channels in ̂Nθ with dA = 4 and
dE ≥ 3 (since dimNθ = 8 ≤ 32).

Theorem. Let Φθ be a channel in ̂Nθ and n ∈ N be arbitrary.

A. Q̄0(Φθ) > 0 if and only if θ = π and Q̄0(Φπ) = 1;

B. If θ1 + . . .+ θn = π (mod 2π), then Q̄0(Φθ1 ⊗ . . .⊗Φθn) > 0 and the channel Φθ1 ⊗ . . .⊗Φθn

is perfectly reversible on the subspace spanned by the vectors2

|ϕ〉 = 1√
2
[|1 . . . 1〉+ i|2 . . . 2〉] , |ψ〉 = 1√

2
[|3 . . . 3〉+ i|4 . . . 4〉] , (10)

where {|1〉, . . . , |4〉} is the canonical basic in C
4;

C. If |θ1|+ |θ2| < π, then Q̄0(Φθ1 ⊗ Φθ2) = 0;

D. If |θ1|+ . . . + |θn| ≤ 2 ln(3/2), then Q̄0(Φθ1 ⊗ . . .⊗ Φθn) = 0.

Assertion C is the main progress of this theorem as compared with Theorem 1 in [6]. It is the
proof of this assertion that requires using the extended subspace Nθ (instead of the subspace Lθ

used in [6]).

Remark. Since assertion D is proved by using quite coarse estimates, the other assertions of
Theorem 1 make it reasonable to conjecture that assertion D can be strengthened as follows:

D′. If |θ1|+ . . . + |θn| < π, then Q̄0(Φθ1 ⊗ . . .⊗ Φθn) = 0.

The proof of assertion C (i.e., D′ with n = 2) given below cannot be generalized to the case of
an arbitrary n. Thus, the question of the validity of conjecture D′ remains open.

The above theorem implies the following example of tripartite superactivation of the 1-shot
quantum zero-error capacity.

2 Here and in what follows |1 . . . 1〉 denotes the vector |1⊗ . . .⊗ 1〉, etc.
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Corollary 1. Let θ1, θ2, and θ3 be positive numbers such that θ1 + θ2 + θ3 = π. Then

Q̄0(Φθ1 ⊗ Φθ2 ⊗ Φθ3) > 0 while Q̄0(Φθi ⊗ Φθj ) = 0, ∀i �= j.

The channel Φθ1 ⊗ Φθ2 ⊗ Φθ3 is perfectly reversible on the subspace spanned by the vectors

|ϕ〉 = 1√
2
[|111〉 + i|222〉] , |ψ〉 = 1√

2
[|333〉 + i|444〉] . (11)

If conjecture D′ were valid for some n > 2, then a similar assertion would be true for n + 1
channels Φθ1 , . . . ,Φθn+1 . This would give an example of (n + 1)-partite superactivation of the
1-shot quantum zero-error capacity.

For each θ one can (nonuniquely) choose a basis {Mθ
k}

8
k=1 of the subspace Nθ consisting of

positive operators such that
8
∑

k=1
Mθ

k = IHA
(since the subspace Nθ satisfies condition (7); see [7]).

This basis can be considered as a quantum observable Mθ. By using Proposition 1 in [7] and
Lemma 1, one can reformulate Corollary 1 in terms of the theory of quantum measurements.

Corollary 2. Let θ1, θ2, and θ3 be positive numbers such that θ1 + θ2 + θ3 = π. Then all the
observables Mθi and all the bipartite observables Mθi ⊗Mθj have no indistinguishable subspaces,
but the tripartite observable Mθ1 ⊗Mθ2 ⊗ Mθ3 has an indistinguishable subspace spanned by the
vectors (11).3

Note also that Theorem 1 gives an example of superactivation of the 2-shot quantum zero-error

capacity (i.e., the quantity
1

2
Q̄0(Φ

⊗2) determining the ultimate rate of zero-error transmission of

quantum information by simultaneous use of two copies of a channel).

Corollary 3. Let θ1 and θ2 be positive numbers such that θ1 + θ2 = π/2. Then

Q̄0([Φθ1 ⊗ Φθ2 ]
⊗2) > 0 while Q̄0(Φ

⊗2
θ1

) = Q̄0(Φ
⊗2
θ2

) = Q̄0(Φθ1 ⊗ Φθ2) = 0.

Proof of the theorem. The subspace Nθ is an extension of the subspace Lθ used in [6], i.e.,
Lθ ⊂ Nθ for each θ, and hence Q̄0(Φθ1 ⊗ . . . ⊗ Φθn) ≤ Q̄0(Ψθ1 ⊗ . . . ⊗ Ψθn) for any channels
Ψθ1 ∈ ̂Lθ1 , . . . , Ψθn ∈ ̂Lθn (this follows from Lemma 1).

Thus, the equality Q̄0(Φθ) = 0 for θ �= π, inequality Q̄0(Φπ) ≤ 1, and assertion D follow from
the corresponding assertions of Theorem 1 in [6].

By using Lemma 1 it is easy to verify that the channel Φπ is perfectly reversible on the subspace
spanned by the vectors |ϕ〉 = [1, i, 0, 0]� and |ψ〉 = [0, 0, 1, i]� . This implies Q̄0(Φπ) = 1.

To prove assertion B, it suffices, by Lemma 1, to show that for any M1 ∈ Nθ1 , . . . ,Mn ∈ Nθn

the equalities
〈ψ|X|ϕ〉 = 0 and 〈ψ|X|ψ〉 = 〈ϕ|X|ϕ〉 (12)

hold, where X = M1 ⊗ . . .⊗Mn and where ϕ and ψ are the vectors defined in (10).

Let ak, bk, . . . , hk be elements of the matrix Mk (see (9)). We have

2〈ψ|X|ϕ〉 = 〈3 . . . 3|X|1 . . . 1〉+ i〈3 . . . 3|X|2 . . . 2〉 − i〈4 . . . 4|X|1 . . . 1〉+ 〈4 . . . 4|X|2 . . . 2〉
= g1 . . . gn(1 + γ1 . . . γn) + h1 . . . hn(i− i) = 0,

since γ1 . . . γn = −1 by the condition θ1 + . . .+ θn = π (mod 2π),

2〈ϕ|X|ϕ〉 = 〈1 . . . 1|X|1 . . . 1〉+ i〈1 . . . 1|X|2 . . . 2〉 − i〈2 . . . 2|X|1 . . . 1〉+ 〈2 . . . 2|X|2 . . . 2〉
= a1 . . . an + i(b1 . . . bn − c1 . . . cn) + d1 . . . dn,

3 We call a subspace H0 indistinguishable for an observable M if applying M to all states supported by H0

leads to the same outcomes probability distribution [7].
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and

2〈ψ|X|ψ〉 = 〈3 . . . 3|X|3 . . . 3〉+ i〈3 . . . 3|X|4 . . . 4〉 − i〈4 . . . 4|X|3 . . . 3〉+ 〈4 . . . 4|X|4 . . . 4〉
= a1 . . . an + i(b1 . . . bn − c1 . . . cn) + d1 . . . dn.

