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Abstract We show that unbounded number of channel uses may be necessary for
perfect transmission of quantum information. For any n, we explicitly construct low-
dimensional quantum channels (input dimension 4, Choi rank 2 or 4) whose quantum
zero-error capacity is positive, but the corresponding n-shot capacity is zero. We
give estimates for quantum zero-error capacity of such channels as a function of n
and show that these channels can be chosen in any small vicinity (in the cb-norm)
of a classical–quantum channel. Mathematically, this property means appearance of
an ideal (noiseless) subchannel only in sufficiently large tensor power of a channel.
Our approach (using special continuous deformation of a maximal commutative ∗-
subalgebra of M4) also gives low-dimensional examples of the superactivation of
1-shot quantum zero-error capacity. Finally, we consider multi-dimensional construc-
tion which increases the estimate for quantum zero-error capacity of channels having
vanishing n-shot capacity.

Keywords Pseudo-diagonal quantum channel · Error-correcting code ·
Noncommutative graph · Maximal commutative ∗-algebra

1 Introduction

It is well known that the rate of information transmission over classical and quantum
communication channels can be increased by simultaneous use of many copies of a
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channel. It is this fact that implies necessity of regularization in definitions of different
capacities of a channel [1,2].

In this paper, we show that zero-error transmission of quantum information over
a quantum channel may require unbounded number of channel uses. We prove by
explicit construction that for any given n, there is a channel �n such that

Q̄0
(
�⊗n

n

) = 0, but Q0(�n) > 0, (1)

where Q̄0 and Q0 are, respectively, the 1-shot and the asymptotic quantum zero-error
capacities defined in Sect. 2.

This effect is closely related to the recently discovered phenomenon of superacti-
vation of quantum channel capacities [3–6]. Indeed, (1) is equivalent to existence of
m > n such that

Q̄0(�n) = Q̄0

(
�⊗2

n

)
= . . . = Q̄0

(
�⊗(m−1)

n

)
= 0, but Q̄0

(
�⊗m

n

)
> 0. (2)

Mathematically, (2) means that all the channels �n,�⊗2
n , . . . , �

⊗(m−1)
n have no ideal

(noiseless) subchannels but the channel �⊗m
n has.

We show how for any given n to explicitly construct a pseudo-diagonal quantum
channel �n with the input dimension dA = 4 and the Choi rank dE ≥ 2 satisfying
(2) by determining its noncommutative graph. We also obtain the estimate for m as a
function of n, which gives the lower bound for Q0(�n) in (1). This shows that

sup
�

{
Q0(�) | Q̄0(�

⊗n) = 0
} ≥ 2 ln(3/2)

πn
∀n. (3)

It is also observed that a channel�n satisfying (1) and (2) can be obtained by arbitrarily
small deformation (in the cb-norm) of a classical–quantumchannelwithdA = dE = 4.

The main problem in finding the channel �n is to show nonexistence of error-
correcting codes for the channel �⊗n

n (provided the existence of such codes is proved
for�⊗m

n ).We solve this problembyusing special continuous deformation of amaximal
commutative ∗-subalgebra of 4 × 4 matrices as the noncommutative graph of �n

and by noting that the Knill–Laflamme error-correcting conditions are violated for
any maximal commutative ∗-subalgebra with the positive dimension-independent gap
(Lemma 3).

Our construction also gives low-dimensional examples of the superactivation of
1-shot quantum zero-error capacity. In particular, it gives an example of symmetric
superactivation with dA = 4, dE = 2 (simplifying the example in [7]) and shows that
such superactivation is possible for two channels with dA = dE = 4 if one of them is
arbitrarily close (in the cb-norm) to a classical–quantum channel.

In the last section, we consider multi-dimensional generalization of our basic con-
struction. It gives examples of channels which amplify the lower bound in (3) by the
factor π

2 ln 2 ≈ 2.26. Unfortunately, we did not managed to show that the value in
the left side of (3) is +∞ (as it is reasonable to conjecture). Estimation of this value
remains an open question.
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It should mention that the necessity of unbounded number of channel uses to see
quantum ε-error capacity has been recently shown in [8].1

2 Preliminaries

LetH be a finite-dimensional Hilbert space,B(H)—the algebra of all linear operators
inH,S(H)—the closed convex subset ofB(H) consisting of positive operators with
unit trace called quantum states [1,2].We can identifyH andB(H), respectively, with
the unitary space Cn and the algebra Mn of all n × n matrices, where n = dimH.

Denote by In and Idn the unit operator in the space Cn and the identity transforma-
tion of the algebra Mn correspondingly.

For any matrix A ∈ Mn denote by ϒA the operator of Schur multiplication by A in
Mn (also called the Hadamard multiplication). Its cb-norm will be denoted ‖ϒA‖cb.
It coincides with the operator norm of ϒA and is also called the Schur (or Hadamard)
multiplier norm of A (see [9,10] and the references therein).

Let� : S(HA) → S(HB) be a quantum channel, i.e., a completely positive trace-
preserving linear map [1,2]. Stinespring’s theorem implies the existence of a Hilbert
space HE and of an isometry V : HA → HB ⊗ HE such that

�(ρ) = TrHE VρV ∗, ρ ∈ S(HA).

The minimal dimension of HE is called Choi rank of � and denoted dE .
The quantum channel

S(HA) � ρ �→ �̂(ρ) = TrHB VρV ∗ ∈ S(HE )

is called complementary to the channel � [1,11]. The complementary channel is
defined uniquely up to isometrical equivalence [11, the Appendix].

The 1-shot quantum zero-error capacity Q̄0(�) of a channel � is defined as
supH∈q0(�) log2 dimH, where q0(�) is the set of all subspaces H0 of HA on which
the channel � is perfectly reversible (in the sense that there is a channel � such that
�(�(ρ)) = ρ for all states ρ supported by H0). Any subspace H0 ∈ q0(�) is called
error-correcting code for the channel � [1,13].

