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iety for Industrial and Applied Mathemati
sVol. 50, No. 1, pp. 86{98 Translated from Russian JournalCONTINUOUS ENSEMBLES AND THE CAPACITY OFINFINITE-DIMENSIONAL QUANTUM CHANNELS�A. S. HOLEVOy AND M. E. SHIROKOVy(Translated by A. S. Holevo)Abstra
t. This paper is devoted to the study of �-
apa
ity, 
losely related to the 
lassi
al
apa
ity of in�nite-dimensional quantum 
hannels. For su
h 
hannels generalized ensembles arede�ned as probability measures on the set of all quantum states. We establish the 
ompa
tness ofthe set of generalized ensembles with averages in an arbitrary 
ompa
t subset of states. This resultenables us to obtain a suÆ
ient 
ondition for the existen
e of the optimal generalized ensemblefor an in�nite-dimensional 
hannel with input 
onstraint. This 
ondition is shown to be ful�lledfor Bosoni
 Gaussian 
hannels with 
onstrained mean energy. In the 
ase of 
onvex 
onstraints, a
hara
terization of the optimal generalized ensemble extending the \maximal distan
e property"isobtained.Key words. quantum 
hannel, �-
apa
ity, generalized ensembleDOI. 10.1137/S0040585X979814701. Introdu
tion. This paper is devoted to the systemati
 study of the 
lassi
al
apa
ity (more pre
isely, a 
losely related quantity | the �-
apa
ity [6℄) of in�nite-dimensional quantum 
hannels, following [8℄, [10℄, [17℄. While major attention inquantum information theory up to now has been paid to �nite-dimensional systems,there is an important and interesting 
lass of Gaussian 
hannels (see, e.g., [9℄, [4℄, [16℄)whi
h a
t in in�nite-dimensional Hilbert spa
e. Although many problems of Gaussianbosoni
 systems with a �nite number of modes 
an be solved with �nite-dimensionalmatrix te
hniques, a general underlying Hilbert spa
e operator analysis is indispens-able.Moreover, it was observed re
ently [17℄ that Shor's famous proof of the globalequivalen
e of di�erent forms of the additivity 
onje
ture is related to the weirddis
ontinuity of the �-
apa
ity in the in�nite-dimensional 
ase. All this 
alls for amathemati
ally rigorous treatment involving spe
i�
 results from the operator theoryin Hilbert spa
e and measure theory.There are two important features essential for 
hannels in in�nite dimensions. Oneis the ne
essity of the input 
onstraints (su
h as the mean energy 
onstraint for Gaus-sian 
hannels) to prevent in�nite 
apa
ities (although 
onsidering input 
onstraintswas re
ently shown to be quite useful also in the study of the additivity 
onje
turefor 
hannels in �nite dimensions [10℄). Another is the natural appearan
e of in�nite,and, in general, \
ontinuous" state ensembles understood as probability measures onthe set of all quantum states. By using 
ompa
tness 
riteria from probability theoryand operator theory we 
an show that the set of all generalized ensembles with theaverage in a 
ompa
t set of states is itself a 
ompa
t subset of the set of all probabilitymeasures. With this in hand we give a suÆ
ient 
ondition for the existen
e of an op-timal generalized ensemble for a 
onstrained quantum 
hannel. This 
ondition 
an be�Re
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CONTINUOUS ENSEMBLES 87veri�ed in parti
ular in the 
ase of bosoni
 Gaussian 
hannels with 
onstrained meanenergy. In the 
ase of 
onvex 
onstraints we give a 
hara
terization of the optimalgeneralized ensemble extending the \maximal distan
e property" (see [15℄, [10℄).2. Preliminaries. We give below for referen
e some results from non
ommuta-tive probability theory (see details in [7℄ and [14℄).Let H be a separable Hilbert spa
e, B(H) the algebra of all bounded operatorsinH, and T(H) the Bana
h spa
e of all tra
e-
lass operators with the tra
e norm k�k1.State is a positive tra
e 
lass operator � in H with unit tra
e: � = 0, Tr � = 1.The algebra B(H) is 
alled the algebra of observables of a quantum system; then astate determines the expe
tation fun
tional A 7! Tr �A, A 2 B(H). The set of allstates S(H) is a 
onvex 
losed subset of T(H) whi
h is a 
omplete separable metri
spa
e with the metri
 de�ned by the norm.In what follows we shall use the fa
t that 
onvergen
e of a sequen
e of states to astate in the weak operator topology is equivalent to the tra