Thus, both equalities in (12) are valid.

To prove assertion C, we have to show that the subspace Nθ1⊗Nθ2 does not satisfy condition (8)
if |θ1|+ |θ2| < π. In the case θ1 = θ2 = 0, this follows from assertion D. Thus, we may assume, by
symmetry, that θ2 �= 0.

Throughout the proof we will use the isomorphism

C
n ⊗ C

m � x⊗ y ←→ [x1y, . . . , xny]
� ∈ C

m ⊕ . . . ⊕ C
m

︸ ︷︷ ︸

n

(13)

and the corresponding isomorphism

Mn ⊗Mm � A⊗B ←→ [aijB] ∈ Mnm. (14)

Let U1, U2, V1, and V2 be unitary operators in C
2 determined (in the canonical basis) by the

matrices

U1 =

[

1 0
0 γ1

]

, V1 =

[

1 0
0 γ2

]

, U2 = V2 =

[

0 1
1 0

]

.

We will identify C
4 with C

2 ⊕ C
2. Thus, arbitrary matrices M1 ∈ Nθ1 and M2 ∈ Nθ2 can be

represented as

M1 =

[

A1 e1U
∗
1 + f1U

∗
2

g1U1 + h1U2 A1

]

, M2 =

[

A2 e2V
∗
1 + f2V

∗
2

g2V1 + h2V2 A2

]

,

or, according to (14), as

M1 = I2 ⊗A1 + |2〉〈1| ⊗ [g1U1 + h1U2] + |1〉〈2| ⊗ [e1U
∗
1 + f1U

∗
2 ]

and
M2 = I2 ⊗A2 + |2〉〈1| ⊗ [g2V1 + h2V2] + |1〉〈2| ⊗ [e2V

∗
1 + f2V

∗
2 ],

where A1 and A2 are arbitrary matrices and I2 is the unit matrix in M2.

Assume the existence of orthogonal unit vectors ϕ and ψ in C
4 ⊗ C

4 such that

〈ψ|M1 ⊗M2|ϕ〉 = 0 and 〈ψ|M1 ⊗M2|ψ〉 = 〈ϕ|M1 ⊗M2|ϕ〉, (15)

for all M1 ∈ Nθ1 and M2 ∈ Nθ2 .

By using the above representations of M1 and M2 we have

M1 ⊗M2 = [I2 ⊗ I2]⊗ [A1 ⊗A2] + [I2 ⊗ |2〉〈1|] ⊗ [A1 ⊗ [g2V1 + h2V2]]

+ [I2 ⊗ |1〉〈2|] ⊗ [A1 ⊗ [e2V
∗
1 + f2V

∗
2 ]] + [|2〉〈1| ⊗ I2]⊗ [[g1U1 + h1U2]⊗A2] + . . . .

Since M2 ⊗M2 = M4, by choosing ei = fi = gi = hi = 0, i = 1, 2, we obtain from (15) that

〈ψ|I4 ⊗A|ϕ〉 = 0 and 〈ψ|I4 ⊗A|ψ〉 = 〈ϕ|I4 ⊗A|ϕ〉, ∀A ∈ M4.

According to (13) and (14), we have

I4 ⊗A =

⎡

⎢

⎢

⎢

⎣

A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A

⎤

⎥

⎥

⎥

⎦

, |ϕ〉 =

⎡

⎢

⎢

⎢

⎣

x1
x2
x3
x4

⎤

⎥

⎥

⎥

⎦

, |ψ〉 =

⎡

⎢

⎢

⎢

⎣

y1
y2
y3
y4

⎤

⎥

⎥

⎥

⎦

,
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where xi and yi are vectors in C
4. Thus, the above relations can be rewritten as

4
∑

i=1

〈yi|A|xi〉 = 0 and
4

∑

i=1

〈yi|A|yi〉 =
4

∑

i=1

〈xi|A|xi〉, ∀A ∈ M4,

which are equivalent to the operator equalities

4
∑

i=1

|yi〉〈xi| = 0 (16)

and
4

∑

i=1

|yi〉〈yi| =
4

∑

i=1

|xi〉〈xi|. (17)

By choosing ei = fi = g1 = h1 = 0, i = 1, 2, A2 = 0, (g2, h2) = (1, 0), and (g2, h2) = (0, 1), we
obtain from (15) that

〈ψ|[I2 ⊗ |2〉〈1|] ⊗ [A1 ⊗ Vk]|ϕ〉 = 0

and
〈ψ|[I2 ⊗ |2〉〈1|] ⊗ [A1 ⊗ Vk]|ψ〉 = 〈ϕ|[I2 ⊗ |2〉〈1|] ⊗ [A1 ⊗ Vk]|ϕ〉

for all A1 in M2 and k = 1, 2. According to (14), we have

[I2 ⊗ |2〉〈1|] ⊗ [A1 ⊗ Vk] =

⎡

⎢

⎢

⎢

⎣

0 0 0 0
A1 ⊗ Vk 0 0 0

0 0 0 0
0 0 A1 ⊗ Vk 0

⎤

⎥

⎥

⎥

⎦

,

and hence the above equalities imply

〈y2|A⊗ Vk|x1〉+ 〈y4|A⊗ Vk|x3〉 = 0, ∀A ∈ M2, k = 1, 2, (18)

and

〈y2|A⊗ Vk|y1〉+ 〈y4|A⊗ Vk|y3〉
= 〈x2|A⊗ Vk|x1〉+ 〈x4|A⊗ Vk|x3〉, ∀A ∈ M2, k = 1, 2. (19)

Similarly, by choosing ei = fi = g2 = h2 = 0, i = 1, 2, A1 = 0, (g1, h1) = (1, 0), and (g1, h1) =
(0, 1), we obtain from (15) the equalities

〈y3|Uk ⊗A|x1〉+ 〈y4|Uk ⊗A|x2〉 = 0, ∀A ∈ M2, k = 1, 2, (20)

and

〈y3|Uk ⊗A|y1〉+ 〈y4|Uk ⊗A|y2〉
= 〈x3|Uk ⊗A|x1〉+ 〈x4|Uk ⊗A|x2〉, ∀A ∈ M2, k = 1, 2. (21)

By the symmetry of condition (15) with respect to ϕ and ψ, relations (18) and (20) imply,
respectively,

〈x2|A⊗ Vk|y1〉+ 〈x4|A⊗ Vk|y3〉 = 0, ∀A ∈ M2, k = 1, 2, (22)

and
〈x3|Uk ⊗A|y1〉+ 〈x4|Uk ⊗A|y2〉 = 0, ∀A ∈ M2, k = 1, 2. (23)
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Finally, by taking A1 = A2 = 0 and choosing appropriate values of ei, fi, gi, and hi, i = 1, 2,
one can obtain from (15) the following equalities:

〈y4|Uk ⊗ Vl|x1〉 = 〈x4|Uk ⊗ Vl|y1〉 = 0, k, l = 1, 2, (24)

〈y4|Uk ⊗ Vl|y1〉 = 〈x4|Uk ⊗ Vl|x1〉, k, l = 1, 2, (25)

〈y3|Uk ⊗ V ∗
l |x2〉 = 〈x3|Uk ⊗ V ∗

l |y2〉 = 0, k, l = 1, 2, (26)

〈y3|Uk ⊗ V ∗
l |y2〉 = 〈x3|Uk ⊗ V ∗

l |x2〉, k, l = 1, 2. (27)

Below we prove that the system (16)–(27) has no nontrivial solutions.

