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Abstract—Several relations between the Holevo capacity and entanglement-assisted classical
capacity of a quantum channel are proved; necessary and sufficient conditions for their coin-
cidence are obtained. In particular, it is shown that these capacities coincide if (respectively,
only if) the channel (respectively, the χ-essential part of the channel) belongs to the class
of classical-quantum channels (the χ-essential part is a restriction of a channel obtained by
discarding all states that are useless for transmission of classical information). The obtained
conditions and their corollaries are generalized to channels with linear constraints. By us-
ing these conditions it is shown that the question of coincidence of the Holevo capacity and
entanglement-assisted classical capacity depends on the form of a constraint. Properties of the
difference between quantum mutual information and the χ-function of a quantum channel are
explored.
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1. INTRODUCTION

Informational properties of a quantum channel are characterized by a number of various capac-
ities, which are defined by a type of transmitted information, additional resources used to increase
the rate of this transmission, security requirements, etc.

Central roles in analysis of transmission of classical information through a quantum channel Φ
are played by the Holevo capacity C̄(Φ), classical (unassisted) capacity C(Φ), and entanglement-
assisted (classical) capacity Cea(Φ) of this channel. The first of them is defined as the maximum
rate of information transmission between transmitter and receiver (generally called Alice and Bob)
when nonentangled block coding is used by Alice and arbitrary measurement is used by Bob; the
second differs from the first by the possibility of using arbitrary block coding by Alice; while the
entanglement-assisted capacity is defined as the maximum rate of information transmission between
Alice and Bob under the assumption that they share a common entangled state, which can be used
in block coding by Alice to increase the rate of information transmission [1–3].

By operational definitions, we have C̄(Φ) ≤ C(Φ) ≤ Cea(Φ). During a long time it was conjec-
tured that C̄(Φ) = C(Φ) for any channel Φ, until Hastings showed existence of a counterexample
to the additivity conjecture [4]. Nevertheless, the equality C̄(Φ) = C(Φ) holds for a large class of
channels including the noiseless channel, all unital qubit channels, all entanglement-breaking chan-
nels, and many other particular examples. In contract to this, possibility of the strict inequality

1 Supported in part by the Scientific Program “Mathematical Control Theory and Dynamic Systems” of the
Russian Academy of Sciences and the Russian Foundation for Basic Research, project nos. 10-01-00139-a
and 12-01-00319-a.
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C(Φ) < Cea(Φ) was initially obvious, since superdense coding implies that Cea(Φ) = 2C(Φ) > 0
if Φ is a noiseless channel. But there exist channels for which

C̄(Φ) = C(Φ) = Cea(Φ) > 0 (1)

(as an example, one can consider the channel ρ �→ ∑

k
〈k|ρ|k〉|k〉〈k|, where {|k〉} is an orthonormal

basis). Hence the question naturally arises of how the class of channels for which (1) holds can be
characterized. In contrast to an intuitive point of view, this class does not coincide with the class
of entanglement-breaking channels: despite the fact that these channels annihilate entanglement
of any state shared by Alice and Bob, their entanglement-assisted capacity may be greater than
the classical unassisted capacity [1]. On the other hand, in [5] an example is described of a non-
entanglement-breaking channel for which Cea(Φ) = C̄(Φ) (see Example 2 in Section 2.3 below).
A step towards finding an answer to the above question was recently made in [6], where a criterion
of (1) for the class of q-c channels defined by quantum observables was obtained.

In the present paper some relations between the capacities C̄(Φ) and Cea(Φ) are obtained,
as well as necessary and sufficient conditions for the equality C̄(Φ) = Cea(Φ) (Proposition 1 and
Theorems 1 and 2). In particular, it is shown that the equality C̄(Φ) = Cea(Φ) holds if (respectively,
only if) the channel Φ (respectively, the χ-essential part of the channel Φ) belongs to the class of
classical-quantum channels (the χ-essential part is defined as a restriction of the channel to the set
of states supported by the minimal subspace containing elements of all ensembles optimal for this
channel in the sense of the Holevo capacity; see Definition 1).

Since in dealing with infinite-dimensional channels it is necessary to impose particular con-
straints on the choice of input code states, we also consider conditions for coincidence of the
entanglement-assisted capacity with the Holevo capacity for quantum channels with linear con-
straints (Propositions 4 and 5). By using these conditions it is shown that even in the case of
classical-quantum channels the question of coincidence of the above capacities depends on the form
of the constraint (Example 3, Proposition 6).

In Section 4, properties of the difference between quantum mutual information and the χ-func-
tion (constrained Holevo capacity) of a quantum channel (considered as a function of an input
state) are studied (Theorem 3). In particular, the sense of the maximum value of this function as
a parameter characterizing the “noise level” of a quantum channel is shown.

2. UNCONSTRAINED CHANNELS

Let HA, HB , and HE be finite-dimensional Hilbert spaces. In what follows, Φ: S(HA) → S(HB)
is a quantum channel, and Φ̂ : S(HA) → S(HE) is its complementary channel, defined uniquely up
to unitary equivalence [7].

Let H(ρ) and H(ρ‖σ) be, respectively, the von Neumann entropy of the state ρ and the quantum
relative entropy of the states ρ and σ [2, 3].

The Holevo capacity of the channel Φ can be defined as follows:

C̄(Φ) = max
ρ∈S(HA)

χΦ(ρ), (2)

where
χΦ(ρ) = max∑

i

πiρi=ρ

∑

i

πiH(Φ(ρi)‖Φ(ρ)) (3)

is the χ-function of the channel Φ [8]. Note that

χΦ(ρ) = H(Φ(ρ))− ĤΦ(ρ), (4)
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CONDITIONS FOR COINCIDENCE OF THE CLASSICAL CAPACITY 87

where ĤΦ(ρ) = min∑

i

πiρi=ρ

∑

i
πiH(Φ(ρi)) is the convex hull of the function ρ �→ H(Φ(ρ)). By concav-

ity of this function, the above minimum can be taken over ensembles of pure states. An ensemble
{πi, ρi} of pure states is called optimal for the channel Φ if (cf. [9])

C̄(Φ) = χΦ(ρ̄) =
∑

i

πiH(Φ(ρi)‖Φ(ρ̄)), ρ̄ =
∑

i

πiρi.

By the Holevo–Schumacher–Westmoreland theorem, the classical capacity of the channel Φ can
be expressed by the following regularization formula:

C(Φ) = lim
n→+∞

n−1C̄(Φ⊗n).

By the Bennett–Shor–Smolin–Thapliyal theorem, the entanglement-assisted capacity of the
channel Φ is determined as follows:

Cea(Φ) = max
ρ∈S(HA)

I(ρ,Φ), (5)

where I(ρ,Φ) = H(ρ) +H(Φ(ρ)) −H(Φ̂(ρ)) is the quantum mutual information of the channel Φ
at state ρ [2, 3].