The (asymptotic) quantum zero-error capacity is defined by regularization:
Q0(�) = supn n−1 Q̄0(�

⊗n) [6,12,13].
It is well known that a channel� is perfectly reversible on a subspaceH0 if and only

if the restriction of the complementary channel �̂ to the subset S(H0) is completely
depolarizing, i.e., �̂(ρ1) = �̂(ρ2) for all states ρ1 and ρ2 supported byH0 [1, Ch.10].
It follows that the 1-shot quantum zero-error capacity of a channel � is completely
determined by the set G(�)

.= �̂∗(B(HE )) called noncommutative graph of � [13].
In particular, the Knill–Laflamme error-correcting condition (cf. [14]) implies the
following lemma.

1 It is surprising that this result and the preliminary arXiv version of the present paper appeared simulta-
neously.
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Lemma 1 A set {ϕk}d
k=1 of unit orthogonal vectors inHA is a basis of error-correcting

code for a channel � : S(HA) → S(HB) if and only if

〈ϕl |A|ϕk〉 = 0 and 〈ϕl |A|ϕl〉 = 〈ϕk |A|ϕk〉 ∀A ∈ L, ∀k �= l, (4)

where L is any subset of B(HA) such that linL = G(�).

This lemma shows that Q̄0(�) ≥ log2 d if and only if there exists a set {ϕk}d
k=1 of

unit vectors in HA satisfying condition (4).

Remark 1 Since a subspaceL of the algebraMn of n×n matrices is a noncommutative
graph of a particular channel if and only if

L is symmetric (L = L∗) and contains the unit matrix (5)

(see Lemma 2 in [6] or Proposition 2 in [15]), Lemma 1 shows that one can “construct”
a channel�with dimHA = n having positive (correspondingly, zero) 1-shot quantum
zero-error capacity by taking a subspaceL ⊂ Mn satisfying (5) forwhich the following
condition is valid (correspondingly, not valid)

∃ϕ,ψ ∈ [Cn]1 such that 〈ψ |A|ϕ〉 = 0 and 〈ϕ|A|ϕ〉 = 〈ψ |A|ψ〉 ∀A ∈ L, (6)

where [Cn]1 is the unit sphere of Cn . �

We will use the following two notions.

Definition 1 [1] A channel � : S(HA) → S(HB) is called classical–quantum if it
has the representation

�(ρ) =
∑

k

〈k|ρ|k〉σk,

where {|k〉} is an orthonormal basis inHA and {σk} is a collection of states inS(HB).

Definition 2 [16] A channel � : S(HA) → S(HB) is called pseudo-diagonal if it
has the representation

�(ρ) =
∑

i, j

ci j 〈ψi |ρ|ψ j 〉|i〉〈 j |,

where {ci j } is a Gram matrix of a collection of unit vectors, {|ψi 〉} is a collection of
vectors inHA such that

∑
i |ψi 〉〈ψi | = IHA − the unit operator inHA and {|i〉} is an

orthonormal basis inHB .

Pseudo-diagonal channels are complementary to entanglement-breaking channels
and vice versa [11,16].
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3 Basic example

For any given θ ∈ T
.= (−π, π ], consider the subspace

Lθ =

⎧
⎪⎪⎨

⎪⎪⎩
M =

⎡

⎢⎢
⎣

a b γ c d
b a d γ̄ c
γ̄ c d a b
d γ c b a

⎤

⎥⎥
⎦, a, b, c, d ∈ C, γ = exp

( i
2θ

)

⎫
⎪⎪⎬

⎪⎪⎭
(7)

of M4. This subspace satisfies condition (5) and has the following property

A = W ∗
4 AW4 ∀A ∈ Lθ , where W4 =

⎡

⎢
⎢
⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥
⎥
⎦ . (8)

Remark 2 The subspace Lθ can be considered as a deformation of the maximal com-
mutative ∗-algebra L0. To clarify the form of this deformation, note that the family of
subspaces Lθ is unitary equivalent to the family of the subspaces

Ls
θ =

⎧
⎪⎪⎨

⎪⎪⎩
M =

⎡

⎢⎢
⎣

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

⎤

⎥⎥
⎦ + 1

4 (d + c − b − a) Tθ , a, b, c, d ∈ C

⎫
⎪⎪⎬

⎪⎪⎭
(9)

where

Tθ =

⎡

⎢⎢
⎣

u 0 0 v

0 u v 0
0 −v −u 0

−v 0 0 −u

⎤

⎥⎥
⎦ , u = 1 − �γ, v = i�γ.

Indeed, by representing the matrix M in (7) as M = A + cB, where

A =

⎡

⎢⎢
⎣

a b c d
b a d c
c d a b
d c b a

⎤

⎥⎥
⎦ , B =

⎡

⎢⎢
⎣

0 0 τ 0
0 0 0 τ̄

τ̄ 0 0 0
0 τ 0 0

⎤

⎥⎥
⎦ , τ = γ − 1,

is easy to see that S−1BS = Tθ and

S−1AS =

⎡

⎢⎢
⎣

ã 0 0 0
0 b̃ 0 0
0 0 c̃ 0
0 0 0 d̃

⎤

⎥⎥
⎦ , where S = 1

2

⎡

⎢⎢
⎣

1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1

⎤

⎥⎥
⎦ ,
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ã = a − b − c + d, b̃ = a + b − c − d, c̃ = a − b + c − d, d̃ = a + b + c + d.

Denote by L̂θ the set of all channels whose noncommutative graph coincides with
Lθ . Since dimLθ = 4, Proposition 2 in [15] shows the set L̂θ contains infinitely many
different channels with dA

.= dimHA = 4 and dE ≥ 2. It is essential that one can
choose families {�θ } ⊂ {L̂θ } continuous with respect to θ .