We will use the following lemmas.

Lemma 2. A. Equations (16) and (17) imply that all the vectors xi and yi, i = 1, 4, lie in some
2-D subspace of C

4.

B. If xi0 = yi0 = 0 for some i0, then equations (16) and (17) imply that all the vectors xi
and yi, i = 1, 4, are collinear.

Proof. A. Consider the 4× 4 matrices

X = [〈xi|xj〉], Y = [〈yi|yj〉], Z = [〈xi|yj〉].

It is easy to see that (16) implies XY = 0, while (17) shows that X2 = ZZ∗ and Y 2 = Z∗Z. Hence,
rankX = rankY ≤ 2.

Since (17) implies that the sets {xi}4i=1 and {yi}4i=1 have the same linear hull, the above inequality
shows that the dimension of this linear hull is not greater than 2.

B. This assertion is proved similarly, since the same argumentation with 3 × 3 matrices X, Y ,
and Z implies rankX = rankY ≤ 1.

Lemma 3. A. The condition

〈z4|Uk ⊗ Vl|z1〉 = 0, k, l = 1, 2, (28)

holds if and only if the pair (z1, z4) has one of the following forms:

1. z1 =

[

μ1

s

]

⊗
[

a
b

]

, z4 =

[

μ̄1

−s

]

⊗
[

c
d

]

;

2. z1 =

[

a
b

]

⊗
[

μ2

s

]

, z4 =

[

c
d

]

⊗
[

μ̄2

−s

]

;

3. z1 = a

[

μ1

1

]

⊗
[

μ2

s

]

+ b

[

μ1

−1

]

⊗
[

μ2

−s

]

, z4 = c

[

μ̄1

1

]

⊗
[

μ̄2

−s

]

+ d

[

μ̄1

−1

]

⊗
[

μ̄2

s

]

;

4. z1 = h

[

μ1

s

]

⊗
[

μ2

t

]

, z4 =

[

μ̄1

−s

]

⊗
[

a
b

]

+

[

c
d

]

⊗
[

μ̄2

−t

]

;

5. z1 =

[

μ1

−s

]

⊗
[

a
b

]

+

[

c
d

]

⊗
[

μ2

−t

]

, z4 = h

[

μ̄1

s

]

⊗
[

μ̄2

t

]

,

where μk =
√
γk, k = 1, 2, a, b, c, d, h ∈ C, s = ±1, and t = ±1.

B. Validity of (24) and (25) for vectors xi and yi, i = 1, 4, implies

〈y4|Uk ⊗ Vl|y1〉 = 〈x4|Uk ⊗ Vl|x1〉 = 0, k, l = 1, 2.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 51 No. 2 2015



94 SHIROKOV

Lemma 4. A. The condition

〈z3|Uk ⊗ V ∗
l |z2〉 = 0, k, l = 1, 2, (29)

holds if and only if the pair (z2, z3) has one of the following forms:

1. z2 =

[

μ1

s

]

⊗
[

a
b

]

, z3 =

[

μ̄1

−s

]

⊗
[

c
d

]

;

2. z2 =

[

a
b

]

⊗
[

μ̄2

s

]

, z3 =

[

c
d

]

⊗
[

μ2

−s

]

;

3. z2 = a

[

μ1

1

]

⊗
[

μ̄2

s

]

+ b

[

μ1

−1

]

⊗
[

μ̄2

−s

]

, z3 = c

[

μ̄1

−1

]

⊗
[

μ2

s

]

+ d

[

μ̄1

1

]

⊗
[

μ2

−s

]

;

4. z2 = h

[

μ1

s

]

⊗
[

μ̄2

t

]

, z3 =

[

μ̄1

−s

]

⊗
[

a
b

]

+

[

c
d

]

⊗
[

μ2

−t

]

;

5. z2 =

[

μ1

−s

]

⊗
[

a
b

]

+

[

c
d

]

⊗
[

μ̄2

−t

]

, z3 = h

[

μ̄1

s

]

⊗
[

μ2

t

]

,

where μk =
√
γk, k = 1, 2, a, b, c, d, h ∈ C, s = ±1, and t = ±1.

B. Validity of (26) and (27) for vectors xi and yi, i = 2, 3, implies

〈y3|Uk ⊗ V ∗
l |y2〉 = 〈x3|Uk ⊗ V ∗

l |x2〉 = 0, k, l = 1, 2.

Lemmas 3 and 4 are proved in the Appendix.

Lemma 5. Let |θ1| + |θ2| < π. Then 〈x|U1|x〉 �= 0 and 〈x|V1|x〉 �= 0 for any nonzero vector
x ∈ C

2.

Proof. Since θ1, θ2 �= π, we have 〈x|U1|x〉 = |x1|2+γ1|x2|2 �= 0 and 〈x|V1|x〉 = |x1|2+γ2|x2|2 �= 0
for any nonzero vector |x〉 = [x1, x2]

� �= 0. �
Lemma 6. Let |θ1|+ |θ2| < π. Then 〈y|U1 ⊗ V1|y〉 �= 0 and 〈y|U1 ⊗ V ∗

1 |y〉 �= 0 for any nonzero
vector y ∈ C

2 ⊗ C
2.

Proof. Since U1 ⊗ V1 = diag{1, γ2, γ1, γ1γ2}, the equality 〈y|U1 ⊗ V1|y〉 = 0 for a vector |y〉 =
[y1, y2, y3, y4]

� means that

|y1|2 + |y2|2γ2 + |y3|2γ1 + |y4|2γ1γ2 = 0.

By the condition |θ1|+|θ2| < π, the numbers 0, 1, γ2, γ1, γ1γ2 are extreme points of a convex polygon
in the complex plane, so the last equality can be valid only if yi = 0 for all i.