By the operational definitions, we have C̄(Φ) ≤ C(Φ) ≤ Cea(Φ). Analytically, this follows
(by virtue of (2) and (5)) from the following expression for the quantum mutual information:

I(ρ,Φ) = H(ρ) + χΦ(ρ)− χ
Φ̂
(ρ) = χΦ(ρ) + ΔΦ(ρ), (6)

where ΔΦ(ρ) = H(ρ) − χ
Φ̂
(ρ). This expression is easily derived by using (4) and noting that

ĤΦ ≡ ĤΦ̂ (this follows from coincidence of the functions ρ �→ H(Φ(ρ)) and ρ �→ H(Φ̂(ρ)) on the
set of pure states).

Since H(ρ) =
∑

i
πiH(ρi‖ρ) for any ensemble {πi, ρi} of pure states with average state ρ, we have

ΔΦ(ρ) = min∑

i

πiρi=ρ

rank ρi=1

∑

i

πi
[
H(ρi‖ρ)−H(Φ̂(ρi)‖Φ̂(ρ))

]
≥ 0, (7)

where the last inequality follows from monotonicity of the relative entropy.

Remark 1. The minimum in (7) is attained at an ensemble {πi, ρi} of pure states if and only
if the maximum in (3) is attained at this ensemble. Indeed, since

∑

i
πiH(Φ(ρi)) =

∑

i
πiH(Φ̂(ρi)),

this can easily be shown by using expression (4) for χ-functions of the channels Φ and Φ̂.

2.1. General Inequalities

Expression (6) immediately implies the general upper bound

Cea(Φ) ≤ C̄(Φ) + log dimHA,

proved in [10,11] by different methods. By using this expression and noting that χΦ(ρ)− χ
Φ̂
(ρ) =

Ic(ρ,Φ) is the coherent information of the channel Φ at the state ρ (see [12]), it is easy to obtain
the following inequalities2:

H(ρ1)− C̄(Φ̂) ≤ Cea(Φ)− C̄(Φ)

≤ H(ρ2)− χ
Φ̂
(ρ2) ≤

H(Φ(·))≥H(·)
H(Φ(ρ2))− χ

Φ̂
(ρ2) = Ic(ρ2,Φ) + ĤΦ(ρ2), (8)

2 Here and in what follows, a subscript in the third inequality means that it holds under the condition
H(Φ(ρ)) ≥ H(ρ) for all ρ ∈ S(HA). This condition is valid, in particular, for all bistochastic channels.
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where ρ1 and ρ2 are states in S(HA) such that χΦ(ρ1) = C̄(Φ) (i.e., ρ1 is the average state of an
optimal ensemble) and I(ρ2,Φ) = Cea(Φ).

Let Q1(Φ) = max
ρ∈S(HA)

Ic(ρ,Φ), and let Q(Φ) = lim
n→+∞

n−1Q1(Φ
⊗n) be the quantum capacity of

the channel Φ [2,3]. The following proposition contains several estimations derived from (8).

Proposition 1. Let Φ: S(HA) → S(HB) be a quantum channel and Φ̂ : S(HA) → S(HE) its
complementary channel.

(A) We have the inequalities

C̄(Φ)− C̄(Φ̂) ≤ Cea(Φ)− C̄(Φ) ≤
H(Φ(·))≥H(·)

Q1(Φ) + min
∑

i

πiH(Φ(ρi)), (9)

C(Φ)− C(Φ̂) ≤ Cea(Φ)− C(Φ) ≤
H(Φ(·))≥H(·)

Q(Φ) + min
∑

i

πiH(Φ(ρi)), (10)

where the minimum is over all ensembles {πi, ρi} of pure states such that I
(∑

i
πiρi,Φ

)
= Cea(Φ).

This term can be replaced with max
ρ∈ extrS(HA)

H(Φ(ρ)).

(B) If the average state of at least one optimal ensemble for the channel Φ coincides with the
chaotic state ρc = (dimHA)

−1IA, then

Cea(Φ)− C̄(Φ) ≥ log dimHA − C̄(Φ̂)

and hence C̄(Φ) = Cea(Φ) ⇒ C̄(Φ̂) = log dimHA.
3

(C) If Cea(Φ) = I(ρc,Φ), then C̄(Φ̂) = log dimHA ⇒ C̄(Φ) = Cea(Φ). If, in addition, the
average state of at least one optimal ensemble for the channel Φ̂ coincides with the chaotic state ρc,
then

Cea(Φ)− C̄(Φ) ≤ log dimHA − C̄(Φ̂).

Proof. (A) Inequality (9) directly follows from (8). To obtain inequality (10) by regularization
from (8), it is sufficient to note that the function S(H⊗n

A ) � ω �→ I(ω,Φ⊗n) attains its maximum at
the state ρ⊗n

2 by subadditivity of the quantum mutual information and to use the obvious inequality
ĤΦ⊗n(ρ⊗n

2 ) ≤ nĤΦ(ρ2).

(B) This assertion directly follows from inequality (8).

(C) To derive the first part of this assertion from inequality (8), note that C̄(Φ̂) = log dimHA

implies C̄(Φ̂) = χ
Φ̂
(ρc). The second part directly follows from the second inequality in (8). 

Remark 2. Since C̄(Φ̂) ≤ log dimHE , we have

Cea(Φ)− C̄(Φ) ≥ log dimHA − log dimHE

for any channel Φ satisfying the condition of Proposition 1 (B), and hence Cea(Φ) > C̄(Φ) if
the dimension of the environment (i.e., the minimal number of Kraus operators) is less than the
dimension of the input space of the channel Φ.

For an arbitrary channel Φ, inequality (8) implies

Cea(Φ)− C̄(Φ) ≥ H(ρ̄)− log dimHE ≥ C̄(Φ)− log dimHE ,

where ρ̄ is the average state of any optimal ensemble for the channel Φ.

3 Note that C̄(Φ̂) ≤ log dimHA for any channel Φ.
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CONDITIONS FOR COINCIDENCE OF THE CLASSICAL CAPACITY 89

2.2. Conditions for the Equality C̄(Φ) = Cea(Φ) Based on the Petz Theorem

By using expressions (6) and (7), monotonicity of the relative entropy, and the Petz theorem
[13, Theorem 3] characterizing the case in which monotonicity of the relative entropy holds with
an equality, the following necessary and sufficient conditions for the equality C̄(Φ) = Cea(Φ) can
be obtained.

Theorem 1. Let Φ: S(HA) → S(HB) be a quantum channel and Φ̂ : S(HA) → S(HE) its
complementary channel.

