On Multipartite Superactivation of Quantum Channel Capacities

M. E. Shirokov ${ }^{1}$
Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
e-mail: msh@mi.ras.ru

Received November 28, 2014

Abstract

We consider a generalization of the notion of superactivation of quantum channel capacities to the case of $n>2$ channels. An explicit example of such superactivation for the 1 -shot quantum zero-error capacity is constructed for $n=3$. An interpretation of this example in terms of quantum measurements is given.

DOI: 10.1134/S0032946015020015

1. GENERAL OBSERVATIONS

Superactivation of quantum channel capacities is one of the most impressive quantum effects having no classical counterpart. It means that the particular capacity C of a tensor product of two quantum channels Φ_{1} and Φ_{2} can be positive despite the same capacity of each of these channels is zero; i.e.,

$$
\begin{equation*}
C\left(\Phi_{1} \otimes \Phi_{2}\right)>0 \quad \text { while } \quad C\left(\Phi_{1}\right)=C\left(\Phi_{2}\right)=0 . \tag{1}
\end{equation*}
$$

This effect was originally observed by G. Smith and J. Yard for the case of quantum ε-error capacity [1]. Then the possibility of superactivation of other capacities, in particular classical and quantum zero-error capacities, was shown [2-5].

A natural generalization of the superactivation effect (1) to the case of n channels $\Phi_{1}, \ldots, \Phi_{n}$ consists in the validity of the following property:

$$
\begin{equation*}
C\left(\Phi_{1} \otimes \ldots \otimes \Phi_{n}\right)>0 \quad \text { while } \quad C\left(\Phi_{i_{1}} \otimes \ldots \otimes \Phi_{i_{k}}\right)=0 \tag{2}
\end{equation*}
$$

for any proper subset $\Phi_{i_{1}}, \ldots, \Phi_{i_{k}}(k<n)$ of the set $\Phi_{1}, \ldots, \Phi_{n}$. This property will be called n-partite superactivation of the capacity C.

Property (2) means that all the channels $\Phi_{1}, \ldots, \Phi_{n}$ are required to transmit (classical or quantum) information by using a protocol corresponding to the capacity C; i.e., excluding any channel from the set $\Phi_{1}, \ldots, \Phi_{n}$ makes other channels useless for information transmission.

The obvious difficulty in finding channels $\Phi_{1}, \ldots, \Phi_{n}$ that demonstrate property (2) for a given capacity C consists in the necessity of proving the vanishing of $C\left(\Phi_{i_{1}} \otimes \ldots \otimes \Phi_{i_{k}}\right)$ for any subset $\Phi_{i_{1}}, \ldots, \Phi_{i_{k}}$.

In this paper we construct an example of tripartite superactivation in the case where $C=\bar{Q}_{0}$ is the 1-shot quantum zero-error capacity (its definition is given in Section 2).

In [6] it is shown how a channel Ψ_{n} for a given n can be constructed such that

$$
\begin{equation*}
\bar{Q}_{0}\left(\Psi_{n}^{\otimes n}\right)=0 \quad \text { and } \quad \bar{Q}_{0}\left(\Psi_{n}^{\otimes m}\right)>0, \tag{3}
\end{equation*}
$$

$\overline{{ }^{1} \text { The research was }}$ founded by the Russian Science Foundation, project no. 14-21-00162.
where m is a natural number satisfying the inequality

$$
n / m \leq 2 \ln (3 / 2) / \pi<1
$$

Relations (3) imply the existence of $\widetilde{n}>n$ not greater than m such that (2) holds for $n=\widetilde{n}$, $C=\bar{Q}_{0}$, and $\Phi_{1}=\ldots=\Phi_{\tilde{n}}=\Psi_{n}$. Unfortunately, the approach used in [6] does not allow to determine this number \widetilde{n}.

In this paper we modify the example in [6] (by appropriately extending its noncommutative graph) to construct a family of channels $\left\{\Phi_{\theta}\right\}$ with $d_{A}=4$ and $d_{E}=3$ having the following property:

$$
\begin{equation*}
\bar{Q}_{0}\left(\Phi_{\theta_{1}} \otimes \Phi_{\theta_{2}} \otimes \Phi_{\theta_{3}}\right)>0 \quad \text { while } \quad \bar{Q}_{0}\left(\Phi_{\theta_{i}} \otimes \Phi_{\theta_{j}}\right)=0, \quad \forall i \neq j \tag{4}
\end{equation*}
$$

where θ_{1}, θ_{2}, and θ_{3} are positive numbers such that $\theta_{1}+\theta_{2}+\theta_{3}=\pi$. Thus, the channels $\Phi_{\theta_{1}}, \Phi_{\theta_{2}}$, and $\Phi_{\theta_{3}}$ demonstrate the 3 -partite superactivation of the 1 -shot quantum zero-error capacity.

Property (4) means that all the channels $\Phi_{\theta_{i}}$ and all the bipartite channels $\Phi_{\theta_{i}} \otimes \Phi_{\theta_{j}}$ have no ideal (perfectly reversible) subchannels, but the tripartite channel $\Phi_{\theta_{1}} \otimes \Phi_{\theta_{2}} \otimes \Phi_{\theta_{3}}$ has.

By using the observation in [7, Section 4], the superactivation property (4) can be reformulated in terms of quantum measurement theory as the existence of quantum observables $\mathcal{M}_{\theta_{1}}, \mathcal{M}_{\theta_{2}}$, and $\mathcal{M}_{\theta_{3}}$ such that all the observables $\mathcal{M}_{\theta_{i}}$ and all the bipartite observables $\mathcal{M}_{\theta_{i}} \otimes \mathcal{M}_{\theta_{j}}$ have no indistinguishable subspaces but the tripartite observable $\mathcal{M}_{\theta_{1}} \otimes \mathcal{M}_{\theta_{2}} \otimes \mathcal{M}_{\theta_{3}}$ has (see Corollary 2).

2. PRELIMINARIES

Let \mathcal{H} be a finite dimensional Hilbert space, $\mathfrak{B}(\mathcal{H})$ the algebra of all linear operators in \mathcal{H}, and $\mathfrak{S}(\mathcal{H})$ the closed convex subset of $\mathfrak{B}(\mathcal{H})$ consisting of positive operators with unit trace, called states $[8,9]$. The algebra $\mathfrak{B}(\mathcal{H})$ can be identified with the algebra \mathfrak{M}_{n} of all $n \times n$ matrices, where $n=\operatorname{dim} \mathcal{H}$.

Let $\Phi: \mathfrak{B}\left(\mathcal{H}_{A}\right) \rightarrow \mathfrak{B}\left(\mathcal{H}_{B}\right)$ be a quantum channel, i.e., a completely positive trace-preserving linear map $[8,9]$. This map has the Kraus representation

$$
\begin{equation*}
\Phi(A)=\sum_{k} V_{k} A V_{k}^{*}, \quad A \in \mathfrak{B}\left(\mathcal{H}_{A}\right) \tag{5}
\end{equation*}
$$

where $\left\{V_{k}\right\}$ is a set of linear operators from \mathcal{H}_{A} into \mathcal{H}_{B} such that $\sum_{k} V_{k}^{*} V_{k}=I_{\mathcal{H}_{A}}$ is the identity operator in \mathcal{H}_{A}. The minimal number of terms in such representation is called the Choi rank of Φ and is denoted by d_{E} (since d_{E} is the minimal dimension of an environment space $\mathcal{H}_{E}[8$, Ch. 6]). We will also use the notation $d_{A} \doteq \operatorname{dim} \mathcal{H}_{A}$ and $d_{B} \doteq \operatorname{dim} \mathcal{H}_{B}$.

The 1-shot quantum zero-error capacity $\bar{Q}_{0}(\Phi)$ of a channel Φ is defined as $\sup _{\mathcal{H} \in q_{0}(\Phi)} \log _{2} \operatorname{dim} \mathcal{H}$, where $q_{0}(\Phi)$ is the set of all subspaces \mathcal{H}_{0} of \mathcal{H}_{A} on which the channel Φ is perfectly reversible (in the sense that there is a channel Θ such that $\Theta(\Phi(\rho))=\rho$ for all states ρ supported by \mathcal{H}_{0}). The (asymptotic) quantum zero-error capacity is defined by regularization: $Q_{0}(\Phi)=\sup n^{-1} \bar{Q}_{0}\left(\Phi^{\otimes n}\right)$ [3, 10, 11].

The capacities $\bar{Q}_{0}(\Phi)$ and $Q_{0}(\Phi)$ are completely determined by the noncommutative graph $\mathcal{G}(\Phi)$ of the channel Φ, which can be defined as the subspace of $\mathfrak{B}\left(\mathcal{H}_{A}\right)$ spanned by the operators $V_{k}^{*} V_{l}$, where V_{k} are the operators from any Kraus representation (5) of Φ [11]. In particular, the KnillLaflamme error-correcting condition (see [12]) implies the following lemma.

Lemma 1. A channel $\Phi: \mathfrak{B}\left(\mathcal{H}_{A}\right) \rightarrow \mathfrak{B}\left(\mathcal{H}_{B}\right)$ is perfectly reversible on a subspace $\mathcal{H}_{0} \subseteq \mathcal{H}_{A}$ spanned by vectors $\left\{\varphi_{i}\right\}_{i=1}^{n}$ (which means that $\bar{Q}_{0}(\Phi) \geq \log n$) if and only if

$$
\begin{equation*}
\left\langle\varphi_{i}\right| A\left|\varphi_{j}\right\rangle=0 \quad \text { and } \quad\left\langle\varphi_{i}\right| A\left|\varphi_{i}\right\rangle=\left\langle\varphi_{j}\right| A\left|\varphi_{j}\right\rangle, \quad \forall i \neq j, \quad \forall A \in \mathfrak{L} \tag{6}
\end{equation*}
$$

where \mathfrak{L} is any subset of $\mathfrak{B}\left(\mathcal{H}_{A}\right)$ such that $\operatorname{lin} \mathfrak{L}=\mathcal{G}(\Phi)$.

Since a subspace \mathfrak{L} of the algebra \mathfrak{M}_{n} of $n \times n$ matrices is a noncommutative graph of a particular channel if and only if

$$
\begin{equation*}
\mathfrak{L} \text { is symmetric }\left(\mathfrak{L}=\mathfrak{L}^{*}\right) \text { and contains the unit matrix } \tag{7}
\end{equation*}
$$

(see [4, Lemma 2] or [7, Appendix]), Lemma 1 shows that one can "construct" a channel Φ with $\operatorname{dim} \mathcal{H}_{A}=n$ having positive (correspondingly, zero) 1-shot quantum zero-error capacity by taking a subspace $\mathfrak{L} \subset \mathfrak{M}_{n}$ satisfying (7) for which the following condition is valid (correspondingly, not valid):

$$
\begin{equation*}
\exists \varphi, \psi \in\left[\mathbb{C}^{n}\right]_{1} \quad \text { such that } \quad\langle\psi| A|\varphi\rangle=0 \quad \text { and } \quad\langle\varphi| A|\varphi\rangle=\langle\psi| A|\psi\rangle, \quad \forall A \in \mathfrak{L}, \tag{8}
\end{equation*}
$$

where $\left[\mathbb{C}^{n}\right]_{1}$ is the unit sphere of \mathbb{C}^{n}.

3. EXAMPLE OF TRIPARTITE SUPERACTIVATION

For a given $\theta \in(-\pi, \pi]$, consider the $8-\mathrm{D}$ subspace

$$
\mathfrak{N}_{\theta}=\left\{M=\left[\begin{array}{cccc}
a & b & e & f \tag{9}\\
c & d & f & \bar{\gamma} e \\
g & h & a & b \\
h & \gamma g & c & d
\end{array}\right], a, b, c, d, e, f, g, h \in \mathbb{C}\right\}
$$

of \mathfrak{M}_{4} satisfying condition (7), where $\gamma=\exp [i \theta]$.
Denote by $\widehat{\mathfrak{N}}_{\theta}$ the set of all channels whose noncommutative graph coincides with \mathfrak{N}_{θ}. In [7, Appendix] it is shown how to explicitly construct pseudo-diagonal channels in $\widehat{\mathfrak{N}}_{\theta}$ with $d_{A}=4$ and $d_{E} \geq 3$ (since $\operatorname{dim} \mathfrak{N}_{\theta}=8 \leq 3^{2}$).

