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Abstract—A coding theorem for entanglement-assisted communication via an infinite-dimen-
sional quantum channel with linear constraints is extended to a natural degree of generality.
Relations between the entanglement-assisted classical capacity and χ-capacity of constrained
channels are obtained, and conditions for their coincidence are given. Sufficient conditions for
continuity of the entanglement-assisted classical capacity as a function of a channel are obtained.
Some applications of the obtained results to analysis of Gaussian channels are considered.
A general (continuous) version of the fundamental relation between coherent information and
the measure of privacy of classical information transmission via an infinite-dimensional quantum
channel is proved.
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1. INTRODUCTION

A central role in quantum information theory is played by the notion of a quantum channel,
a noncommutative analog of a transition probability matrix in classical theory. Informational prop-
erties of a quantum channel are characterized by a number of different capacities depending on the
type of transmitted information, additional resources used to increase the rate of transmission,
security requirements, etc.; see, e.g., [1]. One of the most important of these quantities is the
entanglement-assisted classical capacity, which characterizes the ultimate rate of classical informa-
tion transmission assuming that the transmitter and receiver may use a common entangled state.
By definition, this capacity is greater than or equal to the classical (unassisted) capacity of the
channel. The Bennett–Shor–Smolin–Thapliyal (BSST) theorem [2] gives an explicit expression for
the entanglement-assisted capacity of a finite-dimensional unconstrained channel, showing that this
capacity is equal to the maximum of quantum mutual information.

When applying the protocol of entanglement-assisted communication to infinite-dimensional
channels, one has to impose certain constraints on input states. A typical physically motivated
constraint is bounded energy of states used for encoding. This constraint is determined by the
linear inequality

Tr ρF ≤ E, E > 0, (1)

where F is a positive self-adjoint operator, the Hamiltonian of the input quantum system. An oper-
ational definition of the entanglement-assisted classical capacity of an infinite-dimensional quantum
channel with linear constraint (1) is given in [3], where a generalization of the BSST theorem is
proved under special restrictions on the channel and on the constraint operator. Recent advances
in the study of entropy characteristics of infinite-dimensional quantum channels (in particular,

1 Supported in part by the Russian Foundation for Basic Research, project nos. 12-01-00319-a and 13-01-
00295-a.
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16 HOLEVO, SHIROKOV

generalization of the notion of quantum conditional entropy [4]) make it possible to establish a
general version of the BSST theorem for a channel with linear constraints without any simplifying
assumptions. A proof of this result is the first part of the paper.

The second part is devoted to studying relations between entanglement-assisted and unassisted
classical capacities of infinite-dimensional constrained channels and conditions for their (non)coin-
cidence. It is shown that under certain circumstances coincidence of the above capacities implies
that the channel is essentially classical-quantum (for a definition, see, e.g., [1]).

We also consider the problem of continuity of the entanglement-assisted classical capacity as a
function of a channel. This question has a physical motivation in the fact that preparing a quantum
channel in a real experiment is subject to unavoidable imprecisions. In the finite-dimensional case,
continuity of the entanglement-assisted classical capacity was proved in [5]. In infinite dimensions,
this capacity is not continuous in general (it is only lower semicontinuous); however, we suggest
several sufficient conditions for its continuity and consider some applications.

In Section 6 we prove an infinite-dimensional generalization of the identity due to Schumacher
and Westmoreland [6], which underlies the fundamental relation between the quantum capacity
and privacy of classical information transmission through a quantum channel.

In the Appendix we give auxiliary facts concerning Bosonic Gaussian channels.

2. PRELIMINARIES

Let H be a separable Hilbert space, B(H) the algebra of all bounded operators in H, and B+(H)
the positive cone in B(H). Let T(H) be the Banach space of all trace-class operators in H, and
let S(H) be the closed convex subset of T(H) consisting of positive operators with unit trace,
called states [1,7]. We denote by IH the unit operator in a Hilbert space H and by IdH the identity
transformation of the Banach space T(H).

A linear completely positive trace-preserving map Φ: T(HA) → T(HB) is called a channel [1,7].
By the Stinespring dilation theorem, complete positivity of Φ implies existence of a Hilbert spaceHE

and isometry V : HA → HB ⊗HE such that2

Φ[ρ] = TrE V ρV ∗, ρ ∈ T(HA). (2)

The channel ̂Φ: T(HA) → T(HE) defined as

̂Φ[ρ] = TrB V ρV ∗, ρ ∈ T(HA), (3)

is said to be complementary to the channel Φ [8]. The complementary channel is uniquely defined
in the following sense: if ̂Φ′ : T(HA) → T(HE′) is a channel defined by (3) via another isometry
V ′ : HA → HB ⊗HE′ for which (2) holds, then there is a partial isometry W : HE → HE′ such that

̂Φ′[ρ] = W ̂Φ[ρ]W ∗, ̂Φ[ρ] = W ∗
̂Φ′[ρ]W, ρ ∈ T(HA).

Let H(ρ) be the von Neumann entropy of the state ρ, and H(ρ ‖σ) the quantum relative entropy
of the states ρ and σ [7,9,10]. A finite collection of states {ρi} with the corresponding probability
distribution {πi} is called an ensemble and is denoted by {πi, ρi}. The state ρ̄ =

∑

i
πiρi is called

the average state of the ensemble {πi, ρi}.
The χ-quantity of an ensemble {πi, ρi} is defined as

χ({πi, ρi}) .
=

∑

i

πiH(ρi ‖ ρ̄) = H(ρ̄)−
∑

i

πiH(ρi),

2 Here and in what follows, we write TrX(·) = TrHX (·) for brevity.
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ON CLASSICAL CAPACITIES 17

where the second expression is valid under the condition H(ρ̄) < +∞. We will also use the
notation χΦ({πi, ρi}) = χ({πi,Φ[ρi]}). The χ-quantity can be considered as a quantum analog
of the Shannon information; it appears in the expression for the classical capacity of a quantum
channel (see below).

Let F be a positive self-adjoint operator in HA. For any state ρ ∈ S(HA), the value Tr ρF (finite
or infinite) is defined as sup

n
Tr ρPnFPn, where Pn is the spectral projector of F corresponding to

the interval [0, n].

