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Abstract We show that unbounded number of channel uses may be necessary for
perfect transmission of quantum information. For any n, we explicitly construct low-
dimensional quantum channels (input dimension 4, Choi rank 2 or 4) whose quantum
zero-error capacity is positive, but the corresponding n-shot capacity is zero. We
give estimates for quantum zero-error capacity of such channels as a function of n
and show that these channels can be chosen in any small vicinity (in the ch-norm)
of a classical-quantum channel. Mathematically, this property means appearance of
an ideal (noiseless) subchannel only in sufficiently large tensor power of a channel.
Our approach (using special continuous deformation of a maximal commutative -
subalgebra of M4) also gives low-dimensional examples of the superactivation of
1-shot quantum zero-error capacity. Finally, we consider multi-dimensional construc-
tion which increases the estimate for quantum zero-error capacity of channels having
vanishing n-shot capacity.

Keywords Pseudo-diagonal quantum channel - Error-correcting code -
Noncommutative graph - Maximal commutative x-algebra

1 Introduction

It is well known that the rate of information transmission over classical and quantum
communication channels can be increased by simultaneous use of many copies of a
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channel. It is this fact that implies necessity of regularization in definitions of different
capacities of a channel [1,2].

In this paper, we show that zero-error transmission of quantum information over
a quantum channel may require unbounded number of channel uses. We prove by
explicit construction that for any given n, there is a channel @, such that

Qo (®2") =0, but Qo(d,) > 0, (1)

where Q¢ and Q) are, respectively, the 1-shot and the asymptotic quantum zero-error
capacities defined in Sect. 2.

This effect is closely related to the recently discovered phenomenon of superacti-
vation of quantum channel capacities [3—6]. Indeed, (1) is equivalent to existence of
m > n such that

Oo(®,) = Oo (@,?2) =...=00 (cp;‘f’(’"—”) =0, but Qp (") >0. (2)

Mathematically, (2) means that all the channels ®,,, CD,?Z, el <D§(m_l) have no ideal
(noiseless) subchannels but the channel ®£™ has.

We show how for any given n to explicitly construct a pseudo-diagonal quantum
channel ®, with the input dimension d4 = 4 and the Choi rank dg > 2 satisfying
(2) by determining its noncommutative graph. We also obtain the estimate for m as a
function of n, which gives the lower bound for Qo(®,,) in (1). This shows that

_ 2nG/2)
mn

sup {Q0(®@) ] Qo(®®") =0} ©)

Itis also observed that a channel ®,, satisfying (1) and (2) can be obtained by arbitrarily
small deformation (in the ch-norm) of a classical-quantum channel withds = dg = 4.

The main problem in finding the channel &, is to show nonexistence of error-
correcting codes for the channel ®" (provided the existence of such codes is proved
for ®&™). We solve this problem by using special continuous deformation of a maximal
commutative x-subalgebra of 4 x 4 matrices as the noncommutative graph of @,
and by noting that the Knill-Laflamme error-correcting conditions are violated for
any maximal commutative x-subalgebra with the positive dimension-independent gap
(Lemma 3).

Our construction also gives low-dimensional examples of the superactivation of
1-shot quantum zero-error capacity. In particular, it gives an example of symmetric
superactivation with d4 = 4, dg = 2 (simplifying the example in [7]) and shows that
such superactivation is possible for two channels with d4 = dr = 4 if one of them is
arbitrarily close (in the cb-norm) to a classical-quantum channel.

In the last section, we consider multi-dimensional generalization of our basic con-
struction. It gives examples of channels which amplify the lower bound in (3) by the
factor 51> ~ 2.26. Unfortunately, we did not managed to show that the value in
the left side of (3) is 400 (as it is reasonable to conjecture). Estimation of this value
remains an open question.
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It should mention that the necessity of unbounded number of channel uses to see
quantum g-error capacity has been recently shown in [8].!

2 Preliminaries

Let H be a finite-dimensional Hilbert space, B (H)—the algebra of all linear operators
in ‘H, S(H)—the closed convex subset of 28 (H) consisting of positive operators with
unit trace called quantum states [1,2]. We can identify H and 8 (), respectively, with
the unitary space C" and the algebra 90, of all n x n matrices, where n = dim H.

Denote by I, and Id,, the unit operator in the space C" and the identity transforma-
tion of the algebra 91, correspondingly.

For any matrix A € 21, denote by Y4 the operator of Schur multiplication by A in
M, (also called the Hadamard multiplication). Its ch-norm will be denoted || Y4 ||cb-
It coincides with the operator norm of Y4 and is also called the Schur (or Hadamard)
multiplier norm of A (see [9,10] and the references therein).