Lemma 2 1) There is a family {�1
θ } of pseudo-diagonal channels (see Def. 2) with

dE = 2 such that �1
θ ∈ L̂θ for each θ .

2) There is a family {�2
θ }of pseudo-diagonal channels with dE = 4 such that�2

θ ∈ L̂θ

for each θ and �2
0 is a classical–quantum channel (see Def. 1).

The families {�1
θ } and {�2

θ } can be chosen continuous in the following sense:

�k
θ (ρ) = TrHk

E
V k

θ ρ
[
V k

θ

]∗
, ρ ∈ S(HA), k = 1, 2, (10)

where V 1
θ , V 2

θ are continuous families of isometries, H1
E = C

2, H2
E = C

4.2

Lemma 2 is proved in theAppendix, where representations (10) are constructed explic-
itly by using the unitary equivalence of Lθ and Ls

θ .

Theorem 1 Let �θ be a channel in L̂θ and n ∈ N be arbitrary.

A) Q̄0(�θ ) > 0 if and only if θ = π and Q̄0(�π) = 1.
B) If θ1 + . . . + θn = π(mod 2π), then Q̄0(�θ1 ⊗ . . . ⊗ �θn ) > 0 and there exist 2n

mutually orthogonal 2-D error-correcting codes for the channel �θ1 ⊗ . . .⊗�θn .
For each binary n-tuple (x1, . . . xn), the corresponding error-correcting code is
spanned by the images of the vectors

|ϕ〉 = 1√
2
[ |1 . . . 1〉 + i |2 . . . 2〉 ] , |ψ〉 = 1√

2
[ |3 . . . 3〉 + i |4 . . . 4〉 ] , (11)

under the unitary transformation Ux1 ⊗ . . . ⊗ Uxn , where {|1〉, . . . , |4〉} is the
canonical basis in C

4, U0 = I4 and U1 = W4 (defined in (8)).
C) If |θ1| + . . . + |θn| ≤ 2 ln(3/2), then Q̄0(�θ1 ⊗ . . . ⊗ �θn ) = 0.

Remark 3 It is easy to show that Q̄0(�
⊗n
θ ) = Q̄0(�

⊗n
−θ ) and that the set of all θ such

that Q̄0(�
⊗n
θ ) = 0 is open. Hence, for each n, there is εn > 0 such that Q̄0(�

⊗n
θ ) = 0

if |θ | < εn and Q̄0(�
⊗n±εn

) > 0. Theorem 1 shows that ε1 = π and 2 ln(3/2)/n <

εn ≤ π/n for n > 1. Since assertion C is proved by using quite coarse estimates,
one can conjecture that εn = π/n for n > 1. There exist some arguments confirming
validity of this conjecture for n = 2.

Remark 4 Assertion B of Theorem 1 can be strengthened as follows:
B’) If θ1+. . .+θn = π(mod 2π), then there exist2n mutually orthogonal projectors

Px̄ of rank 2 indexed by a binary n-tuple x̄ = (x1, . . . xn) such that

Px̄ APx̄ = λ(A)Px̄ ∀A ∈ Lθ1 ⊗ . . . ⊗ Lθn ,

2 This implies continuity of these families in the cb-norm [17].
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where λ(A) ∈ C does not depend on x̄ . Px̄ is the projector on the subspace Ux1 ⊗
. . . ⊗ Uxn (H0), where H0 is the linear hull of vectors (11).

This follows from the proof of Theorem 1 presented below.

Theorem 1 implies the main result of this paper.

Corollary 1 Let n be arbitrary and m be a natural number such that θ∗ = π/m ≤
2 ln(3/2)/n. Then

Q̄0

(
�⊗n

θ∗

)
= 0 but Q̄0

(
�⊗m

θ∗

)
≥ 1 and hence Q0(�θ∗) ≥ 1/m. (12)

There exist 2m mutually orthogonal 2-D error-correcting codes for the channel �⊗m
θ∗ .

Relation (12) means that it is not possible to transmit any quantum information with
no errors by using ≤ n copies of the channel �θ∗ , but such transmission is possible if
the number of copies is ≥ m.

Remark 5 In (12), one can take �θ∗ = �1
θ∗—a channel from the family described in

the first part of Lemma 2. So, Corollary 1 shows that for any n, there exists a channel
�n with dA = 4 and dE = 2 such that Q̄0(�

⊗n
n ) = 0 and

Q0(�n) ≥
([

πn

2 ln(3/2)

]
+ 1

)−1

= 2 ln(3/2)

πn
+ o(1/n), n → +∞,

where [x] is the integer part of x .

It is natural to ask about the maximal value of quantum zero-error capacity of a
channel with given input dimension having vanishing n-shot capacity, i.e., about the
value

Sd(n)
.= sup

� : dA=d

{
Q0(�) | Q̄0(�

⊗n) = 0
}
, (13)

where the supremum is over all quantum channels with dA
.= dimHA = d. We may

also consider the value

S∗(n)
.= sup

d
Sd(n) = lim

d→+∞ Sd(n) ≤ +∞. (14)

The sequences {Sd(n)}n and {S∗(n)}n are nonincreasing, and the first of them is
bounded by log2 d. Theorem 2 in [7] shows that

S2d(1) ≥ log2 d

2
and hence S∗(1) = +∞.

It seems reasonable to conjecture that S∗(n) = +∞ for all n. A possible way to prove
this conjecture is discussed at the end of Sect. 4.
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It follows from the superadditivity of quantum zero-error capacity that

Sdk (n) ≥ kSd(nk) and hence S∗(n) ≥ kS∗(nk) for any k, n. (15)

These relations show that the assumption S∗(n0) < +∞ for some n0 implies

Sd(n) = O(1/n) for each d and S∗(n) = O(1/n) if n ≥ n0.