We impose a linear constraint on input states ρ(n) of the channel Φ⊗n of the form

Tr ρ(n)F (n) ≤ nE, (4)

where
F (n) = F ⊗ . . . ⊗ I + . . .+ I ⊗ . . .⊗ F. (5)

An operational definition of the classical capacity of a quantum channel with a linear constraint
can be found in [3]. We will need an analytical expression, for which we first introduce the χ-capac-
ity of a channel Φ with constraint (4):

Cχ(Φ, F,E) = sup
ρ: Tr ρF≤E

Cχ(Φ, ρ),

where
Cχ(Φ, ρ) = sup

∑

i

πiρi=ρ

χΦ({πi, ρi}) (6)

is the constrained χ-capacity of the channel Φ at state ρ (the supremum is over all ensembles with
the average state ρ). If H(Φ[ρ]) < +∞, then

Cχ(Φ, ρ) = H(Φ[ρ]) − ̂HΦ(ρ), (7)

where ̂HΦ(ρ) = inf
∑

i

πiρi=ρ

∑

i
πiH(Φ[ρi]) is the σ-convex hull of the function ρ �→ H(Φ[ρ]). Due to

concavity of this function, the infimum can be taken over ensembles of pure states. By the Holevo–
Schumacher–Westmoreland (HSW) theorem adapted to constrained channels ([3, Proposition 3]),
the classical capacity of a channel Φ with constraint (4) is given by the following regularized
expression:

C(Φ, F,E) = lim
n→+∞

n−1Cχ(Φ
⊗n, F (n), nE),

where F (n) is defined in (5).

Another important analog of the Shannon information, which appears in connection with the
entanglement-assisted classical capacity (see Section 3), is the quantum mutual information. In
finite dimensions it is defined for an arbitrary state ρ ∈ S(HA) by the expression (cf. [11])

I(ρ,Φ) = H(ρ) +H(Φ[ρ])−H((Φ⊗ IdR)[ρ̂]), (8)

where HR is a Hilbert space isomorphic to HA and ρ̂ is a purification of the state ρ in the space
HA⊗HR so that ρ = TrR ρ̂. By using the complementary channel, the quantum mutual information
can be also expressed as follows:

I(ρ,Φ) = H(ρ) +H(Φ[ρ])−H(̂Φ[ρ]). (9)

In infinite dimensions, expressions (8) and (9) may contain uncertainty of the type ∞−∞, and to
avoid this problem they should be modified as

I(ρ,Φ) = H ((Φ⊗ IdR)[ρ̂] ‖ (Φ ⊗ IdR)[ρ⊗ � ]) , (10)
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18 HOLEVO, SHIROKOV

where � = TrA ρ̂ is the state in S(HR) with the same nonzero spectrum as ρ. Analytical properties
of the function (ρ,Φ) �→ I(ρ,Φ) defined by (10) were studied in [12] in the infinite-dimensional
case.

3. ENTANGLEMENT-ASSISTED CLASSICAL CAPACITY

Consider the following protocol of classical information transmission through a quantum chan-
nel Φ: S(HA) → S(HA′).3 Two parties A and B share an entangled (pure) state ωAB. A makes
encodings λ → Eλ of a classical signal λ from a finite alphabet Λ with probabilities πλ and sends
its part of this shared state through the channel Φ to B. Here Eλ are encoding channels depending
on the signal λ. Thus B receives states (Φ ⊗ IdB)[ωλ], where ωλ = (Eλ ⊗ IdB)[ωAB], with proba-
bilities πλ, and B aims to extract maximum information about λ by doing measurements on these
states. To enable block encoding, this procedure should be applied to the channel Φ⊗n. Then

signal states ω
(n)
λ transmitted through the channel Φ⊗n ⊗ Id⊗n

B have a special form

ω
(n)
λ = (E(n)

λ ⊗ Id⊗n
B )

[

ω
(n)
AB

]

, (11)

where ω
(n)
AB is the pure entangled state for n copies of the system AB and λ → E(n)

λ are encodings
for n copies of the system A.

Constraint (4) is equivalent to a similar constraint on input states of the channel Φ⊗n ⊗ Id⊗n
B

with the constraint operator F
(n)
AB = F (n) ⊗ I⊗n

B . Denote by P(n)
AB the collection of ensembles

π(n) = {π(n)
λ , ω

(n)
λ }, where ω

(n)
λ are states of the form (11) satisfying

∑

λ∈Λ
π
(n)
λ Trω

(n)
λ F

(n)
AB ≤ nE.

The classical capacity of the above protocol is called the entanglement-assisted classical capacity of
the channel Φ under constraint (4) and is denoted by Cea(Φ, F,E) (for more detail of the operational
definition, see [3]). By a modification of the proof of Proposition 2 in [3], we obtain

Cea(Φ, F,E) = lim
n→∞

1

n
C(n)
ea (Φ, F,E), (12)

where
C(n)
ea (Φ, F,E) = sup

π(n)∈P(n)
AB

χΦ⊗n⊗Id⊗n
B

(

{π(n)
λ , ω

(n)
λ }

)

. (13)

These are expressions that we will work with in this paper. The following theorem generalizes
Proposition 4 from [3] to the case of an arbitrary channel Φ and arbitrary constraint operator F .

Theorem 1. Let Φ: S(HA) → S(HA′) be a quantum channel, and let F be a self-adjoint
positive operator in the space HA. The entanglement-assisted classical capacity (finite or infinite)
of the channel Φ with constraint (4) is given by the expression

Cea(Φ, F,E) = sup
ρ: Tr ρF≤E

I(ρ,Φ). (14)

It follows from Theorem 1 that the entanglement-assisted classical capacity (finite or infinite)
of the unconstrained channel Φ is

Cea(Φ) = sup
ρ∈S(HA)

I(ρ,Φ).

3 In this section the output of a quantum channel will be denoted by A′ (instead of B) for convenience of
notation.
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ON CLASSICAL CAPACITIES 19

Proof. To prove the inequality ≥ in (14), assume first that the channel Φ has a finite-dimen-
sional output (the systemA′ is finite-dimensional). In this case the required inequality can be proved
by repeating arguments from the corresponding part of the proof of Proposition 4 in [3], based on
a special encoding protocol. We only make the following remarks concerning the generalization of
that proof:

1. Finite dimensionality of the system A′ implies finiteness of the output entropy of the channel Φ
on the whole space of input states;

2. Finiteness of Tr ρF implies that all the eigenvectors of the state ρ belong to the domain of the
operator

√
F ;

3. Finite dimensionality of the system A′ shows that for any finite-rank state ρ the restriction of
the channel Φ⊗n to the support of the state ρ⊗n acts as a finite-dimensional channel for each n;

4. If there are no states satisfying the inequality Tr ρF < E but there exists an infinite-rank state ρ0
such that Tr ρ0F = E, then there is a sequence {ρn} of finite-rank states converging to ρ0 such
that Tr ρnF = E for which

lim inf
n→+∞

I(ρn,Φ) ≥ I(ρ0,Φ)

by lower semicontinuity of the quantum mutual information.