e norm 
onvergen
e [1℄.Note also the following 
hara
terization of 
ompa
t subsets of states (a non
ommu-tative analogue of Prokhorov's theorem): A 
losed subset K of states in S(H) is
ompa
t if and only if for any " > 0 there is a �nite-dimensional proje
tor P su
hthat Tr �P = 1� " for all � 2 K. A proof of this result is given in Appendix A.A �nite set �i; �i of the states �i with respe
tive probabilities �i is 
alled anensemble; the state � =Pi �i�i is 
alled an average of the ensemble.Definition. We 
all an arbitrary Borel probability measure � on S(H) a gener-alized ensemble. The average1 of the generalized ensemble � is de�ned by the Pettisintegral ��(�) = ZS(H) � �(d�):Using the result of [1℄ it is possible to show that the integral also exists inBo
hner's sense (see [5℄) with respe
t to the tra
e norm. The 
onventional ensembles
orrespond to measures with �nite support.Denote by P the 
onvex set of all probability measures on S(H) equipped withthe topology of weak 
onvergen
e [2℄. The mapping � 7! ��(�) is 
ontinuous in thistopology. In fa
t the weak 
onvergen
e of a sequen
e f�ng � P to � 2 P implies
onvergen
e of the sequen
e of states f��(�n)g to the state ��(�) in the weak operatortopology, and, hen
e, by the result in [1℄, in the tra
e norm.Lemma 1. The subset of measures with �nite support is dense in the set of allmeasures with given average ��.A proof of this statement is given in Appendix B.In what follows, log denotes the fun
tion on [0;+1), whi
h 
oin
ides with theusual logarithm on (0;+1) and vanishes at zero. If A is a positive �nite rank operator,then the entropy is de�ned asH(A) = TrA(I logTrA� logA);(1)where I is the unit operator inH. In parti
ular, the entropy of a state � (von Neumannentropy) is equal to H(�) = �Tr� log �:1Also 
alled a bary
enter of the measure �.



88 A. S. HOLEVO AND M. E. SHIROKOVIf A and B are two su
h operators, then the relative entropy is de�ned asH(A kB) = Tr(A logA�A logB +B �A)(2)provided ranA � ranB, and H(A kB) = +1 otherwise (throughout this paper, randenotes the 
losure of the range of an operator).These de�nitions 
an be extended to arbitrary positive tra
e 
lass operators Aand B with the help of the following lemma [11℄.Lemma 2. Let fPng be an arbitrary sequen
e of �nite-dimensional proje
torsmonotonously in
reasing to the unit operator I in the strong operator topology. Thesequen
es fH(PnAPn)g and fH(PnAPn kPnBPn)g are monotonously in
reasing andtheir limits (�nite or in�nite) do not depend on the 
hoi
e of the sequen
e fPng.We 
an thus de�ne the entropy and the relative entropy asH(A) = limn!+1H(PnAPn); H(A kB) = limn!+1H(PnAPn kPnBPn):As is well known, the properties of the entropy for in�nite- and �nite-dimensionalHilbert spa
es di�er quite substantially: In the latter 
ase the entropy is a bounded
ontinuous fun
tion on S(H), while in the former it is dis
ontinuous (lower semi
on-tinuous) at every point, and in�nite \almost everywhere" in the sense that the set ofstates with �nite entropy is a �rst 
ategory subset of S(H) [19℄.3. The �-
apa
ity of 
onstrained 
hannels. LetH;H0 be a pair of separableHilbert spa
es whi
h we shall 
all 
orrespondingly the input and the output spa
e.A 
hannel � is a linear positive tra
e-preserving map from T(H) to T(H0) su
h thatthe dual map �� : B(H0) 7! B(H) (whi
h exists sin
e � is bounded) is 
ompletelypositive [7℄. In parti
ular, a 
hannel maps (input) states in H to (output) states in H0.Let A be an arbitrary subset ofS(H). Consider the 
onstraint on an input ensem-ble f�i; �ig, de�ned by the requirement �� 2 A. The 
hannel � with this 
onstraintis 
alled the A-
onstrained 
hannel. We de�ne the �-
apa
ity of the A-
onstrained
hannel � as C(�;A) = sup��2A���f�i; �ig�;(3)where ���f�i; �ig� =Xi �iH��(�i) k�(��)�:(4) Throughout this paper we shall 
onsider the 
onstraint sets A su
h thatC(�; A) < +1:(5) The subset of P 
onsisting of all measures � with the average state ��(�) inA � S(H) will be denoted by PA.Lemma 2 implies, in parti
ular, that the nonnegative fun
tion� 7! H��(�) k����(�)��is measurable on S(H). Hen
e the fun
tional��(�) = ZS(H)H��(�) k����(�)���(d�)is well de�ned on the set P (with the range [0;+1℄).



