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Continuity condition for concave functions on convex

µ-compact sets and its applications in quantum physics

M.E. Shirokov∗

Steklov Mathematical Institute, Moscow, Russia

Abstract

A method of proving local continuity of concave functions on convex set possessing
the µ-compactness property is presented. This method is based on a special approxi-
mation of these functions.

The class of µ-compact sets can be considered as a natural extension of the class of
compact metrizable subsets of locally convex spaces, to which particular results well
known for compact sets can be generalized.

Applications of the obtained continuity conditions to analysis of different entropic
characteristics of quantum systems and channels are considered.

Contents

1 Introduction 2

2 Basic notations 2

3 Some implications of µ-compactness and stability of a convex set 5

4 Special approximation of concave functions 9

5 Continuity conditions 10

5.1 The case A = σ-co(cl(extrA)) . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Possible generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Applications in quantum physics 14

6.1 The von Neumann entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 The quantum mutual information . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 The output von Neumann entropy and the χ-function of a quantum channel 19

7 Appendix 22

∗e-mail:msh@mi.ras.ru

1

http://lanl.arxiv.org/abs/1006.4155v1


1 Introduction

A problem of proving local continuity of a given concave (convex) function defined on a given
convex set arises naturally in different fields of mathematics. For example, in mathematical
physics this problem appears in analysis of entropy-type functions on a set of states of some
physical system. In some cases this problem can be solved by using general results of convex
analysis, but sometimes it is difficult to apply them to a given function defined on a convex
set not satisfying particular requirements (compactness, existence of inner points, etc.)

In this paper we consider local continuity conditions for concave functions on µ-compact
convex sets based on a special approximation of these functions. The class of µ-compact
sets (see Definition 1 in Section 2) can be considered as a natural extension of the class of
compact metrizable subsets of locally convex spaces, to which particular results well known
for compact sets can be generalized [24]. This class contains all compact sets as well as
many noncompact sets widely used in applications. The simplest examples of noncompact
µ-compact convex sets are the positive part of the unit ball of the Banach space ℓ1 and
its closed subset consisting of all countable probability distributions. Other examples and
simple criteria of the µ-compactness property can be found in [24].

For applications in quantum physics it is essential that the convex set of positive operators
in a separable Hilbert space with unit trace, generally called quantum states, is µ-compact.
In fact, it is necessity to explore continuity properties of several entropic characteristics of
quantum states, in particular, of the von Neumann entropy, that provides a basic impetus to
find universal method of proving local continuity of these characteristics. In [27] this method
was developed by using some special properties of the set of quantum states. In this paper
we show that it can be generalized to the class of µ-compact convex sets by using slightly
different argumentation.

The paper is organized as follows. In Section 2 notations and basic results used in the
subsequent sections are presented. In Section 3 we consider several properties of a convex set
following from its µ-compactness and stability (see Definition 2 in Section 2). Section 4 is
devoted to a special approximation technic for concave functions. In Section 5 the continuity
conditions based on this technic are presented. Applications to quantum physics extending
the results of [27] are considered in Section 6.

2 Basic notations

In what follows A is a bounded convex complete separable metrizable subset of some locally
convex space.1 The set of extreme points of the set A will be denoted extr(A).

Let cl(B), co(B), σ-co(B) and co(B) be respectively the closure, the convex hull, the
σ-convex hull2 and the convex closure of a subset B ⊆ A [17, 25].

1This means that the topology on the set A is defined by a countable subset of the family of seminorms,
generating the topology of the entire locally convex space, and this set is separable and complete in the
metric generated by this subset of seminorms.

2σ-co(B) is the set of all countable convex combinations of points in B.
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For an arbitrary closed subset B ⊆ A denote by C(B) the set of all continuous bounded
functions on B, denote by M(B) and Ma(B) respectively the set of all Borel probability
measures on B and its subset consisting of atomic measures. We always assume that the set
M(B) and arbitrary its subsets are endowed with the weak convergence topology [7, 23].

With an arbitrary measure µ ∈ M(B) we associate its barycenter (average) b(µ) ∈ co(B),
which is defined by the Pettis integral (see [3, 29])

b(µ) =

∫

B

xµ(dx). (1)

If µ is a measure in Ma(B) ”consisting” of atoms {xi} with the corresponding weights
{πi} then b(µ) =

∑
i πixi. The above measure will be denoted

∑
i πiδ(xi) or, briefly, {πi, xi}.

For a given Borel function f on a closed subset B ⊆ A consider the functional

M(B) ∋ µ 7→ f(µ) =

∫

B

f(x)µ(dx). (2)

It is easy to show that this functional is lower semicontinuous (correspondingly, upper semi-
continuous) provided the function f is lower semicontinuous and lower bounded (correspond-
ingly, upper semicontinuous and upper bounded) on the set B [7].

For arbitrary x ∈ co(B) let Mx(B) and Ma
x (B) be respectively convex subsets of M(B)

and of Ma(B) consisting of such measures µ that b(µ) = x.

The barycenter map
M(A) ∋ µ 7→ b(µ) ∈ A (3)

is continuous (this can be shown easily by applying Prokhorov’s theorem [23, Ch.II, Th.6.7]).
Hence the image of any compact subset of M(A) under this map is a compact subset of A.
The µ-compact sets are defined by the converse requirement [24].

Definition 1. A set A is called µ-compact if the preimage of any compact subset of A
under barycenter map (3) is a compact subset of M(A).

Any compact set is µ-compact, since compactness of A implies compactness ofM(A) [23].
Properties of µ-compact sets are studied in detail in [24], where µ-compactness of several
noncompact sets widely used in applications has been proved (for example, of the set of all
Borel probability measures on an arbitrary complete separable metric space endowed with
the weak convergence topology and of the set of quantum states – density operators in a
separable Hilbert space).

The µ-compactness property of a convex set is not purely topological but reflects a special
relation between the topology and the convex structure of this set.

An another relation between the topology and the convex structure of a convex set is
expressed by the notion of (convex) stability [22].

Definition 2. A set A is called stable if the map A × A ∋ (x, y) 7→
x + y

2
∈ A is

open.
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The notion of stability of a convex subset of a linear topological space appeared at the
end of 1970’s as a result of study of convex compact sets, which leaded in particular to
proving equivalence of the following properties a convex compact set A:

(i) the set A is stable;

(ii) the map M(A) ∋ µ 7→ b(µ) ∈ A is open;

(iii) the map M
(
extrA

)
∋ µ 7→ b(µ) ∈ A is open;

(iv) the convex hull 3 of an arbitrary continuous function on A is continuous;

(v) the convex hull of an arbitrary concave continuous function on A is continuous.

Essential parts of the above assertion was obtained by Vesterstrom [30], its complete version
was proved by O’Brien [9]. This assertion (called the Vesterstrom-O’Brien theorem in what
follows) does not hold for noncompact convex sets in general, but it can be extended to
convex µ-compact sets [24, Theorem 1].

In R2 stability holds for an arbitrary convex compact set, in R3 it is equivalent to closed-
ness of the set of extreme points of a convex compact set while in Rn, n > 3, it is stronger
than the last property [9]. A full characterization of the stability property in finite dimen-
sions is obtained in [22]. In infinite dimensions stability is proved for the unit ball in some
Banach spaces and for the positive part of the unit ball in Banach lattices in which the unit
ball is stable [10].

The simplest example of a noncompact µ-compact convex stable set is the set P+∞ of
all probability distributions with countable number of outcomes (considered as a subset of
the Banach space ℓ1). This is a partial case of the more general example – the convex
set of all Borel probability measures on any complete separable metric space endowed with
the weak convergence topology. The µ-compactness and stability of this set are established
respectively in [24, Corollary 4] and in [12, Theorem 2.4].

We will use the following two strengthened versions of the notion of a concave function.

A semibounded (upper or lower bounded) function f on a convex set A is called σ-concave
if the discrete Jensen’s inequality

f(b({πi, xi})) ≥
∑

i

πif(xi)

holds for an arbitrary measure {πi, xi} in Ma(A).
A semibounded universally measurable4 function f on a convex set A is called µ-concave

if the integral Jensen’s inequality

f(b(µ)) ≥

∫

A

f(x)µ(dx)

3The convex hull of a function is the maximal convex function majorized by this function [17].
4This means that the function f is measurable with respect to any measure in M(A).
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holds for an arbitrary measure µ in M(A).
σ-convexity and µ-convexity of a function f are naturally defined via the above notions

applied to the function −f .
Examples of semibounded functions, which are convex but not σ-convex or σ-convex but

not µ-convex, are considered in [28, Section 3].
The following lemma contains sufficient conditions for σ-concavity and µ-concavity of a

concave function, which can be proved easily (see the Appendix in [28]).