Let Φ be an arbitrary channel, and let {Pn} be a sequence of finite-dimensional projectors
in HA′ strongly converging to the unit operator IA′ . The channel Φ is approximated in the strong
convergence topology (see [13]) by the sequence of channels Πn ◦Φ with finite-dimensional output,
where Πn(ρ) = PnρPn+[Tr ρ(IA′ −Pn)]τ and τ is a given state in A′. Since the inequality ≥ in (14)
is proved for a channel with finite-dimensional output, the chain rule for the entanglement-assisted
capacity implies

Cea(Φ, F,E) ≥ Cea(Πn ◦Φ, F,E) ≥ I(ρ,Πn ◦ Φ).

Lower semicontinuity of the function Φ �→ I(ρ,Φ) in the strong convergence topology and the chain
rule for quantum mutual information (see Proposition 1 in [12]) imply

lim
n→+∞

I(ρ,Πn ◦Φ) = I(ρ,Φ) ≤ +∞ for all ρ.

Hence, the inequality ≥ in (14) for the channel Φ follows from the above inequality.

Now we prove the inequality ≤ in (14). By the lemma below, the expression χΦ⊗n⊗Id⊗n
B

(. . .) on

the right-hand side of (13) is bounded from above by I
(

∑

λ
π
(n)
λ (ω

(n)
λ )A,Φ

⊗n
)

. From (12) we get

Cea(Φ, F,E) ≤ lim
n→∞

1

n
sup

π(n)∈P(n)
AB

I

(

∑

λ

π
(n)
λ (ω

(n)
λ )A,Φ

⊗n
)

.

The right-hand side is less than or equal to

sup
ρ(n): Tr ρ(n)F (n)≤nE

I
(

ρ(n),Φ⊗n)

≡ Īn(Φ).

Note that the sequence Īn(Φ) is additive. To show this, it suffices to prove

Īn(Φ) ≤ nĪ1(Φ). (15)

By subadditivity of quantum mutual information,

I
(

ρ(n),Φ⊗n)

≤
n

∑

j=1

I
(

ρ
(n)
j ,Φ

)

,
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20 HOLEVO, SHIROKOV

where ρ
(n)
j are partial states, and, by concavity,

n
∑

j=1

I
(

ρ
(n)
j ,Φ

)

≤ nI

(

1

n

n
∑

j=1

ρ
(n)
j ,Φ

)

.

The inequality Tr ρ(n)F (n) ≤ nE is equivalent to Tr

(

1

n

n
∑

j=1
ρ
(n)
j

)

F ≤ E, hence (15) follows. Thus,

Cea(Φ, F,E) ≤ sup
ρ: Tr ρF≤E

I (ρ,Φ) .

Lemma. Let Φ: S(HA) → S(HA′) be a quantum channel and σ an arbitrary state in S(HB).
Then for an arbitrary ensemble {πi, ωi} of states in S(HA ⊗ HB) such that (ωi)B = σ ∈ S(HB)
for all i, the inequality

χΦ⊗IdB
({πi, ωi}) ≤ I(ωA,Φ) (16)

holds, where ω =
∑

i
πiωi is the average state of the ensemble {πi, ωi}.

In the proof of this lemma we will use an infinite-dimensional generalization of the conditional
entropy proposed in [4], which is briefly described below.

In finite dimensions, the conditional entropy of a state ρ of a composite system AB is defined as

H(A |B)ρ
.
= H(ρ)−H(ρB). (17)

The conditional entropy is finite, but in contrast to the classical case it may be negative.

Following [4], the conditional entropy of a state ρ of an infinite-dimensional composite system
AB is defined as

H(A |B)ρ
.
= H(ρA)−H(ρ ‖ ρA ⊗ ρB) (18)

provided that H(ρA) < +∞. It is easy to see that the right-hand sides of (17) and (18) coincide
if H(ρ) < +∞ (finiteness of any two values in the triple H(ρA),H(ρB),H(ρ) implies finiteness of
the third).

It is proved in [4] that the above-defined conditional entropy is a concave function on the convex
set of all states ρ of the system AB such thatH(ρA) < +∞, which possesses the following properties:

H(A |B)ρAB
≥ H(A |BC)ρ (19)

for any state ρ of ABC (monotonicity), and

H(A |B)ρAB
= −H(A |C)ρAC

(20)

for any pure state ρ of ABC, where it is assumed that H(ρA) < +∞.

Proof of the lemma. Let {πi, ωi} be an ensemble of states in S(HA ⊗HB) with an average
state ω such that (ωi)B = σ ∈ S(HB) for all i. We have to show that

∑

i

πiH
(

Φ⊗ IdB [ωi] ‖Φ ⊗ IdB[ω]
)

≤ I(ωA,Φ). (21)

First, let us prove inequality (21) assuming that dimHA′ < +∞ and dimHB < +∞. In this
case the left-hand side of this inequality can be rewritten as

L
.
= H(Φ⊗ IdB [ω])−

∑

i

πiH(Φ⊗ IdB [ωi]).