Let ® : 6(Ha) — S(Hp) be aquantum channel, i.e., a completely positive trace-
preserving linear map [1,2]. Stinespring’s theorem implies the existence of a Hilbert
space Hg and of an isometry V : H4 — Hp ® HEg such that

®(p) =Try, VpV*, p e &(Ha).

The minimal dimension of H g is called Choi rank of ® and denoted dg.
The quantum channel

S(Ha) 3 p = B(p) = Tryg, VpV* € S(Hp)

is called complementary to the channel @ [1,11]. The complementary channel is
defined uniquely up to isometrical equivalence [11, the Appendix].

The 1-shot quantum zero-error capacity QO(CD) of a channel @ is defined as
SUP7{cqo () 1082 dim H, where go(®P) is the set of all subspaces Ho of H4 on which
the channel @ is perfectly reversible (in the sense that there is a channel ® such that
O (P (p)) = p for all states p supported by Hy). Any subspace Hy € go(P) is called
error-correcting code for the channel @ [1,13].

The (asymptotic) quantum zero-error capacity is defined by regularization:
Q0(®) = sup, n~' Qo(®¥") [6,12,13].

Itis well known that a channel @ is perfectly reversible on a subspace H if and only
if the restriction of the complementary channel @ to the subset G(Ho) is completely
depolarizing, i.e., 6(,01) = 5(/02) for all states p; and p, supported by Ho [1, Ch.10].
It follows that the 1-shot quantum zero-error capacity of a channel ® is completely
determined by the set G(®) = 5*(%(7—[ g)) called noncommutative graph of ® [13].
In particular, the Knill-Laflamme error-correcting condition (cf. [14]) implies the
following lemma.

Uitis surprising that this result and the preliminary arXiv version of the present paper appeared simulta-
neously.
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Lemma 1 A set {¢x };{1: | of unit orthogonal vectors in 'H a is a basis of error-correcting
code for a channel ® : &(Ha) — S(Hp) if and only if

(wilAlgk) =0 and (pi|Algr) = (@rlAlgr) YA € £, Vk #1, “)

where £ is any subset of B(H 4) such that ling = G(D).

This lemma shows that Qg () > log, d if and only if there exists a set {(,ok}f:1 of
unit vectors in H 4 satisfying condition (4).

Remark 1 Since a subspace £ of the algebra 9, of n x n matrices is a noncommutative
graph of a particular channel if and only if

£ is symmetric (£ = £%) and contains the unit matrix (@)

(see Lemma 2 in [6] or Proposition 2 in [15]), Lemma 1 shows that one can “construct”
achannel ® with dim {4 = n having positive (correspondingly, zero) 1-shot quantum
zero-error capacity by taking a subspace £ C 9, satisfying (5) for which the following
condition is valid (correspondingly, not valid)

I, ¥ € [C"]1 such that (y|Alp) =0 and (p|Alp) = (V|Aly) VAeL, (6)

where [C"]; is the unit sphere of C". [J

We will use the following two notions.
Definition 1 [1] A channel ® : G(H4) — S(Hp) is called classical-quantum if it

has the representation

D(p) = >_(klplk)ox,

k

where {|k)} is an orthonormal basis in H 4 and {0y} is a collection of states in G(H p).

Definition 2 [16] A channel ® : &(H4) — S (Hp) is called pseudo-diagonal if it
has the representation

D(p) = D cij(Wiloly i,

iJ

where {c;;} is a Gram matrix of a collection of unit vectors, {[;)} is a collection of
vectors in H 4 such that >; |;)(¥i| = 1, — the unit operator in H4 and {|i)} is an
orthonormal basis in Hp.

Pseudo-diagonal channels are complementary to entanglement-breaking channels
and vice versa [11,16].
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3 Basic example

For any given 6 € T = (—m, 7], consider the subspace

a b yc d

e dy=| P @ d vl dec y = exp (16) 0
yc d a b |° 777 ’ 2
d yc b a

of 914. This subspace satisfies condition (5) and has the following property

0 0 01
00 10
[— * j—
A=W AW,y VA e £y, where Wy= 010 0 (8)
1 0 0O

Remark 2 The subspace £y can be considered as a deformation of the maximal com-
mutative x-algebra £o. To clarify the form of this deformation, note that the family of
subspaces £y is unitary equivalent to the family of the subspaces

a000
0b0O0

s — 1 _ph_

Ly=1M = 00co0 +3d+c—b—a)Ty, a,b,c,d eC ©)]
000d

where
u 0 0 v
O u v O ! i~
Ty = 0—v-u 0l u=1-Ny, v=iJy.