Lemma 1. Let f be a concave function on a convex set A.

A) If f is lower bounded then f is σ-concave.

B) If f is either lower semicontinuous and lower bounded or upper semicontinuous then f
is µ-concave.

Remark 1. Assuming that the metric d(· , ·) on the set A is defined as follows

d(x, y) =
+∞∑

k=1

2−k ‖x− y‖k
1 + ‖x− y‖k

, x, y ∈ A,

where {‖ · ‖k}
+∞
k=1 is the countable family of seminorms generating the topology on this set,

it is easy to obtain the following estimation

d(αx+ (1− α)y, α′x′ + (1− α′)y′) ≤ 2δ + Cx,y(ε)

valid for any x, y, x′, y′ in A and any α, α′ in [0, 1] such that d(x, x′) < δ, d(y, y′) < δ and

|α−α′| < ε, where Cx,y(ε) =
∑+∞

k=1 2
−k ε‖x−y‖k

1+ε‖x−y‖k
is a function such that limε→+0Cx,y(ε) = 0.

Note: In what follows continuity of a function f on a subset B ⊂ A means continuity
of the restriction f |B of the function f to the subset B, which implies finiteness of this
restriction (in contrast to lower or upper semicontinuity).

3 Some implications of µ-compactness and stability of

a convex set

In this section we consider auxiliary results used in the main part of the paper.

We begin with several simple lemmas.

Lemma 2. Let B be a closed subset of a convex µ-compact set A. Then for arbitrary x0

in co(B) there exists a measure µ0 in M(B) such that x0 = b(µ0).

Proof. Let x0 ∈ co(B) and {xn} ⊂ co(B) be a sequence converging to x0. For each
n ∈ N there exists a measure µn ∈ M(B) with finite support such that xn = b(µn). By
µ-compactness of the set A the sequence {µn} has a partial limit µ0 ∈ M(B). Continuity of
the map µ 7→ b(µ) implies b(µ0) = x0. �
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Lemma 3. Let A be a convex µ-compact set such that the set extrA is closed and
A = σ-co(extrA). Then an arbitrary measure µ0 in M(extrA) can be approximated by a
sequence {µn} of measures in Ma(extrA) such that b(µn) = b(µ0) for all n.

Proof. Consider the Choquet ordering on the set M(A). We say that µ ≻ ν if and only
if ∫

A

f(x)µ(dx) ≥

∫

A

f(x)ν(dx)

for any convex continuous bounded function f on the set A [11].

For a given measure µ0 in M(extrA) it is easy to construct a sequence {µn} of measures
in M(A) with finite support converging to the measure µ0 such that b(µn) = b(µ0) for all
n. Decomposing each atom of the measure µn into convex combination of extreme points
we obtain the measure µ̂n in Ma(extrA) with the same barycenter. It is easy to see that
µ̂n ≻ µn. By µ-compactness of the set A the sequence {µ̂n}n>0 is relatively compact. This
implies existence of subsequence {µ̂nk

} converging to a measure µ̂0 in M(extrA). Since
µ̂nk

≻ µnk
for all k, the definition of the weak convergence implies µ̂0 ≻ µ0 and hence

µ̂0 = µ0 by maximality of the measure µ0 with respect to the Choquet ordering (which
follows from coincidence of this ordering with the dilation ordering [11]). �

Lemma 4. Let A be a convex µ-compact set and {{πn
i , x

n
i }

m
i=1}n be a sequence of mea-

sures in Ma(A) having m < +∞ atoms such that the sequence {
∑m

i=1 π
n
i x

n
i }n of their

barycenters converges to a point x0 ∈ A. There exists a subsequence {{πnk

i , xnk

i }mi=1}k con-
verging to a particular measure5 {π0

i , x
0
i }

m
i=1 with the barycenter x0 in the following sense

lim
k→+∞

πnk

i = π0
i and π0

i > 0 ⇒ lim
k→+∞

xnk

i = x0
i , i = 1, m.

Proof. It is sufficient to note that µ-compactness of the set A implies relative compact-
ness of the sequence {{πn

i , x
n
i }

m
i=1}n and that the set of measures having m atoms is a closed

subset of M(A). �

Let Pn be the set of all probability distributions with n ≤ +∞ outcomes.

Lemma 5. Let A1 be a closed subset of a convex µ-compact set A.

A) The set

Ak =

{
k∑

i=1

πixi

∣∣∣∣∣ {πi} ∈ Pk, {xi} ⊂ A1

}
(4)

is closed for each k ∈ N.

B) Let f be a concave nonnegative function on the set A, which takes a finite value at least
at one point in A1. If this function is upper continuous on the set Ak defined by (4) for
each k then it is bounded on the set Ak for each k.

5We do not assert that x0
i 6= x0

j for all i 6= j.
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Proof. A) This assertion directly follows from Lemma 4.
B) Suppose there exists a sequence {xn} ⊂ Ak such that limn→+∞ f(xn) = +∞. Let

y0 be a point in A1 with finite f(y0). Consider the sequence {λnxn + (1 − λn)y0} ⊂ Ak+1,
where λn = 1/f(xn). This sequence converges to the point y0 (since the set A is bounded),
but concavity of the function f implies

lim inf
n→+∞

f(λnxn + (1− λn)y0) ≥ lim inf
n→+∞

(λnf(xn) + (1− λn)f(y0)) = 1 + f(y0),

contradicting upper semicontinuity of the function f on the set Ak+1. �

An essential property of µ-compact sets is presented in the following proposition.

Proposition 1. Let A be a convex µ-compact set and let f be an upper semicontinuous
upper bounded function on a closed subset B ⊂ A. Then the function

f̂µ
B(x) = sup

µ∈Mx(B)

∫

B

f(y)µ(dy) (5)

is upper semicontinuous and µ-concave on the set co(B). For arbitrary x ∈ co(B) the
supremum in the definition of the value f̂µ

B(x) is achieved at a particular measure in Mx(B).

This property provides generalization of several results well known for compact convex
sets to µ-compact convex sets [24, Proposition 6, Corollary 2]. It becomes no valid after slight
relaxing of the µ-compactness assumption to pointwise µ-compactness [24, Proposition 7].
The proof of Proposition 1 is placed in the Appendix.

An another important technical tool is presented in the following proposition.

Proposition 2. Let A be a convex µ-compact 6 set and let f be a lower semicontinuous
lower bounded function on a closed subset B ⊆ A.

A) If the map M(B) ∋ µ 7→ b(µ) ∈ co(B) is open then the function f̂µ
B defined by (5) is

lower semicontinuous and µ-concave on the set co(B).

B) If the map Ma(B) ∋ µ 7→ b(µ) ∈ σ-co(B) is open then the σ-concave function

f̂σ
B(x) = sup

µ∈Ma
x (B)

∫

B

f(y)µ(dy) = sup
{πi,xi}∈Ma

x (B)

∑

i

πif(xi)

is lower semicontinuous on the set σ-co(B). If, in addition, σ-co(B) = co(B) then the
function f̂σ

B coincides with the function f̂µ
B defined by (5).

The proof of Proposition 2 is placed in the Appendix.

Remark 2. If f is bounded and upper semicontinuous function on a closed subset B of
a convex µ-compact set A such that σ-co(B) = co(B) then the above defined functions f̂σ

B

6The µ-compactness assumption is used only to guarantee b(M(B)) = co(B) by means of Lemma 2.
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and f̂µ
B do not coincide in general (see the example in [28, Remark 9]). Thus the assertion of

Propositions 1 does not hold for the function f̂σ
B (since µ-concavity of f̂σ

B implies f̂σ
B = f̂µ

B).

Propositions 1 and 2 have the obvious corollary.

Corollary 1. Let B be a closed subset of a convex µ-compact set A.

A) If A = co(B) and the map M(B) ∋ µ 7→ b(µ) ∈ A is open then f̂µ
B ∈ C(A) for any

f ∈ C(B).

B) If A = σ-co(B) and the map Ma(B) ∋ µ 7→ b(µ) ∈ A is open then f̂σ
B = f̂µ

B ∈ C(A) for
any f ∈ C(B).

If A is a stable convex µ-compact set then the set extrA is closed and the general-
ized Vesterstrom-O’Brien theorem ([24, Theorem 1]) implies openness of the surjective map
M(extrA) ∋ µ 7→ b(µ) ∈ A, hence Corollary 1A shows that an arbitrary function f in
C(extrA) has continuous bounded concave extension f̂µ

extrA to the set A. This property does
not hold in general for stable convex sets, which are not µ-compact (see Example 1 in [24]).