PROBLEMS OF INFORMATION TRANSMISSION Vol. 49 No. 1 2013



ON CLASSICAL CAPACITIES 21

By subadditivity of the von Neumann entropy, we have

L ≤ H(Φ[ρ]) +
∑

i

πi
[

H(σ)−H(Φ⊗ IdB [ωi])
]

,

where ρ = ωA. Note that H(Φ ⊗ IdB[ωi]) −H(σ) is the conditional entropy H(A′|B) at the state
Φ ⊗ IdB(ωi). Let ω̂i be a pure state in ABRi such that (ω̂i)AB = ωi. By monotonicity of the
conditional entropy (property (19)), we have

H(Φ⊗ IdB [ωi])−H(σ) = H(A′ |B)Φ⊗IdB[ωi] ≥ H(A′ |BRi)Φ⊗IdBRi
[ω̂i]

, (22)

where H(A′|BRi) is defined by (18) (the system Ri is infinite-dimensional, but the system A′

is finite-dimensional by the assumption). Since ω̂i is a purification of the state ρi
.
= (ωi)A, i.e.,

(ω̂i)A = ρi, property (20) of the conditional entropy implies

H(A′ |BRi)Φ⊗IdBRi
[ω̂i]

= H(A′ |BRi)TrE V⊗IBRi
· ω̂i · V ∗⊗IBRi

= −H(A′ |E)TrBRi
V⊗IBRi

· ω̂i ·V ∗⊗IBRi

= −H(A′ |E)V ρiV ∗ , (23)

where E is an environment system for the channel Φ and V is the Stinespring isometry (i.e., Φ[ρ] =
TrE V ρV ∗).

By using concavity of the conditional entropy (defined by (18)) and property (20), we obtain
∑

i

πiH(A′ |E)V ρiV ∗ ≤ H(A′ |E)V ρV ∗ = −H(A′ |R)TrE V⊗IR · ρ̂ ·V ∗⊗IR
,

where R is a reference system for the state ρ and ρ̂ is a pure state in AR such that ρ̂A = ρ. Hence,
(22) and (23) imply

L ≤ H(Φ[ρ])−H(A′ |R)Φ⊗IdR[ρ̂] = H
(

Φ⊗ IdR[ρ̂] ‖Φ[ρ]⊗ ρ̂R
)

= I(ρ,Φ),

where definitions (10) and (18) were used.

Thus, inequality (21) is proved under the assumptions that dimHA′ < +∞ and dimHB < +∞.
Its proof in the general case can be obtained using approximation techniques as follows.

Let {πi, ωi} be an ensemble such that (ωi)B = σ ∈ S(HB), and let Qn be the spectral projector
of the state σ corresponding to its n maximal eigenvalues. Let λn = TrQnσ and Cn = IA ⊗ Qn.
For a natural n, consider the ensemble {πi, ωn

i } with the average state ωn, where

ωn
i = λ−1

n CnωiCn, ωn = λ−1
n CnωCn.

Let {Pn} be a sequence of finite-rank projectors in the space HA′ strongly converging to the
identity operator IA′ , and let τ be a pure state in S(HA′). Consider the sequence of channels
Φn = Πn ◦Φ, where

Πn[ρ] = PnρPn + τ Tr(IA′ − Pn)ρ, ρ ∈ S(HA′).

Since (ωn
i )B = λ−1

n Qnσ for all i, the first part of the proof implies

∑

i

πiH (Φn ⊗ IdB[ω
n
i ] ‖Φn ⊗ IdB [ω

n]) ≤ I(ωn
A,Φn).

Since λnω
n
A ≤ ωA, Lemma 4 in [12] shows that lim

n→+∞
I(ωn

A,Φn) = I(ωA,Φ). Hence, the above

inequality implies inequality (21) by lower semicontinuity of the relative entropy. This proves the
Lemma and completes the proof of Theorem 1. 
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4. RELATIONS BETWEEN ENTANGLEMENT-ASSISTED
AND UNASSISTED CLASSICAL CAPACITIES

When dealing with infinite-dimensional quantum systems and channels, it is necessary to con-
sider generalized ensembles defined as Borel probability measures μ on the set of all quantum states.
From this point of view ordinary ensembles are described by finitely supported measures μ. We
denote by P(S(H)) the set of all generalized ensembles of states in S(H).

The χ-quantity of a generalized ensemble μ is defined as

χ(μ) =

∫

S(H)

H(ρ ‖ ρ̄(μ))μ(dρ) = H(ρ̄(μ))−
∫

S(H)

H(ρ)μ(dρ), (24)

where ρ̄(μ) =
∫

S(H)

ρμ(dρ) is the average state of μ (the Bochner integral) and the second formula is

valid under the conditionH(ρ̄(μ)) < +∞ [14]. For an arbitrary generalized ensemble μ ∈ P(S(HA))
and a channel Φ: S(HA) → S(HB), one can define a new ensemble μ ◦ Φ−1 ∈ P(S(HB)) (the
image of the ensemble μ under the action of the channel Φ) as follows:

μ ◦Φ−1(B) = μ({ρ ∈ S(HA) |Φ[ρ] ∈ B}).

The χ-quantity of the ensemble μ ◦ Φ−1 will be denoted by χΦ(μ). We have

χΦ(μ) =

∫

S(HA)

H(Φ[ρ] ‖Φ[ρ̄(μ)])μ(dρ) = H(Φ[ρ̄(μ)]) −
∫

S(HA)

H(Φ[ρ])μ(dρ), (25)

where the second equality is valid under the condition H(Φ[ρ̄(μ)]) < +∞.

It is shown in [14] that the constrained χ-capacity defined by (6) can be expressed as

Cχ(Φ, ρ) = sup
μ: ρ̄(μ)=ρ

χΦ(μ) (26)

(the supremum is over all generalized ensembles in P(S(HA)) with the average state ρ), and hence

Cχ(Φ, F,E) = sup
μ: Tr ρ̄(μ)F≤E

χΦ(μ). (27)

In this section we study general relations between the capacities Cχ(Φ, F,E), C(Φ, F,E), and
Cea(Φ, F,E) and give conditions for their coincidence under the assumption4

H(ρ) < +∞, for all ρ such that Tr ρF ≤ E, (28)

which implies, in particular, finiteness of all these values. A basic role in this analysis is played by
the following expression for the quantum mutual information:

I(Φ, ρ) = H(ρ) + Cχ(Φ, ρ)− Cχ(̂Φ, ρ), (29)

which is valid under the condition H(ρ) < +∞ (since Cχ(Φ, ρ) ≤ H(ρ) for any channel Φ, this
condition implies finiteness of all terms on the right-hand side of (29)).

If H(Φ[ρ]) and H(̂Φ[ρ]) are finite, then expression (29) directly follows from (7) and (9), since
̂HΦ ≡ ̂H

̂Φ
(this follows from the coincidence of H(Φ[ρ]) and H(̂Φ[ρ]) for pure states ρ); in the

general case, it can be proved by using Proposition 4 in Section 6.