CONTINUOUS ENSEMBLES 89Proposition 1. The fun
tional ��(�) is lower semi
ontinuous on the set P.If H(�(��(�))) <1, then��(�) = H�����(�)��� ZS(H)H��(�)��(d�):(6) Proof. Let fPng be an arbitrary sequen
e of �nite-dimensional proje
tors mono-tonously in
reasing to the unit operator I . We show �rst that the fun
tionals�n�(�) = ZS(H)H�Pn�(�)Pn kPn����(�)�Pn��(d�)are 
ontinuous on the set P .We have ran �Pn�(�)Pn� � ran �Pn����(�)�Pn�for �-almost all �. Indeed, 
losure of the range is the orthogonal 
omplement tothe null subspa
e of a Hermitian operator, and for the null subspa
es the oppositein
lusion holds obviously. It follows thatH�Pn�(�)Pn kPn����(�)�Pn�= Tr�Pn�(�)Pn log �Pn�(�)Pn�� Pn�(�)Pn log �Pn����(�)�Pn�+Pn����(�)�Pn � Pn�(�)Pn�for �-almost all �. By using (1) we have�n�(�) = � ZS(H)H�Pn�(�)Pn��(d�) + ZS(H) Tr �Pn�(�)� logTr �Pn�(�)��(d�)� ZS(H) Tr �Pn�(�)Pn� log �Pn����(�)�Pn�� (d�)+ ZS(H) Tr �Pn����(�)���(d�) � ZS(H)Tr �Pn�(�)��(d�):It is easy to see that the two last terms 
an
el, while the 
entral term 
an be trans-formed in the following way:� ZS(H)Tr �Pn�(�)Pn� log �Pn����(�)�Pn��(d�)= �TrZS(H) �Pn�(�)Pn� log �Pn����(�)�Pn��(d�)= H�Pn����(�)�Pn��Tr �Pn����(�)�� logTr �Pn����(�)��:Hen
e�n�(�) = H�Pn����(�)�Pn��Tr �Pn����(�)�� logTr �Pn����(�)��� ZS(H)H�Pn���)Pn��(d�) + ZS(H)Tr �Pn�(�)� logTr �Pn�(�)��(d�):(7)The 
ontinuity and boundedness of the quantum entropy in the �nite-dimensional
ase and similar properties of the fun
tion � 7! Tr(Pn�(�)) logTr(Pn�(�)) imply
ontinuity of the fun
tionals �n�(�) for all n.



90 A. S. HOLEVO AND M. E. SHIROKOVBy the monotonous 
onvergen
e theorem the sequen
e of fun
tionals �n�(�) ismonotonously in
reasing and pointwise 
onverges to ��(�). Hen
e the fun
tional ��(�)is lower semi
ontinuous as an upper bound of a family of 
ontinuous fun
tionals.To prove (6) note that Lemma 2 implieslimn!+1H�Pn����(�)�Pn� = H�����(�)��and limn!+1 ZS(H)H�Pn���)Pn��(d�) = ZS(H)H��(�)� �(d�)due to the monotonous 
onvergen
e theorem. For every � the sequen
e fTr(Pn�(�))gis in [0; 1℄ and 
onverges to 1 and therefore, limn!+1 Tr(Pn(�)) logTr(Pn(�)) = 0; inparti
ular the se
ond term in (7) tends to 0. Sin
e jx log xj < 1 for all x 2 (0; 1℄; thelast term in (7) also tends to 0 by the dominated 
onvergen
e theorem. So, passingto the limit n!1 in (7) gives (6). Proposition 1 is proved.Corollary 1. The �-
apa
ity of A-
onstrained 
hannel � 
an be de�ned byC(�; A) = sup�2PA ��(�):Proof. De�nition (3) is a similar expression in whi
h the supremum is over allmeasures in PA with �nite support. By Lemma 1 we 
an approximate arbitrarymeasure � in PA by a sequen
e f�ng of measures in PA with �nite supports. ByProposition 1 lim infn!+1 ��(�n) = ��(�). It follows that the supremum over allmeasures in PA 
oin
ides with the supremum over all measures in PA with �nitesupport. Corollary 1 is proved.4. Compa
t 
onstraints. It will be 
onvenient to use the following terminol-ogy: an unbounded positive operatorH inH with dis
rete spe
trum of �nite multipli
-ity will be 
alled an H-operator. Let Qn be the spe
tral proje
tor of H 
orrespondingto the lowest n eigenvalues. Following [8℄ we shall denoteTr �H = limn!1Tr �QnH;(8)where the sequen