Similarly one can show that 〈y|U1 ⊗ V ∗
1 |y〉 = 0 implies y = 0. �

Lemma 7. Let p and q be complex numbers such that |p|2+ |q|2 = 1. If {|xi〉}4i=1 and {|yi〉}4i=1

satisfy the system (16)–(27), then {|pxi − qyi〉}4i=1 and {|q̄xi + p̄yi〉}4i=1 also satisfy (16)–(27).

Proof. It suffices to note that the condition

〈ϕ|A|ψ〉 = 〈ψ|A|ϕ〉 = 〈ψ|A|ψ〉 − 〈ϕ|A|ϕ〉 = 0

is invariant under the “rotation” |ϕ〉 �→ p|ϕ〉 − q|ψ〉, |ψ〉 �→ q̄|ϕ〉+ p̄|ψ〉. �
Lemma 8. If |θ1|+ |θ2| < π, then the system (16)–(27) has no nontrivial solution of the form

|xi〉 = αi|z〉 and |yi〉 = βi|z〉, i = 1, 4.
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Proof. Assume that |xi〉 = αi|z〉 and |yi〉 = βi|z〉, i = 1, 4, form a nontrivial solution of the
system (16)–(27). Then (16) implies that |α〉 = [α1, . . . , α4]

� and |β〉 = [β1, . . . , β4]
� are orthogonal

nonzero vectors of the same norm. By Lemma 6, it follows from (24)–(27) and the second parts of
Lemmas 3 and 4 that

α1α4 = α1β4 = β1α4 = β1β4 = α2α3 = α2β3 = β2α3 = β2β3 = 0.

This is possible if and only if one of the pairs (α1, β1) and (α4, β4) and one of the pairs (α2, β2)
and (α3, β3) are equal to (0, 0).

Assume that α1 = β1 = 0. Then |α4| + |β4| > 0, since otherwise 〈β|α〉 �= 0, and by Lemma 7
we may assume that α4 �= 0. By Lemma 6 it follows from (22) with A = U1 and (23) with A = V1

that α4β2 = α4β3 = 0, which implies β2 = β3 = 0. Hence, the condition 〈β|α〉 = 0 can be valid
only if |β〉 = 0.

In a similar way one can show that the assumption α4 = β4 = 0 leads to a contradiction. �
Assume that the collections {xi}41 and {yi}41 form a nontrivial solution of the system (16)–(27).

If xi ∦ yi for some i, then (24)–(27) and the second parts of Lemmas 3 and 4 imply

〈y5−i|Wi|xi〉 = 〈x5−i|Wi|yi〉 = 〈x5−i|Wi|xi〉 = 〈y5−i|Wi|yi〉 = 0,

where W1 = U1⊗V1, W2 = U1⊗V ∗
1 , W3 = U∗

1 ⊗V1, and W4 = U∗
1 ⊗V ∗

1 . Since x5−i, y5−i ∈ lin{xi, yi}
by claim A of Lemma 2, the above equalities show that 〈x5−i|Wi|x5−i〉 = 〈y5−i|Wi|y5−i〉 = 0.
Lemma 6 implies x5−i = y5−i = 0. By claim B of Lemma 2, this contradicts the assumption xi ∦ yi.

Thus, xi ‖ yi for all i = 1, 4. By Lemma 8 we may assume in what follows that

|xi〉 = αi|zi〉 and |yi〉 = βi|zi〉, where |zi〉 are noncollinear vectors.4 (30)

Claim B of Lemma 2 implies |αi|+ |βi| > 0, i = 1, 4, and equations (16) and (17) can be rewritten
as follows:

4
∑

i=1

β̄iαi|zi〉〈zi| = 0, (31)

4
∑

i=1

[

|βi|2 − |αi|2
]

|zi〉〈zi| = 0. (32)

By Lemma 7 we may assume that β1 = 0 and hence α1 �= 0. There are two cases:

1. If βiαi �= 0 for all i > 1, then (31) and Lemma 9 (in the Appendix) imply z2 ‖ z3 ‖ z4. Then
it follows from (32) that

|α1|2|z1〉〈z1|+ [. . .]|z2〉〈z2| = 0,

and hence z1 ‖ z2 ‖ z3 ‖ z4, contradicting the assumption (30).

2. If there is k > 1 such that βkαk = 0, then (31) implies that either βiαi �= 0 and βjαj �= 0 or
βiαi = βjαj = 0, where i and j > i are complementary indices to 1 and k.

If βiαi �= 0 and βjαj �= 0, then it follows from (31) that zi ‖ zj, and (32) implies

|α1|2|z1〉〈z1|+ p|zk〉〈zk|+ [. . .]|zi〉〈zi| = 0,

where p is a nonzero number (equal to either |αk|2 or −|βk|2). Hence, z1 ‖ zk by Lemma 9.

Thus, z1 ‖ zk and zi ‖ zj . By Lemma 6 it follows from (24) and (26) that k �= 4 and (i, j) �= (2, 3).
Thus, we have only two possibilities:

(a) k = 2, i = 3, j = 4. In this case z3 ‖ z4 and (22) with A = U1 implies

ᾱ4β3〈z4|U1 ⊗ V1|z3〉 = −ᾱ2β1〈z2|U1 ⊗ V1|z1〉 = 0 (since β1 = 0).

Hence Lemma 6 shows that α4β3 = 0, contradicting the assumption α3β3 �= 0 and α4β4 �= 0.

4 In the sense that among the vectors |zi〉, i = 1, 4, there are noncollinear pairs.
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(b) k = 3, i = 2, j = 4. In this case z2 ‖ z4, and (23) with A = V1 implies

ᾱ4β2〈z4|U1 ⊗ V1|z2〉 = −ᾱ3β1〈z3|U1 ⊗ V1|z1〉 = 0 (since β1 = 0).

Hence, Lemma 6 shows that α4β2 = 0, contradicting the assumption α2β2 �= 0 and α4β4 �= 0.

Thus, we have βiαi = 0 for all i = 1, 4. Since the vectors z1, . . . , z4 are not collinear by
assumption (30), equality (32) and claim B of Lemma 2 imply that there are two nonzero αi and
two nonzero βi. Thus, there are the following cases (up to permutation):

(a) |ϕ〉, |ψ〉 =

⎡

⎢

⎢

⎢

⎣

x1
x2
0
0

⎤

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎣

0
0
y3
y4

⎤

⎥

⎥

⎥

⎦

; (b) |ϕ〉, |ψ〉 =

⎡

⎢

⎢

⎢

⎣

x1
0
x3
0

⎤

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎣

0
y2
0
y4

⎤

⎥

⎥

⎥

⎦

; (c) |ϕ〉, |ψ〉 =

⎡

⎢

⎢

⎢

⎣

x1
0
0
x4

⎤

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎣

0
y2
y3
0

⎤

⎥

⎥

⎥

⎦

,

where x1 ∦ xk and yi ∦ yj (if either x1 ‖ xk or yi ‖ yj, then (32) implies x1 ‖ xk ‖ yi ‖ yj,
contradicting assumption (30)).