4 One can show that this assumption holds if and only if Tr exp(−λF ) < +∞ for some λ > 0.
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ON CLASSICAL CAPACITIES 23

By subadditivity of the quantum mutual information, expression (29) implies a formal proof of
the inequality

C(Φ, F,E) ≤ Cea(Φ, F,E), (30)

which looks obvious from the operational definitions of the capacities. It also implies the following
inequalities.

Proposition 1. Let Φ: S(HA) → S(HB) be a quantum channel, and let F be a positive oper-
ator such that condition (28) is valid. The inequalities

Cea(Φ, F,E) ≥ 2Cχ(Φ, F,E)− Cχ(̂Φ, F,E),

Cea(Φ, F,E) ≥ 2C(Φ, F,E) − C(̂Φ, F,E)
(31)

hold, where ̂Φ: S(HA) → S(HE) is the complementary channel to Φ.

Note that, in contrast to (30), both inequalities in (31) hold with equality if Φ is a noiseless
channel. These inequalities show that coincidence of Cea(Φ, F,E) and Cχ(Φ, F,E) (or C(Φ, F,E))
can take place only if C(Φ, F,E) ≤ C(̂Φ, F,E) (respectively, if C(Φ, F,E) ≤ C(̂Φ, F,E)).

Proof. For an arbitrary ε > 0, let ρε be a state in S(HA) such that

Cχ(Φ, F,E) < Cχ(Φ, ρε) + ε, Tr ρεF ≤ E.

Since Cχ(Φ, ρε) ≤ H(ρε) < +∞, Theorem 1 and formula (29) show that

Cea(Φ, F,E) ≥ I(ρε,Φ) ≥ 2Cχ(Φ, ρε)− Cχ(̂Φ, ρε) ≥ 2Cχ(Φ, F,E) − Cχ(̂Φ, F,E) − 2ε,

which implies the first inequality in (31).

The second inequality in (31) is obtained from the first by regularization. 

Now we consider the question of coincidence of the capacities Cea(Φ, F,E) and Cχ(Φ, F,E).

We call a channel Φ: S(HA) → S(HB) classical-quantum (briefly, c-q channel) if the image of
the dual channel Φ∗ : B(HB) → B(HA) consists of commuting operators. If all these operators are
diagonal in a fixed orthonormal basis {|k〉} in HA, we say that the c-q channel is of discrete type.
In this case it has the following representation:

Φ[ρ] =
dimHA

∑

k=1

〈k|ρ|k〉σk, (32)

where {σk} is a collection of states in S(HB). Any finite-dimensional c-q channel is of discrete
type. An example of a c-q channel which is not of discrete type is provided by a Bosonic Gaussian
c-q channel (see the Appendix).

It is shown in [15] that Cχ(Φ) = Cea(Φ) for any finite-dimensional unconstrained c-q channel Φ
and, moreover, that this equality implies that the restriction of the channel Φ to the support of the
average state of any optimal ensemble is a c-q channel (an ensemble is said to be optimal [16] if its
χ-quantity coincides with Cχ(Φ)). An example from [17] shows that the words “the restriction of”
in the last assertion can not be dropped.

To generalize the above assertion to infinite dimensions, we have to consider the notion of a
generalized optimal ensemble for a constrained infinite-dimensional channel [14]. A generalized
ensemble μ∗ is said to be optimal for the channel Φ with constraint (4) if

Tr ρ̄(μ∗)F ≤ E and Cχ(Φ, F,E) = χΦ(μ∗),

which means that the supremum in (27) is achieved on μ∗.

This is a natural generalization of the notion of an optimal ensemble for a finite-dimensional
(constrained or unconstrained) channel. In contrast to the finite-dimensional case, an optimal
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generalized ensemble for an infinite-dimensional constrained channel need not always exist, but one
can prove the following sufficient condition.

Proposition 2 [14]. If the subset of S(HA) defined by the inequality Tr ρF ≤ E is compact5

and the function ρ �→ H(Φ[ρ]) is continuous on this subset, then there exists a generalized optimal
ensemble for the channel Φ with constraint (4).

This condition holds for an arbitrary Bosonic Gaussian channel with energy constraint; see [14,
remark after Proposition 3]. It also holds for any channel having the Kraus representation with a
finite number of terms provided that the operator F satisfies the condition Tr exp(−λF ) < +∞ for
all λ > 0 (this can be proved by using Proposition 6.6 in [10]).

The following theorem gives a necessary condition for coincidence of the capacities Cχ(Φ, F,E)
and Cea(Φ, F,E).

Theorem 2. Assume that a generalized optimal ensemble μ∗ for a channel Φ: S(HA) → S(HB)
with constraint (4) exists (in particular, the condition of Proposition 2 holds) and that condi-
tion (28) is valid. Let H∗ be the support of the average state of μ∗, i.e., H∗ = supp ρ̄(μ∗).

If Cχ(Φ, F,E) = Cea(Φ, F,E), then the restriction of the channel Φ to the set S(H∗) is a c-q
channel of discrete type.

Proof. Without loss of generality, we may assume that the optimal generalized ensemble μ∗ is
supported by pure states. This follows from convexity of the function σ �→ H(Φ[σ] ‖Φ[ρ]), since
for an arbitrary measure μ ∈ P(S(HA)) there exists a measure μ̂ ∈ P(S(HA)) supported by pure
states such that ρ̄(μ̂) = ρ̄(μ) and

∫

f(σ)μ̂(dσ) ≥
∫

f(σ)μ(dσ) for any convex lower semicontinuous
nonnegative function f on S(HA) (this measure μ̂ can be constructed by using arguments from the
proof of the theorem in [14]).

The equality Cχ(Φ, F,E) = Cea(Φ, F,E) implies Cχ(Φ, ρ̄(μ∗)) = I(Φ, ρ̄(μ∗)). It follows from con-
dition (28) and representation (29) that this is equivalent to the equality H(ρ̄(μ∗)) = Cχ(̂Φ, ρ̄(μ∗)) <
+∞. Since Cχ(Φ, ρ̄(μ∗)) = χΦ(μ∗), the remark after Proposition 4 in Section 6 and condition (28)
imply that Cχ(̂Φ, ρ̄(μ∗)) = χ

̂Φ
(μ∗). Since H(ρ̄(μ∗)) = χ(μ∗), the equality H(ρ̄(μ∗)) = χ

̂Φ
(μ∗)

shows that the channel ̂Φ preserves the χ-quantity of the ensemble μ∗, i.e., χ
̂Φ
(μ∗) = χ(μ∗). By

Theorem 5 in [18], the restriction of the channel
̂

̂Φ ∼= Φ to the set S(H∗) is a c-q channel of discrete
type. 