(A) If there exist a channel Θ: S(HE) → S(HA) and an ensemble {πi, ρi} of pure states such
that

Θ(Φ̂(ρi)) = ρi, ∀i, (11)

and I(ρ̄,Φ) = Cea(Φ), where ρ̄ =
∑

i
πiρi, then C̄(Φ) = Cea(Φ).

4

(B) If C̄(Φ) = Cea(Φ), then for an arbitrary optimal ensemble {πi, ρi} of pure states for the
channel Φ with average state ρ̄ there exists a channel Θ: S(HE) → S(HA) such that (11) holds.
The channel Θ can be defined by means of an arbitrary nondegenerate probability distribution {π̂i}
if we set its action on any state σ supported by a subspace supp Φ̂(ρ̄) as follows:

Θ(σ) = [ρ̂]1/2Φ̂∗
([
Φ̂(ρ̂)

]−1/2
σ
[
Φ̂(ρ̂)

]−1/2
)
[ρ̂]1/2, (12)

where ρ̂ =
∑

i
π̂iρi and Φ̂∗ is a dual map to the channel Φ̂.

If {π̂i} is a degenerate probability distribution, then relation (11) holds for the channel Θ defined
by (12) for all i such that π̂i > 0.

Proof. (A) If {πi, ρi} is an ensemble of pure states with average state ρ̄ for which (11) holds,
then monotonicity of the relative entropy and (7) imply ΔΦ(ρ̄) = 0, and hence Cea(Φ) = I(ρ̄,Φ) =
χΦ(ρ̄) ≤ C̄(Φ).

(B) Since χΦ(ρ) ≤ I(ρ,Φ) for any state ρ by (6), it is easy to see that C̄(Φ) = Cea(Φ) implies
χΦ(ρ̄) = I(ρ̄,Φ) for any an optimal ensemble {πi, ρi} of pure states with average state ρ̄. It follows
from (7) and Remark 1 that

H(ρi‖ρ̄) = H(Φ̂(ρi)‖Φ̂(ρ̄)), ∀i.

Hence, the Petz theorem [13, Theorem 3] implies existence of a channel Θ for which (11) holds. By
monotonicity of the relative entropy, for an arbitrary probability distribution {π̂i} we have

H(ρi‖ρ̂) = H(Φ̂(ρi)‖Φ̂(ρ̂)), ρ̂ =
∑

i

π̂iρi,

for all i such that π̂i > 0. Hence, the formula for the channel Θ also follows from the Petz
theorem. 

Theorem 1 (A) makes it possible to prove the equality Cea(Φ) = C̄(Φ) for all classical-quantum
channels (see Theorem 2 in Section 2.3).

Theorem 1 (B) can be used to prove the strict inequality Cea(Φ) > C̄(Φ) by showing that (11)
cannot be valid for an optimal ensemble {πi, ρi} and for the channel Θ defined by (12).

Example 1. Consider the entanglement-breaking channel

Φ(ρ) =
∑

k

〈ϕk|ρ|ϕk〉|k〉〈k|,

4 It is sufficient to require that Θ is a trace-preserving positive map for which monotonicity of the relative
entropy holds.
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90 SHIROKOV

where {|ϕk〉} is an overcomplete system of vectors in the space HA (i.e.,
∑

k
|ϕk〉〈ϕk| = IA) and

{|k〉} is an orthonormal basis in the space HB . It is easy to see that Φ = Φ̂. Hence, I(ρ,Φ) = H(ρ)
and Cea(Φ) = log dimHA. Assume that C̄(Φ) = Cea(Φ) = log dimHA. Then the average state
of any optimal ensemble {πi, ρi} for the channel Φ coincides with the chaotic state ρc in S(HA).
Since Φ̂∗(A) =

∑

k
〈k|A|k〉|ϕk〉〈ϕk| and Φ̂(ρc) = Φ(ρc) is a full-rank state, relation (11) can be valid

for the channel Θ defined by (12) only if ρi = |ϕki〉〈ϕki | for some ki and rank Φ̂(|ϕki〉〈ϕki |) =
rank

∑

k
〈ϕk|ϕki〉〈ϕki |ϕk〉|k〉〈k| = 1 for all i. But this can be valid only if {|ϕk〉} is an orthonormal

basis. Thus, we conclude that

Cea(Φ) = C̄(Φ) ⇔ {|ϕk〉} is an orthonormal basis.

The same conclusion was obtained in [6] as a corollary of a general criterion for the equality
Cea(Φ) = C̄(Φ) for the class of channels defined by quantum observables, which is proved by means
of the ensemble-measurement duality.

2.3. A Simple Criterion for the Equality C̄(Φ) = Cea(Φ)

Now we will show that the equality C̄(Φ) = Cea(Φ) holds if (respectively, only if) the channel Φ
(respectively, the subchannel of Φ determining its classical capacity) belongs to the class of classical-
quantum channels.

A channel Φ: S(HA) → S(HB) is said to be classical-quantum if it has the following represen-
tation:

Φ(ρ) =

dimHA∑

k=1

〈k|ρ|k〉σk, ρ ∈ S(HA), (13)

where {|k〉} is an orthonormal basis in HA and {σk} is a collection of states in S(HB) [2, 3].

For correct formulation of the above statement, we will need the following notion.

Definition 1. Let Hχ
Φ be the minimal subspace of HA containing elements of all optimal ensem-

bles for the channel Φ: S(HA) → S(HB). The restriction Φχ of the channel Φ to the set S(Hχ
Φ) is

called the χ-essential part (subchannel) of the channel Φ.

If Hχ
Φ �= HA, then pure states corresponding to vectors in HA \Hχ

Φ cannot be used as elements of
an optimal ensemble for the channel Φ. This means, roughly speaking, that these states are useless
for nonentangled coding of classical information, and hence it is natural to consider the χ-essential
subchannel Φχ instead of the channel Φ when dealing with the Holevo capacity of the channel Φ
(which coincides with the classical capacity if Cea(Φ) = C̄(Φ)).

By definition, C̄(Φχ) = C̄(Φ). Hence, Cea(Φ) = C̄(Φ) implies Cea(Φχ) = Cea(Φ). Thus, in
this case, when speaking about the entanglement-assisted capacity of the channel Φ, we may also
consider the χ-essential subchannel Φχ instead of the channel Φ.

Theorem 1 makes it possible to prove the following assertions.

Theorem 2. Let Φ: S(HA) → S(HB) be a quantum channel.

(A) If Φ is a classical-quantum channel, then Cea(Φ) = C̄(Φ).

(B) If Cea(Φ) = C̄(Φ), then the χ-essential part of the channel Φ is a classical-quantum channel.

