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Abstract. This paper is devoted to the study of y-capacity, closely related to the classical
capacity of infinite-dimensional quantum channels. For such channels generalized ensembles are
defined as probability measures on the set of all quantum states. We establish the compactness of
the set of generalized ensembles with averages in an arbitrary compact subset of states. This result
enables us to obtain a sufficient condition for the existence of the optimal generalized ensemble
for an infinite-dimensional channel with input constraint. This condition is shown to be fulfilled
for Bosonic Gaussian channels with constrained mean energy. In the case of convex constraints, a
characterization of the optimal generalized ensemble extending the “maximal distance property”is
obtained.
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1. Introduction. This paper is devoted to the systematic study of the classical
capacity (more precisely, a closely related quantity  the y-capacity [6]) of infinite-
dimensional quantum channels, following [8], [10], [17]. While major attention in
quantum information theory up to now has been paid to finite-dimensional systems,
there is an important and interesting class of Gaussian channels (see, e.g., [9], [4], [16])
which act in infinite-dimensional Hilbert space. Although many problems of Gaussian
bosonic systems with a finite number of modes can be solved with finite-dimensional
matrix techniques, a general underlying Hilbert space operator analysis is indispens-
able.

Moreover, it was observed recently [17] that Shor’s famous proof of the global
equivalence of different forms of the additivity conjecture is related to the weird
discontinuity of the y-capacity in the infinite-dimensional case. All this calls for a
mathematically rigorous treatment involving specific results from the operator theory
in Hilbert space and measure theory.

There are two important features essential for channels in infinite dimensions. One
is the necessity of the input constraints (such as the mean energy constraint for Gaus-
sian channels) to prevent infinite capacities (although considering input constraints
was recently shown to be quite useful also in the study of the additivity conjecture
for channels in finite dimensions [10]). Another is the natural appearance of infinite,
and, in general, “continuous” state ensembles understood as probability measures on
the set of all quantum states. By using compactness criteria from probability theory
and operator theory we can show that the set of all generalized ensembles with the
average in a compact set of states is itself a compact subset of the set of all probability
measures. With this in hand we give a sufficient condition for the existence of an op-
timal generalized ensemble for a constrained quantum channel. This condition can be
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verified in particular in the case of bosonic Gaussian channels with constrained mean
energy. In the case of convex constraints we give a characterization of the optimal
generalized ensemble extending the “maximal distance property” (see [15], [10]).

2. Preliminaries. We give below for reference some results from noncommuta-
tive probability theory (see details in [7] and [14]).

Let H be a separable Hilbert space, B(#) the algebra of all bounded operators
in H, and T(H) the Banach space of all trace-class operators with the trace norm ||-|;.
State is a positive trace class operator p in H with unit trace: p =2 0, Trp = 1.
The algebra 9B(H) is called the algebra of observables of a quantum system; then a
state determines the expectation functional A — TrpA, A € B(H). The set of all
states G(H) is a convex closed subset of T(#H) which is a complete separable metric
space with the metric defined by the norm.

In what follows we shall use the fact that convergence of a sequence of states to a
state in the weak operator topology is equivalent to the trace norm convergence [1].
Note also the following characterization of compact subsets of states (a noncommu-
tative analogue of Prokhorov’s theorem): A closed subset K of states in &(#H) is
compact if and only if for any € > 0 there is a finite-dimensional projector P such
that TrpP 2 1 — ¢ for all p € K. A proof of this result is given in Appendix A.

A finite set m;, p; of the states p; with respective probabilities 7; is called an
ensemble; the state p = ), m;p; is called an average of the ensemble.

DEFINITION. We call an arbitrary Borel probability measure © on &(H) a gener-
alized ensemble. The average! of the generalized ensemble © is defined by the Pettis
integral

plm) = /6 )

Using the result of [1] it is possible to show that the integral also exists in
Bochner’s sense (see [5]) with respect to the trace norm. The conventional ensembles
correspond to measures with finite support.