Theorem. Let Φ_{θ} be a channel in $\widehat{\mathfrak{N}}_{\theta}$ and $n \in \mathbb{N}$ be arbitrary.
A. $\bar{Q}_{0}\left(\Phi_{\theta}\right)>0$ if and only if $\theta=\pi$ and $\bar{Q}_{0}\left(\Phi_{\pi}\right)=1$;
B. If $\theta_{1}+\ldots+\theta_{n}=\pi(\bmod 2 \pi)$, then $\bar{Q}_{0}\left(\Phi_{\theta_{1}} \otimes \ldots \otimes \Phi_{\theta_{n}}\right)>0$ and the channel $\Phi_{\theta_{1}} \otimes \ldots \otimes \Phi_{\theta_{n}}$ is perfectly reversible on the subspace spanned by the vectors ${ }^{2}$

$$
\begin{equation*}
|\varphi\rangle=\frac{1}{\sqrt{2}}[|1 \ldots 1\rangle+i|2 \ldots 2\rangle], \quad|\psi\rangle=\frac{1}{\sqrt{2}}[|3 \ldots 3\rangle+i|4 \ldots 4\rangle] \tag{10}
\end{equation*}
$$

where $\{|1\rangle, \ldots,|4\rangle\}$ is the canonical basic in \mathbb{C}^{4};
C. If $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\pi$, then $\bar{Q}_{0}\left(\Phi_{\theta_{1}} \otimes \Phi_{\theta_{2}}\right)=0$;
D. If $\left|\theta_{1}\right|+\ldots+\left|\theta_{n}\right| \leq 2 \ln (3 / 2)$, then $\bar{Q}_{0}\left(\Phi_{\theta_{1}} \otimes \ldots \otimes \Phi_{\theta_{n}}\right)=0$.

Assertion C is the main progress of this theorem as compared with Theorem 1 in [6]. It is the proof of this assertion that requires using the extended subspace \mathfrak{N}_{θ} (instead of the subspace \mathfrak{L}_{θ} used in [6]).

Remark. Since assertion D is proved by using quite coarse estimates, the other assertions of Theorem 1 make it reasonable to conjecture that assertion D can be strengthened as follows:
D^{\prime}. If $\left|\theta_{1}\right|+\ldots+\left|\theta_{n}\right|<\pi$, then $\bar{Q}_{0}\left(\Phi_{\theta_{1}} \otimes \ldots \otimes \Phi_{\theta_{n}}\right)=0$.
The proof of assertion C (i.e., D^{\prime} with $n=2$) given below cannot be generalized to the case of an arbitrary n. Thus, the question of the validity of conjecture D^{\prime} remains open.

The above theorem implies the following example of tripartite superactivation of the 1-shot quantum zero-error capacity.

[^0]Corollary 1. Let θ_{1}, θ_{2}, and θ_{3} be positive numbers such that $\theta_{1}+\theta_{2}+\theta_{3}=\pi$. Then

$$
\bar{Q}_{0}\left(\Phi_{\theta_{1}} \otimes \Phi_{\theta_{2}} \otimes \Phi_{\theta_{3}}\right)>0 \quad \text { while } \quad \bar{Q}_{0}\left(\Phi_{\theta_{i}} \otimes \Phi_{\theta_{j}}\right)=0, \quad \forall i \neq j
$$

The channel $\Phi_{\theta_{1}} \otimes \Phi_{\theta_{2}} \otimes \Phi_{\theta_{3}}$ is perfectly reversible on the subspace spanned by the vectors

$$
\begin{equation*}
|\varphi\rangle=\frac{1}{\sqrt{2}}[|111\rangle+i|222\rangle], \quad|\psi\rangle=\frac{1}{\sqrt{2}}[|333\rangle+i|444\rangle] \tag{11}
\end{equation*}
$$

If conjecture D^{\prime} were valid for some $n>2$, then a similar assertion would be true for $n+1$ channels $\Phi_{\theta_{1}}, \ldots, \Phi_{\theta_{n+1}}$. This would give an example of $(n+1)$-partite superactivation of the 1 -shot quantum zero-error capacity.

For each θ one can (nonuniquely) choose a basis $\left\{M_{k}^{\theta}\right\}_{k=1}^{8}$ of the subspace \mathfrak{N}_{θ} consisting of positive operators such that $\sum_{k=1}^{8} M_{k}^{\theta}=I_{\mathcal{H}_{A}}$ (since the subspace \mathfrak{N}_{θ} satisfies condition (7); see [7]). This basis can be considered as a quantum observable \mathcal{M}_{θ}. By using Proposition 1 in [7] and Lemma 1, one can reformulate Corollary 1 in terms of the theory of quantum measurements.

Corollary 2. Let θ_{1}, θ_{2}, and θ_{3} be positive numbers such that $\theta_{1}+\theta_{2}+\theta_{3}=\pi$. Then all the observables $\mathcal{M}_{\theta_{i}}$ and all the bipartite observables $\mathcal{M}_{\theta_{i}} \otimes \mathcal{M}_{\theta_{j}}$ have no indistinguishable subspaces, but the tripartite observable $\mathcal{M}_{\theta_{1}} \otimes \mathcal{M}_{\theta_{2}} \otimes \mathcal{M}_{\theta_{3}}$ has an indistinguishable subspace spanned by the vectors (11). ${ }^{3}$

Note also that Theorem 1 gives an example of superactivation of the 2 -shot quantum zero-error capacity (i.e., the quantity $\frac{1}{2} \bar{Q}_{0}\left(\Phi^{\otimes 2}\right)$ determining the ultimate rate of zero-error transmission of quantum information by simultaneous use of two copies of a channel).

Corollary 3. Let θ_{1} and θ_{2} be positive numbers such that $\theta_{1}+\theta_{2}=\pi / 2$. Then

$$
\bar{Q}_{0}\left(\left[\Phi_{\theta_{1}} \otimes \Phi_{\theta_{2}}\right]^{\otimes 2}\right)>0 \quad \text { while } \quad \bar{Q}_{0}\left(\Phi_{\theta_{1}}^{\otimes 2}\right)=\bar{Q}_{0}\left(\Phi_{\theta_{2}}^{\otimes 2}\right)=\bar{Q}_{0}\left(\Phi_{\theta_{1}} \otimes \Phi_{\theta_{2}}\right)=0
$$

Proof of the theorem. The subspace \mathfrak{N}_{θ} is an extension of the subspace \mathfrak{L}_{θ} used in [6], i.e., $\mathfrak{L}_{\theta} \subset \mathfrak{N}_{\theta}$ for each θ, and hence $\bar{Q}_{0}\left(\Phi_{\theta_{1}} \otimes \ldots \otimes \Phi_{\theta_{n}}\right) \leq \bar{Q}_{0}\left(\Psi_{\theta_{1}} \otimes \ldots \otimes \Psi_{\theta_{n}}\right)$ for any channels $\Psi_{\theta_{1}} \in \widehat{\mathfrak{L}}_{\theta_{1}}, \ldots, \Psi_{\theta_{n}} \in \widehat{\mathfrak{L}}_{\theta_{n}}$ (this follows from Lemma 1).

Thus, the equality $\bar{Q}_{0}\left(\Phi_{\theta}\right)=0$ for $\theta \neq \pi$, inequality $\bar{Q}_{0}\left(\Phi_{\pi}\right) \leq 1$, and assertion D follow from the corresponding assertions of Theorem 1 in [6].

By using Lemma 1 it is easy to verify that the channel Φ_{π} is perfectly reversible on the subspace spanned by the vectors $|\varphi\rangle=[1, i, 0,0]^{\top}$ and $|\psi\rangle=[0,0,1, i]^{\top}$. This implies $\bar{Q}_{0}\left(\Phi_{\pi}\right)=1$.

To prove assertion B, it suffices, by Lemma 1 , to show that for any $M_{1} \in \mathfrak{N}_{\theta_{1}}, \ldots, M_{n} \in \mathfrak{N}_{\theta_{n}}$ the equalities

$$
\begin{equation*}
\langle\psi| X|\varphi\rangle=0 \quad \text { and } \quad\langle\psi| X|\psi\rangle=\langle\varphi| X|\varphi\rangle \tag{12}
\end{equation*}
$$

hold, where $X=M_{1} \otimes \ldots \otimes M_{n}$ and where φ and ψ are the vectors defined in (10).
Let $a_{k}, b_{k}, \ldots, h_{k}$ be elements of the matrix M_{k} (see (9)). We have

$$
\begin{aligned}
2\langle\psi| X|\varphi\rangle & =\langle 3 \ldots 3| X|1 \ldots 1\rangle+i\langle 3 \ldots 3| X|2 \ldots 2\rangle-i\langle 4 \ldots 4| X|1 \ldots 1\rangle+\langle 4 \ldots 4| X|2 \ldots 2\rangle \\
& =g_{1} \ldots g_{n}\left(1+\gamma_{1} \ldots \gamma_{n}\right)+h_{1} \ldots h_{n}(i-i)=0
\end{aligned}
$$

since $\gamma_{1} \ldots \gamma_{n}=-1$ by the condition $\theta_{1}+\ldots+\theta_{n}=\pi(\bmod 2 \pi)$,

$$
\begin{aligned}
2\langle\varphi| X|\varphi\rangle & =\langle 1 \ldots 1| X|1 \ldots 1\rangle+i\langle 1 \ldots 1| X|2 \ldots 2\rangle-i\langle 2 \ldots 2| X|1 \ldots 1\rangle+\langle 2 \ldots 2| X|2 \ldots 2\rangle \\
& =a_{1} \ldots a_{n}+i\left(b_{1} \ldots b_{n}-c_{1} \ldots c_{n}\right)+d_{1} \ldots d_{n}
\end{aligned}
$$

[^1]and
\[

$$
\begin{aligned}
2\langle\psi| X|\psi\rangle & =\langle 3 \ldots 3| X|3 \ldots 3\rangle+i\langle 3 \ldots 3| X|4 \ldots 4\rangle-i\langle 4 \ldots 4| X|3 \ldots 3\rangle+\langle 4 \ldots 4| X|4 \ldots 4\rangle \\
& =a_{1} \ldots a_{n}+i\left(b_{1} \ldots b_{n}-c_{1} \ldots c_{n}\right)+d_{1} \ldots d_{n} .
\end{aligned}
$$
\]

Thus, both equalities in (12) are valid.
To prove assertion C, we have to show that the subspace $\mathfrak{N}_{\theta_{1}} \otimes \mathfrak{N}_{\theta_{2}}$ does not satisfy condition (8) if $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\pi$. In the case $\theta_{1}=\theta_{2}=0$, this follows from assertion D . Thus, we may assume, by symmetry, that $\theta_{2} \neq 0$.

Throughout the proof we will use the isomorphism

$$
\begin{equation*}
\mathbb{C}^{n} \otimes \mathbb{C}^{m} \ni x \otimes y \longleftrightarrow\left[x_{1} y, \ldots, x_{n} y\right]^{\top} \in \underbrace{\mathbb{C}^{m} \oplus \ldots \oplus \mathbb{C}^{m}}_{n} \tag{13}
\end{equation*}
$$

and the corresponding isomorphism

$$
\begin{equation*}
\mathfrak{M}_{n} \otimes \mathfrak{M}_{m} \ni A \otimes B \longleftrightarrow\left[a_{i j} B\right] \in \mathfrak{M}_{n m} \tag{14}
\end{equation*}
$$

Let U_{1}, U_{2}, V_{1}, and V_{2} be unitary operators in \mathbb{C}^{2} determined (in the canonical basis) by the matrices

$$
U_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & \gamma_{1}
\end{array}\right], \quad V_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & \gamma_{2}
\end{array}\right], \quad U_{2}=V_{2}=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