Corollary 1B plays an essential role in this paper due to the following observation.

Proposition 3. Let A1 be a closed subset of a stable convex µ-compact set A such that
A = σ-co(A1) and {Ak} be the family of subsets defined by (4). If the map

Ma(Ak) ∋ µ 7→ b(µ) ∈ A (6)

is open for k = 1 then this map is open for all k ∈ N.

The proof of Proposition 3 is placed in the Appendix.

By the generalized Vesterstrom-O’Brien theorem stability of a convex µ-compact set A
is equivalent to openness of the map M(extrA) ∋ µ 7→ b(µ) ∈ A. By Lemma 3 the last
property implies openness of the map Ma(extrA) ∋ µ 7→ b(µ) ∈ A. Hence we obtain from
Proposition 3 the following assertion.

Corollary 2. Let A be a stable convex µ-compact set such that A = σ-co(extrA) and
{Ak} be the family of subsets defined by (4) with A1 = extrA. Then map (6) is open for all
k ∈ N.

Remark 3. If A is the stable convex µ-compact set of quantum states (see Section 6)
and A1 = extrA then openness of the maps (6) and

M(Ak) ∋ µ 7→ b(µ) ∈ A (7)

are proved in [27] by using special structure of this set and called strong stability property.
By Corollary 3 to prove that this strong stability property follows from stability it suffices
to show that openness of map (7) follows from openness of map (6). In [27] this is made by
proving density of the set Ma

x (Ak) in Mx(Ak) for all x ∈ A.
Question 1. Let A be a convex µ-compact set and {Ak} be the family of subsets defined

by (4) with A1 = extrA. Does stability of the set A imply openness of map (7) for all k?

A positive answer on this question can be used to strengthen Theorem 2 in Section 5 (see
Remark 7 after this theorem).
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4 Special approximation of concave functions

Throughout this section we will assume that f is a concave nonnegative function on a convex
µ-compact set A having universally measurable restrictions to subsets of the family {Ak}
defined by (4) with A1 = cl(extrA). By Lemma 5 this family consists of closed subsets.
Possible generalizations are mentioned in Remark 4 at the end of this section.

Since for arbitrary x in A the set Mx(A1) is not empty by Proposition 5 in [24], for given
natural k we can consider the concave nonnegative function

A ∋ x 7→ f̂µ
k (x) = sup

µ∈Mx(Ak)

∫

Ak

f(y)µ(dy). (8)

If the function f is µ-concave on the set A then

f̂µ
k ≤ f and f̂µ

k |Ak
= f |Ak

, (9)

hence the function f̂µ
k can be considered as a concave extension of the function f |Ak

to the
set A. If the function f has upper semicontinuous bounded restriction to the set Ak then the
bounded function f̂µ

k is upper semicontinuous and µ-concave on the set A by Proposition 1.

Hence in this case the function f̂µ
k is the minimal µ-concave extension of the function f |Ak

to the set A.
The sequence {f̂µ

k } is nondecreasing and its pointwise limit f̂µ
∗

.
= supk f̂

µ
k is a concave

function on A. If the function f is µ-concave then (9) implies

f̂µ
∗ ≤ f and fµ

∗ |A∗
= f |A∗

, where A∗ =
+∞⋃

k=1

Ak. (10)

Question 2. Under what conditions do the functions f̂µ
∗ and f coincide?

A partial answer on this question can be obtained in the case A = σ-co(A1).

In this case for given natural k one can consider the σ-concave nonnegative function

A ∋ x 7→ f̂σ
k (x) = sup

{πi,xi}∈Ma
x(Ak)

∑

i

πif(xi). (11)

By the construction f̂σ
k ≤ f̂µ

k . Since the function f is σ-concave on the set A by Lemma 1,
we have

f̂σ
k ≤ f and f̂σ

k |Ak
= f |Ak

. (12)

Hence the function f̂σ
k is the minimal σ-concave extension of the function f |Ak

to the set A.

The sequence {f̂σ
k } is nondecreasing and its pointwise limit f̂σ

∗
.
= supk f̂

σ
k is a concave

function on A such that f̂σ
∗ ≤ f̂µ

∗ . It follows from (12) that relations (10) hold with f̂σ
∗

instead of f̂µ
∗ .

Proposition 4. If A = σ-co(A1) and the function f is lower semicontinuous then

f̂µ
∗ = f̂σ

∗ = f.

9



Proof. By Lemma 1 the function f is µ-concave. Hence (9) holds for all k and to prove
f̂σ
∗ = f̂µ

∗ = f it is sufficient to show that f̂σ
∗ = f .

Let x0 be an arbitrary point in A. Then x0 =
∑+∞

i=1 πiyi, where {πi} ∈ P+∞ and
{yi} ∈ A1. Let xn = (λn)

−1
∑n

i=1 πiyi and yn = (1 − λn)
−1

∑
i>n πiyi, where λn =

∑n
i=1 πi.

The sequence {xn} belongs to the set A∗ and converges to the point x0.
For each n we have x0 = λnxn + (1− λn)yn and hence f̂σ

∗ (x0) ≥ λnf̂
σ
∗ (xn) = λnf(xn) by

concavity and nonnegativity of the function f̂σ
∗ . This implies lim supn→+∞ f(xn) ≤ f̂σ

∗ (x0).

By lower semicontinuity of the function f we have f(x0) ≤ f̂σ
∗ (x0) and hence f(x0) = f̂σ

∗ (x0).
�

Lemma 5B, Proposition 1, Corollary 1B and Corollary 2 imply the following observation,
providing usefulness of the approximating sequences {f̂µ

k } and {f̂σ
k } for our purposes.

Proposition 5. If the function f has continuous restriction to the set Ak for each k
then the function f̂µ

k is bounded and upper semicontinuous for each k. If, in addition, the

set A is stable and A = σ-co(A1) then f̂σ
k = f̂µ

k ∈ C(A) for each k.

Remark 4. The above constructions can be generalized by considering the family {Ak}
produced by an arbitrary closed subset A1 of A such that A = co(A1). The all results remain
valid in this case excepting the second assertion of Proposition 5, in which the requirement
of openness of the map Ma(A1) ∋ µ 7→ b(µ) ∈ A must be added. This can be shown by
applying Proposition 3 instead of Corollary 2.

5 Continuity conditions

Let f be a concave nonnegative function on a convex µ-compact set A. In this section we
consider conditions of continuity of this function on subsets of A assuming that there exists
a closed subset A1 ⊂ A such that A = co(A1) and

f |Ak
is continuous for each natural k, (13)

where Ak is the subset of A defined by (4). This assumption with A1 = cl(extrA) has a phys-
ical motivation (see Section 6). Sometimes it can be reduced to continuity and boundedness
of f |A1

(see the proof of Lemma 6 below).

5.1 The case A = σ-co(cl(extrA))

The results of the previous sections imply the following continuity condition.

Theorem 1. Let A be a convex µ-compact set such that A = σ-co(cl(extrA)). Let
f be a concave nonnegative function on the set A such that assumption (13) holds with
A1 = cl(extrA). Assume that one of the following conditions is valid:

a) the set A is stable,

b) the function f is lower semicontinuous.

10



Then the function f is continuous on a subset B ⊆ A if

lim
k→+∞

sup
x∈B

∆σ
k(x|f) = 0, where ∆σ

k(x|f) = inf
{πi,xi}∈Ma

x (Ak)

[
f(x)−

∑

i

πif(xi)

]
. (14)

If the both above conditions a) and b) are valid then (14) is a necessary and sufficient
condition of continuity of the function f on a compact subset B ⊂ A.

Remark 5. Since ∆σ
k(x|f) = f− f̂σ

k and f̂σ
k ≤ f̂µ

k , where f̂
µ
k and f̂σ

k are functions defined

by (8) and (11), condition (14) means uniform convergence of the sequences {f̂σ
k } and {f̂µ

k }
to the function f on the subset B.

Remark 6. Applications of the above continuity condition are based on possibility to
find for a given concave function f a suitable upper bound for the value in the square brackets
in (14) (see Example 1 below and Section 6).

Proof. If the set A is stable then f̂µ
k = f̂σ

k ∈ C(A) for all k by Proposition 5. By Remark
5 condition (14) implies continuity of the function f on the subset B.