Denote by P the convex set of all probability measures on &(H) equipped with
the topology of weak convergence [2]. The mapping 7 — p(7) is continuous in this
topology. In fact the weak convergence of a sequence {m,} C P to m € P implies
convergence of the sequence of states {p(m,,)} to the state p(x) in the weak operator
topology, and, hence, by the result in [1], in the trace norm.

LeEMMA 1. The subset of measures with finite support is dense in the set of all
measures with given average p.

A proof of this statement is given in Appendix B.

In what follows, log denotes the function on [0, +oc), which coincides with the
usual logarithm on (0, +00) and vanishes at zero. If A is a positive finite rank operator,
then the entropy is defined as
(1) H(A)=TrA(IlogTr A —log A)

3

where I is the unit operator in . In particular, the entropy of a state p (von Neumann
entropy) is equal to

H(p) = —Trplogp.

L Also called a barycenter of the measure 7.
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If A and B are two such operators, then the relative entropy is defined as
(2) H(A|B)=Tr(AlogA — AlogB+ B — A)

provided ran A C ran B, and H(A || B) = +oc otherwise (throughout this paper, ran
denotes the closure of the range of an operator).

These definitions can be extended to arbitrary positive trace class operators A
and B with the help of the following lemma [11].

LEmMMA 2. Let {P,} be an arbitrary sequence of finite-dimensional projectors
momnotonously increasing to the unit operator I in the strong operator topology. The
sequences {H(P,AP,)} and {H(P,AP, || P,BP,)} are monotonously increasing and
their limits (finite or infinite) do not depend on the choice of the sequence {P,}.

We can thus define the entropy and the relative entropy as

H(A)= lim H(P,AP,), H(A|B)= lim H(P,AP,| P,BPF,).
n——+oo n——+oo

As is well known, the properties of the entropy for infinite- and finite-dimensional
Hilbert spaces differ quite substantially: In the latter case the entropy is a bounded
continuous function on &(H), while in the former it is discontinuous (lower semicon-
tinuous) at every point, and infinite “almost everywhere” in the sense that the set of
states with finite entropy is a first category subset of &(#) [19].

3. The x-capacity of constrained channels. Let H,H' be a pair of separable
Hilbert spaces which we shall call correspondingly the input and the output space.
A channel @ is a linear positive trace-preserving map from T(H) to T(H') such that
the dual map ®*: B(H') — B(H) (which exists since ® is bounded) is completely
positive [7]. In particular, a channel maps (input) states in # to (output) states in H'.

Let A be an arbitrary subset of §(H). Consider the constraint on an input ensem-
ble {m;,p;}, defined by the requirement p € A. The channel & with this constraint
is called the A-constrained channel. We define the x-capacity of the A-constrained
channel ® as

(3) C(®; A) = sup xo ({mi, pi}),

peEA

(4) {’ﬂ'z pz Z'ﬂ'z ®(pi) || @(p ))

Throughout this paper we shall consider the constraint sets A such that
(5) C(®; A) < +o<.

The subset of P consisting of all measures = with the average state p(m) in
A C &(H) will be denoted by P 4.
Lemma 2 implies, in particular, that the nonnegative function

p— H(®(p) || ®(p(m)))

is measurable on &(H). Hence the functional

xa(m) = / H(@(p) | @ (p(r))) 7(dp)
G(H)

is well defined on the set P (with the range [0; 4+00]).
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PROPOSITION 1. The functional xo(w) is lower semicontinuous on the set P.
If H(®(p(m))) < oo, then

(6 xo(m) = H(#(p(m) [ H(#() x(dn).