—v 0 0—u

Indeed, by representing the matrix M in (7) as M = A 4 cB, where

a b ¢ d 00 t O
b a d ¢ 00 0 1t
A=lcaan| B=lz000) T=7 1
d ¢ b a 0t 0O
is easy to see that S~ BS = Ty and
a 0 00 1 1 11
0 b 0O -1 1-11
1 _ _1
STAS = 00z 0l where § = 5 11 11l
00 0d 1-1-11
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a=a—b—-c+d, I5=a+b—c—d, c=a—b+c—d, d=a+b+c+d.

Denote by Eg the set of all channels whose noncommutative graph coincides with
L. Since dim £y = 4, Proposition 2 in [15] shows the set 39 contains infinitely many
different channels with d A = dimHs = 4 and dg > 2. It is essential that one can
choose families {®g} C {£y} continuous with respect to 6.

Lemma 2 1) There is a family {CDé} of pseudo-diagonal channels (see Def. 2) with
dg = 2 such that q)é € Eg for each 6.

2) Thereis afamily {CD(%} of pseudo-diagonal channels withdg = 4 such that dbg € E@
for each 6 and GD% is a classical-quantum channel (see Def. 1).
The families {@é} and {<I>§} can be chosen continuous in the following sense:

B (p) = Trype Vi p [v@"] L peGMHA), k=1,2, (10)

where Vgl, VQ2 are continuous families of isometries, H}; = C?, H% =C*2

Lemma 2 is proved in the Appendix, where representations (10) are constructed explic-
itly by using the unitary equivalence of £y and £j.

Theorem 1 Let &y be a channel in Eg and n € N be arbitrary.

A) Qo(®g) > 0 ifand only if 0 = 7 and Qo(P) = 1.

B) If61+...4+ 6, = w(mod 2x), then Q()((DQ] ®...® Py,) > 0and there exist 2"
mutually orthogonal 2- D error-correcting codes for the channel ®p, ® ... Q Pg,.
For each binary n-tuple (x1, .. .x,), the corresponding error-correcting code is
spanned by the images of the vectors

"/’>=¢%[|1“'1>+i|2“‘2”’ |w>=%§[|3...3>+i|4...4>], (11)

under the unitary transformation Uy, ® ... ® Uy, where {|1),...,]4)} is the
canonical basis in C*, Uy = I and Uy = Wy (defined in (8)).
C) If161] + ...+ 10,] <21In(3/2), then Qp(Pg, ® ... ® Py,) = 0.

Remark 3 It is easy to show that Qo(Qg’”) = QO(CDQE’Z ) and that the set of all 6 such
that QO(CDgZ’") = 01is open. Hence, for each n, there is &, > 0 such that QO(CDZZ’") =0
if 0] < &, and Qo(®%2 ) > 0. Theorem 1 shows that &; = 7 and 2In(3/2)/n <
en < m/n for n > 1. Since assertion C is proved by using quite coarse estimates,
one can conjecture that ¢, = 7 /n for n > 1. There exist some arguments confirming

validity of this conjecture for n = 2.

Remark 4 Assertion B of Theorem 1 can be strengthened as follows:
B)If 61+...46, = w(mod 21 ), then there exist 2" mutually orthogonal projectors
P; of rank 2 indexed by a binary n-tuple X = (x1, ... Xy) such that

P;AP; = MA)Px VAec Ly ®...Q Ly,

2 This implies continuity of these families in the cb-norm [17].
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where L(A) € C does not depend on x. Px is the projector on the subspace Uy, ®
... ® Uy, (Ho), where H is the linear hull of vectors (11).
This follows from the proof of Theorem 1 presented below.

Theorem 1 implies the main result of this paper.

Corollary 1 Let n be arbitrary and m be a natural number such that 0, = w/m <
21n(3/2)/n. Then

Do (d)ﬁ")zo but 0o (®§M) >1 andhence Qo(®p) > 1/m. (12)

There exist 2™ mutually orthogonal 2-D error-correcting codes for the channel Qgim .

Relation (12) means that it is not possible to transmit any quantum information with
no errors by using < n copies of the channel ®y_, but such transmission is possible if
the number of copies is > m.