First we show that case (c) is not possible. It follows from (18) with A = U1 and (20) with
A = V1 that

〈y2|U1 ⊗ V1|x1〉 = 〈y3|U1 ⊗ V1|x1〉 = 0.

Since y2 ∦ y3, claim A of Lemma 2 shows that x1 ∈ lin{y2, y3} and the above equalities imply
〈x1|U1 ⊗ V1|x1〉 = 0. By Lemma 6 this is possible only if x1 = 0.

It is more difficult to show the incompatibility of the system (16)–(27) in cases (a) and (b). We
will consider these cases simultaneously by denoting z2 = x2 and z3 = y3 in case (a), z2 = y2 and
z3 = x3 in case (b), and z1 = x1 and z4 = y4 in both cases. The system (16)–(27) implies the
following equations:

|x1〉〈x1|+ |xi〉〈xi| = |yj〉〈yj |+ |y4〉〈y4|, (33)

where (i, j) = (2, 3) in case (a) and (i, j) = (3, 2) in case (b),

〈z3|Uk ⊗A|x1〉 = −σ∗〈y4|Uk ⊗A|z2〉, ∀A ∈ M2, k = 1, 2, (34)

〈z2|A⊗ Vk|x1〉 = +σ∗〈y4|A⊗ Vk|z3〉, ∀A ∈ M2, k = 1, 2, (35)

where σ∗ = 1 in case (a) and σ∗ = −1 in case (b),

〈y4|Uk ⊗ Vl|x1〉 = 0, k, l = 1, 2, (36)

〈z3|Uk ⊗ V ∗
l |z2〉 = 0, k, l = 1, 2. (37)

It follows from (36) and (37) that the pairs (z1, z4) and (z2, z3) must have one of the forms 1–5
given in claims A of Lemmas 3 and 4, respectively.

Assume first that both pairs (z1, z4) and (z2, z3) have forms 1 or 2. In this case z1, z2, z3,
and z4 are tensor product vectors (vectors of the form u⊗ v). By Lemma 10 (see the Appendix),
equality (33) can only be valid in the following cases 1–4:

1. |zi〉 = |p〉 ⊗ |ai〉, i = 1, 4. It follows from (34) that

〈p|U1|p〉〈a3|A|a1〉 = −σ∗〈p|U1|p〉〈a4|A|a2〉, ∀A ∈ M2.

Since 〈p|U1|p〉 �= 0 by Lemma 5, we have a1 ‖ a2 and a3 ‖ a4. In case (a) this and (33) implies
x1 ‖ x2 ‖ y3 ‖ y4, contradicting (30). In case (b) this means that x1 ‖ y2 and x3 ‖ y4. The
assumption x1 ∦ x3 and (33) show that this case can only be valid if |x1〉〈x1| = |y2〉〈y2| and
|x3〉〈x3| = |y4〉〈y4|. Thus, this case is reduced to case 4 considered below.
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2. |zi〉 = |ai〉 ⊗ |p〉, i = 1, 4. Similarly to case 1, this case is reduced to case 4 by using (35)
instead of (34).

3. |x1〉〈x1| = |y4〉〈y4| and |z2〉〈z2| = |z3〉〈z3|. It follows from (36), (37), and Lemma 6 that this
is impossible.

4. |x1〉〈x1| = |yi〉〈yi| and |x5−i〉〈x5−i| = |y4〉〈y4|, where i = 3 in case (a) and i = 2 in case (b).

If i = 3, then y3 = αx1, y4 = βx2, |α| = |β| = 1, and (34) with σ∗ = 1 implies

ᾱ〈x1|U1 ⊗A|x1〉 = −β̄〈x2|U1 ⊗A|x2〉, ∀A ∈ M2. (38)

Since x1 and x2 are product vectors, it follows from this relation and Lemma 5 that

x1 = a⊗ p and x2 = b⊗ p

for some nonzero vectors a, b, and p. Hence, (36), (37), and Lemma 5 imply

〈b|Uk|a〉 = 〈b|U∗
k |a〉 = 0, k = 1, 2.

If γ1 �= 1 (i.e., θ1 �= 0), then this cannot be valid for nonzero vectors a and b. If γ1 = 1, then (38)
shows that ᾱ‖a‖2 = −β̄‖b‖2, while (35) with σ∗ = 1 and Lemma 5 imply β̄α = 1, i.e., α = β.

Similarly, if i = 2, then by using Lemma 5 one can obtain from (35) that

x1 ‖ y2 ‖ p⊗ a and x3 ‖ y4 ‖ p⊗ b

for some nonzero vectors a, b, and p. Hence, (36), (37), and Lemma 5 imply

〈b|Vk|a〉 = 〈b|V ∗
k |a〉 = 0, k = 1, 2,

which cannot be valid for nonzero vectors a and b (since the assumption θ2 �= 0 implies γ2 �= γ̄2).

Assume now that the pair (x1, y4) have form 3 in Lemma 3, i.e.,

x1 = a

[

μ1

1

]

⊗
[

μ2

s

]

+ b

[

μ1

−1

]

⊗
[

μ2

−s

]

, y4 = c

[

μ̄1

1

]

⊗
[

μ̄2

−s

]

+ d

[

μ̄1

−1

]

⊗
[

μ̄2

s

]

,

where s = ±1; let us show the incompatibility of the system (33)–(37) if the pair (z2, z3) has
forms 1–3 in Lemma 4. We will do this by reducing to the case of tensor product vectors x1, z2, z3,
and y4 considered above.

1. The pair (z2, z3) has form 1, i.e.,

z2 =

[

μ1

t

]

⊗
[

p
q

]

, z3 =

[

μ̄1

−t

]

⊗
[

x
y

]

, t = ±1, |p|+ |q| �= 0, |x|+ |y| �= 0.