Proof. Let {P,,} be an arbitrary sequence of finite-dimensional projectors mono-
tonously increasing to the unit operator I. We show first that the functionals

o () = / H(P,®(p) P, || P (p(x)) P) n(dp)
S(H)

are continuous on the set P.
We have

ran (P,®(p) P,) C ran (P, ®(p(r)) Py)

for m-almost all p. Indeed, closure of the range is the orthogonal complement to
the null subspace of a Hermitian operator, and for the null subspaces the opposite
inclusion holds obviously. It follows that

H (P, ®(p) Py || Pa®(p(7)) Pn)
= Tr (Pn<1><p) Py, log (P,®(p) P,) — Py®(p) Py log (P,®(p(n)) P,)
+ P,®(p(m)) P — Pa®(p) Pn)

for w-almost all p. By using (1) we have

Ya(m) = - / H(P,®(p) P,) n(dp) + / Tr (P, (p)) log Tr (Pa®(p)) 7(dp)
S(H) &(H)

= [ T (Pa(5) P.) tog (Pu(p(m) Pa) 7 (dp)
S(H)

+ ./6(7-1) Tr (P, ®(p())) 7(dp) */ Tr (P, ®(p)) 7(dp).

S(H)

It is easy to see that the two last terms cancel, while the central term can be trans-
formed in the following way:

= [T (Pa(p) P) log (Pu (p(m) ) ()
S(H)

— = [ (P(p) P) 1og (P (p() P.) n(dp)
S(H)

= H(P,®(5(r)) Pa) — Tt (Py®(())) log Tr (Pu®(5(x))).

Hence
X4 (m) = H(P,®(p(r)) P,) — Tr (P, ®(p(n))) log Tr (P, ®(p()))
(7) - / H(P,®(p) P,) w(dp) + / Tr (Pa®(p)) log Tr (P, ®(p)) 7(dp).
S(H) &(H)

The continuity and boundedness of the quantum entropy in the finite-dimensional
case and similar properties of the function p — Tr(P,®(p)) log Tr(P,®(p)) imply
continuity of the functionals x%(m) for all n.
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By the monotonous convergence theorem the sequence of functionals x4 (w) is
monotonously increasing and pointwise converges to x¢ (7). Hence the functional y¢ (7)J]
is lower semicontinuous as an upper bound of a family of continuous functionals.

To prove (6) note that Lemma 2 implies

lim H(P,®(p(x)) P,) = H(®(p(r)))

n—-+oo

and

Jim [ m(Re() P s = [ H (@) w(dp)
Jew) Jen)

due to the monotonous convergence theorem. For every p the sequence {Tr(P,®(p))}
is in [0, 1] and converges to 1 and therefore, lim,,_, o, Tr(P,(p)) log Tr(P,(p)) = 0; in
particular the second term in (7) tends to 0. Since |zlogz| < 1 for all z € (0, 1], the
last term in (7) also tends to 0 by the dominated convergence theorem. So, passing
to the limit n — oo in (7) gives (6). Proposition 1 is proved.

COROLLARY 1. The x-capacity of A-constrained channel ® can be defined by

C(®; A) = sup xo(m).
TEPa

Proof. Definition (3) is a similar expression in which the supremum is over all
measures in P4 with finite support. By Lemma 1 we can approximate arbitrary
measure 7 in P4 by a sequence {m,} of measures in P4 with finite supports. By
Proposition 1 liminf,,— 1o x&(7m) 2 xo (7). It follows that the supremum over all
measures in P4 coincides with the supremum over all measures in P4 with finite
support. Corollary 1 is proved.

4. Compact constraints. It will be convenient to use the following terminol-
ogy: an unbounded positive operator H in ‘H with discrete spectrum of finite multiplic-
ity will be called an $-operator. Let (), be the spectral projector of H corresponding
to the lowest n eigenvalues. Following [8] we shall denote

(8) TrpH = lim TrpQ, H,
n— 00

where the sequence on the right side is monotonously nondecreasing. It was shown
in [8] that

(9) K={p: TrpH < h}

is a compact subset of &(H) for the arbitrary $H-operator H.

LeEMMA 3. Let A be a compact subset of §(H). Then there exist an $)-operator H
and a positive number h such that Tr pH < h for all p € A.