e on the right side is monotonously nonde
reasing. It was shownin [8℄ that K = f� : Tr �H 5 hg(9)is a 
ompa
t subset of S(H) for the arbitrary H-operator H .Lemma 3. Let A be a 
ompa
t subset of S(H). Then there exist an H-operator Hand a positive number h su
h that Tr �H 5 h for all � 2 A.Proof. By the 
ompa
tness 
riterion (see Appendix A) for any natural n thereexists a �nite rank proje
tor Pn su
h that Tr �Pn = 1�n�3 for all � in A. Without lossof generality we may assume that W+1k=1Pk(H) = H, where W denotes a 
losed linearspan of the subspa
es. Let bPn be the proje
tor on the �nite-dimensional subspa
eW nk=1Pk(H). Thus H =P+1n=1 n( bPn+1 � bPn) is an H-operator satisfyingTr �H = +1Xn=1nTr �( bPn+1 � bPn) 5 +1Xn=1nTr �(IH � bPn) 5 +1Xn=1n�2 = hfor arbitrary state � in the set A. Lemma 3 is proved.



CONTINUOUS ENSEMBLES 91This lemma 
an be used to establish 
ompa
tness of some subsets of states. Con-sider, for example, the set C(�; �) of all states ! in the tensor produ
t of Hilbertspa
es H and K having �xed partial tra
es TrK ! = � and TrH ! = �. By Lemma 3there exist H-operators A and B in the spa
es H and K, respe
tively, su
h thatTr �A = � < +1 and Tr�B = � < +1. It is easy to see that C = A
IK+IH
B isan H-operator in the spa
e H
K andTr!C = Tr �A+Tr�B = �+ � < +1 8! 2 C(�; �):The remark before Lemma 3 implies the 
ompa
tness of the set C(�; �).Proposition 2. The set PA is a 
ompa
t subset of P if and only if the set A isa 
ompa
t subset of S(H).Proof. Let the set PA be 
ompa
t. The set A is the image of the set PA underthe 
ontinuous mapping � 7! ��(�), and hen
e it is 
ompa
t.Let the set A be 
ompa
t. By Lemma 3 there exists an H-operator H su
h thatTr �H 5 h for all � in A. For arbitrary � 2 PA we haveZS(H)(Tr �H)�(d�) = Tr�ZS(H) � �(d�)H� = Tr ��(�)H 5 h:(10)The existen
e of the integral on the left side and the �rst equality follows from themonotonous 
onvergen
e theorem, sin
e the fun
tion Tr �H is the limit of the nonde-
reasing sequen
e of 
ontinuous bounded fun
tions Tr �QnH by (8).Let K" = f� : Tr �H 5 h"�1g. The set K" is 
ompa
t for any ". By (10) for anymeasure � in PA we have��S(H)nK"� = ZS(H)nK" �(d�) 5 "h�1 ZS(H)nK"(Tr �H)�(d�) 5 ":(11)Compa
tness of the set PA follows from Prokhorov's theorem [12℄. Proposition 2 isproved.We will use the following notions, introdu
ed in [17℄. The sequen
e of ensem-bles f�ki ; �ki g with the averages ��k 2 A is 
alled an approximating sequen
e iflimk!+1���f�ki ; �ki g� = C(�; A):The state �� 2 A is 
alled an optimal average state for the A-
onstrained 
hannel � ifit is a partial limit of a sequen
e of average states for some approximating sequen
eof ensembles. Compa
tness of the set A implies that the set of optimal average statesis not empty.Theorem. Let A be a 
ompa
t subset. If the restri
tion of the output en-tropy H(�(�)) to the set A is 
ontinuous at an optimal average state ��0 2 A, then thereexists an optimal generalized ensemble �� in PA su
h that supp�� � ExtrS(H) andC(�; A) = ��(��) = ZS(H)H��(�) k����(��)����(d�):Proof. We will show �rst that the fun
tional� 7�! ZS(H)H��(�)� �(d�)is well de�ned and lower semi
ontinuous on the set P .