By Corollary 1, we have

S4(n) ≥
([

πn

2 ln(3/2)

]
+ 1

)−1

= 2 ln(3/2)

πn
+ o(1/n), ∀n. (16)

This and (15) imply the estimation

S4k (n) ≥ k
2 ln(3/2)

πkn
+ o(1/(kn)) = 2 ln(3/2)

πn
+ o(1/(kn)),

which shows that

S∗(n) ≥ 2 ln(3/2)

πn
∀n. (17)

In Sect. 4, we will improve these lower bounds by considering the multi-dimensional
generalization of the above construction.

Remark 6 Since the parameter θ∗ in Corollary 1 can be taken arbitrarily close to zero,
the second part of Lemma 2 shows that the channel �θ∗ , for which Q̄0(�

⊗n
θ∗ ) = 0 and

Q0(�θ∗) > 0, can be chosen in any small vicinity (in the cb-norm) of the classical–
quantum channel �2

0.

Theorem 1 also gives examples of the superactivation of 1-shot quantum zero-error
capacity.

Corollary 2 If θ �= 0, π , then the following superactivation property

Q̄0(�θ ) = Q̄0(�π−θ ) = 0 and Q̄0(�θ ⊗ �π−θ ) > 0

holds for any channels �θ ∈ L̂θ and �π−θ ∈ L̂π−θ . For any θ ∈ T, there exist 4
mutually orthogonal 2-D error-correcting codes for the channel �θ ⊗ �π−θ , one of
them is spanned by the vectors

|ϕ〉 = 1√
2
[ |11〉 + i |22〉 ] , |ψ〉 = 1√

2
[ |33〉 + i |44〉 ] , (18)

others are the images of this subspace under the unitary transformations I4 ⊗ W4,
W4 ⊗ I4 and W4 ⊗ W4 (the operator W4 is defined in (8)).
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Remark 7 Corollary 2 shows that the channel �1
π/2 (taken from the first part of

Lemma2) is an example of the symmetric superactivation of 1-shot quantumzero-error
capacity with Choi rank 2.3

By taking the family {�2
θ } from the second part of Lemma 2 and tending θ to

zero, we see from Corollary 2 that the superactivation of 1-shot quantum zero-error
capacity may hold for two channels with dA = dE = 4 if one of them is arbitrarily
close (in the cb-norm) to a classical–quantum channel.

Note that the entangled subspace spanned by the vectors (18) is an error-correcting
code for the channel �2

0 ⊗ �2
π (and hence for the channel �2

0 ⊗ Id4) despite the fact
that �2

0 is a classical–quantum channel.

Proof of Theorem 1 A) It is easy to verify that the subspace Lπ satisfies condition (6)
with the vectors |ϕ〉 = [1, i, 0, 0]�, |ψ〉 = [0, 0, 1, i]�.

To prove that Q̄0(�θ ) = 0 for all θ �= π , it suffices to show that condition (6) is
not valid for the subspace Ls

θ defined in (9) if θ �= π (i.e.,γ �= i).
Assume the existence of unit vectors |ϕ〉 = [x1, x2, x3, x4]� and |ψ〉 =

[y1, y2, y3, y4]� in C4 such that

〈ψ |M |ϕ〉 = 0 and 〈ψ |M |ψ〉 = 〈ϕ|M |ϕ〉 for all M ∈ Ls
θ . (19)

Since condition (19) is invariant under the rotation

|ϕ〉 �→ p|ϕ〉 − q|ψ〉, |ψ〉 �→ q̄|ϕ〉 + p̄|ψ〉, |p|2 + |q|2 = 1,

we may consider that y1 = 0.
By taking successively (a = −1, b = c = d = 0), (b = −1, a = c = d = 0),

(c = 1, a = b = d = 0) and (d = 1, a = b = c = 0), we obtain from (19) the
following equations

ȳ1x1 = ȳ2x2 = −ȳ3x3 = −ȳ4x4 = 1
4 〈ψ |Tθ |ϕ〉,

|x1|2 − |y1|2 = |x2|2 − |y2|2 = |y3|2 − |x3|2 = |y4|2 − |x4|2
= 1

4 (〈ϕ|Tθ |ϕ〉 − 〈ψ |Tθ |ψ〉) .

Since y1 = 0 and ‖ϕ‖ = ‖ψ‖ = 1, the above equations imply

y1 = y2 = x3 = x4 = 0

and

|x1|2 = |x2|2 = |y3|2 = |y4|2 = 1
4 (〈ϕ|Tθ |ϕ〉 − 〈ψ |Tθ |ψ〉) = 1/2. (20)

So, |ϕ〉 = [x1, x2, 0, 0 ]� and |ψ〉 = [0, 0, y3, y4]�, where [x1, x2]� and [y3, y4]�
are unit vectors in C2 . It follows from (20) that

3 This strengthens the result in [7], where a similar example with Choi rank 3 and the same input dimension
was constructed.
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2 =
〈

x1
x2

∣∣∣
∣

u 0

0 u

∣∣∣
∣

x1
x2

〉
−

〈
y3
y4

∣∣∣
∣
−u 0

0 −u

∣∣∣
∣

y3
y4

〉
= 2u,

which can be valid only if γ = i, i.e., θ = π .
The above arguments also show that Q̄0(�π) = 1, since the assumption Q̄0(�π) >

1 implies, by Lemma 1, the existence of orthogonal unit vectors φ1, φ2, φ3 such that
condition (19) with ϕ = φi , ψ = φ j is valid for all i �= j .