We will identify \mathbb{C}^{4} with $\mathbb{C}^{2} \oplus \mathbb{C}^{2}$. Thus, arbitrary matrices $M_{1} \in \mathfrak{N}_{\theta_{1}}$ and $M_{2} \in \mathfrak{N}_{\theta_{2}}$ can be represented as

$$
M_{1}=\left[\begin{array}{cc}
A_{1} & e_{1} U_{1}^{*}+f_{1} U_{2}^{*} \\
g_{1} U_{1}+h_{1} U_{2} & A_{1}
\end{array}\right], \quad M_{2}=\left[\begin{array}{cc}
A_{2} & e_{2} V_{1}^{*}+f_{2} V_{2}^{*} \\
g_{2} V_{1}+h_{2} V_{2} & A_{2}
\end{array}\right],
$$

or, according to (14), as

$$
M_{1}=I_{2} \otimes A_{1}+|2\rangle\langle 1| \otimes\left[g_{1} U_{1}+h_{1} U_{2}\right]+|1\rangle\langle 2| \otimes\left[e_{1} U_{1}^{*}+f_{1} U_{2}^{*}\right]
$$

and

$$
M_{2}=I_{2} \otimes A_{2}+|2\rangle\langle 1| \otimes\left[g_{2} V_{1}+h_{2} V_{2}\right]+|1\rangle\langle 2| \otimes\left[e_{2} V_{1}^{*}+f_{2} V_{2}^{*}\right],
$$

where A_{1} and A_{2} are arbitrary matrices and I_{2} is the unit matrix in \mathfrak{M}_{2}.
Assume the existence of orthogonal unit vectors φ and ψ in $\mathbb{C}^{4} \otimes \mathbb{C}^{4}$ such that

$$
\begin{equation*}
\langle\psi| M_{1} \otimes M_{2}|\varphi\rangle=0 \quad \text { and } \quad\langle\psi| M_{1} \otimes M_{2}|\psi\rangle=\langle\varphi| M_{1} \otimes M_{2}|\varphi\rangle, \tag{15}
\end{equation*}
$$

for all $M_{1} \in \mathfrak{N}_{\theta_{1}}$ and $M_{2} \in \mathfrak{N}_{\theta_{2}}$.
By using the above representations of M_{1} and M_{2} we have

$$
\begin{aligned}
M_{1} \otimes M_{2} & =\left[I_{2} \otimes I_{2}\right] \otimes\left[A_{1} \otimes A_{2}\right]+\left[I_{2} \otimes|2\rangle\langle 1|\right] \otimes\left[A_{1} \otimes\left[g_{2} V_{1}+h_{2} V_{2}\right]\right] \\
& +\left[I_{2} \otimes|1\rangle\langle 2|\right] \otimes\left[A_{1} \otimes\left[e_{2} V_{1}^{*}+f_{2} V_{2}^{*}\right]\right]+\left[|2\rangle\langle 1| \otimes I_{2}\right] \otimes\left[\left[g_{1} U_{1}+h_{1} U_{2}\right] \otimes A_{2}\right]+\ldots .
\end{aligned}
$$

Since $\mathfrak{M}_{2} \otimes \mathfrak{M}_{2}=\mathfrak{M}_{4}$, by choosing $e_{i}=f_{i}=g_{i}=h_{i}=0, i=1,2$, we obtain from (15) that

$$
\langle\psi| I_{4} \otimes A|\varphi\rangle=0 \quad \text { and } \quad\langle\psi| I_{4} \otimes A|\psi\rangle=\langle\varphi| I_{4} \otimes A|\varphi\rangle, \quad \forall A \in \mathfrak{M}_{4} .
$$

According to (13) and (14), we have

$$
I_{4} \otimes A=\left[\begin{array}{cccc}
A & 0 & 0 & 0 \\
0 & A & 0 & 0 \\
0 & 0 & A & 0 \\
0 & 0 & 0 & A
\end{array}\right], \quad|\varphi\rangle=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \quad|\psi\rangle=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right],
$$

where x_{i} and y_{i} are vectors in \mathbb{C}^{4}. Thus, the above relations can be rewritten as

$$
\sum_{i=1}^{4}\left\langle y_{i}\right| A\left|x_{i}\right\rangle=0 \quad \text { and } \quad \sum_{i=1}^{4}\left\langle y_{i}\right| A\left|y_{i}\right\rangle=\sum_{i=1}^{4}\left\langle x_{i}\right| A\left|x_{i}\right\rangle, \quad \forall A \in \mathfrak{M}_{4}
$$

which are equivalent to the operator equalities

$$
\begin{equation*}
\sum_{i=1}^{4}\left|y_{i}\right\rangle\left\langle x_{i}\right|=0 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{4}\left|y_{i}\right\rangle\left\langle y_{i}\right|=\sum_{i=1}^{4}\left|x_{i}\right\rangle\left\langle x_{i}\right| \tag{17}
\end{equation*}
$$

By choosing $e_{i}=f_{i}=g_{1}=h_{1}=0, i=1,2, A_{2}=0,\left(g_{2}, h_{2}\right)=(1,0)$, and $\left(g_{2}, h_{2}\right)=(0,1)$, we obtain from (15) that

$$
\langle\psi|\left[I_{2} \otimes|2\rangle\langle 1|\right] \otimes\left[A_{1} \otimes V_{k}\right]|\varphi\rangle=0
$$

and

$$
\langle\psi|\left[I_{2} \otimes|2\rangle\langle 1|\right] \otimes\left[A_{1} \otimes V_{k}\right]|\psi\rangle=\langle\varphi|\left[I_{2} \otimes|2\rangle\langle 1|\right] \otimes\left[A_{1} \otimes V_{k}\right]|\varphi\rangle
$$

for all A_{1} in \mathfrak{M}_{2} and $k=1,2$. According to (14), we have

$$
\left[I_{2} \otimes|2\rangle\langle 1|\right] \otimes\left[A_{1} \otimes V_{k}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
A_{1} \otimes V_{k} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & A_{1} \otimes V_{k} & 0
\end{array}\right]
$$

and hence the above equalities imply

$$
\begin{equation*}
\left\langle y_{2}\right| A \otimes V_{k}\left|x_{1}\right\rangle+\left\langle y_{4}\right| A \otimes V_{k}\left|x_{3}\right\rangle=0, \quad \forall A \in \mathfrak{M}_{2}, \quad k=1,2 \tag{18}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\langle y_{2}\right| A \otimes V_{k}\left|y_{1}\right\rangle+\left\langle y_{4}\right| A \otimes V_{k}\left|y_{3}\right\rangle \\
& \quad=\left\langle x_{2}\right| A \otimes V_{k}\left|x_{1}\right\rangle+\left\langle x_{4}\right| A \otimes V_{k}\left|x_{3}\right\rangle, \quad \forall A \in \mathfrak{M}_{2}, \quad k=1,2 \tag{19}
\end{align*}
$$

Similarly, by choosing $e_{i}=f_{i}=g_{2}=h_{2}=0, i=1,2, A_{1}=0,\left(g_{1}, h_{1}\right)=(1,0)$, and $\left(g_{1}, h_{1}\right)=$ $(0,1)$, we obtain from (15) the equalities

$$
\begin{equation*}
\left\langle y_{3}\right| U_{k} \otimes A\left|x_{1}\right\rangle+\left\langle y_{4}\right| U_{k} \otimes A\left|x_{2}\right\rangle=0, \quad \forall A \in \mathfrak{M}_{2}, \quad k=1,2 \tag{20}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\langle y_{3}\right| U_{k} \otimes A\left|y_{1}\right\rangle+\left\langle y_{4}\right| U_{k} \otimes A\left|y_{2}\right\rangle \\
& \quad=\left\langle x_{3}\right| U_{k} \otimes A\left|x_{1}\right\rangle+\left\langle x_{4}\right| U_{k} \otimes A\left|x_{2}\right\rangle, \quad \forall A \in \mathfrak{M}_{2}, \quad k=1,2 \tag{21}
\end{align*}
$$

By the symmetry of condition (15) with respect to φ and ψ, relations (18) and (20) imply, respectively,

$$
\begin{equation*}
\left\langle x_{2}\right| A \otimes V_{k}\left|y_{1}\right\rangle+\left\langle x_{4}\right| A \otimes V_{k}\left|y_{3}\right\rangle=0, \quad \forall A \in \mathfrak{M}_{2}, \quad k=1,2 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle x_{3}\right| U_{k} \otimes A\left|y_{1}\right\rangle+\left\langle x_{4}\right| U_{k} \otimes A\left|y_{2}\right\rangle=0, \quad \forall A \in \mathfrak{M}_{2}, \quad k=1,2 \tag{23}
\end{equation*}
$$

Finally, by taking $A_{1}=A_{2}=0$ and choosing appropriate values of e_{i}, f_{i}, g_{i}, and $h_{i}, i=1,2$, one can obtain from (15) the following equalities:

$$
\begin{align*}
\left\langle y_{4}\right| U_{k} \otimes V_{l}\left|x_{1}\right\rangle & =\left\langle x_{4}\right| U_{k} \otimes V_{l}\left|y_{1}\right\rangle=0, & & k, l=1,2, \tag{24}\\
\left\langle y_{4}\right| U_{k} \otimes V_{l}\left|y_{1}\right\rangle & =\left\langle x_{4}\right| U_{k} \otimes V_{l}\left|x_{1}\right\rangle, & & k, l=1,2, \tag{25}\\
\left\langle y_{3}\right| U_{k} \otimes V_{l}^{*}\left|x_{2}\right\rangle & =\left\langle x_{3}\right| U_{k} \otimes V_{l}^{*}\left|y_{2}\right\rangle=0, & & k, l=1,2, \tag{26}\\
\left\langle y_{3}\right| U_{k} \otimes V_{l}^{*}\left|y_{2}\right\rangle & =\left\langle x_{3}\right| U_{k} \otimes V_{l}^{*}\left|x_{2}\right\rangle, & & k, l=1,2 . \tag{27}
\end{align*}
$$

Below we prove that the system (16)-(27) has no nontrivial solutions.
We will use the following lemmas.
Lemma 2. A. Equations (16) and (17) imply that all the vectors x_{i} and $y_{i}, i=\overline{1,4}$, lie in some 2 -D subspace of \mathbb{C}^{4}.
B. If $x_{i_{0}}=y_{i_{0}}=0$ for some i_{0}, then equations (16) and (17) imply that all the vectors x_{i} and $y_{i}, i=\overline{1,4}$, are collinear.

Proof. A. Consider the 4×4 matrices

$$
X=\left[\left\langle x_{i} \mid x_{j}\right\rangle\right], \quad Y=\left[\left\langle y_{i} \mid y_{j}\right\rangle\right], \quad Z=\left[\left\langle x_{i} \mid y_{j}\right\rangle\right] .
$$

It is easy to see that (16) implies $X Y=0$, while (17) shows that $X^{2}=Z Z^{*}$ and $Y^{2}=Z^{*} Z$. Hence, $\operatorname{rank} X=\operatorname{rank} Y \leq 2$.

Since (17) implies that the sets $\left\{x_{i}\right\}_{i=1}^{4}$ and $\left\{y_{i}\right\}_{i=1}^{4}$ have the same linear hull, the above inequality shows that the dimension of this linear hull is not greater than 2 .
B. This assertion is proved similarly, since the same argumentation with 3×3 matrices X, Y, and Z implies $\operatorname{rank} X=\operatorname{rank} Y \leq 1$.

Lemma 3. A. The condition

$$
\begin{equation*}
\left\langle z_{4}\right| U_{k} \otimes V_{l}\left|z_{1}\right\rangle=0, \quad k, l=1,2, \tag{28}
\end{equation*}
$$

holds if and only if the pair $\left(z_{1}, z_{4}\right)$ has one of the following forms:

1. $z_{1}=\left[\begin{array}{c}\mu_{1} \\ s\end{array}\right] \otimes\left[\begin{array}{l}a \\ b\end{array}\right], \quad z_{4}=\left[\begin{array}{c}\bar{\mu}_{1} \\ -s\end{array}\right] \otimes\left[\begin{array}{l}c \\ d\end{array}\right] ;$
2. $z_{1}=\left[\begin{array}{l}a \\ b\end{array}\right] \otimes\left[\begin{array}{c}\mu_{2} \\ s\end{array}\right], \quad z_{4}=\left[\begin{array}{c}c \\ d\end{array}\right] \otimes\left[\begin{array}{c}\bar{\mu}_{2} \\ -s\end{array}\right]$;
3. $z_{1}=a\left[\begin{array}{c}\mu_{1} \\ 1\end{array}\right] \otimes\left[\begin{array}{c}\mu_{2} \\ s\end{array}\right]+b\left[\begin{array}{c}\mu_{1} \\ -1\end{array}\right] \otimes\left[\begin{array}{c}\mu_{2} \\ -s\end{array}\right], \quad z_{4}=c\left[\begin{array}{c}\bar{\mu}_{1} \\ 1\end{array}\right] \otimes\left[\begin{array}{c}\bar{\mu}_{2} \\ -s\end{array}\right]+d\left[\begin{array}{c}\bar{\mu}_{1} \\ -1\end{array}\right] \otimes\left[\begin{array}{c}\bar{\mu}_{2} \\ s\end{array}\right] ;$
4. $z_{1}=h\left[\begin{array}{c}\mu_{1} \\ s\end{array}\right] \otimes\left[\begin{array}{c}\mu_{2} \\ t\end{array}\right], \quad z_{4}=\left[\begin{array}{c}\bar{\mu}_{1} \\ -s\end{array}\right] \otimes\left[\begin{array}{c}a \\ b\end{array}\right]+\left[\begin{array}{l}c \\ d\end{array}\right] \otimes\left[\begin{array}{c}\bar{\mu}_{2} \\ -t\end{array}\right] ;$
5. $z_{1}=\left[\begin{array}{c}\mu_{1} \\ -s\end{array}\right] \otimes\left[\begin{array}{l}a \\ b\end{array}\right]+\left[\begin{array}{l}c \\ d\end{array}\right] \otimes\left[\begin{array}{c}\mu_{2} \\ -t\end{array}\right], \quad z_{4}=h\left[\begin{array}{c}\bar{\mu}_{1} \\ s\end{array}\right] \otimes\left[\begin{array}{c}\bar{\mu}_{2} \\ t\end{array}\right]$,
where $\mu_{k}=\sqrt{\gamma_{k}}, k=1,2, a, b, c, d, h \in \mathbb{C}, s= \pm 1$, and $t= \pm 1$.
B. Validity of (24) and (25) for vectors x_{i} and $y_{i}, i=1,4$, implies

$$
\left\langle y_{4}\right| U_{k} \otimes V_{l}\left|y_{1}\right\rangle=\left\langle x_{4}\right| U_{k} \otimes V_{l}\left|x_{1}\right\rangle=0, \quad k, l=1,2 .
$$