Example 2 below shows that in general the χ-essential part of the channel Φ in Theorem 2 (B)
cannot be replaced by the channel Φ.

Proof. (A) If Φ has representation (13), then Φ = Φ ◦ Π, where Π(ρ) =
∑

k
〈k|ρ|k〉|k〉〈k| is a

channel from S(HA) to itself.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 48 No. 2 2012



CONDITIONS FOR COINCIDENCE OF THE CLASSICAL CAPACITY 91

It is easy (see [14, proof of Lemma 17]) to show existence of a channel Θ such that Θ ◦̂Φ ◦ Π =
Π̂ = Π.

By the chain rule for the quantum mutual information (see [2, 3]), we have

I(ρ,Φ) = I(ρ,Φ ◦Π) ≤ I(Π(ρ),Φ).

It follows that the function ρ �→ I(ρ,Φ) attains its maximum at a state diagonizable in the ba-

sis {|k〉}. Since Θ◦̂Φ ◦ Π(|k〉〈k|) = Π(|k〉〈k|) = |k〉〈k| for any k, Theorem 1 (A) implies the equality
Cea(Φ) = C̄(Φ).

(B) Replacing the channel Φ by its χ-essential subchannel, we may assume that Hχ
Φ = HA.

Let Φ(ρ) =
n∑

i=1
ViρV

∗
i be a minimal Kraus representation of the channel Φ. Then

Φ̂(ρ) =
n∑

i,j=1

TrViρV
∗
j |i〉〈j| and Φ̂∗(A) =

n∑

i,j=1

〈j|A|i〉V ∗
j Vi,

where {|i〉}ni=1 is an orthonormal basis in the n-dimensional Hilbert space HE .

Let {πk, |ϕk〉〈ϕk|} be an optimal ensemble of pure states for the channel Φ with a full-rank
average state. We may assume that {|ϕk〉}mk=1, m = dimHA, is a basis in the space HA. Let

π̂k = 1/m, k = 1,m. Then ρ̂ =
m∑

k=1
π̂k|ϕk〉〈ϕk| is a full-rank state in S(HA). Since HE is an

environment space of minimal dimension, Φ̂(ρ̂) is a full-rank state in S(HE).

Let |φk〉 =
√
π̂kρ̂−1|ϕk〉 and Bk = π̂k

[
Φ̂(ρ̂)

]−1/2
Φ̂(|ϕk〉〈ϕk|)

[
Φ̂(ρ̂)

]−1/2
, k = 1,m. Since

m∑

k=1
|φk〉〈φk| = IHA

, {|φk〉}mk=1 is an orthonormal basis in HA. By Theorem 1 (B), |φk〉〈φk| = Φ̂∗(Bk)

for all k. By the spectral theorem, we have Bk =
∑

p
|ψp

k〉〈ψ
p
k|, where

{
|ψp

k〉
}
p is a set of vectors

in HE , for each k. Since Φ̂(ρ̂) is a full-rank state, we have

∑

k,p

|ψp
k〉〈ψ

p
k| =

∑

k

Bk = IE.

By Lemma 1 below, we have Φ(ρ) =
∑

k,p
WkpρW

∗
kp, where Wkp =

n∑

i=1
〈ψp

k|i〉Vi.

Since |φk〉〈φk| = Φ̂∗
(∑

p
|ψp

k〉〈ψ
p
k|
)
for each k and

Φ̂∗(|ψp
k〉〈ψ

p
k|) =

n∑

i,j=1

〈j|ψp
k〉〈ψ

p
k|i〉V

∗
j Vi = W ∗

kpWkp,

there exists a collection {|βkp〉} of vectors in HB such that Wkp = |βkp〉〈φk| and
∑

p
‖βkp‖2 = 1 for

each k. Hence,

Φ(ρ) =
∑

k,p

WkpρW
∗
kp =

∑

k

〈φk|ρ|φk〉
∑

p

|βkp〉〈βkp|. 

Lemma 1. Let Φ(ρ) =
n∑

i=1
ViρV

∗
i be a quantum channel and {|i〉}ni=1 be an orthonormal basis

in the n-dimensional Hilbert space HE. An arbitrary overcomplete system {|ψk〉}k of vectors in HE

generates the Kraus representation Φ(ρ) =
∑

k
WkρW

∗
k of the channel Φ, where Wk =

n∑

i=1
〈ψk|i〉Vi.
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Proof. Since
∑

k
|ψk〉〈ψk| = IE , we have

∑

k

WkρW
∗
k =

n∑

i,j=1

ViρV
∗
j

∑

k

〈ψk|i〉〈j|ψk〉

=
n∑

i,j=1

ViρV
∗
j

∑

k

Tr |i〉〈j||ψk〉〈ψk|

=
n∑

i=1

ViρV
∗
i . 

Remark 3. The assertions of Theorem 2 agree with the criterion for the equality Cea(Φ) = C̄(Φ)
obtained in [6] for the quantum-classical channel

Φ(ρ) =
∑

k

[TrMkρ]|k〉〈k|

defined by a collection {Mk} of positive operators in HA such that
∑

k
Mk = IA, where {|k〉} is an

orthonormal basis in HB . Indeed, it is easy to see that this channel is classical-quantum if and only
if MkMl = MlMk for all k and l.

Since H
χ
Φ = HA means existence of an optimal ensemble for the channel Φ with a full-rank

average state, Theorem 2 implies the following criterion for coincidence of the capacities.

Corollary 1. Let Φ be a quantum channel for which there exists an optimal ensemble with a
full-rank average state. Then

Cea(Φ) = C̄(Φ) ⇔ Φ is a classical-quantum channel.

The following example, proposed in [5] (as an example of a non-entanglement-breaking channel
such that Cea(Φ) = C̄(Φ)), shows that the condition in Corollary 1 is essential.

Example 2. Let H1, H2, and H3 be qubit spaces. Let {|k〉}4k=1 and {|−〉, |+〉} be orthonormal
bases in K = H1 ⊗ H2 and in H3, respectively. Consider the channel

Φ(ρ) =
4∑

k=1

[〈k| ⊗ 〈+|] ρ [|k〉 ⊗ |+〉] |k〉〈k| + 1

2
IH2 ⊗ TrH2⊗H3 [IK ⊗ |−〉〈−|]ρ

from S(K ⊗ H3) to S(K). It is easy to show that Cea(Φ) = C̄(Φ) = 2 and Q(Φ) = 1 [5]. Thus, the
channel Φ is non-entanglement-breaking, and hence it is not classical-quantum.