92 A. S. HOLEVO AND M. E. SHIROKOVBy Lemma 2 the fun
tion H(�(�)) is a pointwise limit of the monotonouslyin
reasing sequen
es of fun
tionsfn(�) = Tr��Pn�(�)Pn��I logTr �Pn�(�)Pn�� log �Pn�(�)Pn���;whi
h are 
ontinuous and bounded on S(H). Hen
e the fun
tion H(�(�)) is measur-able and the monotonous 
onvergen
e theorem impliesZS(H)H��(�)��(d�) = limn!1 ZS(H) fn(�)�(d�):The sequen
e of 
ontinuous fun
tionals� 7�! ZS(H) fn(�)�(d�)is nonde
reasing. Hen
e its pointwise limit is lower semi
ontinuous.By the assumption the restri
tion of the fun
tion H(�(�)) to the set A is 
on-tinuous at some optimal average state ��0. The 
ontinuity of the mapping � 7! ��(�)implies that the restri
tion of the fun
tional � 7! H(�(��(�))) to the set PA is 
ontin-uous at any point �0 su
h that ��(�0) = ��0. Hen
e H(�(��(�))) < +1 for any point �in the interse
tion of PA with some neighborhood of �0. For every su
h point � re-lation (6) holds. Therefore the restri
tion of the fun
tional ��(�) to the set PA isupper semi
ontinuous, and by Proposition 1 it is 
ontinuous at any point �0 in PAsu
h that ��(�0) = ��0.Let f�ni ; �ni g be an approximating sequen
e of ensembles with the 
orrespondingsequen
e of average states ��n 
onverging to the state ��0. De
omposing ea
h state ofthe ensemble f�ni ; �ni g into a 
ountable 
onvex 
ombination of pure states we obtainthe sequen
e fb�nj ; b�nj g of generalized ensembles 
onsisting of a 
ountable number ofpure states with the same sequen
e of the average states ��n. Let b�n be the sequen
eof measures as
ribing value b�nj to the set fb�nj g for ea
h j. It follows that��(b�n) =Xj b�nj H��(b�nj ) k�(��n)� =Xi �ni H��(�ni ) k�(��n)� = ���f�ni ; �ni g�;(12)where the inequality follows from the 
onvexity of the relative entropy. By 
onstru
-tion supp b�n � ExtrS(H) for ea
h n. By Proposition 2 there exists a subsequen
e b�nk ,
onverging to some measure �� in PA. Sin
e the set ExtrS(H) of all pure states isa 
losed subset of S(H)2, we have supp�� � ExtrS(H) due to Theorem 6.1 in [13℄.It is 
lear that ��(��) = ��0, and, hen
e, as shown above, the restri
tion of the fun
-tional ��(�) to the set PA is 
ontinuous at the point ��. Thus the approximatingproperty of the sequen
e f�ni ; �ni g and (12) implyC(�; A) = limk!1���f�nki ; �nki g� 5 limk!1��(b�nk ) = ��(��):Sin
e the 
onverse inequality follows from Corollary 1, we obtain C(�;A) = ��(��),whi
h means that the measure �� is an optimal generalized ensemble for the A-
onstrained 
hannel �. The theorem is proved.2The set ExtrS(H) is des
ribed by the inequality H(�) 5 0, and due to the lower semi
ontinuityof the quantum entropy it is 
losed.