If the function f is lower semicontinuous then continuity of the function f on the subset
B can be verified by showing its upper semicontinuity and boundedness on this set. By
Remark 5 the last property follows from condition (14) since by Proposition 5 the sequence
{f̂µ

k } consists of upper semicontinuous bounded functions.
By Propositions 4 and 5 the last assertion of the theorem follows from Dini’s lemma and

Remark 5. �

Example 1. The Shannon entropy is a concave lower semicontinuous function on the

set P+∞ =
{
x = {xj}+∞

j=1 ∈ ℓ1 | x
j ≥ 0, ∀j,

∑+∞
j=1 x

j = 1
}

of all countable probability dis-

tributions defined as follows

S
(
{xj}+∞

j=1

)
= −

+∞∑

j=1

xj ln xj .

This function is nonnegative and takes the value +∞ on a dense subset of P+∞.
As mentioned in Section 2 the convex setP+∞ is stable and µ-compact. The set extrP+∞

consists of ”degenerate” distributions having ”1” at some position and ”0” on other places.
It is clear that P+∞ = σ-co (extrP+∞) and that the function x 7→ S(x) has continuous
restriction to the set

(P+∞)k =

{
k∑

i=1

πixi

∣∣∣∣∣ {πi} ∈ Pk, {xi} ⊂ extrP+∞

}

for each k ∈ N. If f = S then the value in the squire brackets in (14) can be expressed as
follows

S(x)−
∑

i

πiS(xi) =
∑

i

πiS(xi‖ x),

11



where S(·‖·) is the relative entropy (Kullback-Leibler distance [18]) defined for arbitrary
distributions x = {xj}+∞

j=1 and y = {yj}+∞
j=1 in P+∞ by the formula

S(x‖ y) =

{ ∑+∞
i=1 x

j ln(xj/yj), {yj = 0} ⇒ {xj = 0}
+∞, otherwise

.

Thus Theorem 1 implies the following continuity condition for the Shannon entropy.

The function x 7→ S(x) is continuous on a compact subset P ⊆ P+∞ if and only if

lim
k→+∞

sup
x∈P

∆σ
k(x|S) = 0, where ∆σ

k(x|S) = inf
{πi,xi}∈Ma

x ((P+∞)k)

∑

i

πiS(xi‖ x). (15)

This condition can be applied directly by using well studied properties of the relative
entropy. For example, by joint convexity and lower semicontinuity of the relative entropy
validity of (15) for convex subsets P′ and P′′ of P+∞ implies validity of (15) for their convex
closure co(P′ ∪ P′′). Hence, we can conclude that continuity of the Shannon entropy on
convex closed subsets P′ and P′′ implies its continuity on their convex closure co(P′∪P′′).7

The above continuity condition can be also applied by using the estimation

∆σ
k(x|S) ≤ S(k(x)), k ∈ N, (16)

where k(x) is a distribution obtained by k-order coarse-graining from the distribution x,
that is (k(x))j = x(j−1)k+1 + ...+ xjk for all j = 1, 2, .... This estimation is proved by using
the decomposition x =

∑+∞
i=1 λ

k
i p

k
i (x), where λk

i = (k(x))i and pki (x) is a distribution such

that (pki (x))
j = (λk

i )
−1xj for j = (i− 1)k + 1, ik and (pki (x))

j = 0 for others j, since it is
easy to verify that

∑+∞
i=1 λ

k
i S(p

k
i (x)‖ x) =

∑+∞
i=1 λ

k
i (− lnλk

i ) = S(k(x)).

The above continuity condition and estimation (16) imply the following assertion.

Let x0 be a distribution in P+∞ with finite Shannon entropy, then the Shannon entropy
is continuous on the set

{x ∈ P+∞ | x ≺ x0 } , (17)

where x ≺ y means that the distribution y = {yj}+∞
j=1 is more chaotic than the distribution

x = {xj}+∞
j=1 in the Uhlmann sense [2, 32], that is

∑n
j=1 x

j ≥
∑n

j=1 y
j for each natural n

provided the sequences {xj}+∞
j=1 and {yj}+∞

j=1 are arranged in nonincreasing order.8

Indeed, assuming that the elements of x and x0 are arranged in nonincreasing order we
have x ≺ x0 ⇒ k(x) ≺ k(x0) ⇒ S(k(x)) ≤ S(k(x0)) by Shur concavity of the Shannon
entropy [32]. Hence validity of (15) for set (17) follows from (16) and the easily verified
implication S(x0) < +∞ ⇒ limk→+∞ S(k(x0)) = 0.

7It is possible to show that continuity of the Shannon entropy on a convex subset of P+∞ implies relative
compactness of this subset.

8The order ” ≺ ” is converse to the majorization order used in linear algebra [6].
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5.2 Possible generalizations

Note first that Theorem 1 can be generalized by replacing the family {Ak} produced by
the set A1 = cl(extr(A)) by a family {Ak} produced by an arbitrary closed subset A1 of
A such that A = σ-co(A1). By Remark 4 the only necessary modification of Theorem
1 under this replacement consists in the additional requirement of openness of the map
Ma(A1) ∋ µ 7→ b(µ) ∈ A in condition a).

Without the assumption A = σ-co(A1) the following continuity condition can be proved.

Theorem 2. Let A1 be a closed subset of a convex µ-compact set A such that A = co(A1)
(in particular, A1 = cl(extr(A))). Let f be a concave lower semicontinuous nonnegative
function on the set A satisfying assumption (13). Then the function f is continuous on a
subset B ⊆ A if

lim
k→+∞

sup
x∈B

∆µ
k(x|f) = 0, where ∆µ

k(x|f) = inf
µ∈Mx(Ak)

[
f(x)−

∫

Ak

f(y)µ(dy)

]
. (18)

Condition (18) can be replaced by the following one

lim
k→+∞

sup
x∈B0

∆σ
k(x|f) = 0, where ∆σ

k(x|f) = inf
{πi,xi}∈Ma

x (Ak)

[
f(x)−

∑

i

πif(xi)

]
(19)

and B0 is an arbitrary subset of σ-co(A1) such that B ⊆ cl(B0).

Proof. By Proposition 5 the function f̂µ
k defined by formula (8) is upper semicontinuous

and bounded for each k. Since ∆µ
k(x|f) = f − f̂µ

k , condition (18) means uniform convergence

of the sequence {f̂µ
k } to the function f on the subset B, which implies upper semicontinuity

and boundedness of the lower semicontinuous function f on the subset B.
Let B0 be a subset of σ-co(A1) such that B ⊆ cl(B0). On this subset the function f̂σ

k is

well defined by formula (11) for each k. Since ∆σ
k(x|f) = f − f̂σ

k and f̂σ
k ≤ f̂µ

k , condition

(19) guarantees uniform convergence of the sequence {f̂µ
k } to the function f on the subset

B0, which implies uniform convergence of the sequence {f̂µ
k } to the function f on the subset

cl(B0), since the function ∆µ
k(x|f) = f − f̂µ

k is lower semicontinuous (as a difference between
lower semicontinuous and bounded upper semicontinuous functions). �

Remark 7. If the set A is stable, A1 = extr(A) and positive answers on the above
Questions 1 and 2 (stated respectively in Sections 3 and 4) hold then (18) is a necessary and
sufficient condition of continuity of the function f on a compact subset B ⊂ A. Necessity
of condition (18) in this case can shown by using Corollary 1A and Dini’s lemma.

Theorem 2 can be applied to analysis of concave functions on the stable convex µ-com-
pact set of probability measures on a complete separable metric space having continuous
restrictions to the subset of measures supported by ≤ k atoms for all k.
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6 Applications in quantum physics

The notion of a quantum state plays a central role in the statistical structure of quantum
theory [14]. In this section we consider applications of the continuity conditions obtained in
the previous section to analysis of local continuity of several entropic characteristics – the
particular concave functions on the convex set of all quantum states.

Let H be a separable Hilbert space, T(H) – the Banach space of all trace-class operators
in H with the trace norm, containing the cone T+(H) of all positive trace-class operators.

The closed convex set

S(H) = {A ∈ T+(H) |TrA = 1}

is a complete separable metric space with the metric defined by the trace norm. Operators
in S(H) are denoted ρ, σ, ω, ... and called density operators or quantum states since each
density operator corresponds to a normal state on the algebra of all bounded operators [8].