Lemma 4. A. The condition

$$
\begin{equation*}
\left\langle z_{3}\right| U_{k} \otimes V_{l}^{*}\left|z_{2}\right\rangle=0, \quad k, l=1,2 \tag{29}
\end{equation*}
$$

holds if and only if the pair $\left(z_{2}, z_{3}\right)$ has one of the following forms:

1. $z_{2}=\left[\begin{array}{c}\mu_{1} \\ s\end{array}\right] \otimes\left[\begin{array}{l}a \\ b\end{array}\right], \quad z_{3}=\left[\begin{array}{c}\bar{\mu}_{1} \\ -s\end{array}\right] \otimes\left[\begin{array}{l}c \\ d\end{array}\right] ;$
2. $z_{2}=\left[\begin{array}{l}a \\ b\end{array}\right] \otimes\left[\begin{array}{c}\bar{\mu}_{2} \\ s\end{array}\right], \quad z_{3}=\left[\begin{array}{l}c \\ d\end{array}\right] \otimes\left[\begin{array}{c}\mu_{2} \\ -s\end{array}\right] ;$
3. $z_{2}=a\left[\begin{array}{c}\mu_{1} \\ 1\end{array}\right] \otimes\left[\begin{array}{c}\bar{\mu}_{2} \\ s\end{array}\right]+b\left[\begin{array}{c}\mu_{1} \\ -1\end{array}\right] \otimes\left[\begin{array}{c}\bar{\mu}_{2} \\ -s\end{array}\right], \quad z_{3}=c\left[\begin{array}{c}\bar{\mu}_{1} \\ -1\end{array}\right] \otimes\left[\begin{array}{c}\mu_{2} \\ s\end{array}\right]+d\left[\begin{array}{c}\bar{\mu}_{1} \\ 1\end{array}\right] \otimes\left[\begin{array}{c}\mu_{2} \\ -s\end{array}\right] ;$
4. $z_{2}=h\left[\begin{array}{c}\mu_{1} \\ s\end{array}\right] \otimes\left[\begin{array}{c}\bar{\mu}_{2} \\ t\end{array}\right], \quad z_{3}=\left[\begin{array}{c}\bar{\mu}_{1} \\ -s\end{array}\right] \otimes\left[\begin{array}{l}a \\ b\end{array}\right]+\left[\begin{array}{l}c \\ d\end{array}\right] \otimes\left[\begin{array}{l}\mu_{2} \\ -t\end{array}\right] ;$
5. $z_{2}=\left[\begin{array}{l}\mu_{1} \\ -s\end{array}\right] \otimes\left[\begin{array}{l}a \\ b\end{array}\right]+\left[\begin{array}{l}c \\ d\end{array}\right] \otimes\left[\begin{array}{l}\bar{\mu}_{2} \\ -t\end{array}\right], \quad z_{3}=h\left[\begin{array}{c}\bar{\mu}_{1} \\ s\end{array}\right] \otimes\left[\begin{array}{c}\mu_{2} \\ t\end{array}\right]$,
where $\mu_{k}=\sqrt{\gamma_{k}}, k=1,2, a, b, c, d, h \in \mathbb{C}, s= \pm 1$, and $t= \pm 1$.
B. Validity of (26) and (27) for vectors x_{i} and $y_{i}, i=2,3$, implies

$$
\left\langle y_{3}\right| U_{k} \otimes V_{l}^{*}\left|y_{2}\right\rangle=\left\langle x_{3}\right| U_{k} \otimes V_{l}^{*}\left|x_{2}\right\rangle=0, \quad k, l=1,2
$$

Lemmas 3 and 4 are proved in the Appendix.
Lemma 5. Let $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\pi$. Then $\langle x| U_{1}|x\rangle \neq 0$ and $\langle x| V_{1}|x\rangle \neq 0$ for any nonzero vector $x \in \mathbb{C}^{2}$.

Proof. Since $\theta_{1}, \theta_{2} \neq \pi$, we have $\langle x| U_{1}|x\rangle=\left|x_{1}\right|^{2}+\gamma_{1}\left|x_{2}\right|^{2} \neq 0$ and $\langle x| V_{1}|x\rangle=\left|x_{1}\right|^{2}+\gamma_{2}\left|x_{2}\right|^{2} \neq 0$ for any nonzero vector $|x\rangle=\left[x_{1}, x_{2}\right]^{\top} \neq 0 . \triangle$

Lemma 6. Let $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\pi$. Then $\langle y| U_{1} \otimes V_{1}|y\rangle \neq 0$ and $\langle y| U_{1} \otimes V_{1}^{*}|y\rangle \neq 0$ for any nonzero vector $y \in \mathbb{C}^{2} \otimes \mathbb{C}^{2}$.

Proof. Since $U_{1} \otimes V_{1}=\operatorname{diag}\left\{1, \gamma_{2}, \gamma_{1}, \gamma_{1} \gamma_{2}\right\}$, the equality $\langle y| U_{1} \otimes V_{1}|y\rangle=0$ for a vector $|y\rangle=$ $\left[y_{1}, y_{2}, y_{3}, y_{4}\right]^{\top}$ means that

$$
\left|y_{1}\right|^{2}+\left|y_{2}\right|^{2} \gamma_{2}+\left|y_{3}\right|^{2} \gamma_{1}+\left|y_{4}\right|^{2} \gamma_{1} \gamma_{2}=0
$$

By the condition $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\pi$, the numbers $0,1, \gamma_{2}, \gamma_{1}, \gamma_{1} \gamma_{2}$ are extreme points of a convex polygon in the complex plane, so the last equality can be valid only if $y_{i}=0$ for all i.

Similarly one can show that $\langle y| U_{1} \otimes V_{1}^{*}|y\rangle=0$ implies $y=0$.
Lemma 7. Let p and q be complex numbers such that $|p|^{2}+|q|^{2}=1$. If $\left\{\left|x_{i}\right\rangle\right\}_{i=1}^{4}$ and $\left\{\left|y_{i}\right\rangle\right\}_{i=1}^{4}$ satisfy the system (16)-(27), then $\left\{\left|p x_{i}-q y_{i}\right\rangle\right\}_{i=1}^{4}$ and $\left\{\left|\bar{q} x_{i}+\bar{p} y_{i}\right\rangle\right\}_{i=1}^{4}$ also satisfy $(16)-(27)$.

Proof. It suffices to note that the condition

$$
\langle\varphi| A|\psi\rangle=\langle\psi| A|\varphi\rangle=\langle\psi| A|\psi\rangle-\langle\varphi| A|\varphi\rangle=0
$$

is invariant under the "rotation" $|\varphi\rangle \mapsto p|\varphi\rangle-q|\psi\rangle,|\psi\rangle \mapsto \bar{q}|\varphi\rangle+\bar{p}|\psi\rangle . \triangle$
Lemma 8. If $\left|\theta_{1}\right|+\left|\theta_{2}\right|<\pi$, then the system (16)-(27) has no nontrivial solution of the form $\left|x_{i}\right\rangle=\alpha_{i}|z\rangle$ and $\left|y_{i}\right\rangle=\beta_{i}|z\rangle, i=\overline{1,4}$.

Proof. Assume that $\left|x_{i}\right\rangle=\alpha_{i}|z\rangle$ and $\left|y_{i}\right\rangle=\beta_{i}|z\rangle, i=\overline{1,4}$, form a nontrivial solution of the system (16)-(27). Then (16) implies that $|\alpha\rangle=\left[\alpha_{1}, \ldots, \alpha_{4}\right]^{\top}$ and $|\beta\rangle=\left[\beta_{1}, \ldots, \beta_{4}\right]^{\top}$ are orthogonal nonzero vectors of the same norm. By Lemma 6, it follows from (24)-(27) and the second parts of Lemmas 3 and 4 that

$$
\alpha_{1} \alpha_{4}=\alpha_{1} \beta_{4}=\beta_{1} \alpha_{4}=\beta_{1} \beta_{4}=\alpha_{2} \alpha_{3}=\alpha_{2} \beta_{3}=\beta_{2} \alpha_{3}=\beta_{2} \beta_{3}=0
$$

This is possible if and only if one of the pairs $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{4}, \beta_{4}\right)$ and one of the pairs $\left(\alpha_{2}, \beta_{2}\right)$ and $\left(\alpha_{3}, \beta_{3}\right)$ are equal to $(0,0)$.

Assume that $\alpha_{1}=\beta_{1}=0$. Then $\left|\alpha_{4}\right|+\left|\beta_{4}\right|>0$, since otherwise $\langle\beta \mid \alpha\rangle \neq 0$, and by Lemma 7 we may assume that $\alpha_{4} \neq 0$. By Lemma 6 it follows from (22) with $A=U_{1}$ and (23) with $A=V_{1}$ that $\alpha_{4} \beta_{2}=\alpha_{4} \beta_{3}=0$, which implies $\beta_{2}=\beta_{3}=0$. Hence, the condition $\langle\beta \mid \alpha\rangle=0$ can be valid only if $|\beta\rangle=0$.

In a similar way one can show that the assumption $\alpha_{4}=\beta_{4}=0$ leads to a contradiction. \triangle
Assume that the collections $\left\{x_{i}\right\}_{1}^{4}$ and $\left\{y_{i}\right\}_{1}^{4}$ form a nontrivial solution of the system (16)-(27).
If $x_{i} \nVdash y_{i}$ for some i, then (24)-(27) and the second parts of Lemmas 3 and 4 imply

$$
\left\langle y_{5-i}\right| W_{i}\left|x_{i}\right\rangle=\left\langle x_{5-i}\right| W_{i}\left|y_{i}\right\rangle=\left\langle x_{5-i}\right| W_{i}\left|x_{i}\right\rangle=\left\langle y_{5-i}\right| W_{i}\left|y_{i}\right\rangle=0
$$

where $W_{1}=U_{1} \otimes V_{1}, W_{2}=U_{1} \otimes V_{1}^{*}, W_{3}=U_{1}^{*} \otimes V_{1}$, and $W_{4}=U_{1}^{*} \otimes V_{1}^{*}$. Since $x_{5-i}, y_{5-i} \in \operatorname{lin}\left\{x_{i}, y_{i}\right\}$ by claim A of Lemma 2, the above equalities show that $\left\langle x_{5-i}\right| W_{i}\left|x_{5-i}\right\rangle=\left\langle y_{5-i}\right| W_{i}\left|y_{5-i}\right\rangle=0$. Lemma 6 implies $x_{5-i}=y_{5-i}=0$. By claim B of Lemma 2, this contradicts the assumption $x_{i} \nVdash y_{i}$.