Remark 5 In (12), one can take &y, = Cbé* —a channel from the family described in
the first part of Lemma 2. So, Corollary 1 shows that for any n, there exists a channel
@, withds = 4 and dg = 2 such that Qo(®$") = 0 and

n ' 2m@3/2)
Qo(Py) > 2InG3/2) +1 = +o(/n), n— +oo,

where [x] is the integer part of x.
It is natural to ask about the maximal value of quantum zero-error capacity of a

channel with given input dimension having vanishing n-shot capacity, i.e., about the
value

Sa(m) = sup {Qo(®@)]| Qo(®>®") =0}, (13)
O :dpa=d

where the supremum is over all quantum channels with d4 = dim H4 = d. We may
also consider the value

Sy(n) =sup Sg(n) = lim Sy(n) < +oo. (14)
d d——+00

The sequences {S;(n)}, and {S.(n)}, are nonincreasing, and the first of them is
bounded by log, d. Theorem 2 in [7] shows that

log, d

S2q(1) > and hence S,(1) = 4o0.

It seems reasonable to conjecture that S, (n) = +oo for all n. A possible way to prove
this conjecture is discussed at the end of Sect. 4.
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It follows from the superadditivity of quantum zero-error capacity that
Syc(n) > kSg(nk) and hence S.(n) > kSi(nk) forany k,n. (15)
These relations show that the assumption S, (n¢) < 400 for some ng implies
Si(n) = O(1/n) foreachd and S.(n) = O(1/n) if n > ny.

By Corollary 1, we have

n ' 2m@3/2)
Sa(n) > IRGD +1) === tol/m), v (16)

This and (15) imply the estimation

n(3 n(3
Sp(m) = k (/)+ o(1/(kn)) = (/)+ o(1/kn)),
which shows that
Se(n) > M Vn. (17)
an

In Sect. 4, we will improve these lower bounds by considering the multi-dimensional
generalization of the above construction.

Remark 6 Since the parameter 6, in Corollary 1 can be taken arbitrarily close to zero,
the second part of Lemma 2 shows that the channel ®y,_, for which QO(CD?;”) = 0and
Qo(Pg,) > 0, can be chosen in any small vicinity (in the ch-norm) of the classical—
quantum channel ®.

Theorem 1 also gives examples of the superactivation of 1-shot quantum zero-error
capacity.

Corollary 2 If 0 # 0, &, then the following superactivation property
Q0(Pg) = Qo(Pr—4) =0 and Qo(Pp ® Prg) >0
holds for any channels ®y € Eg and &, _4 € En_g. For any 0 € T, there exist 4

mutually orthogonal 2-D error-correcting codes for the channel g ® O, _g, one of
them is spanned by the vectors

l9) = J5 LI +i12201, 1) = J51133) +il44) 1, (1)

others are the images of this subspace under the unitary transformations Iy @ Wy,
Wa ® 14 and Wy ® Wy (the operator Wy is defined in (8)).
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Remark 7 Corollary 2 shows that the channel <I>7IT P (taken from the first part of
Lemma 2) is an example of the symmetric superactivation of 1-shot quantum zero-error
capacity with Choi rank 2.3

By taking the family {d%} from the second part of Lemma 2 and tending 6 to
zero, we see from Corollary 2 that the superactivation of 1-shot quantum zero-error
capacity may hold for two channels with dga = dg = 4 if one of them is arbitrarily
close (in the cb-norm) to a classical-quantum channel.

Note that the entangled subspace spanned by the vectors (18) is an error-correcting
code for the channel d)(z) ® <I>72, (and hence for the channel CD% ® Idy4) despite the fact
that <I>% is a classical-quantum channel.

Proof of Theorem 1 A) It is easy to verify that the subspace £, satisfies condition (6)
with the vectors |¢) = [1,1,0,0]", |¥) =1[0,0,1,i]".

To prove that Qo(®y) = 0 for all & # , it suffices to show that condition (6) is
not valid for the subspace £j defined in (9) if 6 # 7 (i.e.,y #1).

Assume the existence of unit vectors |¢p) = [x], X2, X3, x4]7 and ) =
[v1, y2, 3, y4]T in C* such that

(YIM|p) =0 and (YIM|y) = (p|M|p) forall M € £. (19)
Since condition (19) is invariant under the rotation

lo) > plo) —ql¥), W) = dle) + plv), Ipl*+1g1* =1

we may consider that y; = 0.

By taking successively (@ = —1,b=c=d =0), (b =—-l,a=c=d =0),
(c=1l,a=b=d=0)and (d = 1,a = b = ¢ = 0), we obtain from (19) the
following equations

Fix1 = Yoxa = —y3x3 = —axs = 1 (V[ Tylo),
2 = il = 12l = 12 = 1yl = | = [yl — |xal?