It is essential that the convex set S(H) is stable and µ-compact [28] (the set S(H) is
compact if and only if dimH < +∞). The set extrS(H) of its extreme points consists of one
dimensional projectors – pure states. A pure state corresponding to a unit vector |ϕ〉 ∈ H will
be denoted |ϕ〉〈ϕ|. By the spectral theorem an arbitrary state ρ can be represented as follows
ρ =

∑
i λi|ϕi〉〈ϕi|, where {|ϕi〉} is the orthonormal basis of eigenvectors of the operator ρ

and {λi} is the corresponding sequence of eigenvalues. Hence S(H) = σ-co(extrS(H)).
Rapid development of quantum information theory leads to discovery of a whole number

of important entropic and informational characteristics of quantum systems, see e.g. [14, 21].
Many of them can be considered as functions on the set of quantum states. In the finite
dimensional case (dimH < +∞) these functions are generally bounded and continuous on
the whole set of quantum states, but in infinite dimensions their analytical properties are
not so good. For example, the von Neumann entropy is a continuous bounded function on
the set of quantum states of finite dimensional quantum system, but it is discontinuous and
takes the value +∞ on a dense subset of the set of all infinite dimensional quantum states.9

Discontinuity and unboundedness of entropic characteristics lead to technical problems
in analysis of infinite dimensional quantum systems. Moreover, they produce a number of
”nonphysical” effects such as infinite values of different capacities of a quantum channel and
their discontinuity as functions of a channel [19, 26]. But these difficulties can be partially
overcome by using local continuity conditions for entropic characteristics [20, 26, 31]. For
example, continuity of the von Neumann entropy on the set of states of the system of
quantum oscillators with bounded mean energy provides many results concerning different
characteristics of this system (see [13] and references therein). Thus, study of local continuity
properties of entropic characteristics of quantum states is important for rigorous analysis of
infinite dimensional quantum systems.

Since S(H) = σ-co(extrS(H)) is a convex stable µ-compact set, we can apply the results
of the previous sections to study concave nonnegative functions on the set S(H) having

9Moreover, the set of states with finite von Neumann entropy is a first category subset of the set of all
quantum states [31].
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restrictions to the set

Sk(H) =

{
k∑

i=1

πiρi

∣∣∣∣∣ {πi} ∈ Pk, {ρi} ⊂ extrS(H)

}
(20)

with appropriate analytical properties for all k. Note that Sk(H) is the set of all quantum
states having rank ≤ k (as operators in H), it can be considered as an union of all unitary
translations of the set S(Hk), where Hk is a particular k-dimensional subspace of H.

Let f be a concave nonnegative function on the set S(H). For given natural k consider
the concave functions

f̂µ
k (ρ) = sup

µ∈Mρ(Sk(H))

∫

Sk(H)

f(σ)µ(dσ) and f̂σ
k (ρ) = sup

{πi,ρi}∈Ma
ρ (Sk(H))

∑

i

πif(ρi)

on the set S(H) (assuming that f has universally measurable restriction to the set Sk(H)).

It is clear that f̂σ
k ≤ f̂µ

k . Since the function f is σ-concave by Lemma 1A we have

f̂σ
k ≤ f and f̂σ

k |Sk(H) = f |Sk(H) . If the function f is µ-concave (see conditions in Lemma

1B) then f̂µ
k ≤ f and f̂µ

k |Sk(H) = f |Sk(H) .

The results of Sections 3 and 4 imply the following observations.

Proposition 6. Let f be a concave nonnegative function on the set S(H), taking finite
value at least at one state.

A) If f |Sk(H) is upper semicontinuous for each k then the function f̂µ
k is upper semicontin-

uous and bounded on the set S(H) for each k.

B) If f |Sk(H) is lower semicontinuous for each k then f̂µ
k = f̂σ

k and this function is lower
semicontinuous on the set S(H) for each k.

C) If f |Sk(H) is continuous for each k then f̂µ
k = f̂σ

k ∈ C(S(H)) for each k.

If the function f is lower semicontinuous on the set S(H) then the nondecreasing se-
quence {f̂µ

k = f̂σ
k } pointwise converges to the function f .

By Proposition 6 an arbitrary concave lower semicontinuous nonnegative function f on
the set S(H) having continuous restriction to the set Sk(H) for each k can be approx-
imated by the increasing sequence of concave continuous nonnegative bounded functions
fk

.
= f̂µ

k = f̂σ
k such that fk|Sk(H) = f |Sk(H) for each k. Advantages of this approximation

and its possible applications are considered in [27, Section 4] and in [28, Section 6.2].

Theorem 1 implies the following continuity condition (extending the results of [27]).

Proposition 7. Let f be a concave nonnegative function on the set S(H) having con-
tinuous restriction to the set Sk(H) defined by (20) for each k. Then the function f is
continuous on a subset S ⊆ S(H) if

lim
k→+∞

sup
ρ∈S

∆σ
k(ρ|f) = 0, where ∆σ

k(ρ|f) = inf
{πi,ρi}∈Ma

ρ (Sk(H))

[
f(ρ)−

∑

i

πif(ρi)

]
. (21)
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If the function f is lower semicontinuous then (21) is a necessary and sufficient condition
of continuity of the function f on a compact subset S ⊂ S(H).

The conditions of Proposition 7 are valid for the following well known characteristics of
quantum states – concave lower semicontinuous nonnegative functions on the set S(H):

• the quantum Renyi entropy Rp(ρ) = lnTrρp/(1− p) of order p ∈ (0, 1] (the case p = 1
corresponds to the von Neumann entropy H(ρ) = −Trρ ln ρ);

• the quantum mutual information I(ρ,Φ) of a quantum channel Φ (defined in Section
6.2);

• the output quantum Renyi entropy Rp(Φ(ρ)) of order p ∈ (0, 1] (in particular, the out-
put von Neumann entropy H(Φ(ρ))) of a quantum channel Φ satisfying the particular
condition (see Section 6.3).

• the χ-function (the constrained Holevo capacity) χΦ(ρ) a quantum channel Φ satisfying
the particular condition (see Section 6.3).

Below we consider applications of Proposition 7 to the above functions, reducing attention
to the von Neumann entropy – the most important version of the quantum Renyi entropy.

6.1 The von Neumann entropy

Continuity conditions for the von Neumann entropy on subsets of T+(H) based on the above
approximation technic are presented in [27]. Here we consider the case of the von Neumann
entropy for completeness, reducing attention to subsets of S(H).

The von Neumann entropy H(ρ) = −Trρ ln ρ is a concave lower semicontinuous unitary
invariant function on the set S(H) taking values in [0,+∞]. It obviously has continuous
restriction to the set Sk(H) for each k. If f = H then the value in the squire brackets in
(21) can be expressed as follows

H(ρ)−
∑

i

πiH(ρi) =
∑

i

πiH(ρi‖ρ), (22)

where H(·‖·) is the quantum relative entropy defined for arbitrary states ρ and σ in S(H)
by the formula

H(ρ ‖ σ) =

{ ∑+∞
i=1 〈ϕi| ρ ln ρ− ρ lnσ |ϕi〉, supp ρ ⊆ supp σ

+∞, supp ρ * supp σ
,

in which {|ϕi〉}
+∞
i=1 is the orthonormal basis of eigenvectors of the operator ρ (or σ) and

supp ρ = H ⊖ ker ρ [20, 31]. Thus we obtain from Proposition 7 the following continuity
condition for the von Neumann entropy.
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Corollary 3. The function ρ 7→ H(ρ) is continuous on a compact subset S ⊂ S(H) if
and only if

lim
k→+∞

sup
ρ∈S

∆σ
k(ρ|H) = 0, where ∆σ

k(ρ|H) = inf
{πi,ρi}∈Ma

ρ (Sk(H))

∑

i

πiH(ρi‖ρ). (23)

In [27] the property of an arbitrary subset S ⊆ S(H) expressed by (23) is called the
uniform approximation property (briefly, the UA-property) and is studied in detail (in the
extended context of the positive cone T+(H) instead of the set S(H)). By Corollary 3
the UA-property of an arbitrary subset S is a sufficient condition of continuity of the von
Neumann entropy on this subset and this condition is necessary if the subset S is compact.

Usefulness of the UA-property as a continuity condition is based on possibility to analyze
it by applying well studied properties of the quantum relative entropy. This makes it possible
to find a class of different set-operations preserving the UA-property ([27, Proposition 4]).
For example,

• by joint convexity and lower semicontinuity of the quantum relative entropy the UA-prop-
erty of convex subsets S1 and S2 of S(H) implies the UA-property of their convex
closure co(S1 ∪S2);

• by monotonicity of the quantum relative entropy the UA-property a subset S of S(H)
implies the UA-property of the set {Φ(ρ) |Φ ∈ Fn, ρ ∈ S}, where Fn is the set of all
quantum channels having the Kraus representation consisting of ≤ n summands.10

By using the first above-stated observation it is easy to show that continuity of the von
Neumann entropy on convex closed subsets S1 and S2 of S(H) implies its continuity on
their convex closure co(S1 ∪ S2) (Corollary 7 in [27]), while the second one implies the
result concerning continuity of the von Neumann entropy of posteriory states in quantum
measurements (Example 3 in [27]).