Proof. By the compactness criterion (see Appendix A) for any natural n there
exists a finite rank projector P, such that Tr pP,, = 1—n "2 for all p in A. Without loss
of generality we may assume that \/ Zﬁ? Py (H) = H, where \/ denotes a closed linear
span of the subspaces. Let I3n be the projector on the finite-dimensional subspace
Vi_ Pe(H). Thus H = 322 n(Pay1 — Py) is an $H-operator satisfying

+o00 +00o +00
TrpH = ZnTrp(ﬁnH fﬁn) < ZnTrp(IH fﬁn) < er2 =h
n=1 n=1 n=1

for arbitrary state p in the set A. Lemma 3 is proved.
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This lemma can be used to establish compactness of some subsets of states. Con-
sider, for example, the set C(p,o) of all states w in the tensor product of Hilbert
spaces H and K having fixed partial traces Trx w = p and Try w = 0. By Lemma 3
there exist $)-operators A and B in the spaces H and K, respectively, such that
TrpA =a < +ocand TroB = < +oc. It is easy to see that C = A® [k + [y R B is
an $)-operator in the space H ® K and

TrwC =TrpA+TroB=a+ 3 < +x YweC(p,o).

The remark before Lemma 3 implies the compactness of the set C(p, o).

PROPOSITION 2. The set Py is a compact subset of P if and only if the set A is
a compact subset of G(H).

Proof. Let the set P4 be compact. The set A is the image of the set P4 under
the continuous mapping 7 — p(7), and hence it is compact.

Let the set A4 be compact. By Lemma 3 there exists an $-operator H such that
TrpH < hfor all p in A. For arbitrary 7 € P4 we have

a (o) n(dg) = ( / P H) — Tep(m) H < h

The existence of the integral on the left side and the first equality follows from the
monotonous convergence theorem, since the function Tr pH is the limit of the nonde-
creasing sequence of continuous bounded functions Tr pQ,, H by (8).

Let K. = {p: TrpH < he '}. The set K. is compact for any . By (10) for any
measure 7 in P4 we have

(1) w(e\K) = [

r(dp) < ch™! / (Tr pH) n(dp) < =.
S(H)\K.

S(H)\Ke

Compactness of the set P4 follows from Prokhorov’s theorem [12]. Proposition 2 is
proved.

We will use the following notions, introduced in [17]. The sequence of ensem-
bles {m¥, pk1 with the averages p* € A is called an approzimating sequence if

Jim xe ({7, p}) = C(®; A).

The state p € A is called an optimal average state for the A-constrained channel & if
it is a partial limit of a sequence of average states for some approximating sequence
of ensembles. Compactness of the set A implies that the set of optimal average states
is not empty.

THEOREM. Let A be a compact subset. If the restriction of the output en-
tropy H(®(p)) to the set A is continuous at an optimal average state py € A, then there
exists an optimal generalized ensemble ©* in P4 such that supp n* C Extr §(H) and

T(®@; A) = xa(n") = /6 o () 7 (o)

Proof. We will show first that the functional
o [ H(®) n(dp)
S(H)

is well defined and lower semicontinuous on the set P.
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By Lemma 2 the function H(®(p)) is a pointwise limit of the monotonously
increasing sequences of functions

Falp) = Tr ((Pn(I)(p) P,) (IlogTr (P,®(p) P,) — log (Pa®(p) Pn))),

which are continuous and bounded on &(#). Hence the function H(®(p)) is measur-
able and the monotonous convergence theorem implies

| H@@) s = fim [ gl a(dp)
S(H)

The sequence of continuous functionals

7rb—>/ w(dp)

is nondecreasing. Hence its pointwise limit is lower semicontinuous.

By the assumption the restriction of the function H(®(p)) to the set A is con-
tinuous at some optimal average state pg. The continuity of the mapping = — p(7)
implies that the restriction of the functional = — H(®(p(w))) to the set P4 is contin-
uous at any point g such that p(m) = po. Hence H(®(p(n))) < +oo for any point
in the intersection of P4 with some neighborhood of my. For every such point 7 re-
lation (6) holds. Therefore the restriction of the functional x¢(7) to the set P4 is
upper semicontinuous, and by Proposition 1 it is continuous at any point 7y in Py
such that p(m) = po.