B) Let M1 ∈ Lθ1 , . . . , Mn ∈ Lθn be arbitrary and X = M1 ⊗ . . . ⊗ Mn . To prove
that the linear hull H0 of vectors (11) is an error-correcting code for the channel
�θ1 ⊗ . . . ⊗ �θn , it suffices, by Lemma 1, to show that

〈ψ |X |ϕ〉 = 0 and 〈ψ |X |ψ〉 = 〈ϕ|X |ϕ〉. (21)

We have

2〈ψ |X |ϕ〉 = 〈3 . . . 3|X |1 . . . 1〉 + i〈3 . . . 3|X |2 . . . 2〉 − i〈4 . . . 4|X |1 . . . 1〉
+ 〈4 . . . 4|X |2 . . . 2〉 = c1 . . . cn(γ̄1 . . . γ̄n + γ1 . . . γn)

+ d1 . . . dn(i − i) = 0,

since γ1 . . . γn = ±i,

2〈ϕ|X |ϕ〉 = 〈1 . . . 1|X |1 . . . 1〉 + i〈1 . . . 1|X |2 . . . 2〉 − i〈2 . . . 2|X |1 . . . 1〉
+ 〈2 . . . 2|X |2 . . . 2〉 = a1 . . . an(1 + 1) + b1 . . . bn(i − i) = 2a1 . . . an

and

2〈ψ |X |ψ〉 = 〈3 . . . 3|X |3 . . . 3〉 + i〈3 . . . 3|X |4 . . . 4〉 − i〈4 . . . 4|X |3 . . . 3〉
+ 〈4 . . . 4|X |4 . . . 4〉 = a1 . . . an(1 + 1) + b1 . . . bn(i − i) = 2a1 . . . an .

So, the both equalities in (21) are valid.
To prove that the subspace Ux̄ (H0), where Ux̄ = Ux1 ⊗ . . . ⊗ Uxn , is an error-

correcting code for the channel �θ1 ⊗ . . . ⊗ �θn , it suffices to note that (8) implies
that U ∗̄

x AUx̄ = A for all A ∈ Lθ1 ⊗ . . . ⊗ Lθn .
C) To show that Q̄0

(⊗n
k=1�θk

) = 0 if
∑n

k=1 |θk | ≤ 2 ln(3/2) note that Lθ =
ϒD(θ)(L0) and

⊗n
k=1 Lθk = ⊗n

k=1ϒD(θk )

(
L⊗n
0

)
, where ϒD(θ) is the Schur multipli-

cation by the matrix

D(θ) =

⎡

⎢⎢⎢
⎣

1 1 γ 1

1 1 1 γ̄

γ̄ 1 1 1

1 γ 1 1

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎤

⎥⎥⎥
⎦

+

⎡

⎢⎢⎢
⎣

0 0 τ 0

0 0 0 τ̄

τ̄ 0 0 0

0 τ 0 0

⎤

⎥⎥⎥
⎦

, τ = γ − 1.

(22)
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By using (22) and Theorem 8.7 in [9] 4, it is easy to show that

xk
.= ‖ϒD(θk ) − Id4‖cb ≤ |τk | = |1 − γk | = ∣∣1 − exp

( i
2θk

)∣∣ ≤ 1
2 |θk |. (23)

Let Δn
.= ‖⊗n

k=1ϒD(θk ) − Id4n ‖cb. By using multiplicativity of the cb-norm and
(23), we obtain

Δn ≤ xn

n−1∏

k=1

(1 + xk) + Δn−1 ≤
n∏

k=1

(1 + xk) − 1 ≤
n∏

k=1

(
1 + 1

2 |θk |
) − 1. (24)

Assume that Q̄0
(⊗n

k=1�θk

)
> 0. Then, Lemma 1 implies existence of unit vectors

ϕ and ψ inH⊗n
A = C

4n
such that

〈ψ |�(A)|ϕ〉 = 0 and 〈ϕ|�(A)|ϕ〉 = 〈ψ |�(A)|ψ〉 ∀A ∈ L⊗n
0 ,

where � = ⊗n
k=1ϒD(θk ). Hence, for any A in the unit ball of L⊗n

0 , we have

|〈ψ |A|ϕ〉| ≤ Δn and |〈ϕ|A|ϕ〉 − 〈ψ |A|ψ〉| ≤ 2Δn .

By using (24) and the inequality x ≥ ln(1 + x), it is easy to see that the assumption∑n
k=1 |θk | ≤ 2 ln(3/2) implies Δn ≤ 1/2. So, the above relations can not be valid by

the below Lemma 3, since L⊗n
0 is a maximal commutative ∗-subalgebra of M4n . ��

Lemma 3 Let A be a maximal commutative ∗-subalgebra of Mn. Then,

either 2 sup
A∈A1

|〈ψ |A|ϕ〉| > 1 or sup
A∈A1

|〈|ϕ|A|ϕ〉 − 〈ψ |A|ψ〉| > 1

for any two unit vectors ϕ and ψ in C
n, where A1 is the unit ball of A.

Proof Let {xi }n
i=1 and {yi }n

i=1 be the coordinates of ϕ and ψ in the basis in which the
algebra A consists of diagonal matrices. Then,

sup
A∈A1

|〈ψ |A|ϕ〉| =
n∑

i=1

|xi ||yi |, sup
A∈A1

|〈|ϕ|A|ϕ〉 − 〈ψ |A|ψ〉| =
n∑

i=1

∣∣∣|xi |2 − |yi |2
∣∣∣ .

Let di = |yi | − |xi |. Assume that

2
n∑

i=1

|xi ||yi | ≤ 1 and
n∑

i=1

∣∣∣|xi |2 − |yi |2
∣∣∣ ≤ 1.

4 This theorem states that ‖ϒA‖cb ≤ 1 if and only if A = [〈ϕi |ψ j 〉] for some collections {ϕi } and {ψ j } of
vectors from the unit ball of some Hilbert space.
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Since
∑n

i=1 |xi |2 = ∑n
i=1 |yi |2 = 1, the first of these inequalities implies

∣∣∣
∣∣

n∑

i=1

di |xi |
∣∣∣
∣∣
≥ 1/2 and

∣∣∣
∣∣

n∑

i=1

di |yi |
∣∣∣
∣∣
≥ 1/2.