The continuity condition based on the UA-property gives the universal method of proving
continuity of the von Neumann entropy. Various applications of this method are considered
in [27, Section 5.2]. The ”only if ” part of Corollary 3 makes it possible to prove that
continuity of the von Neumann entropy on some set of states implies continuity of other
important entropic characteristics on this set (see the proofs of Corollaries 4 and 5 below).

6.2 The quantum mutual information

Let H and H′ be two separable Hilbert spaces. A completely positive trace-preserving linear
map Φ : T(H) → T(H′) is called quantum channel [14, 21]. By the Stinespring dilation
theorem there exist a separable Hilbert space H′′ and an isometry V : H → H′ ⊗ H′′ such
that

Φ(A) = TrH′′V AV ∗, ∀A ∈ T(H). (24)

10The notions of a quantum channel and of its Kraus representation are described in the next subsection.
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The quantum channel

T(H) ∋ A 7→ Φ̃(A) = TrH′V AV ∗ ∈ T(H′′) (25)

is called complementary to the channel Φ, it is uniquely defined up to unitary equivalence
[15]. By using representation (24) it is easy to obtain the Kraus representation

Φ(A) =

+∞∑

j=1

VjAV
∗
j , ∀A ∈ T(H), (26)

where {Vj}
+∞
j=1 is a set of bounded linear operators from H to H′ such that

∑+∞
j=1 V

∗
j Vj = IH.

Via the set {Vj}
+∞
j=1 of Kraus operators of the channel Φ its complementary channel can be

expressed as follows

Φ̃(A) =
+∞∑

i,j=1

Tr
[
ViAV

∗
j

]
|ϕi〉〈ϕj|, A ∈ T(H), (27)

where {|ϕi〉}
+∞
i=1 is a particular orthonormal basis in the space H′′ [15].

In finite dimensions (dimH, dimH′ < +∞) the quantum mutual information of the
channel Φ at a state ρ ∈ S(H) is defined as follows (cf.[1])

I(ρ,Φ) = H(ρ) +H(Φ(ρ))−H(Φ̃(ρ)). (28)

This is an important characteristic of a quantum channel related to the entanglement-assisted
classical capacity of this channel [5].

In infinite dimensions the above definition may contain the uncertainty ”∞−∞”, but it
can be modified to avoid this problem as follows

I(ρ,Φ) = H(Φ⊗ IdK(|ϕρ〉〈ϕρ|)‖Φ(ρ)⊗ ρ), (29)

where K ∼= H, IdK is the identity transformation of T(H) and |ϕρ〉 is a unit vector in
H ⊗ K such that TrK|ϕρ〉〈ϕρ| = TrH|ϕρ〉〈ϕρ| = ρ. In [16] it is shown that for an arbitrary
quantum channel Φ the nonnegative function ρ 7→ I(ρ,Φ) defined by (29) is concave and
lower semicontinuous on the set S(H) (Proposition 1) and that this function is continuous
on each subset of S(H) on which the von Neumann entropy is continuous, in particular, it
is continuous on the set Sk(H) for each k (Proposition 4). Hence for an arbitrary quantum
channel Φ the conditions of Proposition 7 are valid for the function ρ 7→ I(ρ,Φ).

By using identity (22), formula (28) and a simple approximation it is possible to show
that

∆σ
k(ρ|IΦ) = inf

{πi,ρi}∈Ma
ρ (Sk(H))

∑

i

πi

[
H(ρi‖ρ) +H(Φ(ρi)‖Φ(ρ))−H(Φ̃(ρi)‖Φ̃(ρ))

]
, (30)

where IΦ(·)
.
= I(·,Φ), for any state ρ in S(H) with finite entropy. The expression in the

right side of (30) is well defined, since
∑

i πiH(Φ̃(ρi)‖Φ̃(ρ)) ≤
∑

i πiH(ρi‖ρ) ≤ H(ρ) by
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monotonicity of the quantum relative entropy and identity (22).
Proposition 7 and Corollary 3 imply the following continuity condition for the quantum

mutual information, strengthening Proposition 4 in [16].

Corollary 4. Let Φ be an arbitrary quantum channel and S be a compact subset of
S(H) on which the von Neumann entropy is finite. The following assertions

(i) the function ρ 7→ H(ρ) is continuous on the set S,

(ii) lim
k→+∞

sup
ρ∈S

∆σ
k(ρ|IΦ) = 0, where ∆σ

k(ρ|IΦ) is defined by (30),

(iii) the function ρ 7→ I(ρ,Φ) is continuous on the set S,

are related by the implications (i) ⇒ (ii) ⇔ (iii).

If Φ is a degradable channel, that is Φ̃ = Λ ◦ Φ for some quantum channel Λ, then
assertions (i)− (iii) are equivalent for an arbitrary compact subset S of S(H).

Proof. (i) ⇒ (ii) is proved by using Corollary 3, since by monotonicity and nonnegativity
of the quantum relative entropy the expression in the square brackets in (30) does not exceed
2H(ρi‖ρ) and hence (ii) follows from (23). (ii) ⇔ (iii) follows from Proposition 7.

If Φ is a degradable channel then by using Theorem 1 in [16] and the 1-th chain rule
from Proposition 1 in [16] it is easy to show that I(ρ,Φ) < +∞ ⇒ H(ρ) < +∞ , while by
monotonicity of the quantum relative entropy the expression in the square brackets in (30)
is not less then H(ρi‖ρ). Thus (23) follows from (ii) in this case. �

6.3 The output von Neumann entropy and the χ-function of a

quantum channel

Let Φ : T(H) → T(H′) be a quantum channel (see Section 6.2). The output von Neumann
entropy H(Φ(·)) is an important characteristic involved, in particular, in expressions for
different capacities of this channel (directly or via other characteristics) [14, 21].

The function ρ 7→ HΦ(ρ)
.
= H(Φ(ρ)) is concave lower semicontinuous and nonnegative on

the set S(H), but in general this function is not continuous on sets of the family {Sk(H)}.
To apply Proposition 7 to the function ρ 7→ HΦ(ρ) we need the following lemma.

Lemma 6. If the function ρ 7→ HΦ(ρ) is continuous and bounded on the set extrS(H)
then this function is continuous on the set Sk(H) defined by (20) for each natural k.

Proof. Suppose there exists a sequence {ρn} ⊂ Sk(H) converging to a state ρ0 ∈ Sk(H)
such that

lim
n→+∞

HΦ(ρn) > HΦ(ρ0). (31)

For each n we have ρn =
∑k

i=1 λ
n
i σ

n
i , where {σn

i }
k
i=1 ⊂ extrS(H) and {λn

i }
k
i=1 ∈ Pk. By

Lemma 4 we may consider that there exists limn→+∞ λn
i σ

n
i = Ai for each i = 1, k, where

{Ai}
k
i=1 is a set positive trace class operators of rank ≤ 1 such that ρ0 =

∑k
i=1Ai. Continuity
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and boundedness of the function HΦ on the set extrS(H) imply continuity of its natural
extension to the cone of positive trace class operators of rank ≤ 1 defined as follows

HΦ(A) = TrAHΦ

(
A

TrA

)
= Trη(Φ(A))− η(TrA), A ∈ T+(H), η(x) = −x ln x.

Hence
lim

n→+∞
HΦ(λ

n
i σ

n
i ) = HΦ(Ai), i = 1, k.

By using the property of the von Neumann entropy presented after Corollary 4 in [27] we
obtain a contradiction to (31). �

The χ-function of a quantum channel Φ : T(H) → T(H′) is a characteristic related to
the classical capacity of this channel [14, 21]. It is defined as follows

χΦ(ρ) = sup
{πi,ρi}∈Ma(S(H))

∑

i

πiH(Φ(ρi)‖Φ(ρ)), ρ ∈ S(H).

For a given subset S of S(H) the value supρ∈S χΦ(ρ) coincides with the Holevo capacity of
the S-constrained channel Φ [26].