Let {#n]*, p?'} be an approximating sequence of ensembles with the corresponding
sequence of average states p” converging to the state pp. Decomposing each state of
the ensemble {77, p?} into a countable convex combination of pure states we obtain
the sequence {77}, p'} of generalized ensembles consisting of a countable number of
pure states with the same sequence of the average states p". Let 7 be the sequence
of measures ascribing value 7} to the set {p}} for each j. It follows that

(12) xa(7n) Zﬁ”H (7)1 2(p ZW”H () 12(p™)) = xa ({7}, p}'}),

where the inequality follows from the convexity of the relative entropy. By construc-
tion supp 7" C Extr &(H) for each n. By Proposition 2 there exists a subsequence 7"
converging to some measure 7* in P4. Since the set Extr §(#) of all pure states is
a closed subset of &(H)?, we have supp 7* C Extr &(H) due to Theorem 6.1 in [13].
It is clear that p(n*) = pg, and, hence, as shown above, the restriction of the func-
tional ye(7) to the set P4 is continuous at the point 7*. Thus the approximating
property of the sequence {77, pP'} and (12) imply

C(@; A) = lim xo ({m", pj*}) £ Hm xo(Fn,) = xo(r7).

Since the converse inequality follows from Corollary 1, we obtain C(®; A) = xa(7*),
which means that the measure 7* is an optimal generalized ensemble for the A-
constrained channel ®. The theorem is proved.

2The set Extr &(H) is described by the inequality H(p) < 0, and due to the lower semicontinuity
of the quantum entropy it is closed.
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COROLLARY 2. For the arbitrary state py with H(®(pg)) < +oc there ezists a
generalized ensemble® mo such that p(mo) = po and

xalp) = s xa({mp}) = / H(3(p) | ®(po)) mo(dp).
> mipi=po G(H)

Proof. Tt is sufficient to note that the conditions of the theorem hold trivially
for A = {po}.

In the finite-dimensional case we obviously have
(13) C(@: A) = xa ().

where p is the average state of any optimal ensemble. The generalization of this
relation to the infinite-dimensional case is closely connected to the question of the
existence of the optimal generalized ensemble.

COROLLARY 3. If an optimal generalized ensemble for the A-constrained chan-
nel ® exists, then equality (13) holds for some optimal average state p for the A-
constrained channel ®.

If equality (13) holds for some optimal average state p for the A-constrained chan-
nel ® with H(®(p)) < +o0, then there ezists an optimal generalized ensemble for the
A-constrained channel ®.

Proof. The first assertion is obvious while the second one follows from Corollary 2.

Remark. The continuity condition in the theorem is essential, as is shown in
Appendix C. It is possible to show that this condition holds automatically if the
set A is convex with a finite number of extreme points with finite output entropy. We
conjecture that this condition holds for the arbitrary convex compact set A due to
the special properties of optimal average states in this case, considered in [17].

PROPOSITION 3. Let A be a compact set and H' be an $H-operator in the space H'
such that

(14) Trexp(—BH') < 400 forall B3>0

and Tr ®(p) H' < B' for all p € A. Then there exists an optimal generalized ensemble
for the A-constrained channel ®.

Proof. We show that under the conditions of the lemma the restriction of the
output entropy H(®(p)) to the set A is continuous, which implies validity of the
conditions of the theorem.

Let pjy = (Trexp(—BH')) " exp(—BH') be a state in (). For arbitrary p in A
we have

(15) H(®(p) [l p) = —H (®(p)) + B Tr &(p) H' + log Trexp(—LH").

Let {p,} be an arbitrary sequence of states in A converging to the state p. By
using (15) and the lower semicontinuity of the relative entropy we obtain

lim sup H (®(pn)) = H(®(p)) + H(®(p) || pis) — liminf H (2(pn) || pfs)

n—oo

+ limsup 8 Tr ®(p,) H' — BTr&(p) H' < H((I)(P)) +Bh'.

n—oo

3In what follows we can consider the generalized ensembles as measures supported by the set of
pure states.