Thus, $x_{i} \| y_{i}$ for all $i=\overline{1,4}$. By Lemma 8 we may assume in what follows that

$$
\begin{equation*}
\left|x_{i}\right\rangle=\alpha_{i}\left|z_{i}\right\rangle \quad \text { and } \quad\left|y_{i}\right\rangle=\beta_{i}\left|z_{i}\right\rangle, \quad \text { where }\left|z_{i}\right\rangle \text { are noncollinear vectors. }{ }^{4} \tag{30}
\end{equation*}
$$

Claim B of Lemma 2 implies $\left|\alpha_{i}\right|+\left|\beta_{i}\right|>0, i=\overline{1,4}$, and equations (16) and (17) can be rewritten as follows:

$$
\begin{gather*}
\sum_{i=1}^{4} \bar{\beta}_{i} \alpha_{i}\left|z_{i}\right\rangle\left\langle z_{i}\right|=0 \tag{31}\\
\sum_{i=1}^{4}\left[\left|\beta_{i}\right|^{2}-\left|\alpha_{i}\right|^{2}\right]\left|z_{i}\right\rangle\left\langle z_{i}\right|=0 \tag{32}
\end{gather*}
$$

By Lemma 7 we may assume that $\beta_{1}=0$ and hence $\alpha_{1} \neq 0$. There are two cases:

1. If $\beta_{i} \alpha_{i} \neq 0$ for all $i>1$, then (31) and Lemma 9 (in the Appendix) imply $z_{2}\left\|z_{3}\right\| z_{4}$. Then it follows from (32) that

$$
\left|\alpha_{1}\right|^{2}\left|z_{1}\right\rangle\left\langle z_{1}\right|+[\ldots]\left|z_{2}\right\rangle\left\langle z_{2}\right|=0
$$

and hence $z_{1}\left\|z_{2}\right\| z_{3} \| z_{4}$, contradicting the assumption (30).
2. If there is $k>1$ such that $\beta_{k} \alpha_{k}=0$, then (31) implies that either $\beta_{i} \alpha_{i} \neq 0$ and $\beta_{j} \alpha_{j} \neq 0$ or $\beta_{i} \alpha_{i}=\beta_{j} \alpha_{j}=0$, where i and $j>i$ are complementary indices to 1 and k.

If $\beta_{i} \alpha_{i} \neq 0$ and $\beta_{j} \alpha_{j} \neq 0$, then it follows from (31) that $z_{i} \| z_{j}$, and (32) implies

$$
\left|\alpha_{1}\right|^{2}\left|z_{1}\right\rangle\left\langle z_{1}\right|+p\left|z_{k}\right\rangle\left\langle z_{k}\right|+[\ldots]\left|z_{i}\right\rangle\left\langle z_{i}\right|=0
$$

where p is a nonzero number (equal to either $\left|\alpha_{k}\right|^{2}$ or $-\left|\beta_{k}\right|^{2}$). Hence, $z_{1} \| z_{k}$ by Lemma 9 .
Thus, $z_{1} \| z_{k}$ and $z_{i} \| z_{j}$. By Lemma 6 it follows from (24) and (26) that $k \neq 4$ and $(i, j) \neq(2,3)$. Thus, we have only two possibilities:
(a) $k=2, i=3, j=4$. In this case $z_{3} \| z_{4}$ and (22) with $A=U_{1}$ implies

$$
\bar{\alpha}_{4} \beta_{3}\left\langle z_{4}\right| U_{1} \otimes V_{1}\left|z_{3}\right\rangle=-\bar{\alpha}_{2} \beta_{1}\left\langle z_{2}\right| U_{1} \otimes V_{1}\left|z_{1}\right\rangle=0 \quad\left(\text { since } \beta_{1}=0\right)
$$

Hence Lemma 6 shows that $\alpha_{4} \beta_{3}=0$, contradicting the assumption $\alpha_{3} \beta_{3} \neq 0$ and $\alpha_{4} \beta_{4} \neq 0$.
${ }^{4}$ In the sense that among the vectors $\left|z_{i}\right\rangle, i=\overline{1,4}$, there are noncollinear pairs.
(b) $k=3, i=2, j=4$. In this case $z_{2} \| z_{4}$, and (23) with $A=V_{1}$ implies

$$
\bar{\alpha}_{4} \beta_{2}\left\langle z_{4}\right| U_{1} \otimes V_{1}\left|z_{2}\right\rangle=-\bar{\alpha}_{3} \beta_{1}\left\langle z_{3}\right| U_{1} \otimes V_{1}\left|z_{1}\right\rangle=0 \quad\left(\text { since } \beta_{1}=0\right) .
$$

Hence, Lemma 6 shows that $\alpha_{4} \beta_{2}=0$, contradicting the assumption $\alpha_{2} \beta_{2} \neq 0$ and $\alpha_{4} \beta_{4} \neq 0$.
Thus, we have $\beta_{i} \alpha_{i}=0$ for all $i=\overline{1,4}$. Since the vectors z_{1}, \ldots, z_{4} are not collinear by assumption (30), equality (32) and claim B of Lemma 2 imply that there are two nonzero α_{i} and two nonzero β_{i}. Thus, there are the following cases (up to permutation):

$$
\text { (a) }|\varphi\rangle,|\psi\rangle=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
y_{3} \\
y_{4}
\end{array}\right] ; \quad \text { (b) }|\varphi\rangle,|\psi\rangle=\left[\begin{array}{c}
x_{1} \\
0 \\
x_{3} \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
y_{2} \\
0 \\
y_{4}
\end{array}\right] ; \quad \text { (c) }|\varphi\rangle,|\psi\rangle=\left[\begin{array}{c}
x_{1} \\
0 \\
0 \\
x_{4}
\end{array}\right],\left[\begin{array}{c}
0 \\
y_{2} \\
y_{3} \\
0
\end{array}\right],
$$

where $x_{1} \nVdash x_{k}$ and $y_{i} \nVdash y_{j}$ (if either $x_{1} \| x_{k}$ or $y_{i} \| y_{j}$, then (32) implies $x_{1}\left\|x_{k}\right\| y_{i} \| y_{j}$, contradicting assumption (30)).

First we show that case (c) is not possible. It follows from (18) with $A=U_{1}$ and (20) with $A=V_{1}$ that

$$
\left\langle y_{2}\right| U_{1} \otimes V_{1}\left|x_{1}\right\rangle=\left\langle y_{3}\right| U_{1} \otimes V_{1}\left|x_{1}\right\rangle=0 .
$$

Since $y_{2} \nVdash y_{3}$, claim A of Lemma 2 shows that $x_{1} \in \operatorname{lin}\left\{y_{2}, y_{3}\right\}$ and the above equalities imply $\left\langle x_{1}\right| U_{1} \otimes V_{1}\left|x_{1}\right\rangle=0$. By Lemma 6 this is possible only if $x_{1}=0$.

It is more difficult to show the incompatibility of the system (16)-(27) in cases (a) and (b). We will consider these cases simultaneously by denoting $z_{2}=x_{2}$ and $z_{3}=y_{3}$ in case (a), $z_{2}=y_{2}$ and $z_{3}=x_{3}$ in case (b), and $z_{1}=x_{1}$ and $z_{4}=y_{4}$ in both cases. The system (16)-(27) implies the following equations:

$$
\begin{equation*}
\left|x_{1}\right\rangle\left\langle x_{1}\right|+\left|x_{i}\right\rangle\left\langle x_{i}\right|=\left|y_{j}\right\rangle\left\langle y_{j}\right|+\left|y_{4}\right\rangle\left\langle y_{4}\right|, \tag{33}
\end{equation*}
$$

where $(i, j)=(2,3)$ in case (a) and $(i, j)=(3,2)$ in case (b),

$$
\begin{array}{lll}
\left\langle z_{3}\right| U_{k} \otimes A\left|x_{1}\right\rangle=-\sigma_{*}\left\langle y_{4}\right| U_{k} \otimes A\left|z_{2}\right\rangle, & \forall A \in \mathfrak{M}_{2}, & k=1,2, \\
\left\langle z_{2}\right| A \otimes V_{k}\left|x_{1}\right\rangle=+\sigma_{*}\left\langle y_{4}\right| A \otimes V_{k}\left|z_{3}\right\rangle, & \forall A \in \mathfrak{M}_{2}, & k=1,2, \tag{35}
\end{array}
$$

where $\sigma_{*}=1$ in case (a) and $\sigma_{*}=-1$ in case (b),

$$
\begin{array}{ll}
\left\langle y_{4}\right| U_{k} \otimes V_{l}\left|x_{1}\right\rangle=0, & k, l=1,2 \\
\left\langle z_{3}\right| U_{k} \otimes V_{l}^{*}\left|z_{2}\right\rangle=0, & k, l=1,2 . \tag{37}
\end{array}
$$

It follows from (36) and (37) that the pairs $\left(z_{1}, z_{4}\right)$ and $\left(z_{2}, z_{3}\right)$ must have one of the forms 1-5 given in claims A of Lemmas 3 and 4 , respectively.

Assume first that both pairs $\left(z_{1}, z_{4}\right)$ and $\left(z_{2}, z_{3}\right)$ have forms 1 or 2 . In this case z_{1}, z_{2}, z_{3}, and z_{4} are tensor product vectors (vectors of the form $u \otimes v$). By Lemma 10 (see the Appendix), equality (33) can only be valid in the following cases $1-4$:

1. $\left|z_{i}\right\rangle=|p\rangle \otimes\left|a_{i}\right\rangle, i=\overline{1,4}$. It follows from (34) that

$$
\langle p| U_{1}|p\rangle\left\langle a_{3}\right| A\left|a_{1}\right\rangle=-\sigma_{*}\langle p| U_{1}|p\rangle\left\langle a_{4}\right| A\left|a_{2}\right\rangle, \quad \forall A \in \mathfrak{M}_{2} .
$$

Since $\langle p| U_{1}|p\rangle \neq 0$ by Lemma 5, we have $a_{1} \| a_{2}$ and $a_{3} \| a_{4}$. In case (a) this and (33) implies $x_{1}\left\|x_{2}\right\| y_{3} \| y_{4}$, contradicting (30). In case (b) this means that $x_{1} \| y_{2}$ and $x_{3} \| y_{4}$. The assumption $x_{1} \nVdash x_{3}$ and (33) show that this case can only be valid if $\left|x_{1}\right\rangle\left\langle x_{1}\right|=\left|y_{2}\right\rangle\left\langle y_{2}\right|$ and $\left|x_{3}\right\rangle\left\langle x_{3}\right|=\left|y_{4}\right\rangle\left\langle y_{4}\right|$. Thus, this case is reduced to case 4 considered below.
2. $\left|z_{i}\right\rangle=\left|a_{i}\right\rangle \otimes|p\rangle, i=\overline{1,4}$. Similarly to case 1 , this case is reduced to case 4 by using (35) instead of (34).
3. $\left|x_{1}\right\rangle\left\langle x_{1}\right|=\left|y_{4}\right\rangle\left\langle y_{4}\right|$ and $\left|z_{2}\right\rangle\left\langle z_{2}\right|=\left|z_{3}\right\rangle\left\langle z_{3}\right|$. It follows from (36), (37), and Lemma 6 that this is impossible.
4. $\left|x_{1}\right\rangle\left\langle x_{1}\right|=\left|y_{i}\right\rangle\left\langle y_{i}\right|$ and $\left|x_{5-i}\right\rangle\left\langle x_{5-i}\right|=\left|y_{4}\right\rangle\left\langle y_{4}\right|$, where $i=3$ in case (a) and $i=2$ in case (b).

If $i=3$, then $y_{3}=\alpha x_{1}, y_{4}=\beta x_{2},|\alpha|=|\beta|=1$, and (34) with $\sigma_{*}=1$ implies

$$
\begin{equation*}
\bar{\alpha}\left\langle x_{1}\right| U_{1} \otimes A\left|x_{1}\right\rangle=-\bar{\beta}\left\langle x_{2}\right| U_{1} \otimes A\left|x_{2}\right\rangle, \quad \forall A \in \mathfrak{M}_{2} . \tag{38}
\end{equation*}
$$

Since x_{1} and x_{2} are product vectors, it follows from this relation and Lemma 5 that

$$
x_{1}=a \otimes p \quad \text { and } \quad x_{2}=b \otimes p
$$

for some nonzero vectors a, b, and p. Hence, (36), (37), and Lemma 5 imply

$$
\langle b| U_{k}|a\rangle=\langle b| U_{k}^{*}|a\rangle=0, \quad k=1,2 .
$$

If $\gamma_{1} \neq 1$ (i.e., $\theta_{1} \neq 0$), then this cannot be valid for nonzero vectors a and b. If $\gamma_{1}=1$, then (38) shows that $\bar{\alpha}\|a\|^{2}=-\bar{\beta}\|b\|^{2}$, while (35) with $\sigma_{*}=1$ and Lemma 5 imply $\bar{\beta} \alpha=1$, i.e., $\alpha=\beta$.