Hence,

n∑

i=1

∣∣∣|xi |2 − |yi |2
∣∣∣ =

n∑

i=1

|di |[|xi | + |yi |] >

∣
∣∣∣∣

n∑

i=1

di |xi |
∣
∣∣∣∣
+

∣
∣∣∣∣

n∑

i=1

di |yi |
∣
∣∣∣∣
≥ 1,

where the strict inequality follows from the existence of negative and positive numbers
in the set {di }n

i=1. This contradicts to the above assumption. ��

4 Multi-dimensional generalization

Note that

L0 = A⊗2
2 , where A2 =

{[
a b

b a

]
, a, b ∈ C

}
,

and that Lθ is the image of L0 under the Schur multiplication by matrix (22). So, the
above construction can be generalized by considering the corresponding deformation
of the maximal commutative ∗-subalgebra Lp

0 = A
⊗p
2 ofM2p for p > 2. The algebra

L
p
0 can be described recursively as follows:

L
p
0 =

{[
A B

B A

]
, A, B ∈ L

p−1
0

}
, L1

0 = A2.

Let p > 2 and θ ∈ T
.= (−π, π ] be arbitrary, γ = exp

( i
2θ

)
. Let D(θ) be the

2p × 2p matrix described as 2p−1 × 2p−1 matrix [Ai j ] consisting of the blocks

Aii =
[
1 1

1 1

]
∀i, Ai j =

[
γ 1

1 γ̄

]
if i < j and Ai j =

[
γ̄ 1

1 γ

]
if i > j.

Consider the 2p-D subspace Lp
θ = ϒD(θ)

(
L

p
0

)
of M2p (where ϒD(θ) is the Schur

multiplication by the matrix D(θ), see Sect. 2). This subspace satisfies condition (5)
and has the following property

A = W ∗
2p AW2p ∀A ∈ L

p
θ , (25)

where W2p is the 2p × 2p matrix having “1” on the main skew-diagonal and “0”
on the other places. To prove (25), it suffices to show that it holds for the algebra
L

p
0 = A

⊗p
2 (by using W2p = W ⊗p

2 ) and to note that the map ϒD(θ) commutes with
the transformation A �→ W ∗

2p AW2p .
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Denote by L̂p
θ the set of all quantum channels whose noncommutative graph coin-

cides with Lp
θ . By Proposition 2 in [15], the set L̂

p
θ contains pseudo-diagonal channels

with dA = 2p and dE such that d 2
E ≥ 2p.

Theorem 2 Let p > 1 and n > 1 be given natural numbers, �θ be an arbitrary

channel in L̂
p
θ and δp = 1

2p−1

2p−1∑

k=1

∣
∣∣cot

(
(2k−1)π

2p

)∣∣∣ > 0.

A) Q̄0(�
⊗n
θ ) = 0 if |θ | ≤ θn, where θn is the minimal positive solution of the equation

2(1 − cos(θ/2)) + δp sin(θ/2) = n−1 ln(3/2).

B) If θ = ±π/n, then Q̄0(�
⊗n
θ ) ≥ p − 1 and there exist 2n mutually orthogonal

2p−1-D error-correcting codes for the channel �⊗n
θ . For each binary n-tuple

(x1, . . . xn), the corresponding error-correcting code is spanned by the images of
the vectors

|ϕk〉 = 1√
2
[ |2k − 1 . . . 2k − 1〉 + i |2k . . . 2k〉 ] , k = 1, 2p−1, (26)

under the unitary transformation Ux1 ⊗ . . . ⊗ Uxn , where {|k〉} is the canonical
basis in C

2p
, U0 = I2p and U1 = W2p (defined in (25)).

Remark 8 The constant δp is the Schurmultiplier norm of the skew-symmetric 2p−1×
2p−1 matrix having ”1” everywhere below the main diagonal. So, the sequence {δp}
is nondecreasing. It is easy to see that δ2 = 1, δ3 = √

2, δ4 ≈ 1.84 and that δp =( 2 ln 2
π

)
p + o(p) for large p [10].

Note also that θn = 2 ln(3/2)
(
nδp

)−1 + o(1/n) for large n.

Remark 9 Assertion B of Theorem 2 can be strengthened as follows:
B’) If θ = ±π/n then there exist 2n mutually orthogonal projectors Px̄ of rank

2p−1 indexed by a binary n-tuple x̄ = (x1, . . . xn) such that

Px̄ APx̄ = λ(A)Px̄ ∀A ∈ [Lp
θ ]⊗n,

where λ(A) ∈ C does not depend on x̄ . Px̄ is the projector on the subspace Ux1 ⊗
. . . ⊗ Uxn (H0), where H0 is the linear hull of vectors (26).

This follows from the proof of Theorem 2 presented below.

Proof of Theorem 2 A) Note that ϒD(θ) − Id2p is the Schur multiplication by the
matrix

−T ⊗
[

u 0

0 u

]
+ S ⊗

[
v̄ 0

0 v

]
,

where T is the 2p−1 × 2p−1 matrix having “0” on the main diagonal and “1” on the
other places, S is the 2p−1 × 2p−1 skew-symmetric matrix having “1” everywhere
below the main diagonal, u = 1 − �γ = 1 − cos(θ/2), v = i�γ = i sin(θ/2).
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In [10], it is shown that ‖ϒS‖cb = 21−p‖S‖1 = δp. Since ‖ϒT ‖cb ≤ 2 and
‖ϒA⊗B‖cb = ‖ϒA ⊗ ϒB‖cb = ‖ϒA‖cb‖ϒB‖cb, we have

x
.= ‖ϒD(θ) − Id2p‖cb ≤ u‖ϒT ‖cb + |v|‖ϒS‖cb = 2(1 − cos(θ/2)) + δp| sin(θ/2)|

and hence x ≤ n−1 ln(3/2) ≤ n
√
3/2 − 1 if |θ | ≤ θn .