94 A. S. HOLEVO AND M. E. SHIROKOV

By letting 3 in the above inequality tend to zero we can establish the upper semiconti-
nuity of the restriction of the function H(®(p)) to the set .A. The lower semicontinuity
of this function follows from the lower semicontinuity of the entropy [19]. Hence the
restriction of the function H (®(p)) to the set A is continuous. Proposition 3 is proved.

The condition of Proposition 3 is fulfilled for Gaussian channels with the power
constraint of the form (9) where H = RTeR is the many-mode oscillator Hamiltonian
with nondegenerate energy matrix €, and R are the canonical variables of the system.
We give a brief sketch of the argument which can be made rigorous by taking care of
the unboundedness of the canonical variables. Indeed, let

R = KR+ KgRpg

be the equation of the channel in the Heisenberg picture, where Rp are the canonical
variables of the environment which is in the Gaussian state with zero mean and the
correlation matrix ag [9]. Taking H' = ¢c[RTR — Iag K} Kg], where denotes the
trace of a matrix, we have ®*(H') = cRT KT K R, and we can always choose a positive
¢ such that ®*(H') £ H. Moreover, H' satisfies condition (14). Thus the conditions
of Proposition 3 can be fulfilled in this case.

CONJECTURE. For an arbitrary Gaussian channel with the power constraint an
optimal generalized ensemble is given by a Gaussian measure supported by the set of
pure Gaussian states with arbitrary mean and a fized correlation matriz.

This conjecture was stated in [9] for the attenuation/amplification channel with
classical noise. For the case of a pure attenuation channel characterized by the prop-
erty of zero minimal output entropy the validity of this conjecture was established
in [4]. Note also that the classical analogue of the above conjecture is the asser-
tion that the optimal input distribution for a Gaussian channel with quadratic input
constraint is Gaussian.

5. Convex constraints. In the case of a convex constraint set there are further
special properties, such as the uniqueness of the output of an optimal average state;
see [17]. The following lemma is a generalization of Donald’s identity [3].

LEMMA 4. For an arbitrary measure © in P and an arbitrary state o in &(H)
the following identity holds:

(16) / H(p||0) n(dp) = / H{(p|| p(x)) 7(dp) + H (p(x) || o).
S(H) &(H)

Proof. We first notice that in the finite-dimensional case Donald’s identity
S wiH(pillo) = 3 wH (pi | 5(v)) + H(p(r) || 0)
i i

holds for not necessarily normalized positive operators with the generalized definition
of the relative entropy (2). This can obviously be extended to generalized ensembles
in finite-dimensional Hilbert space, giving (16) for this case. Thus this relation holds
for the operators P,pP,, P,o0 P, , where P, is an arbitrary sequence of finite projectors
increasing to Iy. Passing to the limit as n — oo and referring to the monotonous
convergence theorem, we obtain (16) in the infinite-dimensional case. Lemma 4 is
proved.

The following proposition is a generalization of the “maximal distance prop-
erty” [10, Proposition 1].
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PROPOSITION 4. Let A be a convex subset of G(H). A measure 1 € P4 is an
optimal generalized ensemble for the A-constrained channel ® if and only if

(17) / H(2(p) || 2(p(m))) uldp) §/ H(®(p) || @(p(m))) 7(dp) = xa(m)
Je(nH) Jem)

for the arbitrary measure p € P4.
Proof. Let inequality (17) hold for the arbitrary measure y € P4. By Lemma 4
we have

xo (1) < /6 o @012 (00)) ) + H(®(p() 19 (p(r)))

= [ H(@() |2 (p(m)) n(dp) < xa (),
S(H)

which implies the optimality of the measure 7.