Similarly, if $i=2$, then by using Lemma 5 one can obtain from (35) that

$$
x_{1}\left\|y_{2}\right\| p \otimes a \quad \text { and } \quad x_{3}\left\|y_{4}\right\| p \otimes b
$$

for some nonzero vectors a, b, and p. Hence, (36), (37), and Lemma 5 imply

$$
\langle b| V_{k}|a\rangle=\langle b| V_{k}^{*}|a\rangle=0, \quad k=1,2,
$$

which cannot be valid for nonzero vectors a and b (since the assumption $\theta_{2} \neq 0$ implies $\gamma_{2} \neq \bar{\gamma}_{2}$).
Assume now that the pair $\left(x_{1}, y_{4}\right)$ have form 3 in Lemma 3, i.e.,

$$
x_{1}=a\left[\begin{array}{c}
\mu_{1} \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
\mu_{2} \\
s
\end{array}\right]+b\left[\begin{array}{c}
\mu_{1} \\
-1
\end{array}\right] \otimes\left[\begin{array}{c}
\mu_{2} \\
-s
\end{array}\right], \quad y_{4}=c\left[\begin{array}{c}
\bar{\mu}_{1} \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
\bar{\mu}_{2} \\
-s
\end{array}\right]+d\left[\begin{array}{c}
\bar{\mu}_{1} \\
-1
\end{array}\right] \otimes\left[\begin{array}{c}
\bar{\mu}_{2} \\
s
\end{array}\right],
$$

where $s= \pm 1$; let us show the incompatibility of the system (33)-(37) if the pair $\left(z_{2}, z_{3}\right)$ has forms $1-3$ in Lemma 4 . We will do this by reducing to the case of tensor product vectors x_{1}, z_{2}, z_{3}, and y_{4} considered above.

1. The pair $\left(z_{2}, z_{3}\right)$ has form 1, i.e.,

$$
z_{2}=\left[\begin{array}{c}
\mu_{1} \\
t
\end{array}\right] \otimes\left[\begin{array}{c}
p \\
q
\end{array}\right], \quad z_{3}=\left[\begin{array}{c}
\bar{\mu}_{1} \\
-t
\end{array}\right] \otimes\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad t= \pm 1, \quad|p|+|q| \neq 0, \quad|x|+|y| \neq 0
$$

By substituting the expressions for x_{1}, z_{2}, z_{3}, and y_{4} into (34) and noting that

$$
\left\langle\begin{array}{c}
\bar{\mu}_{1} \tag{39}\\
s
\end{array}\right| \begin{gathered}
U_{k}
\end{gathered}\left|\begin{array}{c}
\mu_{1} \\
-s
\end{array}\right\rangle=0, \quad s= \pm 1, \quad k=1,2,
$$

we obtain

$$
b\left\langle\begin{array}{c}
\bar{\mu}_{1} \\
-1
\end{array}\right| U_{k}\left|\begin{array}{c}
\mu_{1} \\
-1
\end{array}\right\rangle\left\langle\begin{array}{c}
x \\
y
\end{array} \left\lvert\, \begin{array}{c}
A \\
\mu_{2} \\
-s
\end{array}\right.\right\rangle=-\sigma_{*} \bar{c}\left\langle\begin{array}{c}
\bar{\mu}_{1} \\
1
\end{array}\right| U_{k}\left|\begin{array}{c}
\mu_{1} \\
1
\end{array}\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{2} \\
-s
\end{array}\right| A\left|\begin{array}{c}
p \\
q
\end{array}\right\rangle \quad \text { if } \quad t=1,
$$

and

$$
a\left\langle\begin{array}{c}
\bar{\mu}_{1} \\
1
\end{array}\right| U_{k}\left|\begin{array}{c}
\mu_{1} \\
1
\end{array}\right\rangle\left\langle\begin{array}{c}
x \\
y
\end{array}\right| A\left|\begin{array}{c}
\mu_{2} \\
s
\end{array}\right\rangle=-\sigma_{*} \bar{d}\left\langle\begin{array}{c}
\bar{\mu}_{1} \\
-1
\end{array}\right| U_{k}\left|\begin{array}{c}
\mu_{1} \\
-1
\end{array}\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{2} \\
s
\end{array}\right| A\left|\begin{array}{l}
p \\
q
\end{array}\right\rangle \quad \text { if } \quad t=-1 .
$$

The validity of this equality for all $A \in \mathfrak{M}_{2}$ implies

$$
b \lambda_{k}^{-}\left|\begin{array}{c}
\mu_{2} \\
-s
\end{array}\right\rangle\left\langle\begin{array}{c}
x \\
y
\end{array}\right|=-\sigma_{*} \bar{c} \lambda_{k}^{+}\left|\begin{array}{c}
p \\
q
\end{array}\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{2} \\
-s
\end{array}\right| \quad \text { if } \quad t=1,
$$

and

$$
a \lambda_{k}^{+}\left|\begin{array}{c}
\mu_{2} \\
s
\end{array}\right\rangle\left\langle\begin{array}{c}
x \\
y
\end{array}\right|=-\sigma_{*} \bar{d} \lambda_{k}^{-}\left|\begin{array}{c}
p \\
q
\end{array}\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{2} \\
s
\end{array}\right| \quad \text { if } \quad t=-1,
$$

 $-\lambda_{2}^{-} \neq 0$, the validity of the above equalities for $k=1,2$ implies $b=c=0$ if $t=1$ and $a=d=0$ if $t=-1$. Hence, x_{1}, z_{2}, z_{3}, and y_{4} are product vectors.
2. The pair $\left(z_{2}, z_{3}\right)$ has form 2, i.e.,

$$
z_{2}=\left[\begin{array}{c}
p \\
q
\end{array}\right] \otimes\left[\begin{array}{c}
\bar{\mu}_{2} \\
t
\end{array}\right], \quad z_{3}=\left[\begin{array}{c}
x \\
y
\end{array}\right] \otimes\left[\begin{array}{c}
\mu_{2} \\
-t
\end{array}\right], \quad t= \pm 1, \quad|p|+|q| \neq 0, \quad|x|+|y| \neq 0
$$

By substituting the expressions for x_{1}, z_{2}, z_{3}, and y_{4} into (35) and noting that

$$
\left\langle\begin{array}{c}
\bar{\mu}_{2} \\
t
\end{array} \left\lvert\, \begin{array}{c}
V_{k} \\
\mu_{2} \\
-t
\end{array}\right.\right\rangle=0, \quad t= \pm 1, \quad k=1,2,
$$

we obtain

$$
a\left\langle\begin{array}{c}
p \\
q
\end{array}\right| \begin{gathered}
A
\end{gathered}\left|\begin{array}{c}
\mu_{1} \\
1
\end{array}\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{2} \\
t
\end{array}\right| V_{k}\left|\begin{array}{c}
\mu_{2} \\
t
\end{array}\right\rangle=\sigma_{*} \bar{c}\left\langle\begin{array}{c}
\bar{\mu}_{1} \\
1
\end{array}\right| A\left|\begin{array}{c}
x \\
y
\end{array}\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{2} \\
-t
\end{array}\right| \begin{gathered}
V_{k}
\end{gathered}\left|\begin{array}{c}
\mu_{2} \\
-t
\end{array}\right\rangle \quad \text { if } \quad t=s,
$$

and

$$
b\left\langle\begin{array}{c}
p \\
q
\end{array} \left\lvert\, \begin{array}{c}
A \\
\mu_{1} \\
-1
\end{array}\right.\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{2} \\
t
\end{array}\right| V_{k}\left|\begin{array}{c}
\mu_{2} \\
t
\end{array}\right\rangle=\sigma_{*} \bar{d}\left\langle\begin{array}{c}
\bar{\mu}_{1} \\
-1
\end{array}\right| A\left|\begin{array}{c}
x \\
y
\end{array}\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{2} \\
-t
\end{array}\right| \begin{gathered}
V_{k}\left|\begin{array}{c}
\mu_{2} \\
-t
\end{array}\right\rangle \quad \text { if } \quad t=-s ~
\end{gathered}
$$

The validity of this equality for all $A \in \mathfrak{M}_{2}$ implies

$$
a \nu_{k}^{t}\left|\begin{array}{c}
\mu_{1} \\
1
\end{array}\right\rangle\left\langle\begin{array}{l}
p \\
q
\end{array}\right|=\sigma_{*} \bar{c} \nu_{k}^{-t}\left|\begin{array}{c}
x \\
y
\end{array}\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{1} \\
1
\end{array}\right| \quad \text { if } \quad t=s,
$$

and

$$
b \nu_{k}^{t}\left|\begin{array}{c}
\mu_{1} \\
-1
\end{array}\right\rangle\left\langle\begin{array}{l}
p \\
q
\end{array}\right|=\sigma_{*} \bar{d} \nu_{k}^{-t}\left|\begin{array}{l}
x \\
y
\end{array}\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{1} \\
-1
\end{array}\right| \quad \text { if } \quad t=-s,
$$

where $\nu_{1}^{t}=\left\langle\begin{array}{c}\bar{\mu}_{2} \\ t\end{array}\right| V_{1}\left|\begin{array}{c}\mu_{2} \\ t\end{array}\right\rangle=2 \mu_{2}^{2}$ and $\nu_{2}^{t}=\left\langle\begin{array}{c}\bar{\mu}_{2} \\ t\end{array}\right| V_{2}\left|\begin{array}{c}\mu_{2} \\ t\end{array}\right\rangle=2 t \mu_{2}$. Since $\nu_{1}^{t}=\nu_{1}^{-t} \neq 0$ and $\nu_{2}^{t}=-\nu_{2}^{-t} \neq 0$, the validity of the above equalities for $k=1,2$ implies $a=c=0$ if $t=s$ and $b=d=0$ if $t=-s$. Hence, x_{1}, z_{2}, z_{3}, and y_{4} are product vectors.
3. The pair $\left(z_{2}, z_{3}\right)$ has form 3, i.e.,

$$
z_{2}=p\left[\begin{array}{c}
\mu_{1} \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
\bar{\mu}_{2} \\
t
\end{array}\right]+q\left[\begin{array}{c}
\mu_{1} \\
-1
\end{array}\right] \otimes\left[\begin{array}{c}
\bar{\mu}_{2} \\
-t
\end{array}\right], \quad z_{3}=x\left[\begin{array}{c}
\bar{\mu}_{1} \\
-1
\end{array}\right] \otimes\left[\begin{array}{c}
\mu_{2} \\
t
\end{array}\right]+y\left[\begin{array}{c}
\bar{\mu}_{1} \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
\mu_{2} \\
-t
\end{array}\right],
$$

where $t= \pm 1$. If we substitute the expressions for x_{1}, z_{2}, z_{3}, and y_{4} into (34) (by using (39)), then the left- and right-hand sides of this equality will be equal, respectively, to

$$
\bar{x} b\left\langle\begin{array}{c}
\bar{\mu}_{1} \\
-1
\end{array}\right| U_{k}\left|\begin{array}{c}
\mu_{1} \\
-1
\end{array}\right\rangle\left\langle\begin{array}{c}
\mu_{2} \\
t
\end{array}\right| A\left|\begin{array}{c}
\mu_{2} \\
-s
\end{array}\right\rangle+\bar{y} a\left\langle\begin{array}{c}
\bar{\mu}_{1} \\
1
\end{array}\right| U_{k}\left|\begin{array}{c}
\mu_{1} \\
1
\end{array}\right\rangle\left\langle\begin{array}{c}
\mu_{2} \\
-t
\end{array}\right| A\left|\begin{array}{c}
\mu_{2} \\
s
\end{array}\right\rangle
$$

and

$$
-\sigma_{*} \bar{c} p\left\langle\begin{array}{c}
\bar{\mu}_{1} \\
1
\end{array}\right| U_{k}\left|\begin{array}{c}
\mu_{1} \\
1
\end{array}\right\rangle\left\langle\left.\begin{array}{c}
\bar{\mu}_{2} \\
-s
\end{array} \right\rvert\, A \begin{array}{c}
\bar{\mu}_{2} \\
t
\end{array}\right\rangle-\sigma_{*} \bar{d} q\left\langle\begin{array}{c}
\bar{\mu}_{1} \\
-1
\end{array}\right| U_{k}\left|\begin{array}{c}
\mu_{1} \\
-1
\end{array}\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{2} \\
s
\end{array}\right| \begin{gathered}
A\left|\begin{array}{c}
\bar{\mu}_{2} \\
-t
\end{array}\right\rangle . ~
\end{gathered}
$$

Thus, the validity of this equality for all $A \in \mathfrak{M}_{2}$ implies

$$
\left[\bar{y} a\left|\begin{array}{c}
\mu_{2} \\
s
\end{array}\right\rangle\left\langle\begin{array}{c}
\mu_{2} \\
-t
\end{array}\right|+\sigma_{*} \bar{c} p\left|\begin{array}{c}
\bar{\mu}_{2} \\
t
\end{array}\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{2} \\
-s
\end{array}\right]\right]=s_{k}\left[\sigma_{*} \bar{d} q\left|\begin{array}{c}
\bar{\mu}_{2} \\
-t
\end{array}\right\rangle\left\langle\begin{array}{c}
\bar{\mu}_{2} \\
s
\end{array}\right|+\bar{x} b\left|\begin{array}{c}
\mu_{2} \\
-s
\end{array}\right\rangle\left\langle\begin{array}{c}
\mu_{2} \\
t
\end{array}\right|\right],
$$

where $\varsigma_{k} \doteq-\lambda_{k}^{-} / \lambda_{k}^{+}=(-1)^{k}$. This equality can be valid for $k=1,2$ only if the operators in the squared brackets are equal to zero. Since $\mu_{2} \neq \pm \bar{\mu}_{2}$ by the assumption $\theta_{2} \neq 0$ and the condition $\theta_{2} \neq \pi$, we obtain $y a=c p=d q=x b=0$. This means that x_{1}, z_{2}, z_{3}, and y_{4} are product vectors.