CONTINUOUS ENSEMBLES 93Corollary 2. For the arbitrary state �0 with H(�(�0)) < +1 there exists ageneralized ensemble3 �0 su
h that ��(�0) = �0 and��(�0) � supPi �i�i=�0 ���f�i; �ig� = ZS(H)H��(�) k�(�0)��0(d�):Proof. It is suÆ
ient to note that the 
onditions of the theorem hold triviallyfor A = f�0g.In the �nite-dimensional 
ase we obviously haveC(�;A) = ��(��);(13)where �� is the average state of any optimal ensemble. The generalization of thisrelation to the in�nite-dimensional 
ase is 
losely 
onne
ted to the question of theexisten
e of the optimal generalized ensemble.Corollary 3. If an optimal generalized ensemble for the A-
onstrained 
han-nel � exists, then equality (13) holds for some optimal average state �� for the A-
onstrained 
hannel �.If equality (13) holds for some optimal average state �� for the A-
onstrained 
han-nel � with H(�(��)) < +1, then there exists an optimal generalized ensemble for theA-
onstrained 
hannel �.Proof. The �rst assertion is obvious while the se
ond one follows from Corollary 2.Remark. The 
ontinuity 
ondition in the theorem is essential, as is shown inAppendix C. It is possible to show that this 
ondition holds automati
ally if theset A is 
onvex with a �nite number of extreme points with �nite output entropy. We
onje
ture that this 
ondition holds for the arbitrary 
onvex 
ompa
t set A due tothe spe
ial properties of optimal average states in this 
ase, 
onsidered in [17℄.Proposition 3. Let A be a 
ompa
t set and H 0 be an H-operator in the spa
e H0su
h that Tr exp(��H 0) < +1 for all � > 0(14)and Tr�(�)H 0 5 h0 for all � 2 A. Then there exists an optimal generalized ensemblefor the A-
onstrained 
hannel �.Proof. We show that under the 
onditions of the lemma the restri
tion of theoutput entropy H(�(�)) to the set A is 
ontinuous, whi
h implies validity of the
onditions of the theorem.Let �0� = (Tr exp(��H 0))�1 exp(��H 0) be a state in S(H0). For arbitrary � in Awe have H��(�) k �0�� = �H��(�)�+ � Tr�(�)H 0 + logTr exp(��H 0):(15)Let f�ng be an arbitrary sequen
e of states in A 
onverging to the state �. Byusing (15) and the lower semi
ontinuity of the relative entropy we obtainlim supn!1 H��(�n)� = H��(�)�+H��(�) k �0��� lim infn!1 H��(�n) k �0��+ lim supn!1 � Tr�(�n)H 0 � �Tr�(�)H 0 5 H��(�)�+ �h0:3In what follows we 
an 
onsider the generalized ensembles as measures supported by the set ofpure states.



94 A. S. HOLEVO AND M. E. SHIROKOVBy letting � in the above inequality tend to zero we 
an establish the upper semi
onti-nuity of the restri
tion of the fun
tion H(�(�)) to the set A. The lower semi
ontinuityof this fun
tion follows from the lower semi
ontinuity of the entropy [19℄. Hen
e therestri
tion of the fun
tion H(�(�)) to the set A is 
ontinuous. Proposition 3 is proved.The 
ondition of Proposition 3 is ful�lled for Gaussian 
hannels with the power
onstraint of the form (9) where H = RT �R is the many-mode os
illator Hamiltonianwith nondegenerate energy matrix �, and R are the 
anoni
al variables of the system.We give a brief sket
h of the argument whi
h 
an be made rigorous by taking 
are ofthe unboundedness of the 
anoni
al variables. Indeed, letR0 = KR+KEREbe the equation of the 
hannel in the Heisenberg pi
ture, where RE are the 
anoni
alvariables of the environment whi
h is in the Gaussian state with zero mean and the
orrelation matrix �E [9℄. Taking H 0 = 
[RTR � I�EKTE KE℄, where denotes thetra
e of a matrix, we have ��(H 0) = 
RTKTKR, and we 
an always 
hoose a positive
 su
h that ��(H 0) 5 H . Moreover, H 0 satis�es 
ondition (14). Thus the 
onditionsof Proposition 3 
an be ful�lled in this 
ase.Conje
ture. For an arbitrary Gaussian 
hannel with the power 
onstraint anoptimal generalized ensemble is given by a Gaussian measure supported by the set ofpure Gaussian states with arbitrary mean and a �xed 
orrelation matrix.This 
onje
ture was stated in [9℄ for the attenuation/ampli�
ation 
hannel with
lassi
al noise. For the 
ase of a pure attenuation 
hannel 
hara
terized by the prop-erty of zero minimal output entropy the validity of this 
onje
ture was establishedin [4℄. Note also that the 
lassi
al analogue of the above 
onje
ture is the asser-tion that the optimal input distribution for a Gaussian 
hannel with quadrati
 input
onstraint is Gaussian.5. Convex 
onstraints. In the 
ase of a 
onvex 
onstraint set there are furtherspe
ial properties, su
h as the uniqueness of the output of an optimal average state;see [17℄. The following lemma is a generalization of Donald's identity [3℄.Lemma 4. For an arbitrary measure � in P and an arbitrary state � in S(H)the following identity holds:ZS(H)H(� k�)�(d�) = ZS(H)H�� k ��(�)��(d�) +H���(�) k��:(16)Proof. We �rst noti
e that in the �nite-dimensional 
ase Donald's identityXi �iH(�i k�) =Xi �iH��i k ��(�)� +H���(�) k��holds for not ne
essarily normalized positive operators with the generalized de�nitionof the relative entropy (2). This 
an obviously be extended to generalized ensemblesin �nite-dimensional Hilbert spa
e, giving (16) for this 
ase. Thus this relation holdsfor the operators Pn�Pn; Pn�Pn, where Pn is an arbitrary sequen
e of �nite proje
torsin
reasing to IH. Passing to the limit as n ! 1 and referring to the monotonous
onvergen
e theorem, we obtain (16) in the in�nite-dimensional 
ase. Lemma 4 isproved.The following proposition is a generalization of the \maximal distan
e prop-erty" [10, Proposition 1℄.