Remark. In contrast to unconstrained channels, the assertion of Theorem 2 is not reversible
even in finite dimensions: the entanglement-assisted classical capacity of a discrete-type c-q channel
with a linear constraint may be greater than its unassisted classical capacity [15, Example 3]. By
repeating arguments from the proof of Theorem 2 in [15] and using condition (28) one can show
that Cχ(Φ, F,E) = Cea(Φ, F,E) for any discrete-type c-q channel Φ with constraint (4) provided
that the operator F is diagonal in the basis {|k〉} from representation (32) of the channel Φ.

For an arbitrary nontrivial subspace H0 of HA, the restriction of the channel Φ: S(HA) →
S(HB) to the subset S(H0) will be called the subchannel of Φ corresponding to the subspace H0.

Theorem 2 implies the following sufficient condition for noncoincidence of Cea(Φ, F,E) and
Cχ(Φ, F,E).

Corollary. Let the assumptions of Theorem 2 hold. Then Cea(Φ, F,E) > Cχ(Φ, F,E) if one of
the following conditions is valid :

1. The channel Φ is not a c-q channel of discrete type and the optimal measure μ∗ has a nonde-
generate average state;

2. The channel Φ has no c-q subchannels of discrete type.

5 This subset is compact if and only if the spectrum of operator F consists of eigenvalues of finite multiplicity
accumulating at infinity; see the lemma in [3] and Lemma 3 in [14].
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As is mentioned above, the assumptions of Theorem 2 hold for an arbitrary Gaussian channel
ΦK,l,α if F is the Hamiltonian of the input system (K, l, and α are parameters of the channel;
see the Appendix). By the corollary and Proposition 5 in the Appendix, the strict inequality
Cea(ΦK,l,α, F,E) > Cχ(ΦK,l,α, F,E) holds if one of the following conditions is valid:

1. K �= 0, and the optimal measure μ∗ has a nondegenerate average state;

2. The rank of K coincides with the dimension 2k of the input symplectic space (k is the number
of input modes).

Condition 1 holds if the conjecture on Gaussian optimizers (see [1, Ch. 12]) is valid for the
channel ΦK,l,α.

5. ON CONTINUITY OF THE ENTANGLEMENT-ASSISTED CAPACITY

Since a physical channel is always determined with some finite accuracy, it is necessary to
explore the question of continuity of its information capacity with respect to small perturbations
of a channel. Mathematically, this means that we have to study continuity of the capacity as a
function of a channel assuming that the set of all channels is equipped with some appropriate
topology.

In this section we consider continuity properties of the entanglement-assisted capacity with
respect to the strong convergence topology on the set of all channels [13]. Strong convergence
of a sequence of channels Φn : S(HA) → S(HB) to a channel Φ0 : S(HA) → S(HB) means that
lim

n→+∞
Φn[ρ] = Φ0[ρ] for any state ρ ∈ S(HA).

Theorem 1 and lower semicontinuity of quantum mutual information as a function of a channel
in the strong convergence topology imply that Φ �→ Cea(Φ, F,E) is a lower semicontinuous function
in this topology on the set of all quantum channels; i.e.,

lim inf
n→+∞

Cea(Φn, F,E) ≥ Cea(Φ0, F,E) (≤ +∞)

for any sequence {Φn} of channels strongly converging to the channel Φ0.

The following proposition gives sufficient conditions for the continuity.

Proposition 3. Let F be a self-adjoint positive operator such that Tr exp(−λF ) < +∞ for all
λ > 0, and let {Φn} be a sequence of channels strongly converging to a channel Φ0. The relation

lim
n→+∞

Cea(Φn, F,E) = Cea(Φ0, F,E) < +∞ (33)

holds if one of following conditions is valid :

1. lim
n→+∞

H(Φn[ρn]) = H(Φ0[ρ0]) for an arbitrary sequence {ρn} converging to a state ρ0 such that

Tr ρnF ≤ E, n = 0, 1, 2, . . . ;

2. There exists a sequence {̂Φn} of channels strongly converging to a channel ̂Φ0 such that (Φn, ̂Φn)
is a complementary pair for each n = 0, 1, 2, . . . .

Condition 1 in Proposition 3 holds for any converging sequence of Gaussian channels provided
that F is an oscillator Hamiltonian of a Bosonic system.

Condition 2 in Proposition 3 holds for the sequence of the channels

Φn[ρ] =
+∞
∑

i=1

V n
i ρ(V n

i )∗,
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where {V n
i }n is a sequence of operators from HA to HB strongly converging to the operator V 0

i for

each i such that
+∞
∑

i=1
(V n

i )∗V n
i = IA for all n. Indeed,

̂Φn[ρ] =
+∞
∑

i,j=1

[Tr V n
i ρ(V n

j )∗]|i〉〈j|,

where {|i〉}+∞
i=1 is an orthonormal basis inHE , and it is easy to see that the sequences {Φn} and {̂Φn}

strongly converge to the channels Φ0 and ̂Φ0 (defined by the same formulas with n = 0).

Proof. First note that the set

A = {ρ ∈ S(HA) | Tr ρF ≤ E}

is compact (by the lemma in [3]) and the function ρ �→ H(ρ) is continuous on this set (by Propo-
sition 6.6 in [10]).

By Proposition 4 in [12], for each n the function ρ �→ I(ρ,Φn) is continuous on the compact
set A, and hence

Cea(Φn, F,E) = sup
ρ∈A

I(ρ,Φn) = I(ρn,Φn) < +∞

for a particular state ρn in A.

Assume that there exists

lim
n→+∞

Cea(Φn, F,E) > Cea(Φ0, F,E). (34)

By the remark before Proposition 3, to prove (33) it suffices to show that (34) leads to a contra-
diction.