By substituting the expressions for x1, z2, z3, and y4 into (34) and noting that

〈

μ̄1

s

∣

∣

∣

∣

Uk

∣

∣

∣

∣

μ1

−s

〉

= 0, s = ±1, k = 1, 2, (39)

we obtain

b

〈

μ̄1

−1

∣

∣

∣

∣

Uk

∣

∣

∣

∣

μ1

−1

〉〈

x
y

∣

∣

∣

∣

A

∣

∣

∣

∣

μ2

−s

〉

= −σ∗c̄

〈

μ̄1

1

∣

∣

∣

∣

Uk

∣

∣

∣

∣

μ1

1

〉〈

μ̄2

−s

∣

∣

∣

∣

A

∣

∣

∣

∣

p
q

〉

if t = 1,

and

a

〈

μ̄1

1

∣

∣

∣

∣

Uk

∣

∣

∣

∣

μ1

1

〉〈

x
y

∣

∣

∣

∣

A

∣

∣

∣

∣

μ2

s

〉

= −σ∗d̄

〈

μ̄1

−1

∣

∣

∣

∣

Uk

∣

∣

∣

∣

μ1

−1

〉〈

μ̄2

s

∣

∣

∣

∣

A

∣

∣

∣

∣

p
q

〉

if t = −1.
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The validity of this equality for all A ∈ M2 implies

bλ−
k

∣

∣

∣

∣

∣

μ2

−s

〉〈

x
y

∣

∣

∣

∣

∣

= −σ∗c̄λ
+
k

∣

∣

∣

∣

∣

p
q

〉〈

μ̄2

−s

∣

∣

∣

∣

∣

if t = 1,

and

aλ+
k

∣

∣

∣

∣

∣

μ2

s

〉〈

x
y

∣

∣

∣

∣

∣

= −σ∗d̄λ
−
k

∣

∣

∣

∣

∣

p
q

〉〈

μ̄2

s

∣

∣

∣

∣

∣

if t = −1,

where λ±
1 =

〈 μ̄1

±1

∣

∣

∣U1

∣

∣

∣

μ1

±1

〉

= 2μ2
1 and λ±

2 =
〈 μ̄1

±1

∣

∣

∣U2

∣

∣

∣

μ1

±1

〉

= ±2μ1. Since λ+
1 = λ−

1 �= 0 and λ+
2 =

−λ−
2 �= 0, the validity of the above equalities for k = 1, 2 implies b = c = 0 if t = 1 and a = d = 0

if t = −1. Hence, x1, z2, z3, and y4 are product vectors.

2. The pair (z2, z3) has form 2, i.e.,

z2 =

[

p
q

]

⊗
[

μ̄2

t

]

, z3 =

[

x
y

]

⊗
[

μ2

−t

]

, t = ±1, |p|+ |q| �= 0, |x|+ |y| �= 0.

By substituting the expressions for x1, z2, z3, and y4 into (35) and noting that
〈

μ̄2

t

∣

∣

∣

∣

Vk

∣

∣

∣

∣

μ2

−t

〉

= 0, t = ±1, k = 1, 2,

we obtain

a

〈

p
q

∣

∣

∣

∣

A

∣

∣

∣

∣

μ1

1

〉〈

μ̄2

t

∣

∣

∣

∣

Vk

∣

∣

∣

∣

μ2

t

〉

= σ∗c̄

〈

μ̄1

1

∣

∣

∣

∣

A

∣

∣

∣

∣

x
y

〉〈

μ̄2

−t

∣

∣

∣

∣

Vk

∣

∣

∣

∣

μ2

−t

〉

if t = s,

and

b

〈

p
q

∣

∣

∣

∣

A

∣

∣

∣

∣

μ1

−1

〉〈

μ̄2

t

∣

∣

∣

∣

Vk

∣

∣

∣

∣

μ2

t

〉

= σ∗d̄

〈

μ̄1

−1

∣

∣

∣

∣

A

∣

∣

∣

∣

x
y

〉〈

μ̄2

−t

∣

∣

∣

∣

Vk

∣

∣

∣

∣

μ2

−t

〉

if t = −s.

The validity of this equality for all A ∈ M2 implies

aνtk

∣

∣

∣

∣

∣

μ1

1

〉〈

p
q

∣

∣

∣

∣

∣

= σ∗c̄ν
−t
k

∣

∣

∣

∣

∣

x
y

〉〈

μ̄1

1

∣

∣

∣

∣

∣

if t = s,

and

bνtk

∣

∣

∣

∣

∣

μ1

−1

〉〈

p
q

∣

∣

∣

∣

∣

= σ∗d̄ν
−t
k

∣

∣

∣

∣

∣

x
y

〉〈

μ̄1

−1

∣

∣

∣

∣

∣

if t = −s,

where νt1 =
〈μ̄2

t

∣

∣

∣V1

∣

∣

∣

μ2

t

〉

= 2μ2
2 and νt2 =

〈μ̄2

t

∣

∣

∣V2

∣

∣

∣

μ2

t

〉

= 2tμ2. Since νt1 = ν−t
1 �= 0 and νt2 = −ν−t

2 �= 0,

the validity of the above equalities for k = 1, 2 implies a = c = 0 if t = s and b = d = 0 if t = −s.
Hence, x1, z2, z3, and y4 are product vectors.

3. The pair (z2, z3) has form 3, i.e.,

z2 = p

[

μ1

1

]

⊗
[

μ̄2

t

]

+ q

[

μ1

−1

]

⊗
[

μ̄2

−t

]

, z3 = x

[

μ̄1

−1

]

⊗
[

μ2

t

]

+ y

[

μ̄1

1

]

⊗
[

μ2

−t

]

,

where t = ±1. If we substitute the expressions for x1, z2, z3, and y4 into (34) (by using (39)), then
the left- and right-hand sides of this equality will be equal, respectively, to

x̄b

〈

μ̄1

−1

∣

∣

∣

∣

Uk

∣

∣

∣

∣

μ1

−1

〉〈

μ2

t

∣

∣

∣

∣

A

∣

∣

∣

∣

μ2

−s

〉

+ ȳa

〈

μ̄1

1

∣

∣

∣

∣

Uk

∣

∣

∣

∣

μ1

1

〉〈

μ2

−t

∣

∣

∣

∣

A

∣

∣

∣

∣

μ2

s

〉

and

−σ∗c̄p

〈

μ̄1

1

∣

∣

∣

∣

Uk

∣

∣

∣

∣

μ1

1

〉〈

μ̄2

−s

∣

∣

∣

∣

A

∣

∣

∣

∣

μ̄2

t

〉

− σ∗d̄q

〈

μ̄1

−1

∣

∣

∣

∣

Uk

∣

∣

∣

∣

μ1

−1

〉〈

μ̄2

s

∣

∣

∣

∣

A

∣

∣

∣

∣

μ̄2

−t

〉

.
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Thus, the validity of this equality for all A ∈ M2 implies
[

ȳa

∣

∣

∣

∣

∣

μ2

s

〉〈

μ2

−t

∣

∣

∣

∣

∣

+ σ∗c̄p

∣

∣

∣

∣

∣

μ̄2

t

〉〈

μ̄2

−s

∣

∣

∣

∣

∣

]

= ςk

[

σ∗d̄q

∣

∣

∣

∣

∣

μ̄2

−t

〉〈

μ̄2

s

∣

∣

∣

∣

∣

+ x̄b

∣

∣

∣

∣

∣

μ2

−s

〉〈

μ2

t

∣

∣

∣

∣

∣

]

,

where ςk
.
= −λ−

k /λ
+
k = (−1)k. This equality can be valid for k = 1, 2 only if the operators in the

squared brackets are equal to zero. Since μ2 �= ±μ̄2 by the assumption θ2 �= 0 and the condition
θ2 �= π, we obtain ya = cp = dq = xb = 0. This means that x1, z2, z3, and y4 are product vectors.