CONTINUOUS ENSEMBLES 95Proposition 4. Let A be a 
onvex subset of S(H). A measure � 2 PA is anoptimal generalized ensemble for the A-
onstrained 
hannel � if and only ifZS(H)H��(�) k����(�)���(d�) 5 ZS(H)H��(�) k����(�)���(d�) = ��(�)(17)for the arbitrary measure � 2 PA.Proof. Let inequality (17) hold for the arbitrary measure � 2 PA. By Lemma 4we have ��(�) 5 ZS(H)H��(�) k����(�)���(d�) +H�����(�)� k����(�)��= ZS(H)H��(�) k����(�)���(d�) 5 ��(�);whi
h implies the optimality of the measure �.Conversely, let � be an optimal generalized ensemble for the A-
onstrained 
han-nel � and let � be an arbitrary measure in PA. By the 
onvexity of the set A themeasure �� = ��+(1� �)� is also in PA for arbitrary � 2 (0; 1). By using Lemma 4we obtain ��(�) = ��(��) = ZS(H)H��(�) k����(��)����(d�)= � ZS(H)H��(�) k����(��)���(d�)+ (1� �)��(�) + (1� �)H���(�) k ��(��)�:By the nonnegativity of the relative entropy we haveZS(H)H��(�) k����(��)���(d�) 5 ��(�):(18)By using the lower semi
ontinuity of the relative entropy we obtainlim inf�!0 ZS(H)H��(�) k����(��)���(d�) = ZS(H) lim inf�!0 H��(�) k����(��)���(d�)= ZS(H)H��(�) k����(�)���(d�):Proposition 4 is proved.Appendix A.Theorem (see [1℄). Let �n be a sequen
e of positive tra
e 
lass operators 
on-verging to � in the weak operator topology and su
h that limn!1Tr �n = Tr �. Thenthe sequen
e �n 
onverges to � in the tra
e norm.This implies that a sequen
e of quantum states 
onverging to a state in theweak operator topology 
onverges to it in the tra
e norm. One 
an 
onsider thisas a non
ommutative generalization of the fa
t that weak 
onvergen
e of probabilitydistributions on a dis
rete probability spa
e implies l1 
onvergen
e. By using thistheorem we 
an amplify to the tra
e norm topology the 
ompa
tness 
riterion givenin [14℄ under the name \the non
ommutative Prokhorov theorem."