1 Gl Tole) — (WITply)) .

Since y; = 0 and ||¢|| = ||¢|| = 1, the above equations imply
Vi=y2=x3=x4=0
and
l? = 10l = sl = Iul® = § (el Tole) — (WITol¥)) = 172, (20)

So, l¢) = [x1,x2,0,017 and |¢) = [0,0, y3, 4], where [x;, x2]" and [y3, ys]"
are unit vectors in C2 . It follows from (20) that

3 This strengthens the result in [7], where a similar example with Choi rank 3 and the same input dimension
was constructed.
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5 <X1 x1 > B <y3

X2 X2 Y4

which can be valid only if y =1,1.e.,0 = 7.

The above arguments also show that Qo (P ) = 1, since the assumption Q¢ (P) >

1 implies, by Lemma 1, the existence of orthogonal unit vectors ¢, ¢2, ¢3 such that
condition (19) with ¢ = ¢;, ¥ = ¢; is valid for all i # ;.

B) Let My € £¢,, ..., M, € £y, be arbitraryand X = M| ® ... ® M,,. To prove

that the linear hull Hy of vectors (11) is an error-correcting code for the channel

Py, ® ... ® Py, it suffices, by Lemma 1, to show that

—u 0
0 —u

u 0
0 u

y3 > _ou
Yya

(Y1Xlp) =0 and (Y |X[¥) = (¢|X]|p). 2n
We have

200 1Xlg) = 3...31X|1... 1) +i(3...3]1X[2...2) —i(4...4X[1...1)
A AX2. 2 =t Ca(Le e T VL)
+di...dy(i—1) =0,

since yq ...y, = =i,

2plXlg) = (1. UX|1... 1) +i(l...[|X[2...2) —i(2...2|X|L...1)
+ (2. 20X12... 2 =ar...an(l+ 1)+ by ... bu(i — i) = 2ay ...an

and

2 |X|W) = (3...3|1X[3...3) +i(3...3|X|4...4) —i(4...4]X|3...3)
A AXA A =ar. . can(L+ 1) + by ... by(i—i) =2ay . ..ay.

So, the both equalities in (21) are valid.

To prove that the subspace Ui (Ho), where Uz = Uy, ® ... ® Uy,, is an error-
correcting code for the channel @y, ® ... ® Py, it suffices to note that (8) implies
that UfAU; = AforallA € £y, ®...® £q,.

C) To show that Qo (Qj_; Pg,) = 0if >;_; 6| < 21n(3/2) note that £y =
Ypw)(£o) and Qj—; Lo, = Qi1 Tpwy) (2?"), where Y p(g) is the Schur multipli-
cation by the matrix

D) = , T=y— 1

[ e
R = = =
_—— =
— = XU =
e
e
e
e
S A O o
O O o
S O O A
S O Ao

(22)
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By using (22) and Theorem 8.7 in [9] 4, it is easy to show that
2 = o) —dalles < [ml = 11— il = |1 —exp(360)] < 516, (23)

Let A, = || ®Z=1TD(91<) — Idyn ||cp. By using multiplicativity of the ch-norm and
(23), we obtain

n—1 n n
A< [T +x0+ A < [Ja+x) — 1< [T (1+516:D) — 1. 24)
k=1 k=1 k=1

Assume that Qg (®Z: l<I>9,() > 0. Then, Lemma 1 implies existence of unit vectors
g and ¥ in HY" = C*" such that

(YW (A)lp) =0 and (p|¥(A)lp) = (Y|W(A)|y) YA e L5,
where W = @}_, Tp(s,). Hence, for any A in the unit ball of £5", we have

(VIAl@)| = Ap and [(¢|Alg) — (VIA[Y)| < 24,.

By using (24) and the inequality x > In(1 + x), it is easy to see that the assumption
> i1 16kl < 21In(3/2) implies A, < 1/2. So, the above relations can not be valid by
the below Lemma 3, since £6®” is a maximal commutative *-subalgebra of 974». O

Lemma 3 Let A be a maximal commutative *-subalgebra of 9M,,. Then,

either 2 sup [(Y|Alp)| > 1 or sup [(lp|Alp) — (Y|A|Y)] > 1
Aef; Aely

for any two unit vectors ¢ and  in C", where 2y is the unit ball of 2.

Proof Let {x;}]_, and {y;}!_, be the coordinates of ¢ and v in the basis in which the
algebra 2{ consists of diagonal matrices. Then,

sup |(w[Alg)| = D fllyil, sup KglAle) = (wlAlw) = > [1xil® = 1P|

A2 i=1 A2 i—1

Letd; = |yi| — |xi|. Assume that

n n
2> Ixillyil <1 and Z‘lx,-|2—|y,-|2‘§1.
i=l i=1

4 This theorem states that ITallch < 1ifand only if A = [(g;[{;)] for some collections {¢; } and {1/ ;} of
vectors from the unit ball of some Hilbert space.
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Since >7_ |x;|> = "1, |yi]? = 1, the first of these inequalities implies

n n
> dilxi] > dilyil

i=1 i=1

>1/2 and >1/2.