Since C̄(Φ) = 2 = log dimK, any optimal ensemble for the channel Φ cannot contain states with
nonzero output entropy. Thus, the subspace H

χ
Φ consists of vectors |ϕ〉 ⊗ |+〉, |ϕ〉 ∈ K. Hence,

the χ-essential part of Φ is isomorphic to the classical-quantum channel ρ �→
4∑

k=1
〈k|ρ|k〉|k〉〈k|

(in accordance with Theorem 2 (B)).

2.4. On Covariant Channels

The class of channels for which the conditions of parts (B) and (C) of Proposition 1 and of
Corollary 1 hold simultaneously contains any channel Φ covariant with respect to representations
{Vg}g∈G and {Wg}g∈G of a compact group G in the sense that

Φ(VgρV
∗
g ) = WgΦ(ρ)W

∗
g , ∀g ∈ G, (14)
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provided that the representation {Vg}g∈G is irreducible. Indeed, irreducibility of the representation
{Vg}g∈G implies

ρc
.
= (dimHA)

−1IA =

∫

G

VgρV
∗
g μH(dg), ∀ρ ∈ S(HA), (15)

where μH is the Haar measure on the group G [10]. Thus, to prove that

C̄(Φ) = χΦ(ρc), C̄(Φ̂) = χ
Φ̂
(ρc), and Cea(Φ) = I(ρc,Φ), (16)

it is sufficient, by concavity of the χ-function and quantum mutual information, to show that

χΦ(ρ) = χΦ(VgρV
∗
g ), χ

Φ̂
(ρ) = χ

Φ̂
(VgρV

∗
g ), and I(ρ,Φ) = I(VgρV

∗
g ,Φ), (17)

for all g ∈ G and ρ ∈ S(HA).

The first and third equalities in (17) can easily be proved by using (3) and the well-known
expression for the quantum mutual information via the relative entropy (by means of invariance of
the relative entropy with respect to unitary transformations of both of their arguments). By these
equalities, the second equality follows from (6).

The class of covariant channels is large enough; it contains all unital qubit channels and nontrivial
classes of channels in higher dimensions [10,15].

By using (15) and (16), it is easy to show that (cf. [10])

C̄(Φ) = H(Φ(ρc))−Hmin(Φ), C̄(Φ̂) = H(Φ̂(ρc))−Hmin(Φ),

Cea(Φ) = log dimHA +H(Φ(ρc))−H(Φ̂(ρc)),
(18)

for any channel Φ: S(HA) → S(HB) satisfying the above covariance condition, where Hmin(Φ) =
min

ρ∈S(HA)
H(Φ(ρ)) is the minimal output entropy of the channel Φ (coinciding with Hmin(Φ̂)). If, in

addition, the representation {Wg}g∈G is also irreducible, then H(Φ(ρc)) in (18) can be replaced by
log dimHB [10].

Let Q1(Φ) = max
ρ∈S(HA)

Ic(ρ,Φ) and Q(Φ) = lim
n→+∞

n−1Q1(Φ
⊗n) be the quantum capacity of the

channel Φ. By the above observations, Proposition 1 and Corollary 1 imply the following assertions.

Proposition 2. Let Φ: S(HA) → S(HB) be a channel satisfying the covariance condition (14).
Then

Cea(Φ) = C̄(Φ) ⇔ Φ is a classical-quantum channel.

If, in addition, dimHB ≥ dimHA and the representation {Wg}g∈G is irreducible, then

Cea(Φ)− C̄(Φ) = log dimHA − C̄(Φ̂) ≤ Q1(Φ) +Hmin(Φ),

Cea(Φ)− C(Φ) = log dimHA − C(Φ̂) ≤ Q(Φ) +Hmin(Φ).

Proof. If the representation {Wg}g∈G is irreducible, it is easy to show that Φ((dimHA)
−1IA) =

(dimHB)
−1IB [10]. This equality and the condition dimHB ≥ dimHA imply H(Φ(ρ)) ≥ H(ρ) for

any ρ ∈ S(HA) by monotonicity of the relative entropy. Coincidence of the last term in (9) and (10)
with Hmin(Φ) follows from (15) and (16). 

2.5. On Degradable and Anti-degradable Channels

Expression (6) and the chain rule for the χ-function (i.e., χΨ◦Φ ≤ χΦ) show that

Cea(Φ1) ≤ log dimHA ≤ Cea(Φ2) (19)
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for any anti-degradable channel Φ1 and any degradable channel Φ2.
5 By using the Petz theorem

[13, Theorem 3], one can show that if the first (respectively, second) inequality in (19) holds with an
equality, then the anti-degradable channel Φ1 is degradable (respectively, the degradable channel Φ2

is anti-degradable).

The second inequality in (19) and Theorem 2 imply the following assertion.

Proposition 3. If Φ: S(HA) → S(HB) is a degradable channel, then one of the following
alternatives holds:

• C̄(Φ) < Cea(Φ);
• Φ is a classical-quantum channel having the representation

Φ(ρ) =

dimHA∑

k=1

〈k|ρ|k〉σk, ρ ∈ S(HA), (20)

where {|k〉} is an orthonormal basis in HA and {σk} is a collection of states in S(HB) with
mutually orthogonal supports.

Proof. Assume that C̄(Φ) = Cea(Φ). Since C̄(Φ) ≤ log dimHA for any channel Φ, the second
inequality in (19) shows that C̄(Φ) = log dimHA and hence the average state of any optimal
ensemble for the channel Φ coincides with the chaotic state in S(HA). By Corollary 1, Φ is a
classical-quantum channel having representation (20) in which {|k〉} is an orthonormal basis in HA

and {σk} is a collection of states in S(HB). We will show that supports of these states are mutually
orthogonal.

Let σk =
dimHB∑

i=1
|ψki〉〈ψki|. Then Φ(ρ) =

∑

k,i
WkiρW

∗
ki, where Wki = |ψki〉〈k|, and by using a

standard representation for a complementary channel (cf. [7]) we obtain

Φ̂(ρ) =

dimHA∑

k,l=1

〈k|ρ|l〉|k〉〈l| ⊗
dimHB∑

i,j=1

〈ψlj |ψki〉|i〉〈j| ∈ S(HA ⊗ HB).

Since Φ is a degradable channel having representation (20), Φ̂(|k〉〈l|) = Ψ ◦ Φ(|k〉〈l|) = 0 for all
k �= l. Hence, the above expression for the channel Φ̂ implies 〈ψlj|ψki〉 = 0 for all i and j and all
k �= l. It follows that suppσk ⊥ suppσl for all k �= l. 