Since A is a compact set, we may assume (by passing to a subsequence) that the sequence {ρn}
converges to a particular state ρ0 ∈ A. Hence, to obtain a contradiction to (34), it suffices to prove
that

lim
n→+∞

I(ρn,Φn) = I(ρ0,Φ0). (35)

Conditions 1 and 2 of Proposition 3 provide two different ways to prove (35). If condition 1
holds, then

I(ρn,Φn) = H(ρn) +H(Φn[ρn])−H(Φn ⊗ IdR[|ϕn〉〈ϕn|]),

where |ϕn〉 is any purification for the state ρn, n = 0, 1, 2, . . . .

By lower semicontinuity of the function (Φ, ρ) �→ I(ρ,Φ), continuity of the entropy on the set A,
and condition 1, to prove (35) it suffices to show that

lim inf
n→+∞

H(Φn ⊗ IdR[|ϕn〉〈ϕn|]) ≥ H(Φ0 ⊗ IdR[|ϕ0〉〈ϕ0|]).

This relation follows from lower semicontinuity of the relative entropy, since strong convergence
of the sequence {Φn} to the channel Φ0 implies strong convergence of the sequence {Φn ⊗ IdR}
to the channel Φ0 ⊗ IdR, and we can choose a sequence {|ϕn〉} that converges to the vector |ϕ0〉
[12, Lemma 2].

If condition 2 holds, then (35) directly follows from Proposition 5 in [12]. 
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6. COHERENT INFORMATION AND A MEASURE OF PRIVATE
CLASSICAL INFORMATION

Let Φ: S(HA) → S(HB) be a quantum channel and ̂Φ: S(HA) → S(HE) be its complementary
channel. In finite dimensions, coherent information of the channel Φ at any state ρ is defined as
the difference between H(Φ[ρ]) and H(̂Φ[ρ]) [6, 7]. Coherent information is still another quantum
analog of the Shannon information relevant to the quantum capacity of a channel [1,7]. In infinite
dimensions, the values H(Φ[ρ]) and H(̂Φ[ρ]) may be infinite even for a state ρ with finite entropy;
therefore, coherent information can be defined via quantum mutual information as a function with
values in (−∞,+∞] as follows (cf. [12]):

Ic(ρ,Φ) = I(ρ,Φ)−H(ρ).

Let ρ be a state in S(HA) with finite entropy. By monotonicity of the χ-quantity, the values χΦ(μ)
and χ

̂Φ
(μ) do not exceed H(ρ) = χ(μ) for any measure μ ∈ P(S(HA)) supported by pure states

with barycenter ρ. The following proposition can be considered as a generalization of the basic
relation in [6] which underlies a fundamental connection between quantum capacity and private
transmission of classical information through a quantum channel. A measure for the latter is
given by the difference χΦ(μ) − χ

̂Φ
(μ) between the χ-quantities of the receiver and environment

(eavesdropper).

Proposition 4. Let μ be a measure in P(S(HA)) supported by pure states with barycenter ρ.
Then

χΦ(μ)− χ
̂Φ
(μ) = I(ρ,Φ)−H(ρ) = Ic(ρ,Φ). (36)

This proposition shows, in particular, that the difference χΦ(μ)− χ
̂Φ
(μ) does not depend on μ.

Thus, if the supremum in expression (26) for the value Cχ(Φ, ρ) is achieved at some measure μ∗,
then the supremum in a similar expression for Cχ(̂Φ, ρ) is achieved at this measure μ∗, and vice
versa.

Proof. If H(Φ[ρ]) < +∞, then H(̂Φ[ρ]) < +∞ by the triangle inequality (see [7]), and (36) can
be derived from (9) by using the second formula in (25) and noting that the functions ρ �→ H(Φ[ρ])
and ρ �→ H(̂Φ[ρ]) coincide on the set of pure states. In the general case, we have to use the
approximation method to prove (36). To realize this method, it is necessary to introduce some
additional notions.

Let T1(H) = {A ∈ T(H) |A ≥ 0, TrA ≤ 1}. We will use the following two extensions of the von
Neumann entropy to the set T1(H) (cf.[9]):

S(A) = −TrA logA, H(A) = S(A) + TrA log TrA, ∀A ∈ T1(H).

Nonnegativity, concavity, and lower semicontinuity of the von Neumann entropy imply similar
properties of the functions S and H on the set T1(H).

The relative entropy for two operators A,B ∈ T1(H) is defined as follows (for details, see [9]):

H(A ‖B) =
∑

i

〈i| (A logA−A logB +B −A) |i〉,

where {|i〉} is the orthonormal basis of eigenvectors of A. By means of this extension of the relative
entropy, the χ-quantity of a measure μ in P(T1(H)) is defined by the first expression in (24).6

A completely positive linear map Φ: T(HA) → T(HB) which does not increase trace is called
a quantum operation [7]. For any quantum operation Φ, the Stinespring representation (2) holds,

6 P(T1(H)) is the set of all probability measures on T1(H) equipped with the weak convergence topology.
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where V is a contraction. The complementary operation ̂Φ: T(HA) → T(HE) is defined via this
representation by relation (3).

By an obvious modification of arguments used in the proof of Proposition 1 in [14], it is easy
to show that the function μ �→ χ(μ) is lower semicontinuous on the set P(T1(H)) and that for an
arbitrary quantum operation Φ and a measure μ ∈ P(S(HA)) such that S(Φ[ρ̄(μ)]) < +∞ the
χ-quantity of the measure μ ◦Φ−1 ∈ P(T1(HB)) can be expressed as follows:

χΦ(μ) = S(Φ[ρ̄(μ)])−
∫

S(HA)

S(Φ[ρ])μ(dρ). (37)

Now we are in a position to prove (36) in the general case. Note that for a given measure
μ ∈ P(S(HA)) the function Φ �→ χΦ(μ) is lower semicontinuous on the set of all quantum oper-
ations equipped with the strong convergence topology (for which Φn → Φ means Φn[ρ] → Φ[ρ]
for all ρ [13]). This follows from the lower semicontinuity of the functional μ �→ χ(μ) on the set
P(T1(HB)), since for an arbitrary sequence {Φn} of quantum operations strongly converging to
a quantum operation Φ the sequence {μ ◦ Φ−1

n } weakly converges to the measure μ ◦ Φ−1 (this
can be verified directly by using the definition of weak convergence and noting that strong con-
vergence for sequences of quantum operations is equivalent to uniform convergence on compact
subsets of S(HA); see the proof of Lemma 1 in [13]).