Hence,

n n
> [l = il| = 3 i + 1l >
i=1 i=1

where the strict inequality follows from the existence of negative and positive numbers
in the set {d;}!_,. This contradicts to the above assumption. O

+

> 1,

n n
> dilxil|+ D dilyil
i=1 i=1

4 Multi-dimensional generalization

Note that
®2 a b
Lo =457, where Rl = b ,a,beC,
a

and that £ is the image of £ under the Schur multiplication by matrix (22). So, the
above construction can be generalized by considering the corresponding deformation
of the maximal commutative x-subalgebra £/ = Ql?p of Myp for p > 2. The algebra
S(’)’ can be described recursively as follows:

A B _
ggz[[B A}, A,Begh 1], L5 =2

Let p > 2and 8 € T = (—m, ] be arbitrary, y = exp (%9) Let D(0) be the
2P x 2P matrix described as 27! x 2P~ matrix [A;;] consisting of the blocks

11 , y o 20 N R
Aii= Vl, A,’j: _ if i< J and Aij= if i> J-
11 1 vy 1 y

Consider the 27-D subspace £/ = Tp) (£) of Ma» (Where Y p(g) is the Schur
multiplication by the matrix D(0), see Sect. 2). This subspace satisfies condition (5)
and has the following property

A=W},AWy VA€ £l (25)
where Wy is the 27 x 2P matrix having “1” on the main skew-diagonal and “0”
on the other places. To prove (25), it suffices to show that it holds for the algebra
Eg = 2[? r (by using Wo» = Wf) p ) and to note that the map Y p») commutes with
the transformation A — W3, AW2».
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Denote by Eg the set of all quantum channels whose noncommutative graph coin-

cides with 25 . By Proposition 2 in [15], the set Eg contains pseudo-diagonal channels
with d4 = 2” and dg such that d,% > 2P,

Theorem 2 Let p > 1 and n > 1 be given natural numbers, ®9 be an arbitrary

o~ 2[1*1
channel in £} and §,, = 2],1—71 k; ’COt ((2](27#)‘ > 0.
A) Qo((bé@") = 0if|0| < 6y, where 0, is the minimal positive solution of the equation
2(1 — cos(6/2)) + 8, sin(0/2) = n~'1n(3/2).

B) If0 = £m/n, then QO(CD?”) > p — 1 and there exist 2" mutually orthogonal
2P=1.D error-correcting codes for the channel @?”. For each binary n-tuple
(x1, ... Xxpn), the corresponding error-correcting code is spanned by the images of
the vectors

loe) = 5 12k = 1.2k = 1) +il2k...20) ], k=1,2r"1,  (26)

under the unitary transformation Uy, ® ... ® Uy,, where {|k)} is the canonical
basis in C2", Uy = Iy and Uy = Wy (defined in (25)).

Remark 8 The constant §, is the Schur multiplier norm of the skew-symmetric 27 Y
27~ matrix having 1" everywhere below the main diagonal. So, the sequence {8 »)
is nondecreasing. It is easy to see that §p = 1, 63 = V2, 84 ~ 1.84 and that §,, =
(322) p + o(p) for large p [10].

Note also that 6, = 21n(3/2) (rz<3p)71 + o(1/n) for large n.

Remark 9 Assertion B of Theorem 2 can be strengthened as follows:
B’) If 6 = £ /n then there exist 2" mutually orthogonal projectors Px of rank
2P~V indexed by a binary n-tuple ¥ = (x1, ... x,) such that

PiAP; = L(A)P: VA e [£]1®",
where L(A) € C does not depend on x. P is the projector on the subspace Uy, ®

... ® Uy, (Ho), where H is the linear hull of vectors (26).
This follows from the proof of Theorem 2 presented below.

Proof of Theorem 2 A) Note that YTp) — Idop is the Schur multiplication by the

matrix
T® w0 +5® v 0
0 u 0 v|’

where 7 is the 27! x 27~ matrix having “0” on the main diagonal and “1” on the
other places, S is the 27~! x 27~! skew-symmetric matrix having “1” everywhere
below the main diagonal, u = 1 — Ry =1 — cos(8/2), v = iJy =1isin(f/2).
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In [10], it is shown that | Yslley = 2!"P|S|; = 8,. Since [|T7 e < 2 and
TagBllco = ITa @ Trllcb = [ TallewlI TBllcb, we have

x = [Yp@e) — Idarllch < ullYrlleb + [v[[[Tsllcb = 2(1 — cos(0/2)) + 8, sin(6/2)|
and hence x < n~'1In(3/2) < ¥/3/2 — 1if |6] <6,.