Similar argumentation shows the incompatibility of the system (33)–(37) (by reducing to the
case of tensor product vectors) if the pair (z2, z3) has form 3 and the pair (x1, y4) has form 1 or 2.

Assume finally that the pair (x1, y4) has form 4, i.e.,

x1 = h

[

μ1

s

]

⊗
[

μ2

t

]

, y4 =

[

μ̄1

−s

]

⊗
[

a
b

]

+

[

c
d

]

⊗
[

μ̄2

−t

]

, s, t = ±1,

and the pair (z2, z3) is arbitrary. We will show that (33)–(35) imply that y4 is a product vector.
Thus, in fact the pair (x1, y4) has form 1 or 2.

Assume that y4 is not a product vector and denote the vectors [μ1, s]
� and [μ2, t]

� by |s〉 and |t〉.
In this notation, |x1〉 = h|s⊗ t〉.

In case (a) it follows from (34) and Lemma 11 (see the Appendix) that |x2〉 = |p ⊗ t〉 for some
vector |p〉. Hence, the left-hand side of (33) has the form

|h|2|s〉〈s| ⊗ |t〉〈t|+ |p〉〈p| ⊗ |t〉〈t| =
[

|h|2|s〉〈s|+ |p〉〈p|
]

⊗ |t〉〈t|,

and (33) implies |y4〉〈y4| ≤
[

|h|2|s〉〈s|+ |p〉〈p|
]

⊗ |t〉〈t|. This operator inequality can only be valid
if y4 is a product vector.

In case (b) it follows from (35) and Lemma 11 that |x3〉 = |s ⊗ q〉 for some vector |q〉. Hence,
the left-hand side of (33) has the form

|h|2|s〉〈s| ⊗ |t〉〈t|+ |s〉〈s| ⊗ |q〉〈q| = |s〉〈s| ⊗
[

|h|2|t〉〈t|+ |q〉〈q|
]

,

and similarly to case (a) we conclude that y4 is a product vector.

By using the same argumentation exploiting (33)–(35) and Lemma 11, one can show that neither
(x1, y4) nor (z2, z3) can be of form 4 or 5 (different from forms 1 and 2).

Thus, we have shown that the system (16)–(27) has no nontrivial solutions. This completes the
proof of assertion C. �

APPENDIX

Proofs of Lemmas 3 and 4

Proof of Lemma 3. A. Let 〈z4| = [a, b, c, d] and

W =

⎡

⎢

⎢

⎢

⎣

a γ2b γ1c γ1γ2d
b a γ1d γ1c
c γ2d a γ2b
d c b a

⎤

⎥

⎥

⎥

⎦

, S =

⎡

⎢

⎢

⎢

⎣

μ1μ2 μ1μ2 μ1μ2 μ1μ2

μ1 −μ1 μ1 −μ1

μ2 μ2 −μ2 −μ2

+1 −1 −1 +1

⎤

⎥

⎥

⎥

⎦

,

where μk =
√
γk, k = 1, 2. By identifying A⊗B with the matrix ‖aijB‖ one can write the equalities

〈z4|Uk ⊗ Vl|z1〉 = 0, k, l = 1, 2, as the system of linear equations

W |z1〉 = 0. (40)
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It is easy to see that S−1WS = diag{p1, p2, p3, p4}, where

p1 = a+ μ2b+ μ1c+ μ1μ2d, p2 = a− μ2b+ μ1c− μ1μ2d,

p3 = a+ μ2b− μ1c− μ1μ2d, p4 = a− μ2b− μ1c+ μ1μ2d.
(41)

Thus, system (40) is equivalent to the system pkuk = 0, k = 1, 4, where [u1, u2, u3, u4]
� = S−1|z1〉.

Hence, this system has nontrivial solutions if and only if p1p2p3p4 = 0 and

{pk = 0} ⇐⇒ {W |qk〉 = 0},

where |qk〉 is the kth column of the matrix S.

Thus, by choosing some of the variables p1, . . . , p4 equal to zero we obtain all pairs (z1, z4) such
that 〈z4|Uk ⊗ Vl|z1〉 = 0, k, l = 1, 2. We have

(a) C2
4 = 6 variants to chose pk = pl = 0 and pi �= 0, i �= k, l;

(b) C1
4 = 4 variants to chose pk = 0 and pi �= 0, i �= k;

(c) C3
4 = 4 variants to chose pk = pl = pj = 0 and pi �= 0, i �= k, l, j

(the case p1 = p2 = p3 = p4 = 0 means that a = b = c = d = 0, i.e., gives a trivial solution only).

By identifying the vectors x⊗ y and [x1y, x2y]
� it is easy to see that

|q1〉 =
[

μ1

1

]

⊗
[

μ2

1

]

, |q2〉 =
[

μ1

1

]

⊗
[

μ2

−1

]

,

|q3〉 =
[

μ1

−1

]

⊗
[

μ2

1

]

, |q4〉 =
[

μ1

−1

]

⊗
[

μ2

−1

]

and that

p1 = 0 ⇐⇒ |z4〉 =
[

c1
c2

]

⊗
[

μ̄2

−1

]

+

[

μ̄1

−1

]

⊗
[

c3
c4

]

, c1, . . . , c4 ∈ C,

p2 = 0 ⇐⇒ |z4〉 =
[

c1
c2

]

⊗
[

μ̄2

1

]

+

[

μ̄1

−1

]

⊗
[

c3
c4

]

, c1, . . . , c4 ∈ C,

p3 = 0 ⇐⇒ |z4〉 =
[

c1
c2

]

⊗
[

μ̄2

−1

]

+

[

μ̄1

1

]

⊗
[

c3
c4

]

, c1, . . . , c4 ∈ C,

p4 = 0 ⇐⇒ |z4〉 =
[

c1
c2

]

⊗
[

μ̄2

1

]

+

[

μ̄1

1

]

⊗
[

c3
c4

]

, c1, . . . , c4 ∈ C.

Hence, the above six possibilities in (a) correspond to forms 1–3 in Lemma 3 (for example, the
choice p1 = p2 = 0 and p3, p4 �= 0 corresponds to form 1 with s = 1), while the four possibilities
in (b) and (c) correspond, respectively, to forms 4 and 5.