3. ON CHANNELS WITH LINEAR CONSTRAINTS

When defining various capacities of channels between finite-dimensional quantum systems, we
may use any states for information coding. But when dealing with real infinite-dimensional chan-
nels, we have to impose particular constraints on the choice of input code states to avoid infinite
values of the capacities and provide consistence with the physical implementation of the process of
information transmission. A typical physically motivated constraint is defined by the requirement
of bounded energy of states used for information coding. This constraint can be called linear, since
it is determined by the linear inequality

TrHρ ≤ h, h > 0, (21)

where H is a positive operator, the Hamiltonian of the input quantum system. Operational def-
initions of the Holevo capacity and of unassisted and entanglement-assisted classical capacities of

5 A channel Φ is said to be degradable if Φ̂ = Ψ ◦ Φ for some channel Ψ, and anti-degradable if Φ̂ is a
degradable channel [14].
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a quantum channel with linear constraints are given in [16], where the corresponding generaliza-
tions of the Holevo–Schumacher–Westmoreland and Bennett–Shor–Smolin–Thapliyal theorems are
proved.

The aim of this section is studying relations between the above capacities of a quantum channel
with linear constraints, in particular showing that the question of coincidence of these capacities
for a given channel depends on the form of the constraint.

For simplicity we restrict our attention to a finite-dimensional case.

The Holevo capacity of the channel Φ with constraint (21) can be defined as follows:

C̄(Φ,H, h) = max
TrHρ≤h

χΦ(ρ),

where χΦ is the χ-function of the channel Φ defined in (3). An ensemble {πi, ρi} of pure states
with average state ρ̄ is called optimal for the channel Φ with constraint (21) if

C̄(Φ,H, h) = χΦ(ρ̄) =
∑

i

πiH(Φ(ρi)‖Φ(ρ̄)) and TrHρ̄ ≤ h.

By the generalized Holevo–Schumacher–Westmoreland theorem [16, Proposition 3], the classical
capacity of the channel Φ with constraint (21) can be expressed by the following regularization
formula:

C(Φ,H, h) = lim
n→+∞

n−1C̄(Φ⊗n,Hn, nh),

where Hn = H ⊗ I ⊗ . . . ⊗ I + I ⊗ H ⊗ I ⊗ . . . ⊗ I + . . . + I ⊗ . . . ⊗ I ⊗H (each of the n terms
consists of n factors).

By the generalized Bennett–Shor–Smolin–Thapliyal theorem [16, Proposition 4], the entan-
glement-assisted capacity of the channel Φ with constraint (21) is given by

Cea(Φ,H, h) = max
TrHρ≤h

I(ρ,Φ),

where I(ρ,Φ) is the quantum mutual information of the channel Φ at the state ρ, defined after (5).

Almost all the results of Section 2 concerning relations between the capacities C̄(Φ) and Cea(Φ)
can be reformulated for the corresponding capacities of a constrained channel. For example, instead
of (8) we have

H(ρ1)− C̄(Φ̂,H, h) ≤ Cea(Φ,H, h) − C̄(Φ̂,H, h)

≤ H(ρ2)− χ
Φ̂
(ρ2) ≤

H(Φ(·))≥H(·)
H(Φ(ρ2))− χ

Φ̂
(ρ2) = Ic(ρ2,Φ) + ĤΦ(ρ2),

where ρ1 and ρ2 are states in S(HA) such that TrHρi ≤ h, i = 1, 2, χΦ(ρ1) = C̄(Φ,H, h), and
I(ρ2,Φ) = Cea(Φ,H, h).

By repeating the corresponding proofs, it is easy to obtain the following proposition.

Proposition 4. The assertions of Proposition 1, Theorem 1, and Theorem 2 (B) remain valid
with C̄(Φ) and Cea(Φ) replaced, respectively, by C̄(Φ,H, h) and Cea(Φ,H, h) (under the natural
definition of the χ-essential part of the channel Φ with constraint (21)). The assertions of The-
orem 2 (A) remains valid under this replacement if the basis {|k〉} in representation (13) of the
channel Φ consists of eigenvectors of the operator H.

The following example shows that the assertion of Theorem 2 (A) without the above-given
additional condition is not valid for constrained channels.
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Example 3. Consider the classical-quantum channel

Π(ρ) =
∑

k

〈k|ρ|k〉|k〉〈k|,

where {|k〉} is an orthonormal basis in HA = HB . Let h < (dimHA)
−1TrH.

By using the generalized version of Theorem 1, we will show that Cea(Π,H, h) = C̄(Π,H, h) if
and only if the operator H is diagonizable in the basis {|k〉}.

Since Π = Π̂, we have I(ρ,Π) = H(ρ) and Cea(Π,H, h) = max
TrHρ≤h

H(ρ). By using the La-

grange method, it is easy to show that the above maximum is attained at a unique state ρ∗ =
(Tr exp(−λH))−1 exp(−λH), where λ is given by the equation TrH exp(−λH) = hTr exp(−λH).
If Cea(Π,H, h) = C̄(Π,H, h), then Theorem 1 implies existence of an ensemble {πi, ρi} of pure
states with average state ρ∗ such that

ρi = ρ
1/2
∗ Π∗

(
[Π(ρ∗)]

−1/2Π(ρi)[Π(ρ∗)]
−1/2

)
ρ
1/2
∗ , ∀i.

Since Π∗ = Π and ρ∗ is a full-rank state, this equality can be valid only if ρi = |k〉〈k| for some k.
Thus, {|k〉} is a basis of eigenvectors for the state ρ∗ and hence for the operator H.

If the operator H is diagonizable in the basis {|k〉}, then ρ∗ =
∑

k πk|k〉〈k|, and hence

C̄(Π,H, h) ≥
∑

k

πkH(Π(|k〉〈k|)‖Π(ρ∗)) = H(ρ∗) = Cea(Π,H, h).

Proposition 3 is generalized as follows.

Proposition 5. Let Φ: S(HA) → S(HB) be a degradable channel, H a positive operator, h > 0,
and h∗ = (dimHA)

−1TrH. Then one of the following alternatives holds:

• C̄(Φ,H, h) < Cea(Φ,H, h);
• Φ is a classical-quantum channel having the representation

Φ(ρ) =

dimHA∑

k=1

〈k|ρ|k〉σk, ρ ∈ S(HA), (22)

where {σk} is a collection of states in S(HB) with mutually orthogonal supports, and {|k〉} is
– an orthonormal basis in HA if h ≥ h∗;
– the orthonormal basis of eigenvectors of the operator H if h < h∗.

Proof. Since χΦ(ρ) ≤ H(ρ) and I(ρ,Φ) ≥ H(ρ) (Φ is a degradable channel), the equality
C̄(Φ,H, h) = Cea(Φ,H, h) can be valid only if

C̄(Φ,H, h) = Cea(Φ,H, h) = max
TrHρ≤h

H(ρ).