Assume that Q̄0(�
⊗n
θ ) > 0 for some θ ∈ [−θn, θn]. By repeating the arguments

from the proof of part C of Theorem 1, we obtain

|〈ψ |A|ϕ〉| ≤ Δn and |〈ϕ|A|ϕ〉 − 〈ψ |A|ψ〉| ≤ 2Δn (27)

for some unit vectors ϕ,ψ ∈ C
2pn and all A in the unit ball of [Lp

0 ]⊗n , where

Δn
.=
∥∥
∥ϒ⊗n

D(θ) − Id2pn

∥∥
∥
cb

≤ (x + 1)n − 1 ≤ 1/2.

Since [Lp
0 ]⊗n is a maximal commutative ∗-subalgebra ofM2pn , Lemma 3 shows that

(27) cannot be valid.
B) Let θ = ±π/n. To prove that the linear hull H0 of vectors (26) is an error-

correcting code for the channel �⊗n
θ , it suffices, by Lemma 1, to show that

〈ϕl |M1 ⊗ . . . ⊗ Mn|ϕk〉 = 0 ∀M1, . . . , Mn ∈ L
p
θ , ∀k, l

and that

〈ϕl |M1 ⊗ . . . ⊗ Mn|ϕl〉 = 〈ϕk |M1 ⊗ . . . ⊗ Mn|ϕk〉 ∀M1, . . . , Mn ∈ L
p
θ , ∀k, l.

Since any matrix in L
p
θ can be described as 2p−1 × 2p−1 matrix [Ai j ] consisting of

the blocks

Aii =
[

a b

b a

]
∀i and Ai j =

[
γ̄i j ci j di j

di j γi j ci j

]
∀i �= j,

where γi j = exp
(
isi jθ/2

)
, si j = sgn(i − j) and a, b, ci j , di j are some complex

numbers, the above relations are proved by the same way as in the proof of part B of
Theorem 1 (by using γ n

i j + γ̄ n
i j = 0).

To prove that the subspace Ux̄ (H0), where Ux̄ = Ux1 ⊗ . . . ⊗ Uxn , is an error-
correcting code for the channel�⊗n

θ , it suffices to note that (25) implies thatU ∗̄
x AUx̄ =

A for all A ∈ [Lp
θ ]⊗n . ��

Corollary 3 Let n be arbitrary and m be a natural number such that θ∗ = π/m ≤ θn.
Then

Q̄0

(
�⊗n

θ∗

)
= 0 but Q̄0

(
�⊗m

θ∗

)
≥ p − 1 and hence Q0

(
�θ∗

) ≥ (p − 1)/m.

There exist 2m mutually orthogonal 2p−1-D error-correcting codes for the channel
�⊗m

θ∗ .
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Remark 10 Corollary 3 (with Proposition 2 in [15] and Remark 8) shows that for any
n, there exists a channel �n with dA = 2p and arbitrary dE satisfying the inequality
d 2

E ≥ 2p such that

Q̄0
(
�⊗n

n

) = 0 and Q0(�n) ≥ p − 1

[π/θn] + 1
= 2 ln(3/2)(p − 1)

πnδp
+ o(1/n),

where [x] is the integer part of x, and hence, we have the following lower bounds for
the values Sd(n) and S∗(n) (introduced in 13,14)

S2p ≥ 2 ln(3/2)(p − 1)

πnδp
+ o(1/n) and S∗(n) ≥ 2 ln(3/2)(p − 1)

πnδp

(the later inequality is obtained from the former by using relation (15)).

Since δ2 = 1, the above lower bounds with p = 2 coincide with (16,17).
Since δ3 = √

2, Remark 10 with p = 3 shows that for any n, there exists a channel
�n with dA = 8 and dE = 3 such that

Q̄0
(
�⊗n

n

) = 0 and Q0(�n) ≥ √
2 × 2 ln(3/2)

πn
+ o(1/n).

Hence,

S8(n) ≥ √
2 × 2 ln(3/2)

πn
+ o(1/n).

Comparing this estimation with (16), we see that the increasing input dimension dA

from 4 to 8 gives the amplification factor
√
2 for the quantum zero-error capacity of a

channel having vanishing n-shot capacity (more precisely, for the lower bound of this
capacity).

In general, Remark 10 shows that our construction with the input dimension dA =
2p amplifies lower bound (17) for S∗(n) by the factorΛp = δ−1

p (p−1). By Remark 8,
the nondecreasing sequence Λp has a finite limit:

lim
p→+∞ Λp = Λ∗

.= π

2 ln 2
≈ 2.26.

Hence,Λ∗ ≈ 2.26 is themaximal amplification factor for S∗(n)which can be obtained
by increasing input dimension. So, we have

S∗(n) ≥ Λ∗
2 ln(3/2)

πn
= log2(3/2)

n
∀n.

Unfortunately, we have not managed to show the existence of a channel with arbitrary
quantum zero-error capacity and vanishing n-shot capacity, i.e., to prove the conjecture
S∗(n) = +∞ for all n. This can be explained as follows.
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According to Theorem 2, if the input dimension of the channel �θ increases as
2p, then the dimension of error-correcting code for the channel �⊗m

θ , θ = π/m,
increases as 2p−1. But simultaneously, the normof themapϒD(θ)−Id2p characterizing
deformation of amaximal commutative ∗-subalgebra increases as δp sin(θ/2) ∼ pθ/2
for large p and small θ , so, to guarantee vanishing of the n-shot capacity of �θ by
using Lemma 3, we have to decrease the value of θ as O(1/p). Since θ = π/m, we
see that Q̄0(�

⊗m
θ ) and m have the same increasing rate O(p), which does not allow

to obtain large values of Q0(�θ ).
Thus, the main obstacle for proving the conjecture S∗(n) = +∞ consists in the

unavoidable growth of the norm of the map ϒD(θ) − Id2p as p → +∞ (for fixed θ ).
First, there was a hope to solve this problem by using a freedom in choice of the

deformation map ϒD(θ). Indeed, instead of the matrix D(θ) introduced before the
definition of Lp