Assume that Qo(d>f?") > 0 for some 6 € [—0,, 6,]. By repeating the arguments
from the proof of part C of Theorem 1, we obtain

(VIAlp)l < An and [(p]Alp) — (VIA]Y)]| < 24, 27

for some unit vectors ¢, W € C2P" and all A in the unit ball of [Eg 197, where

A, = HT%Z_)) — Idppn

<@x+D'—-1<1/2.
cb

Since [26’ 19" is a maximal commutative *-subalgebra of 9%y, Lemma 3 shows that
(27) cannot be valid.

B) Let & = *m/n. To prove that the linear hull H of vectors (26) is an error-
correcting code for the channel %" it suffices, by Lemma 1, to show that

(@M ®...® Mylgx) =0 VM, ..., M, € £, Vk,I
and that
@M1 ®...® Myler) = (e lM1 @ ... Q@ Myulgr) YMy, ..., M, € £5, Vk,I.

Since any matrix in Sg can be described as 27~ x 2P~ matrix [A;;] consisting of
the blocks

Ail- _ |:a j| Vi and Alj _ I:yljcl] 1 :I Vi ;é j,
b a d," YijCij

where y;; = exp (is,-jG/Z), sij = sgn(@ — j) and a, b, ¢j, d;; are some complex
numbers, the above relations are proved by the same way as in the proof of part B of
Theorem 1 (by using y;; + ¥/} = 0).

To prove that the subspace Uz (Ho), where Uz = Uy, ® ... ® Uy,, is an error-
correcting code for the channel @?", it suffices to note that (25) implies that UF AUz =
Aforall A € [£]]%". |

Corollary 3 Let n be arbitrary and m be a natural number such that 6, = w/m < 6,.
Then

Qo ((Dg”) =0 but Qp (CD(im) > p—1 andhence Q (@9*) >(p—1)/m.

There exist 2™ mutually orthogonal 2P~'-D error-correcting codes for the channel
DI
O
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Remark 10 Corollary 3 (with Proposition 2 in [15] and Remark 8) shows that for any
n, there exists a channel ®,, with d4 = 27 and arbitrary dg satisfying the inequality
dé > 2P such that

p—1 — 2In@3/2)(p -1
/6] +1 Tndp

0o (®2") =0 and Qo(®, )_[ +o(1/n),

where [x] is the integer part of x, and hence, we have the following lower bounds for
the values S;(n) and S, (n) (introduced in 13,14)

21n(3/2)(p—1)+0(1/n) and S*(n)z2ln(3/2)(p—1)
mndp mndp

(the later inequality is obtained from the former by using relation (15)).

Since §, = 1, the above lower bounds with p = 2 coincide with (16,17).
Since 83 = +/2, Remark 10 with p = 3 shows that for any n, there exists a channel
®,, with d4 = 8 and dr = 3 such that

00 (P%") =0 and Qp(®,) > v2 x (3/)+ o(1/n).

Hence,

Ss(m) = V2 x 21“(3/2)+ (1/n).

Comparing this estimation with (16), we see that the increasing input dimension d4
from 4 to 8 gives the amplification factor /2 for the quantum zero-error capacity of a
channel having vanishing n-shot capacity (more precisely, for the lower bound of this
capacity).

In general, Remark 10 shows that our construction with the input dimension d4 =
27 amplifies lower bound (17) for S, (n) by the factor A, = 8;1 (p—1).ByRemark 8,
the nondecreasing sequence A, has a finite limit:

T
lim A, =A, = " ~226.
pooo 0P T T 0

Hence, A, =~ 2.26 is the maximal amplification factor for S, (n) which can be obtained
by increasing input dimension. So, we have

Si(n) = Ay Vn.

21n(3/2) _ log,(3/2)
mn o n

Unfortunately, we have not managed to show the existence of a channel with arbitrary
quantum zero-error capacity and vanishing n-shot capacity, i.e., to prove the conjecture
S«(n) = o0 for all n. This can be explained as follows.
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According to Theorem 2, if the input dimension of the channel ®y increases as
27, then the dimension of error-correcting code for the channel d>f§’m, 0 = m/m,
increases as 27!, But simultaneously, the norm of the map Y Do) —1d2p characterizing
deformation of a maximal commutative *-subalgebra increases as 6, sin(6/2) ~ p6/2
for large p and small 6, so, to guarantee vanishing of the n-shot capacity of &y by
using Lemma 3, we have to decrease the value of 0 as O(1/p). Since 0 = /m, we
see that QO(QE’"’) and m have the same increasing rate O(p), which does not allow
to obtain large values of Qo (®y).