B. Denote the above matrix W with z4 = x4 and z4 = y4, respectively, by Wx and Wy. Then
the equalities in (24) and (25) can be rewritten as the system

Wx|y1〉 = Wy|x1〉 = 0, Wx|x1〉 = Wy|y1〉 = |c〉, |c〉 ∈ C
4. (42)

Since S−1WxS = diag{px1 , px2 , px3 , px4} and S−1WyS = diag{py1, p
y
2, p

y
3, p

y
4}, where px1 , p

x
2 , p

x
3 , p

x
4 and

py1, p
y
2, p

y
3, p

y
4 are defined in (41) with z4 = x4 and z4 = y4, respectively, system (42) is equivalent to

pxkvk = pykuk = 0, pxkuk = pykvk = c̃k, k = 1, 4, (43)

where [u1, u2, u3, u4]
� = S−1|x1〉, [v1, v2, v3, v4]

� = S−1|y1〉 and [c̃1, c̃2, c̃3, c̃4]
� = S−1|c〉. Sys-

tem (43) has a solution only if c̃k = 0 for all k. Indeed, if pyk �= 0 for some k, then the first equality
in (43) implies uk = 0 and the second equality in (43) shows that c̃k = 0. Hence, |c〉 = S|c̃〉 = 0. �

Lemma 4 follows from Lemma 3 with γ2 replaced by γ̄2.
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Auxiliary Lemmas

Lemma 9. If |a〉〈x|+ |b〉〈y|+ |c〉〈z| = 0, then either a ‖ b ‖ c or x ‖ y ‖ z.

Proof. We may assume that all the vectors are nonzero (since otherwise the assertion is trivial).

Let p ⊥ x. Then 〈y|p〉|b〉 + 〈z|p〉|c〉 = 0, and hence either b ‖ c or 〈y|p〉 = 〈z|p〉 = 0.

If b ‖ c, then we have |a〉〈x| = −|b〉〈y + λz|, λ ∈ C, and hence a ‖ b ‖ c.

If 〈y|p〉 = 〈z|p〉 = 0, then x ‖ y ‖ z, since the vector p is arbitrary. �
Lemma 10. The equality

X1 ⊗ Y1 +X2 ⊗ Y2 = X3 ⊗ Y3 +X4 ⊗ Y4, (44)

where Xi = |xi〉〈xi|, Yi = |yi〉〈yi|, i = 1, 4, can be valid in the following cases only :

1. xi ‖ xj for all i and j, and Y1‖x1‖2 + Y2‖x2‖2 = Y3‖x3‖2 + Y4‖x4‖2;
2. yi ‖ yj for all i and j, and X1‖y1‖2 +X2‖y2‖2 = X3‖y3‖2 +X4‖y4‖2;
3. X1 ⊗ Y1 = X4 ⊗ Y4 and X2 ⊗ Y2 = X3 ⊗ Y3;
4. X1 ⊗ Y1 = X3 ⊗ Y3 and X2 ⊗ Y2 = X4 ⊗ Y4.

Proof. We may assume that all the vectors xi and yi are nonzero (since otherwise the assertion
is trivial).

Let p ⊥ x1. By multiplying both sides of (44) by |p〉〈p| ⊗ I, we obtain

|〈x2|p〉|2Y2 = |〈x3|p〉|2Y3 + |〈x4|p〉|2Y4. (45)

If x2 ‖ x1, then 〈x3|p〉 = 〈x4|p〉 = 0, and hence x1 ‖ x2 ‖ x3 ‖ x4, since the vector p is arbitrary;
i.e., case 1 holds.

If x2 ∦ x1, then one can choose p such that 〈x2|p〉 �= 0. Thus, (45) implies that either x3 ∦ x1 or
x4 ∦ x1. We have the following possibilities:

(a) If xi ∦ x1 for i = 2, 3, 4, then one can choose p such that 〈xi|p〉 �= 0, i = 2, 3, 4. It follows
from (45) that y2 ‖ y3 ‖ y4. Hence, (44) leads to the equality X1 ⊗ Y1 = [. . .] ⊗ Y2, which gives
y1 ‖ y2. Thus, we have y1 ‖ y2 ‖ y3 ‖ y4; i.e., case 2 holds.

(b) If xi ∦ x1 for i = 2, 3, but x4 ‖ x1, then one can choose p such that 〈xi|p〉 �= 0, i = 2, 3.
It follows from (45) that y2 ‖ y3. Hence, x4 = αx1 and y3 = βy2, α, β ∈ C. It follows from (44)
that

X1 ⊗ [Y1 − |α|2Y4] = [X3|β|2 −X2]⊗ Y2,

and hence Y1 − |α|2Y4 = λY2, λ ∈ C. If λ �= 0, then Lemma 9 implies y1 ‖ y2 ‖ y3 ‖ y4; i.e., case 2
holds. If λ = 0, then y1 ‖ y4 and x2 ‖ x3. Thus, we have

X4 ⊗ Y4 = γX1 ⊗ Y1, X3 ⊗ Y3 = δX2 ⊗ Y2, γ, δ ∈ C,

and (44) implies (1 − γ)X1 ⊗ Y1 = (δ − 1)X2 ⊗ Y2. Since x1 ∦ x2, we have γ = δ = 1; i.e., case 3
holds.

(c) If xi ∦ x1 for i = 2, 4, but x3 ‖ x1, then similar arguments (with the interchange 3 ↔ 4) show
that case 4 holds. �

Lemma 11. Let U = diag{1, γ}, and let x and y be nonzero vectors in C
2. If 〈a|U⊗A|x⊗y〉 =

〈c|U ⊗ A|d〉 for all A ∈ M2, then either |d〉 = |z〉 ⊗ |y〉 or |c〉 = |p〉 ⊗ |q〉 for some vectors p, q,
and z in C

2.

Proof. By using the isomorphism C
2 ⊗C

2 � u⊗ v ←→ [u1v, u2v]
� ∈ C

2 ⊕C
2, the condition of

the lemma can be rewritten as follows:
〈

a1
a2

∣

∣

∣

∣

A 0
0 γA

∣

∣

∣

∣

x1y
x2y

〉

=

〈

c1
c2

∣

∣

∣

∣

A 0
0 γA

∣

∣

∣

∣

d1
d2

〉

, ∀A ∈ M2,
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where a1 and a2 are components of the vector a, etc. Thus, we have

x1〈a1|A|y〉+ x2γ〈a2|A|y〉 = 〈c1|A|d1〉+ γ〈c2|A|d2〉, ∀A ∈ M2,

which is equivalent to the equality |y〉〈x̄1a1 + x̄2γ̄a2| = |d1〉〈c1| + γ|d2〉〈c2|. By Lemma 9 this is
possible if either d1 ‖ d2 ‖ y, which means |d〉 = |z〉 ⊗ |y〉, or c1 ‖ c2, which means |c〉 = |p〉⊗ |q〉. �

The author is grateful to A.S. Holevo and participants of the Quantum Probability, Statistics,
and Information seminar (Steklov Mathematical Institute, Russian Academy of Sciences) for useful
discussions.
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