Let {Pn} be an increasing sequence of finite-rank projectors in B(HB) strongly converging to IB .
Consider the sequence of quantum operations Φn = Πn ◦Φ, where Πn[σ] = Pn[σ]Pn. Then

̂Φn[ρ] = TrHB
Pn ⊗ IHE

V ρV ∗, ρ ∈ S(HA), (38)

where V is the isometry from the Stinespring representation (2) for the channel Φ.

The sequences {Φn} and {̂Φn} strongly converge to the channels Φ and ̂Φ correspondingly. Let
ρ =

∑

k λk|k〉〈k| and |ϕρ〉 =
∑

k

√
λk|k〉 ⊗ |k〉. Since H(ρ) < +∞ and S(Φn[ρ]) < +∞, the triangle

inequality implies S(̂Φn[ρ]) < +∞. So, we have

I(ρ,Φn) = H
(

Φn ⊗ IdR[|ϕρ〉〈ϕρ|] ‖Φn[ρ]⊗ �
)

= −S(̂Φn[ρ]) + S(Φn[ρ]) + an

= −χ
̂Φn

(μ) + χΦn(μ) + an, (39)

where
an = −

∑

k

Tr(Φn[|k〉〈k|])λk log λk, (40)

and the last equality is obtained by using (37) and coincidence of the functions ρ �→ S(Φ[ρ]) and
ρ �→ S(̂Φ[ρ]) on the set of pure states.

Since the function Φ �→ I(ρ,Φ) is lower semicontinuous (by lower semicontinuity of the relative
entropy) and I(ρ,Φn) ≤ I(ρ,Φ) for all n by monotonicity of the relative entropy under the action
of the quantum operation Πn ⊗ IdR, we have

lim
n→+∞

I(ρ,Φn) = I(ρ,Φ). (41)

We will also prove that

lim
n→+∞

χΦn(μ) = χΦ(μ) and lim
n→+∞

χ
̂Φn

(μ) = χ
̂Φ
(μ). (42)

The first relation in (42) follows from the lower semicontinuity of the function Φ �→ χΦ(μ) es-
tablished before and from the inequality χΦn(μ) ≤ χΦ(μ) valid for all n by monotonicity of the
χ-quantity under the action of the quantum operation Πn.
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To prove the second relation in (42), note that (38) implies ̂Φn[ρ] ≤ ̂Φ[ρ] for any state ρ ∈ S(HA).
Hence, Lemma 2 in [13] shows that

χ
̂Φn

(μ) ≤ χ
̂Φ
(μ) + f(Tr ̂Φn[ρ]), (43)

where f(x) = −2x log x − (1 − x) log(1 − x), for any measure μ ∈ P(S(HA)) with finite support
and with barycenter ρ. Let μ be an arbitrary measure in P(S(HA)) with barycenter ρ, and let
{μk} be the sequence of measures with finite support with the same barycenter constructed in the
proof of Lemma 1 in [14] which weakly converges to the measure μ. Validity of inequality (43)
for the measure μ is derived from its validity for all measures μk by using lower semicontinuity
of the function μ �→ χ

̂Φn
(μ) and the inequality χ

̂Φ
(μk) ≤ χ

̂Φ
(μ), which is valid for all k by the

construction of the sequence {μk} and convexity of the relative entropy.

Inequality (43) and lower semicontinuity of the function Φ �→ χΦ(μ) imply the second relation
in (42).

Since the sequence {an} defined in (40) obviously tends to H(ρ), relations (39), (41), and (42)
imply (36). 


APPENDIX

Gaussian Classical-Quantum Channels

The main applications of infinite-dimensional quantum information theory are related to Bosonic
systems; for a detailed description of them, we refer the reader to [1, Ch.12]. Let HA be the
irreducible representation space of the canonical commutation relations (CCR)

WA(zA)WA(z
′
A) = exp

(

− i

2
z	AΔAz

′
A

)

WA(z
′
A + zA) (44)

with a coordinate symplectic space (ZA,ΔA) and the Weyl system WA(zA) = exp(iRA · zA),
zA ∈ ZA. HereRA is the row vector of canonical variables inHA, and ΔA is the nondegenerate skew-
symmetric commutation matrix of components of RA. The Gaussian channel Φ: T(HA) → T(HB),
with a similar description for HB , is defined via the action of its dual Φ∗ on the Weyl operators:

Φ∗[WB(zB)] = WA(KzB) exp

[

il	zB − 1

2
z	BαzB

]

, (45)

where K is the matrix of a linear operator ZB → ZA, l ∈ ZB , and α is a real symmetric matrix
satisfying

α ≥ ± i

2

(

ΔB −K	ΔAK
)

.

Proposition 5. Let ΦK,l,α be the Gaussian channel with parameters K, l, and α.

1. The channel ΦK,l,α is c-q if and only if

K	ΔAK = 0.

In this case it is of discrete type if and only if K = 0, i.e., the channel is completely depolarizing ;
2. If rankK = dimZA, then the channel ΦK,l,α has no c-q subchannels of discrete type.

Proof. 1. Since the family {WB(zB)}zB∈ZB
generates B(HB), all the operators Φ∗

K,l,α(A),
A ∈ B(HB), commute if and only if operators (45) (i.e., WA(KzB)) commute for all zB . By (44),

WA(KzB)WA(Kz′B) = exp
(

−iz	BK
	ΔAKz′B

)

WA(Kz′B)WA(KzB);
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hence the first assertion follows. Assuming the discrete representation (32), we have that the
operators WA(KzB) = exp(iRA · KzB) all have pure point spectrum, which is possible only if
KzB ≡ 0, since the canonical observables RA are known to have a Lebesgue spectrum.

2. Assume that there is a subspace H0 ⊂ HA such that

ΦK,l,α[ρ] =
∑

k

〈k|ρ|k〉σk

for all ρ ∈ S(H0), where {|k〉} is an orthonormal basis in H0. Then

PWA(KzB)P exp

[

il	zB − 1

2
z	BαzB

]

= PΦ∗
K,l,α[WB(zB)]P =

∑

k

[TrWB(zB)σk]|k〉〈k|,

where P =
∑

k
|k〉〈k| is the projector onto H0. It follows that 〈k|WA(KzB)|j〉 = 0 for all k �= j.

But this cannot be valid, since {KzB | zB ∈ ZB} = ZA and hence the family {WA(KzB)}zB∈ZB
of

Weyl operators acts irreducibly on HA. 
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