Thus, the main obstacle for proving the conjecture Sy (n) = 400 consists in the
unavoidable growth of the norm of the map Ypg) — Id2r as p — oo (for fixed 0).

First, there was a hope to solve this problem by using a freedom in choice of the
deformation map Yp). Indeed, instead of the matrix D(0) introduced before the
definition of Sg , one can use the matrix D(0, S) = [A;;] consisting of the blocks

11 ) y 1 . y 1 .
Ai=| | Y Ai=]] ; if sijj=—1 and Ajj=|] y if s;j =1,

where S = [s;;] is any skew-symmetric 27 ~1 % 2P~ 1 matrix such that s; ;= %1 for
alli # j. For the corresponding subspace Sg’ s = Tpw.s) (Sg ) the main assertions
of Theorem 2 are valid (excepting the assertion about 2" error-correcting codes) with
the constant §, replaced by the norm || Yg||cp (in our construction § = S, is the matrix
having “1” everywhere below the main diagonal and §, = || T, [|cb). But the further
analysis (based on the results from [10]) has shown that

[Tsllcb = 8p = s, llcb

and hence

I1Tp@,s) —Idar llcb = 1 Tpeo,s,) — Id2r llch

for any skew-symmetric 27! x 27! matrix S such that sij = xl foralli # j. So,
by using the above modification, we cannot increase the lower bound for Qo (Pyg).
The useless of some other modifications of the map Y pg) was also shown.

It is interesting to note that the norm growth of the map Ypg) — Ida» is a cost of
the symmetry requirement for the subspace Eg . Indeed, if we omit this requirement,
then we would use the matrix D(0) = [A;;] consisting of the blocks

117 . y 1] .

for which [ Y5, — Idorlleb < 2]y — 1] < 6 forall p.

It seems that the above obstacle is technical and can be overcome (within the same
construction of a channel) by finding a way to prove the equality Qo(®®") = 0 not
using estimations of the distance between the unit balls of [i}g7 1% and of [Sg 1n,
Anyway the question concerning the value
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S4(n) = sup {Q0(®) | Qo(@®") =0}

remains open.
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Appendix: Proof of Lemma 2

4
i=

Show first that for each 6, one can construct basis {Af}
operators with Z?=1 Af.) = I4 such that:

| of £¢ consisting of positive

(1) the function 0 +— A? is continuous for i = 1, 4;

2) {A?};‘: | consists of mutually orthogonal 1-rank projectors.

Recall that £¢ is unitary equivalent to the subspace £ defined by (9).
Denote by || Ty || the operator norm of the matrix Ty involved in (9). Note that the
function 6 +— Tp is continuous, 7o = 0 and || Ty || < || T || = 2. Let

«a 0 0 0 B 0 0 0

- 0 B8 00 : > 0 00 .

Af = 00 g 0 —Ha—-P) Ty, Af= 008 0 — 1 —p) Ty,
|0 0 0 B |0 0 0 B ]
B 0 0 0] B 0 0 0

. 0 00 . 0 g 00

Af = 00 a0 +ia-P T, Af= 00 g 0 +ia-P T
0 0 0 B [0 0 0 o

be operators in £}, where f = min {%, %H Ty ||} and @ = 1 — 38. It is easy to verify
that A% > 0 for all i and 3"} A? = Iy. Then {A? = SAYS~!}!_|, where S is the
unitary matrix defined after (9), is a required basis of £g.

Letm > 2and {|y;) }?:1 be a collection of unit vectors in C™ such that {|v; ) (; |};‘:1
is a linearly independent subset of 91,,. It is easy to show (see the proof of Corollary 1
in [15]) that £y is a noncommutative graph of the pseudo-diagonal channel

o (p) = Trem VopVy',

where

4
Vo lo) > >[4 1) ® 1i) @ 1)
i=1
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is an isometry from H, = C* into C* @ C* ® C™ ({|i)} is the canonical basis in C*).
By property 1 of the basis {A?};‘= |» the function 6 — Vjp is continuous.

The first part of Lemma 2 follows from this construction with m = 2.

To prove the second part assume that m = 4 and |¢;) = |i), i = 1, 4. Property 2

of the basis {A?};‘: | implies

4

Volg) = D eilg)le) ® li) @ i),

i=1

where {|e,~)}f’:1 is an orthonormal basis in C*. Hence, ®¢(p) = Z?zl(e,-lple,-)oi,

Oi

=le; ®i)(e; ®il,is a classical-quantum channel.
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