The function ρ 7→ χΦ(ρ) is obviously concave and nonnegative on the set S(H). In [26]
it is proved that this function is lower semicontinuous (Proposition 4) and has continuous
restriction to any subset of S(H) on which the function ρ 7→ HΦ(ρ) is continuous (Theorem
1). Hence Lemma 6 shows that the function ρ 7→ χΦ(ρ) has continuous restriction to the set
Sk(H) for each k if the function ρ 7→ HΦ(ρ) is continuous and bounded on the set extrS(H).

Thus Proposition 7 with Lemma 6 and Corollary 3 imply the following observation.

Corollary 5. Let Φ be a quantum channel such that the function ρ 7→ HΦ(ρ) is contin-
uous and bounded on the set extrS(H). Let S be a compact subset of S(H). The following
assertions

(i) the function ρ 7→ H(ρ) is continuous on the set S,

(ii) lim
k→+∞

sup
ρ∈S

∆σ
k(ρ|HΦ) = 0 , where ∆σ

k(ρ|HΦ) = inf
{πi,ρi}∈Ma

ρ (Sk(H))

∑

i

πiH(Φ(ρi)‖Φ(ρ)),

(iii) the function ρ 7→ HΦ(ρ) is continuous on the set S,

(iv) the function ρ 7→ χΦ(ρ) is continuous on the set S,

are related by the implications (i) ⇒ (ii) ⇔ (iii) ⇔ (iv).

If the output entropy of the complementary channel Φ̃ is continuous on the set S then
assertions (i)− (iv) are equivalent.

By Corollary 5 the above assertions (i)− (iv) are equivalent for arbitrary quantum chan-
nel Φ having Kraus representation (26) with finite nonzero summands.
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Proof. (i) ⇒ (ii) follows from Corollary 3 since monotonicity of the quantum relative
entropy implies

inf
{πi,ρi}∈Ma

ρ (Sk(H))

∑

i

πiH(Φ(ρi)‖Φ(ρ)) ≤ inf
{πi,ρi}∈Ma

ρ (Sk(H))

∑

i

πiH(ρi‖ρ), ∀k.

(ii) ⇔ (iii) can be shown by applying Proposition 7 to the function ρ 7→ HΦ(ρ) and by
using the identity

HΦ(ρ)−
∑

i

πiHΦ(ρi) =
∑

i

πiH(Φ(ρi)‖Φ(ρ)).

(iii) ⇒ (iv) follows from Theorem 1 in [26].
(iv) ⇒ (ii) can be shown by applying Proposition 7 to the function ρ 7→ χΦ(ρ) and by

using the inequality

χΦ(ρ)−
∑

i

πiχΦ(ρi) ≥
∑

i

πiH(Φ(ρi)‖Φ(ρ)),

valid for any {πi, ρi} ∈ Ma(S(H)) [26, Proposition 4].
To prove the last assertion of the corollary it suffices to show that continuity of the

both functions ρ 7→ HΦ(ρ) and ρ 7→ HΦ̃(ρ) on the set S implies continuity of the function
ρ 7→ H(ρ) on this set. This can be done by using Lemma 7 below and representations (24)
and (25). �

Lemma 7. Let {ωn} be a sequence of states in S(H⊗K) converging to a state ω0. If
limn→+∞H(TrKωn) = H(TrKω0) < +∞ and limn→+∞H(TrHωn) = H(TrHω0) < +∞ then
limn→+∞H(ωn) = H(ω0) < +∞.

Proof. Let ωH
n

.
= TrKωn and ωK

n
.
= TrHωn for n = 0, 1, 2, ... Since

H(ωn) = H(ωH
n ) +H(ωK

n )−H(ωn‖ω
H
n ⊗ ωK

n ),

we may consider that H(ωn) < +∞ for n = 0, 1, 2, ... and by lower semicontinuity of the
quantum relative entropy we have

lim sup
n→+∞

H(ωn) = lim
n→+∞

H(ωH
n ) + lim

n→+∞
H(ωK

n )− lim inf
n→+∞

H(ωn‖ω
H
n ⊗ ωK

n )

≤ H(ωH
0 ) +H(ωK

0 )−H(ω0‖ω
H
0 ⊗ ωK

0 ) = H(ω0).

This and lower semicontinuity of the von Neumann entropy imply lim
n→+∞

H(ωn) = H(ω0). �

Corollary 4 and Lemma 5B imply the following observation.

Corollary 6. Let Φ be a quantum channel. The following assertions are equivalent:

(i) the function ρ 7→ HΦ(ρ) is continuous and bounded on the set extrS(H),

(ii) the function ρ 7→ HΦ(ρ) is continuous on any subset of S(H) on which the von Neu-
mann entropy is continuous.
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If assertion (ii) in Corollary 6 holds for a quantum channel one can say roughly speak-
ing that this channel preserves continuity of the von Neumann entropy. Assertion (i) in
Corollary 6 can be considered as a criterion of this property. It implies, in particular, that
the class of quantum channels preserving continuity of the von Neumann entropy contains
all quantum channels having Kraus representation (26) with finite nonzero summands. The
above criterion also shows that this class contains a quantum channel Φ if and only if it
contains the complementary channel Φ̃ (since HΦ(ρ) = HΦ̃(ρ) for any ρ ∈ extrS(H) [15]).

7 Appendix

The proof of Proposition 1. The function f̂µ
B is well defined on the set co(B) by Lemma

2. Concavity of the function f̂µ
B follows from its definition and convexity of the set M(B).

By upper semicontinuity of functional f defined by (2) and compactness of the set Mx(B)
for each x in co(B) (provided by µ-compactness of the set A) the supremum in the definition
of the value f̂µ

B (x) is achieved at a particular measure µx in Mx(B), that is f̂
µ
B(x) = f(µx).

Suppose the function f̂µ
B is not upper semicontinuous. Then there exists a sequence

{xn} ⊂ co(B) converging to a point x0 ∈ co(B) such that

∃ lim
n→+∞

f̂µ
B(xn) > f̂µ

B (x0). (32)

As proved before for each n there exists a measure µn ∈ Mxn
(B) such that f̂µ

B (xn) = f(µn).
The µ-compactness of the set A implies existence of a subsequence {µnk

} converging to a
particular measure µ0 in M(B). By continuity of the map µ 7→ b(µ) the measure µ0 belongs
to the set Mx0

(B). Upper semicontinuity of the functional f implies

f̂µ
B (x0) ≥ f(µ0) ≥ lim sup

k→+∞
f(µnk

) = lim
k→+∞

f̂µ
B(xnk

),

contradicting to (32).
Upper semicontinuity of the concave function f̂µ

B implies its µ-concavity by Lemma 1.

The proof of Proposition 2. A) Suppose the function f̂µ
B is not lower semicontinuous.

Then there exists a sequence {xn} ⊂ co(B) converging to a point x0 ∈ co(B) such that

∃ lim
n→+∞

f̂µ
B(xn) < f̂µ

B (x0). (33)

For ε > 0 let µε
0 be a measure in Mx0

(B) such that f̂µ
B (x0) ≤ f(µε

0) + ε (f is the functional
defined by (2)). By openness of the map M(B) ∋ µ 7→ b(µ) ∈ A there exists a subsequence
{xnk

} and a sequence {µk} ⊂ M(B) converging to the measure µε
0 such that b(µk) = xnk

for
each k. Lower semicontinuity of the functional f implies

f̂µ
B(x0) ≤ f(µε

0) + ε ≤ lim inf
k→+∞

f(µk) + ε ≤ lim
k→+∞

f̂µ
B(xnk

) + ε,

contradicting to (33) (since ε is arbitrary).
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Lower semicontinuity of the concave lower bounded function f̂µ
B implies its µ-concavity

by Lemma 1.
B) The function f̂σ

B is obviously well defined and σ-concave on the set σ-co(B). Lower
semicontinuity of this function is proved by a simple modification of the arguments of the
proof of part A.

If σ-co(B) = co(B) then lower semicontinuity of the concave lower bounded function f̂σ
B

implies its µ-concavity by Lemma 1. Since f̂σ
B |B ≥ f by the definition of f̂σ

B , we have

f̂σ
B (x) ≥

∫

B

f̂σ
B(y)µ(dy) ≥

∫

B

f(y)µ(dy)

for any x ∈ co(B) and any measure µ in Mx(B). This implies f̂σ
B ≥ f̂µ

B and hence f̂σ
B = f̂µ

B .
�

The proof of Proposition 3. We divide the proof into two steps.
1) Prove that for an arbitrary finitely supported measure µ0 =

∑m
i=1 πiδ(xi), where

{xi}
m
i=1 ⊂ Ak, {πi}

m
i=1 ∈ Pm, m ∈ N, and an arbitrary sequence {xn} ⊂ A converging to

x0 =
∑m

i=1 πixi there exist a subsequence {xnk} and a sequence {µk} ⊂ Ma(Ak) such that
limk µk = µ0 and b(µk) = xnk for all k.