Conversely, let  be an optimal generalized ensemble for the A-constrained chan-
nel ® and let g be an arbitrary measure in P4. By the convexity of the set A the
measure m, = nu + (1 —n) 7 is also in P4 for arbitrary n € (0,1). By using Lemma 4
we obtain

X (m) 2 xa(my) /G o H @)1 (p(70) )

. / H(®(p) || ®(p(r))) u(dp)
S(H)

) xe(m) + (1 —n) H(p(r) || (my)).-

By the nonnegativity of the relative entropy we have

+(

(18) [ H (@) |12 (p(m) uldp) < xolm).
Je(H)
By using the lower semicontinuity of the relative entropy we obtain

liminf/ H(‘P(p)II@(ﬁ(Wn)))u(dp)Z/ lim inf H (2 (p) || ®(p(y))) p(dp)
S(H) n—

n—0 6(7‘[)

> [ H@)8(p) nldp).
S(H)

Proposition 4 is proved.

Appendix A.

THEOREM (see [1]). Let p, be a sequence of positive trace class operators con-
verging to p in the weak operator topology and such that lim, . Tr p, = Trp. Then
the sequence p,, converges to p in the trace norm.

This implies that a sequence of quantum states converging to a state in the
weak operator topology converges to it in the trace norm. One can consider this
as a noncommutative generalization of the fact that weak convergence of probability
distributions on a discrete probability space implies I3 convergence. By using this
theorem we can amplify to the trace norm topology the compactness criterion given
in [14] under the name “the noncommutative Prokhorov theorem.”
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THE COMPACTNESS CRITERION. A trace norm closed subset K of &(H) is compact
in the trace norm topology if and only if for arbitrary € > 0 there exists a finite rank
projector P. such that Tr P.p > 1 —¢ for all p € K.

Proof. Let K be a compact subset of G(#H). Suppose that there is € > 0 such
that for an arbitrary finite rank projector P there exists a state p € K such that
TrPp < 1—¢e. Let P, be a sequence of finite rank projectors in H monotonously
converging to the identity operator Iy; in the weak operator topology and p, be
the corresponding sequence of states in K. By the compactness of K there exists a
subsequence p,, converging to a state p. € K. By construction

Tr Pppn, S TrPppn, S1—¢ for all k> 1.
Hence

Trp. = lim TrP,p. = lim lim TrP,p,, £1—c¢,
=400 =400 k—+00
which contradicts the fact that p, € K C &(H).

Conversely, let X be a subset of &(#) satisfying the criterion. Let p, be an
arbitrary sequence in K. Since the unit ball in B(#) is compact in the weak operator
topology, there exists a subsequence p,, converging to a positive operator p, in this
topology. We have

Tr p. £ liminf Trp,, =1,
T koo

therefore to prove that p, is a state it is sufficient to show that Trp, = 1. Let € > 0
and P. be the corresponding projector. Then

Trp. 2 Tr P.p, = klim Tr P.pp, >1—¢,
— 00

where the equality follows from the finite dimensionality of the space P.(H). Thus p.
is a state. The theorem given above implies that the subsequence p,, converges to
the state p, in the trace norm. Thus the set K is trace norm compact.

Appendix B.

Proof of Lemma 1. We first notice that supp 7 C U, where U is a closed convex
subset of G(H), implies

(19) p(m) e U.

This is obvious for an arbitrary measure = with finite support. By Theorem 6.3 in [13]
the set of such measures is dense in P. The continuity of the mapping = — p()
completes the proof of (19).