Similar argumentation shows the incompatibility of the system (33)-(37) (by reducing to the case of tensor product vectors) if the pair $\left(z_{2}, z_{3}\right)$ has form 3 and the pair $\left(x_{1}, y_{4}\right)$ has form 1 or 2.

Assume finally that the pair $\left(x_{1}, y_{4}\right)$ has form 4 , i.e.,

$$
x_{1}=h\left[\begin{array}{c}
\mu_{1} \\
s
\end{array}\right] \otimes\left[\begin{array}{c}
\mu_{2} \\
t
\end{array}\right], \quad y_{4}=\left[\begin{array}{c}
\bar{\mu}_{1} \\
-s
\end{array}\right] \otimes\left[\begin{array}{l}
a \\
b
\end{array}\right]+\left[\begin{array}{l}
c \\
d
\end{array}\right] \otimes\left[\begin{array}{c}
\bar{\mu}_{2} \\
-t
\end{array}\right], \quad s, t= \pm 1,
$$

and the pair $\left(z_{2}, z_{3}\right)$ is arbitrary. We will show that (33)-(35) imply that y_{4} is a product vector. Thus, in fact the pair $\left(x_{1}, y_{4}\right)$ has form 1 or 2 .

Assume that y_{4} is not a product vector and denote the vectors $\left[\mu_{1}, s\right]^{\top}$ and $\left[\mu_{2}, t\right]^{\top}$ by $|s\rangle$ and $|t\rangle$. In this notation, $\left|x_{1}\right\rangle=h|s \otimes t\rangle$.

In case (a) it follows from (34) and Lemma 11 (see the Appendix) that $\left|x_{2}\right\rangle=|p \otimes t\rangle$ for some vector $|p\rangle$. Hence, the left-hand side of (33) has the form

$$
|h|^{2}|s\rangle\langle s| \otimes|t\rangle\langle t|+|p\rangle\langle p| \otimes|t\rangle\langle t|=\left[|h|^{2}|s\rangle\langle s|+|p\rangle\langle p|\right] \otimes|t\rangle\langle t|,
$$

and (33) implies $\left|y_{4}\right\rangle\left\langle y_{4}\right| \leq\left[|h|^{2}|s\rangle\langle s|+|p\rangle\langle p|\right] \otimes|t\rangle\langle t|$. This operator inequality can only be valid if y_{4} is a product vector.

In case (b) it follows from (35) and Lemma 11 that $\left|x_{3}\right\rangle=|s \otimes q\rangle$ for some vector $|q\rangle$. Hence, the left-hand side of (33) has the form

$$
|h|^{2}|s\rangle\langle s| \otimes|t\rangle\langle t|+|s\rangle\langle s| \otimes|q\rangle\langle q|=|s\rangle\langle s| \otimes\left[|h|^{2}|t\rangle\langle t|+|q\rangle\langle q|\right],
$$

and similarly to case (a) we conclude that y_{4} is a product vector.
By using the same argumentation exploiting (33)-(35) and Lemma 11, one can show that neither $\left(x_{1}, y_{4}\right)$ nor $\left(z_{2}, z_{3}\right)$ can be of form 4 or 5 (different from forms 1 and 2).

Thus, we have shown that the system (16)-(27) has no nontrivial solutions. This completes the proof of assertion C. \triangle

APPENDIX

Proofs of Lemmas 3 and 4

Proof of Lemma 3. A. Let $\left\langle z_{4}\right|=[a, b, c, d]$ and

$$
W=\left[\begin{array}{cccc}
a & \gamma_{2} b & \gamma_{1} c & \gamma_{1} \gamma_{2} d \\
b & a & \gamma_{1} d & \gamma_{1} c \\
c & \gamma_{2} d & a & \gamma_{2} b \\
d & c & b & a
\end{array}\right], \quad S=\left[\begin{array}{cccc}
\mu_{1} \mu_{2} & \mu_{1} \mu_{2} & \mu_{1} \mu_{2} & \mu_{1} \mu_{2} \\
\mu_{1} & -\mu_{1} & \mu_{1} & -\mu_{1} \\
\mu_{2} & \mu_{2} & -\mu_{2} & -\mu_{2} \\
+1 & -1 & -1 & +1
\end{array}\right]
$$

where $\mu_{k}=\sqrt{\gamma_{k}}, k=1,2$. By identifying $A \otimes B$ with the matrix $\left\|a_{i j} B\right\|$ one can write the equalities $\left\langle z_{4}\right| U_{k} \otimes V_{l}\left|z_{1}\right\rangle=0, k, l=1,2$, as the system of linear equations

$$
\begin{equation*}
W\left|z_{1}\right\rangle=0 \tag{40}
\end{equation*}
$$

It is easy to see that $S^{-1} W S=\operatorname{diag}\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$, where

$$
\begin{array}{ll}
p_{1}=a+\mu_{2} b+\mu_{1} c+\mu_{1} \mu_{2} d, & p_{2}=a-\mu_{2} b+\mu_{1} c-\mu_{1} \mu_{2} d \\
p_{3}=a+\mu_{2} b-\mu_{1} c-\mu_{1} \mu_{2} d, & p_{4}=a-\mu_{2} b-\mu_{1} c+\mu_{1} \mu_{2} d \tag{41}
\end{array}
$$

Thus, system (40) is equivalent to the system $p_{k} u_{k}=0, k=\overline{1,4}$, where $\left[u_{1}, u_{2}, u_{3}, u_{4}\right]^{\top}=S^{-1}\left|z_{1}\right\rangle$. Hence, this system has nontrivial solutions if and only if $p_{1} p_{2} p_{3} p_{4}=0$ and

$$
\left\{p_{k}=0\right\} \Longleftrightarrow\left\{W\left|q_{k}\right\rangle=0\right\}
$$

where $\left|q_{k}\right\rangle$ is the k th column of the matrix S.
Thus, by choosing some of the variables p_{1}, \ldots, p_{4} equal to zero we obtain all pairs $\left(z_{1}, z_{4}\right)$ such that $\left\langle z_{4}\right| U_{k} \otimes V_{l}\left|z_{1}\right\rangle=0, k, l=1,2$. We have
(a) $C_{4}^{2}=6$ variants to chose $p_{k}=p_{l}=0$ and $p_{i} \neq 0, i \neq k, l$;
(b) $C_{4}^{1}=4$ variants to chose $p_{k}=0$ and $p_{i} \neq 0, i \neq k$;
(c) $C_{4}^{3}=4$ variants to chose $p_{k}=p_{l}=p_{j}=0$ and $p_{i} \neq 0, i \neq k, l, j$
(the case $p_{1}=p_{2}=p_{3}=p_{4}=0$ means that $a=b=c=d=0$, i.e., gives a trivial solution only).
By identifying the vectors $x \otimes y$ and $\left[x_{1} y, x_{2} y\right]^{\top}$ it is easy to see that

$$
\begin{array}{ll}
\left|q_{1}\right\rangle=\left[\begin{array}{c}
\mu_{1} \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
\mu_{2} \\
1
\end{array}\right], & \left|q_{2}\right\rangle=\left[\begin{array}{c}
\mu_{1} \\
1
\end{array}\right] \otimes\left[\begin{array}{c}
\mu_{2} \\
-1
\end{array}\right], \\
\left|q_{3}\right\rangle=\left[\begin{array}{c}
\mu_{1} \\
-1
\end{array}\right] \otimes\left[\begin{array}{c}
\mu_{2} \\
1
\end{array}\right], & \left|q_{4}\right\rangle=\left[\begin{array}{c}
\mu_{1} \\
-1
\end{array}\right] \otimes\left[\begin{array}{c}
\mu_{2} \\
-1
\end{array}\right]
\end{array}
$$

and that

$$
\begin{aligned}
& p_{1}=0 \Longleftrightarrow\left|z_{4}\right\rangle=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \otimes\left[\begin{array}{c}
\bar{\mu}_{2} \\
-1
\end{array}\right]+\left[\begin{array}{l}
\bar{\mu}_{1} \\
-1
\end{array}\right] \otimes\left[\begin{array}{l}
c_{3} \\
c_{4}
\end{array}\right], \quad c_{1}, \ldots, c_{4} \in \mathbb{C}, \\
& p_{2}=0 \Longleftrightarrow\left|z_{4}\right\rangle=\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \otimes\left[\begin{array}{c}
\bar{\mu}_{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\bar{\mu}_{1} \\
-1
\end{array}\right] \otimes\left[\begin{array}{l}
c_{3} \\
c_{4}
\end{array}\right], \quad c_{1}, \ldots, c_{4} \in \mathbb{C}, \\
& p_{3}=0 \Longleftrightarrow\left|z_{4}\right\rangle=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \otimes\left[\begin{array}{c}
\bar{\mu}_{2} \\
-1
\end{array}\right]+\left[\begin{array}{c}
\bar{\mu}_{1} \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
c_{3} \\
c_{4}
\end{array}\right], \quad c_{1}, \ldots, c_{4} \in \mathbb{C}, \\
& p_{4}=0 \Longleftrightarrow\left|z_{4}\right\rangle=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \otimes\left[\begin{array}{c}
\bar{\mu}_{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\bar{\mu}_{1} \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
c_{3} \\
c_{4}
\end{array}\right], \quad c_{1}, \ldots, c_{4} \in \mathbb{C} .
\end{aligned}
$$

Hence, the above six possibilities in (a) correspond to forms $1-3$ in Lemma 3 (for example, the choice $p_{1}=p_{2}=0$ and $p_{3}, p_{4} \neq 0$ corresponds to form 1 with $s=1$), while the four possibilities in (b) and (c) correspond, respectively, to forms 4 and 5.
B. Denote the above matrix W with $z_{4}=x_{4}$ and $z_{4}=y_{4}$, respectively, by W_{x} and W_{y}. Then the equalities in (24) and (25) can be rewritten as the system

$$
\begin{equation*}
W_{x}\left|y_{1}\right\rangle=W_{y}\left|x_{1}\right\rangle=0, \quad W_{x}\left|x_{1}\right\rangle=W_{y}\left|y_{1}\right\rangle=|c\rangle, \quad|c\rangle \in \mathbb{C}^{4} \tag{42}
\end{equation*}
$$

Since $S^{-1} W_{x} S=\operatorname{diag}\left\{p_{1}^{x}, p_{2}^{x}, p_{3}^{x}, p_{4}^{x}\right\}$ and $S^{-1} W_{y} S=\operatorname{diag}\left\{p_{1}^{y}, p_{2}^{y}, p_{3}^{y}, p_{4}^{y}\right\}$, where $p_{1}^{x}, p_{2}^{x}, p_{3}^{x}, p_{4}^{x}$ and $p_{1}^{y}, p_{2}^{y}, p_{3}^{y}, p_{4}^{y}$ are defined in (41) with $z_{4}=x_{4}$ and $z_{4}=y_{4}$, respectively, system (42) is equivalent to

$$
\begin{equation*}
p_{k}^{x} v_{k}=p_{k}^{y} u_{k}=0, \quad p_{k}^{x} u_{k}=p_{k}^{y} v_{k}=\widetilde{c}_{k}, \quad k=\overline{1,4} \tag{43}
\end{equation*}
$$

where $\left[u_{1}, u_{2}, u_{3}, u_{4}\right]^{\top}=S^{-1}\left|x_{1}\right\rangle,\left[v_{1}, v_{2}, v_{3}, v_{4}\right]^{\top}=S^{-1}\left|y_{1}\right\rangle$ and $\left[\widetilde{c}_{1}, \widetilde{c}_{2}, \widetilde{c}_{3}, \widetilde{c}_{4}\right]^{\top}=S^{-1}|c\rangle$. System (43) has a solution only if $\widetilde{c}_{k}=0$ for all k. Indeed, if $p_{k}^{y} \neq 0$ for some k, then the first equality in (43) implies $u_{k}=0$ and the second equality in (43) shows that $\widetilde{c}_{k}=0$. Hence, $|c\rangle=S|\widetilde{c}\rangle=0 . \triangle$

Lemma 4 follows from Lemma 3 with γ_{2} replaced by $\bar{\gamma}_{2}$.