For k = 1 the above assertion follows from openness of the map Ma(A1) ∋ µ 7→ b(µ).
Assume this assertion holds for some particular k and deduce its validity for k + 1.

Let µ0 =
∑m

i=1 πiδ(xi) ∈ Ma(Ak+1), where πi > 0 for all i and {xi}
m
i=1 * Ak, let {x

n} be
a sequence converging to x0 =

∑m
i=1 πixi. For each i = 1, m we have xi = αiyi + (1 − αi)zi,

where yi ∈ Ak, zi ∈ A1 and αi ∈ [0, 1]. Hence x0 = ηy0 + (1− η)z0, where

η =

m∑

i=1

αiπi ∈ (0, 1), y0 = η−1

m∑

i=1

αiπiyi ∈ A, z0 = (1− η)−1

m∑

i=1

(1− αi)πizi ∈ A.

By stability of the set A we may assume (by replacing the sequence {xn} by some its
subsequence) existence of sequences {yn} ⊂ A and {zn} ⊂ A converging respectively to y0

and z0 such that xn = ηyn + (1− η)zn. By induction we may consider (again by passing to
a subsequence) that there exist sequences {νn} ⊂ Ma(Ak) and {ζn} ⊂ Ma(A1) converging
to the measures

ν0
.
= η−1

m∑

i=1

αiπiδ(yi) and ζ0
.
= (1− η)−1

m∑

i=1

(1− αi)πiδ(zi)

correspondingly, such that b(νn) = yn and b(ζn) = zn for all n.
By definition of the weak convergence for arbitraryN and for arbitrary sufficiently small11

ε > 0 and δ > 0 there exists such n̄ > N that

νn̄ =

m∑

i=1

νi
n̄ + νr

n̄ and ζn̄ =

m∑

i=1

ζ in̄ + ζrn̄, (34)

11In what follows it is assumed that ε < 1/4 and δ is so small that δ-vicinities of different points of the
sets {yi}mi=1 and {zi}mi=1 do not intersect each other.

23



where νi
n̄ and ζ in̄ are measures with finite support contained respectively in Uδ(yi) and in

Uδ(zi) such that

|νi
n̄(Uδ(yi))− η−1αiπi| < η−1επi, |ζ in̄(Uδ(zi))− (1− η)−1(1− αi)πi| < (1− η)−1επi, (35)

all atoms of the measures νi
n̄ and ζ in̄ have rational weights, i = 1, m, and

νr
n̄(A) < η−1ε, ζrn̄(A) < (1− η)−1ε. (36)

Existence of representation (34) is obvious if the sets {yi}
m
i=1 and {zi}

m
i=1 consist of different

elements. If these sets contain coinciding elements existence of this representation can be
shown by ”splitting” atoms of the measures νn̄ and ζ n̄ as follows. Suppose, for example,
y1 = y2 = ... = yp = y. Then the component

∑
t λtδ(yt) of the measure νn̄ having atoms

within Uδ(y) can be ”decomposed” as
∑

t

λtδ(yt) =
∑

t

γ1λtδ(yt) + ...+
∑

t

γpλtδ(yt),

where γi = αiπi/(α1π1+ ...+αpπp), and the measure νi
n̄ is constructed by using the measure

γi
∑

t λtδ(yt).

For given i let νi
n̄ =

∑ny
i

j=1

pyij
qi
δ(yij) and ζ in̄ =

∑nz
i

j=1

pzij
qi
δ(zij), where p∗∗ and q∗ are natural

numbers. One can find such natural numbers Pi, Qy
i and Qz

i that
∑ny

i

j=1

pyij
qi

= Pi

Qy
i

and
∑nz

i

j=1

pzij
qi

= Pi

Qz
i

. Let dyi = (qiQ
y
i )

−1 and dzi = (qiQ
z
i )

−1. By using the ”decomposition”

pyij
qi

δ(yij) = dyi δ(yij) + ...+ dyi δ(yij)︸ ︷︷ ︸
pyijQ

y
i summands

we obtain the representation νi
n̄ =

∑Piqi
l=1 dyi δ(ȳ

l
i), where {ȳli}l is a set of Piqi elements (which

may be coinciding) contained in Uδ(yi). In the similar way we obtain the representation
ζ in̄ =

∑Piqi
l=1 dzi δ(z̄

l
i), where {z̄li}l is a set of Piqi elements contained in Uδ(zi).

Let

µn̄ = ηνn̄ + (1− η)ζn̄ =

m∑

i=1

(ηνi
n̄ + (1− η)ζ in̄) + ηνr

n̄ + (1− η)ζrn̄

=

m∑

i=1

Piqi∑

l=1

(
ηdyi δ(ȳ

l
i) + (1− η)dzi δ(z̄

l
i)
)
+ ηνr

n̄ + (1− η)ζrn̄

be a measure with the barycenter ηyn̄ + (1− η)zn̄ = xn̄. The measure

µ̂n̄ =

m∑

i=1

Piqi∑

l=1

(ηdyi + (1− η)dzi )δ(x̄
l
i) + ηνr

n̄ + (1− η)ζrn̄, where x̄l
i =

ηdyi ȳ
l
i + (1− η)dzi z̄

l
i

ηdyi + (1− η)dzi

has the same barycenter and lies in Ma(Ak+1). Since

ᾱi =
ηdyi

ηdyi + (1− η)dzi
=

ηPi

Qy
i πi

ηPi

Qy
i πi

+ (1−η)Pi

Qz
i πi
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and (35) implies | ηPi

Qy
i πi

−αi| < ε, | (1−η)Pi

Qz
i πi

− (1−αi)| < ε, it is easy to show that |ᾱi−αi| < 6ε.

Thus we conclude that x̄l
i = ᾱȳli + (1− ᾱ)z̄li ∈ Uδ(i)(xi) for all i = 1, m and l = 1, Piqi, where

δ(i) = 2δ + Cyi,zi(6ε) (see Remark 1). Since Piqi(ηd
y
i + (1 − η)dzi ) = η Pi

Qy
i

+ (1 − η) Pi

Qz
i
, by

using (35) and (36) it is easy to show that

|µ̂n̄(Uδ(i)(xi))− πi| ≤ 4ε (37)

provided Uδ(i)(xi) ∩ Uδ(i′)(xi′) = ∅ for all i 6= i′.
For natural l let nl = n̄ and µl = µ̂n̄, where n̄ and µ̂n̄ are produced by the above

construction with N = l and ε = δ = 1/l. Then b(µl) = xnl and (37) implies weak
convergence of the sequence {µl} to the measure µ0.

2) Let µ0 =
∑+∞

i=1 πiδ(xi) be an arbitrary measure in Ma(Ak) and {xn} ⊂ A be a
sequence converging to x0 =

∑+∞
i=1 πixi. For natural m let µm

0 = (λm)
−1

∑m
i=1 πiδ(xi), where

λm =
∑m

i=1 πi, and let νm
0 be a measure in Ma(A1) such that b(νm

0 ) = (1−λm)
−1

∑
i>m πixi.

Since the sequence {µm
0 }m converges to the measure µ0, for given natural l there exists ml

such that µml

0 ∈ U1/l(µ0) and λml
> 1 − 1/l.12 We have x0 = λml

b(µml

0 ) + (1 − λml
)b(νml

0 ).
By stability of the set A we may assume (by replacing the sequence {xn} by some its
subsequence) existence of sequences {yn} ⊂ A and {zn} ⊂ A converging respectively to
b(µml

0 ) and b(νml

0 ) such that xn = λml
yn + (1− λml

)zn.
By the first part of the proof we may consider (again by passing to a subsequence) that

there exists a sequence {µn} ⊂ Ma(Ak) converging to the measure µml

0 such that b(µn) = yn
for all n. Hence there exists nl > l such that µnl

∈ U1/l(µ
ml

0 ) ⊂ U2/l(µ0). Let

µ̄l = λml
µnl

+ (1− λml
)νnl

,

where νnl
is an arbitrary measure in Ma(A1) such that b(νnl

) = znl .
It is easy to see that the sequence {µ̄l} is contained in Ma(Ak) and converges to the

measure µ0 while by the construction b(µ̄l) = λml
ynl + (1− λml

)znl = xnl for each l. �
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