θ , one can use the matrix D(θ, S) = [Ai j ] consisting of the blocks

Aii =
[
1 1

1 1

]
∀i, Ai j =

[
γ 1

1 γ̄

]
if si j =−1 and Ai j =

[
γ̄ 1

1 γ

]
if si j = 1,

where S = [si j ] is any skew-symmetric 2p−1 × 2p−1 matrix such that si j = ±1 for
all i �= j . For the corresponding subspace Lp

θ,S = ϒD(θ,S)

(
L

p
0

)
, the main assertions

of Theorem 2 are valid (excepting the assertion about 2m error-correcting codes) with
the constant δp replaced by the norm ‖ϒS‖cb (in our construction S = S∗ is the matrix
having “1” everywhere below the main diagonal and δp = ‖ϒS∗‖cb). But the further
analysis (based on the results from [10]) has shown that

‖ϒS‖cb ≥ δp = ‖ϒS∗‖cb

and hence

‖ϒD(θ,S) − Id2p ‖cb ≥ ‖ϒD(θ,S∗) − Id2p ‖cb

for any skew-symmetric 2p−1 × 2p−1 matrix S such that si j = ±1 for all i �= j . So,
by using the above modification, we cannot increase the lower bound for Q0(�θ ).
The useless of some other modifications of the map ϒD(θ) was also shown.

It is interesting to note that the norm growth of the map ϒD(θ) − Id2p is a cost of
the symmetry requirement for the subspace Lp

θ . Indeed, if we omit this requirement,
then we would use the matrix D̃(θ) = [Ai j ] consisting of the blocks

Aii =
[
1 1

1 1

]
∀i and Ai j =

[
γ 1

1 γ̄

]
∀i �= j,

for which ‖ϒD̃(θ) − Id2p‖cb ≤ 2|γ − 1| ≤ θ for all p.
It seems that the above obstacle is technical and can be overcome (within the same

construction of a channel) by finding a way to prove the equality Q̄0(�
⊗n) = 0 not

using estimations of the distance between the unit balls of [Lp
θ ]⊗n and of [Lp

0 ]⊗n .
Anyway the question concerning the value
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S∗(n)
.= sup

�

{
Q0(�) | Q̄0(�

⊗n) = 0
}

remains open.
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Appendix: Proof of Lemma 2

Show first that for each θ , one can construct basis {Aθ
i }4i=1 of Lθ consisting of positive

operators with
∑4

i=1 Aθ
i = I4 such that:

(1) the function θ �→ Aθ
i is continuous for i = 1, 4;

(2) {A0
i }4i=1 consists of mutually orthogonal 1-rank projectors.

Recall that Lθ is unitary equivalent to the subspace Ls
θ defined by (9).

Denote by ‖Tθ‖ the operator norm of the matrix Tθ involved in (9). Note that the
function θ �→ Tθ is continuous, T0 = 0 and ‖Tθ‖ ≤ ‖Tπ‖ = 2. Let

Ãθ
1 =

⎡

⎢
⎢⎢
⎣

α 0 0 0

0 β 0 0

0 0 β 0

0 0 0 β

⎤

⎥
⎥⎥
⎦

− 1
4 (α − β) Tθ , Ãθ

2 =

⎡

⎢
⎢⎢
⎣

β 0 0 0

0 α 0 0

0 0 β 0

0 0 0 β

⎤

⎥
⎥⎥
⎦

− 1
4 (α − β) Tθ ,

Ãθ
3 =

⎡

⎢⎢⎢
⎣

β 0 0 0

0 β 0 0

0 0 α 0

0 0 0 β

⎤

⎥⎥⎥
⎦

+ 1
4 (α − β) Tθ , Ãθ

4 =

⎡

⎢⎢⎢
⎣

β 0 0 0

0 β 0 0

0 0 β 0

0 0 0 α

⎤

⎥⎥⎥
⎦

+ 1
4 (α − β) Tθ

be operators in Ls
θ , where β = min

{ 3
16 ,

1
4‖Tθ‖

}
and α = 1 − 3β. It is easy to verify

that Ãθ
i ≥ 0 for all i and

∑4
i=1 Ãθ

i = I4. Then {Aθ
i = S Ãθ

i S−1}4i=1, where S is the
unitary matrix defined after (9), is a required basis of Lθ .

Letm ≥ 2 and {|ψi 〉}4i=1 be a collection of unit vectors inC
m such that {|ψi 〉〈ψi |}4i=1

is a linearly independent subset ofMm . It is easy to show (see the proof of Corollary 1
in [15]) that Lθ is a noncommutative graph of the pseudo-diagonal channel

�θ(ρ) = TrCm VθρV ∗
θ ,

where

Vθ : |ϕ〉 �→
4∑

i=1

[
Aθ

i

]1/2 |ϕ〉 ⊗ |i〉 ⊗ |ψi 〉
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is an isometry fromHA = C
4 into C4 ⊗C

4 ⊗C
m ({|i〉} is the canonical basis in C4).

By property 1 of the basis {Aθ
i }4i=1, the function θ �→ Vθ is continuous.

The first part of Lemma 2 follows from this construction with m = 2.
To prove the second part assume that m = 4 and |ψi 〉 = |i〉, i = 1, 4. Property 2

of the basis {Aθ
i }4i=1 implies

V0|ϕ〉 =
4∑

i=1

〈ei |ϕ〉|ei 〉 ⊗ |i〉 ⊗ |i〉,

where {|ei 〉}4i=1 is an orthonormal basis in C
4. Hence, �0(ρ) = ∑4

i=1〈ei |ρ|ei 〉σi ,
σi = |ei ⊗ i〉〈ei ⊗ i |, is a classical–quantum channel.
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