If h ≥ h∗, then this maximum coincides with log dimHA, which means that the constraint has
no effect and hence the second alternative in Proposition 3 holds.

If h < h∗, then the above maximum is always attained at a full-rank state, and the generalized
version of Theorem 2 (B) implies that Φ is a classical-quantum channel having representation (22).
Similarly to the proof of Proposition 3, one can show that the states in the collection {σk} have
mutually orthogonal supports.

Let us show that the equality C̄(Φ,H, h) = Cea(Φ,H, h) can be valid in the case h < h∗ if and
only if the operator H is diagonizable in the basis {|k〉} from representation (22) of the channel Φ.
For the channel Π(ρ) =

∑

k
〈k|ρ|k〉|k〉〈k|, this assertion is proved in Example 3. To prove it in the

general case, it suffices to note that C̄(Φ,H, h) = C̄(Π,H, h) and Cea(Φ,H, h) = Cea(Π,H, h).
These equalities follow from the chain rules for the capacities, since it is easy to construct channels
Ψ1 and Ψ2 such that Π = Ψ1 ◦ Φ and Φ = Ψ2 ◦Π. 
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The following proposition shows that coincidence of C̄(Φ,H, h) and Cea(Φ,H, h) for any con-
straint parameters (H,h) is a very strong requirement.

Proposition 6. If Φ: S(HA) → S(HB) is a quantum channel such that Cea(Φ,H, h) =
C̄(Φ,H, h) for any operator H ≥ 0 and h > 0, then Φ is a classical-quantum channel such that
χ
Φ̂
(ρ) = H(ρ) for all ρ ∈ S(HA). If the conjecture below is true, then Φ is a completely depolarizing

channel.

Proof. By Lemma 1 in [8], an arbitrary full-rank state ρ in S(HA) can be made the average
state of an optimal ensemble for the channel Φ with constraint (21) by an appropriate choice of
the operator H. Hence, the condition of the proposition and continuity arguments imply I(ρ,Φ) =
χΦ(ρ) for any state ρ in S(HA). By virtue of (6), this means that χ

Φ̂
(ρ) = H(ρ) for any state ρ

in S(HA). By the generalized version of Theorem 2 (B), Φ is a classical-quantum channel. 

Conjecture. If Φ: S(HA) → S(HB) is a quantum channel such that χΦ(ρ) = H(ρ) for all
ρ ∈ S(HA), then the channel Φ coincides (up to unitary equivalence) with the channel ρ �→ ρ⊗ σ
for some state σ.

4. THE FUNCTION ΔΦ(ρ) = I(ρ,Φ)− χΦ(ρ) AND ITS MAXIMUM VALUE

A central role in the analysis of relations between entanglement-assisted and unassisted classical
capacities of a quantum channel Φ is played by the function

ΔΦ(ρ) = I(ρ,Φ)− χΦ(ρ)

introduced in Section 2, where it was mentioned that

ΔΦ(ρ) = H(ρ)− χ
Φ̂
(ρ) = min∑

i

πiρi=ρ

rank ρi=1

∑

i

πi
[
H(ρi‖ρ)−H(Φ̂(ρi)‖Φ̂(ρ))

]

and that the above minimum is attained at an ensemble {πi, ρi} of pure states if and only if this
ensemble is χΦ-optimal in the sense of the following definition.

Definition 2. An ensemble {πi, ρi} of pure states is said to be χΦ-optimal if the maximum in
definition (3) of the χ-function of the channel Φ is attained at this ensemble.

Since ĤΦ ≡ ĤΦ̂, any χΦ-optimal ensemble is χ
Φ̂
-optimal, and vice versa.

The above formula for the function ΔΦ and monotonicity of the relative entropy imply the
following observation.

Lemma 2. If Φ is a degradable channel, then ΔΦ(ρ) ≥ ΔΦ̂(ρ) for all ρ.

The following theorem describes properties of the function ΔΦ.

Theorem 3. Let Φ: S(HA) → S(HB) be a quantum channel and Φ̂ : S(HA) → S(HE) its
complementary channel. Then ΔΦ is a nonnegative continuous function on the set S(HA) vanishing
on the subset extrS(HA) of pure states. It has the following properties:

(1) If there exists a channel Θ: S(HE) → S(HA) such that

Θ(Φ̂(ρi)) = ρi, ∀i, (23)

for some ensemble {πi, ρi} of pure states with average state ρ, then ΔΦ(ρ) = 0 and the ensemble
{πi, ρi} is χΦ-optimal ;

(2) If ΔΦ(ρ) = 0, then
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• (23) holds for any χΦ-optimal ensemble {πi, ρi} with average state ρ, where Θ is a channel
acting on a state σ supported by the subspace supp Φ̂(ρ) as follows: Θ(σ) = AΦ̂∗(BσB)A,
A = ρ1/2, B = Φ̂(ρ)−1/2;

• Φ|S(Hρ) is a classical-quantum subchannel of the channel Φ, where Hρ is the support of the
state ρ;

• ΔΦ(
∑

i
λiρi) = 0 for any χΦ-optimal ensemble {πi, ρi} with average state ρ and any proba-

bility distribution {λi};
(3) The function ΔΦ is concave on the set6

{∑

i
λiρi |

∑

i
λi = 1, λi ≥ 0

}
for any χΦ-optimal en-

semble {πi, ρi};
(4) Monotonicity: for an arbitrary channel Ψ: S(HB) → S(HC) we have the inequality

ΔΨ◦Φ(ρ) ≤ ΔΦ(ρ), ρ ∈ S(HA);

(5) Subadditivity for tensor product states: for an arbitrary channel Ψ: S(HC) → S(HD) we have
the inequality

ΔΦ⊗Ψ(ρ⊗ σ) ≤ ΔΦ(ρ) + ΔΨ(σ), ρ ∈ S(HA), σ ∈ S(HC),

which is satisfied with equality if the strong additivity of the Holevo capacity holds for the
channels Φ and Ψ (see [8]).

Proof. (1) This property follows from monotonicity of the relative entropy and the remark
before Definition 2.

(2) The first assertion follows from the Petz theorem [13, Theorem 3], which characterizes the
case in which monotonicity of the relative entropy holds with equality. The second assertion is
derived from the first by using arguments from the proof of Theorem 2 (B). The third assertion
follows from the first and property (1).

(3) Since ĤΦ ≡ ĤΦ̂, representation (4) for the function χ
Φ̂
implies

ΔΦ(ρ) =
[
H(ρ)−H(Φ̂(ρ))

]
+ ĤΦ(ρ).