Auxiliary Lemmas

Lemma 9. If $|a\rangle\langle x|+|b\rangle\langle y|+|c\rangle\langle z|=0$, then either $a\|b\|$ c or $x\|y\| z$.
Proof. We may assume that all the vectors are nonzero (since otherwise the assertion is trivial).
Let $p \perp x$. Then $\langle y \mid p\rangle|b\rangle+\langle z \mid p\rangle|c\rangle=0$, and hence either $b \| c$ or $\langle y \mid p\rangle=\langle z \mid p\rangle=0$.
If $b \| c$, then we have $|a\rangle\langle x|=-|b\rangle\langle y+\lambda z|, \lambda \in \mathbb{C}$, and hence $a\|b\| c$.
If $\langle y \mid p\rangle=\langle z \mid p\rangle=0$, then $x\|y\| z$, since the vector p is arbitrary. \triangle
Lemma 10. The equality

$$
\begin{equation*}
X_{1} \otimes Y_{1}+X_{2} \otimes Y_{2}=X_{3} \otimes Y_{3}+X_{4} \otimes Y_{4} \tag{44}
\end{equation*}
$$

where $X_{i}=\left|x_{i}\right\rangle\left\langle x_{i}\right|, Y_{i}=\left|y_{i}\right\rangle\left\langle y_{i}\right|, i=\overline{1,4}$, can be valid in the following cases only:

1. $x_{i} \| x_{j}$ for all i and j, and $Y_{1}\left\|x_{1}\right\|^{2}+Y_{2}\left\|x_{2}\right\|^{2}=Y_{3}\left\|x_{3}\right\|^{2}+Y_{4}\left\|x_{4}\right\|^{2}$;
2. $y_{i} \| y_{j}$ for all i and j, and $X_{1}\left\|y_{1}\right\|^{2}+X_{2}\left\|y_{2}\right\|^{2}=X_{3}\left\|y_{3}\right\|^{2}+X_{4}\left\|y_{4}\right\|^{2}$;
3. $X_{1} \otimes Y_{1}=X_{4} \otimes Y_{4}$ and $X_{2} \otimes Y_{2}=X_{3} \otimes Y_{3}$;
4. $X_{1} \otimes Y_{1}=X_{3} \otimes Y_{3}$ and $X_{2} \otimes Y_{2}=X_{4} \otimes Y_{4}$.

Proof. We may assume that all the vectors x_{i} and y_{i} are nonzero (since otherwise the assertion is trivial).

Let $p \perp x_{1}$. By multiplying both sides of (44) by $|p\rangle\langle p| \otimes I$, we obtain

$$
\begin{equation*}
\left|\left\langle x_{2} \mid p\right\rangle\right|^{2} Y_{2}=\left|\left\langle x_{3} \mid p\right\rangle\right|^{2} Y_{3}+\left|\left\langle x_{4} \mid p\right\rangle\right|^{2} Y_{4} . \tag{45}
\end{equation*}
$$

If $x_{2} \| x_{1}$, then $\left\langle x_{3} \mid p\right\rangle=\left\langle x_{4} \mid p\right\rangle=0$, and hence $x_{1}\left\|x_{2}\right\| x_{3} \| x_{4}$, since the vector p is arbitrary; i.e., case 1 holds.

If $x_{2} \nVdash x_{1}$, then one can choose p such that $\left\langle x_{2} \mid p\right\rangle \neq 0$. Thus, (45) implies that either $x_{3} \nVdash x_{1}$ or $x_{4} \nVdash x_{1}$. We have the following possibilities:
(a) If $x_{i} \nVdash x_{1}$ for $i=2,3,4$, then one can choose p such that $\left\langle x_{i} \mid p\right\rangle \neq 0, i=2,3,4$. It follows from (45) that $y_{2}\left\|y_{3}\right\| y_{4}$. Hence, (44) leads to the equality $X_{1} \otimes Y_{1}=[\ldots] \otimes Y_{2}$, which gives $y_{1} \| y_{2}$. Thus, we have $y_{1}\left\|y_{2}\right\| y_{3} \| y_{4}$; i.e., case 2 holds.
(b) If $x_{i} \nVdash x_{1}$ for $i=2,3$, but $x_{4} \| x_{1}$, then one can choose p such that $\left\langle x_{i} \mid p\right\rangle \neq 0, i=2,3$. It follows from (45) that $y_{2} \| y_{3}$. Hence, $x_{4}=\alpha x_{1}$ and $y_{3}=\beta y_{2}, \alpha, \beta \in \mathbb{C}$. It follows from (44) that

$$
X_{1} \otimes\left[Y_{1}-|\alpha|^{2} Y_{4}\right]=\left[X_{3}|\beta|^{2}-X_{2}\right] \otimes Y_{2},
$$

and hence $Y_{1}-|\alpha|^{2} Y_{4}=\lambda Y_{2}, \lambda \in \mathbb{C}$. If $\lambda \neq 0$, then Lemma 9 implies $y_{1}\left\|y_{2}\right\| y_{3} \| y_{4}$; i.e., case 2 holds. If $\lambda=0$, then $y_{1} \| y_{4}$ and $x_{2} \| x_{3}$. Thus, we have

$$
X_{4} \otimes Y_{4}=\gamma X_{1} \otimes Y_{1}, \quad X_{3} \otimes Y_{3}=\delta X_{2} \otimes Y_{2}, \quad \gamma, \delta \in \mathbb{C}
$$

and (44) implies $(1-\gamma) X_{1} \otimes Y_{1}=(\delta-1) X_{2} \otimes Y_{2}$. Since $x_{1} \nVdash x_{2}$, we have $\gamma=\delta=1$; i.e., case 3 holds.
(c) If $x_{i} \nVdash x_{1}$ for $i=2,4$, but $x_{3} \| x_{1}$, then similar arguments (with the interchange $3 \leftrightarrow 4$) show that case 4 holds. \triangle

Lemma 11. Let $U=\operatorname{diag}\{1, \gamma\}$, and let x and y be nonzero vectors in \mathbb{C}^{2}. If $\langle a| U \otimes A|x \otimes y\rangle=$ $\langle c| U \otimes A|d\rangle$ for all $A \in \mathfrak{M}_{2}$, then either $|d\rangle=|z\rangle \otimes|y\rangle$ or $|c\rangle=|p\rangle \otimes|q\rangle$ for some vectors p, q, and z in \mathbb{C}^{2}.

Proof. By using the isomorphism $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni u \otimes v \longleftrightarrow\left[u_{1} v, u_{2} v\right]^{\top} \in \mathbb{C}^{2} \oplus \mathbb{C}^{2}$, the condition of the lemma can be rewritten as follows:

$$
\left\langle\begin{array}{c|cc|c}
a_{1} & A & 0 & x_{1} y \\
a_{2} & 0 & \gamma A & x_{2} y
\end{array}\right\rangle=\left\langle\begin{array}{c|cc|c}
c_{1} & A & 0 & d_{1} \\
c_{2} & 0 & \gamma A & d_{2}
\end{array}\right\rangle, \quad \forall A \in \mathfrak{M}_{2},
$$

where a_{1} and a_{2} are components of the vector a, etc. Thus, we have

$$
x_{1}\left\langle a_{1}\right| A|y\rangle+x_{2} \gamma\left\langle a_{2}\right| A|y\rangle=\left\langle c_{1}\right| A\left|d_{1}\right\rangle+\gamma\left\langle c_{2}\right| A\left|d_{2}\right\rangle, \quad \forall A \in \mathfrak{M}_{2},
$$

which is equivalent to the equality $|y\rangle\left\langle\bar{x}_{1} a_{1}+\bar{x}_{2} \bar{\gamma} a_{2}\right|=\left|d_{1}\right\rangle\left\langle c_{1}\right|+\gamma\left|d_{2}\right\rangle\left\langle c_{2}\right|$. By Lemma 9 this is possible if either $d_{1}\left\|d_{2}\right\| y$, which means $|d\rangle=|z\rangle \otimes|y\rangle$, or $c_{1} \| c_{2}$, which means $|c\rangle=|p\rangle \otimes|q\rangle . \triangle$

The author is grateful to A.S. Holevo and participants of the Quantum Probability, Statistics, and Information seminar (Steklov Mathematical Institute, Russian Academy of Sciences) for useful discussions.

REFERENCES

1. Smith, G. and Yard, J., Quantum Comminication with Zero-Capacity Channels, Science, 2008, vol. 321, no. 5897, pp. 1812-1815.
2. Cubitt, T.S., Chen, J., and Harrow, A.W., Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel, IEEE Trans. Inform. Theory, 2011, vol. 57, no. 12, pp. 8114-8126.
3. Cubitt, T.S. and Smith, G., An Extreme Form of Superactivation for Quantum Zero-Error Capacities, IEEE Trans. Inform. Theory, 2012, vol. 58, no. 3, pp. 1953-1961.
4. Duan, R., Superactivation of Zero-Error Capacity of Noisy Quantum Channels, arXiv:0906.2527 [quant-ph], 2009.
5. Smith, G., Smolin, J.A., and Yard, J., Quantum Communication with Gaussian Channels of Zero Quantum Capacity, Nat. Photonics, 2011, vol. 5, pp. 624-627.
6. Shirokov, M.E., On Quantum Zero-Error Capacity, Uspekhi Mat. Nauk, 2015, vol. 70, no. 1, pp. 187-188 [Russian Math. Surveys, 2015, vol. 70, no. 1, pp. 176-178].
7. Shirokov, M.E. and Shulman, T.V., On Superactivation of One-Shot Quantum Zero-Error Capacity and the Related Property of Quantum Measurements, Probl. Peredachi Inf., 2014, vol. 50, no. 3, pp. 35-50 [Probl. Inf. Trans. (Engl. Transl.), 2014, vol. 50, no. 3, pp. 232-246].
8. Holevo, A.S., Kvantovye sistemy, kanaly, informatsiya, Moscow: MCCME, 2010. Translated under the titleQuantum Systems, Channels, Information: A Mathematical Introduction, Berlin: De Gruyter, 2012.
9. Nielsen, M.A. and Chuang, I.L., Quantum Computation and Quantum Information, Cambridge: Cambridge Univ. Press, 2000. Translated under the title Kvantovye vychisleniya i kvantovaya informatsiya, Moscow: Mir, 2006.
10. Medeiros, R.A.C. and de Assis, F.M., Quantum Zero-Error Capacity, Int. J. Quantum Inform., 2005, vol. 3, no. 1, pp. 135-139.
11. Duan, R., Severini, S., and Winter, A., Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovász Number, IEEE Trans. Inform. Theory, 2013, vol. 59, no. 2, pp. 1164-1174.
12. Knill, E. and Laflamme, R., Theory of Quantum Error-Correcting Codes, 1997, Phys. Rev. A, vol. 55, no. 2, pp. 900-911.

[^0]: ${ }^{2}$ Here and in what follows $|1 \ldots 1\rangle$ denotes the vector $|1 \otimes \ldots \otimes 1\rangle$, etc.

[^1]: ${ }^{3}$ We call a subspace \mathcal{H}_{0} indistinguishable for an observable \mathcal{M} if applying \mathcal{M} to all states supported by \mathcal{H}_{0} leads to the same outcomes probability distribution [7].