Now let m be an arbitrary measure in P. Since G(H) is separable, for each
n € N there exists a sequence { A"} of Borel sets of diameters less than 1/n such that
6(H) = U,;A7, A} N A} = @ provided j # i. Let m = m(n) be a number such that
Z;D;H w(A?) < 1/n. Consider the finite collection of Borel sets {,Z;l mt1 where

=1 >
Ar=Arforalli=1,...,mand A7, = U7 A?. We have

m+1 m+1

(20) OEDY /A pmlde) = 3wl
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where 77 = Tr [, p7(dp) = 7(A7) and p? = (x(A7))~? S pm(dp) (without loss of
generality we assume 7 > 0). Let 7" be the probability measure on S(H) ascribing
the value 7" to the set {p'}. Equality (20) implies p(7™) = p(x). Since the measure 7"
has finite support for each n, to prove the assertion of the lemma it is sufficient to show
weak convergence of the sequence of measures 7" to the measure 7. By Theorem 6.1
in [13], to establish the above convergence it is sufficient to show that

Jm [ s = /6 @)

for the arbitrary bounded uniformly continuous function f(p) on &(H). Let My =
sup,ca(n) | f(p)|. For arbitrary € > 0 let n. be such that en. > 2M; and

sup f(p) — inf f(p)<e
pEU(ne) peU(ne)

for the arbitrary closed ball U(n.) of diameter 1/n.. Let n 2 n.. By construction
the set AP is contained in some ball U;(n) for each ¢ = 1,... ;m. By (19) the state
p? lies in the same ball U;(n). Hence we have

m+1

floya™(dp) = [ flp)u(dp)| < D [ |f(p) = F(pi)|n(dp)
/G(H) /e(y) im1 /Al.

A

8271’(121\7) + 2Mf7r(ﬁ’,§1+1) < 2 for all n 2 n..
i=1

Appendix C. Example of a channel without optimal generalized en-
sembles. We give an example of a classical channel, which can be extended to the
quantum one in a standard way. Consider the abelian von Neumann algebra [, and
its predual /1, which can be considered as spaces of diagonal operators in the separable
Hilbert space l5. Let @ be the identity channel in /;. Consider the sequence of states
(probability distributions)

Pn = {1 - qn71171Qn7 nilqna v :n71Qn:0:07 e -}7

e

n

where ¢, is a sequence in [0, 1], which will be defined below. Note that in this case
Xo(prn) = H(pn) = ha(gn) + gnlogn, where ho(xz) = —zlogz — (1 — z) log(1 — z).
We will show later that there exists a sequence ¢, such that lim,,_,+ ¢, = 0, while
the corresponding sequence xo(p,) = H(p,) monotonously increases to 1. Let g, be
such a sequence and let A be the closure of the sequence p,,, which obviously consists
of states p, and the pure state p, = lim, 4 pn = {1,0,0,...}. By the definition
and the monotonicity C(®; A) = lim, 4o & (pn) = 1, while p, is the only optimal
average state for the A-constrained channel ® and x¢(p«) = H(p«) = 0. Thus we
have C'(®; A) > xa(p.) and Corollary 3 implies that there is no optimal ensemble for
the A-constrained channel .

Let us construct the sequence g, with the above properties. Consider the strictly
increasing function f(z) = z(1 —logx) on [0,1]. It easy to see that f'(z) = —logz
and f([0,1]) = [0,1]. Let f~! be the converse function and g(z) = zf~'((log2)/z)
for all z 2 1. Note that the function g(z) is implicitly defined by the equation

(21) g(l “log <%>) = log 2.
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Using this fact, it is easy to see that the function g(z) satisfies the following differential
equation

(22) log (g) g = %.

Since g(z)/x = f~!((log2)/x), we have g(x)/z € [0,1]. This fact, with (21) and (22),
implies g(z) € [0,1], lim, 100 g(x) = 0, and ¢'(z) < 0. Consider the function H(z) =
ha(g(x)) + g(z)logz. By the above-mentioned properties of the function g(x), (21)
and (22) we obtain lim,_, . H(z) = (log2) "'lim, 1 g(z)logz = 1 and

H'(z) = (log2)~" <g'(m) log (1= g(z)) — ¢'(z) logg(z) + ¢'(z) logz + g(w))

= (log2) 'g'(z) log(1—g(z)) >0  Va>1.

It follows that H(z) is an increasing function on [1,+00), tending to 1 at infinity.
Setting g, = g(n) we obtain the sequence with the desired properties.
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