By the identity H(ρ̄)−∑

i
πiH(ρi) =

∑

i
πiH(ρi‖ρ̄), where ρ̄ =

∑

i
πiρi, concavity of the term in the

square brackets on the set S(HA) follows from monotonicity of the relative entropy. Thus, to prove

this assertion, it suffices to show that the function ĤΦ is affine on the set
{∑

i
λiρi |

∑

i
λi = 1, λi ≥ 0

}
.

This can be done by noting that the function ĤΦ coincides with the double Fenchel transform of
the function H ◦ Φ and then using Proposition 1 from [17].

(4) By using the Stinespring representation, it is easy to show (see [14, proof of Lemma 17])

that there exists a channel Θ such that Φ̂ = Θ ◦ ̂Ψ ◦ Φ. Hence, the chain rule for the χ-function
implies

ΔΨ◦Φ(ρ) = H(ρ)− χ
̂Ψ◦Φ(ρ) ≤ H(ρ)− χ

Φ̂
(ρ) = ΔΦ(ρ).

(5) Since ̂Φ⊗Ψ = Φ̂⊗Ψ̂ (see [7]), this assertion follows from an obvious inequality χΦ̂⊗Ψ̂(ρ⊗σ) ≥
χ
Φ̂
(ρ)+χΨ̂(σ), which is satisfied with equality if the strong additivity of the Holevo capacity holds

for the channels Φ and Ψ [8]. 
The following proposition shows the sense of the maximum value of the function ΔΦ.

6 The function ΔΦ is not concave onS(HA) in general, since otherwise we would obtain ΔΦ(ρ) ≤ ΔΦ(ρc) = 0
for any covariant channel Φ such that Cea(Φ) = C̄(Φ).
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Proposition 7. Let Φ: S(HA) → S(HB) be a quantum channel. Then

max
ρ∈S(H

A
)
ΔΦ(ρ) = sup

H,h

[
Cea(Φ,H, h) − C̄(Φ,H, h)

]
, (24)

where the supremum is over all pairs of the form (positive operator H ∈ B(HA), h > 0).

Proof. For given H and h, let ρ be a state in S(HA) such that TrHρ ≤ h and Cea(Φ,H, h) =
I(ρ,Φ). Since C̄(Φ,H, h) ≥ χΦ(ρ), we have

ΔΦ(ρ) = I(ρ,Φ)− χΦ(ρ) ≥ Cea(Φ,H, h) − C̄(Φ,H, h).

This implies “≥ ” in (24).

Let ε > 0 be arbitrary and ρε be a full-rank state inS(HA) such that ΔΦ(ρε) ≥ max
ρ∈S(H

A
)
ΔΦ(ρ)−ε.

By Lemma 1 in [8], there exists a pair (H,h) such that TrHρε ≤ h and C̄(Φ,H, h) = χΦ(ρε). Since
Cea(Φ,H, h) ≥ I(ρε,Φ), we have

Cea(Φ,H, h)− C̄(Φ,H, h) ≥ I(ρε,Φ)− χΦ(ρε) = ΔΦ(ρε) ≥ max
ρ∈S(HA)

ΔΦ(ρ)− ε,

which implies “≤ ” in (24). 
It is easy to see that max

ρ∈S(HA)
ΔΦ(ρ) ∈ [0, log dimHA]. If ΔΦ(ρ) ≡ 0, then the condition of

Proposition 6 holds. If max
ρ∈S(HA)

ΔΦ(ρ) = log dimHA, then Φ is unitary equivalent to the channel

ρ �→ ρ⊗ σ, where σ is a given state. Indeed, this implies χ
Φ̂
(ρc) = 0, where ρc is the chaotic state

in S(HA), and hence χ
Φ̂
(ρ) ≡ 0 by concavity and nonnegativity of the χ-function, which means

that Φ̂ is a completely depolarizing channel.

Remark 4. Subadditivity of the function ΔΦ (property (5) in Theorem 3) implies existence
of the regularization Δ∗

Φ(ρ) = lim
n→+∞

n−1ΔΦ⊗n(ρ⊗n). By repeating arguments from the proof of

Proposition 7 and using subadditivity of the quantum mutual information, it is easy to show that

max
ρ∈S(HA)

Δ∗
Φ(ρ) ≥ sup

H,h
[Cea(Φ,H, h) − C(Φ,H, h)] .

The equality in this inequality obviously takes place if the strong additivity of the Holevo capacity
holds for the channel Φ (see [8]), but seemingly this is not the case in general.

Let Φ: S(HA) → S(HB) and Ψ: S(HB) → S(HC) be quantum channels. Monotonicity of the
function ΔΦ (property (4) in Theorem 3) shows that the inequality

Cea(Ψ ◦ Φ,H, h)− C̄(Ψ ◦Φ,H, h) ≤ Cea(Φ,H, h) − C̄(Φ,H, h)

is valid if the functions ρ �→ I(ρ,Ψ ◦ Φ) and ρ �→ χΦ(ρ) have a common maximum point under
the condition TrHρ ≤ h (this holds for unconstrained channels Φ and Ψ satisfying the covariance
condition (14) with HA = HB and Vg = Wg).

In general, validity of the above inequality is an interesting open question, but monotonicity of
the function ΔΦ and Proposition 7 imply the following observation.

Corollary 2. Let Φ: S(HA) → S(HB) and Ψ: S(HB) → S(HC) be arbitrary quantum chan-
nels. Then

sup
H,h

[
Cea(Ψ ◦ Φ,H, h)− C̄(Ψ ◦Φ,H, h)

]
≤ sup

H,h

[
Cea(Φ,H, h)− C̄(Φ,H, h)

]
.
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If we introduce the parameter

D(Φ) = sup
H,h

[
Cea(Φ,H, h) − C̄(Φ,H, h)

]

for the channel Φ: S(HA) → S(HB), the above observations can be reformulated as follows:

• D(Φ) = max
ρ∈S(H

A
)
ΔΦ(ρ);

• D(Ψ ◦Φ) ≤ D(Φ) for any channel Ψ: S(HB) → S(HC);
• D(Φ) ∈ [0, log dimHA];
• D(Φ) = log dimHA if and only if Φ is unitary equivalent to the noiseless channel ρ �→ ρ ⊗ σ,
where σ is a given state;

• D(Φ) = 0 if Φ is a completely depolarizing channel (“if and only if” provided the conjecture at
the end of Section 3 is true).

The above properties show that the parameter D(Φ) can be considered as one of characteristics
of the channel Φ describing its “level of noise.” Unfortunately, a way for computing this parameter
for nontrivial examples of quantum channels is unclear.

Generalizations of the results obtained in this paper to infinite-dimensional constrained channels
are presented in the second part of [18].

The author is grateful to A.S. Holevo and participants of his Quantum Probability, Statistic,
and Information seminar (Steklov Mathematical Institute) for useful discussions.
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