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ompa
tness 
riterion. A tra
e norm 
losed subset K of S(H) is 
ompa
tin the tra
e norm topology if and only if for arbitrary " > 0 there exists a �nite rankproje
tor P" su
h that TrP"� > 1� " for all � 2 K.Proof. Let K be a 
ompa
t subset of S(H). Suppose that there is " > 0 su
hthat for an arbitrary �nite rank proje
tor P there exists a state � 2 K su
h thatTrP� 5 1 � ". Let Pn be a sequen
e of �nite rank proje
tors in H monotonously
onverging to the identity operator IH in the weak operator topology and �n bethe 
orresponding sequen
e of states in K. By the 
ompa
tness of K there exists asubsequen
e �nk 
onverging to a state �� 2 K. By 
onstru
tionTrPnl�nk 5 TrPnk�nk 5 1� " for all k > l:Hen
e Tr �� = liml!+1TrPnl�� = liml!+1 limk!+1TrPnl�nk 5 1� ";whi
h 
ontradi
ts the fa
t that �� 2 K � S(H).Conversely, let K be a subset of S(H) satisfying the 
riterion. Let �n be anarbitrary sequen
e in K. Sin
e the unit ball in B(H) is 
ompa
t in the weak operatortopology, there exists a subsequen
e �nk 
onverging to a positive operator �� in thistopology. We have Tr �� 5 lim infk!1 Tr �nk = 1;therefore to prove that �� is a state it is suÆ
ient to show that Tr �� = 1. Let " > 0and P" be the 
orresponding proje
tor. ThenTr �� = TrP"�� = limk!1TrP"�nk > 1� ";where the equality follows from the �nite dimensionality of the spa
e P"(H). Thus ��is a state. The theorem given above implies that the subsequen
e �nk 
onverges tothe state �� in the tra
e norm. Thus the set K is tra
e norm 
ompa
t.Appendix B.Proof of Lemma 1. We �rst noti
e that supp� � U , where U is a 
losed 
onvexsubset of S(H), implies ��(�) 2 U:(19)This is obvious for an arbitrary measure � with �nite support. By Theorem 6.3 in [13℄the set of su
h measures is dense in P . The 
ontinuity of the mapping � 7! ��(�)
ompletes the proof of (19).Now let � be an arbitrary measure in P . Sin
e S(H) is separable, for ea
hn 2 N there exists a sequen
e fAni g of Borel sets of diameters less than 1=n su
h thatS(H) = S iAni , Ani \ Anj = ? provided j 6= i. Let m = m(n) be a number su
h thatP+1i=m+1 �(Ani ) < 1=n. Consider the �nite 
olle
tion of Borel sets f bAni gm+1i=1 , wherebAni = Ani for all i = 1; : : : ;m and bAnm+1 = S+1i=m+1Ani . We have��(�) = m+1Xi=1 Z bAni � �(d�) = m+1Xi=1 �ni �ni ;(20)



CONTINUOUS ENSEMBLES 97where �ni = Tr R bAni � �(d�) = �( bAni ) and �ni = (�( bAni ))�1 R bAni � �(d�) (without loss ofgenerality we assume �ni > 0). Let �n be the probability measure on S(H) as
ribingthe value �ni to the set f�ni g. Equality (20) implies ��(�n) = ��(�). Sin
e the measure �nhas �nite support for ea
h n, to prove the assertion of the lemma it is suÆ
ient to showweak 
onvergen
e of the sequen
e of measures �n to the measure �. By Theorem 6.1in [13℄, to establish the above 
onvergen
e it is suÆ
ient to show thatlimn!+1 ZS(H) f(�)�n(d�) = ZS(H) f(�)�(d�)for the arbitrary bounded uniformly 
ontinuous fun
tion f(�) on S(H). Let Mf =sup�2S(H) jf(�)j. For arbitrary " > 0 let n" be su
h that "n" > 2Mf andsup�2U(n") f(�)� inf�2U(n") f(�) < "for the arbitrary 
losed ball U(n") of diameter 1=n". Let n = n". By 
onstru
tionthe set bAni is 
ontained in some ball Ui(n) for ea
h i = 1; : : : ;m. By (19) the state�ni lies in the same ball Ui(n). Hen
e we have���� ZS(H) f(�)�n(d�)� ZS(H) f(�)�(d�)���� 5 m+1Xi=1 Z bAni ��f(�)� f(�i)���(d�)5 " mXi=1 �( bAni ) + 2Mf�( bAnm+1) < 2" for all n = n":Appendix C. Example of a 
hannel without optimal generalized en-sembles. We give an example of a 
lassi
al 
hannel, whi
h 
an be extended to thequantum one in a standard way. Consider the abelian von Neumann algebra l1 andits predual l1, whi
h 
an be 
onsidered as spa
es of diagonal operators in the separableHilbert spa
e l2. Let � be the identity 
hannel in l1. Consider the sequen
e of states(probability distributions)�n = f1� qn; n�1qn; n�1qn; : : : ; n�1qn| {z }n ; 0; 0; : : :g;where qn is a sequen
e in [0; 1℄, whi
h will be de�ned below. Note that in this 
ase��(�n) = H(�n) = h2(qn) + qn logn, where h2(x) = �x logx � (1 � x) log(1 � x).We will show later that there exists a sequen
e qn su
h that limn!+1 qn = 0, whilethe 
orresponding sequen
e ��(�n) = H(�n) monotonously in
reases to 1. Let qn besu
h a sequen
e and let A be the 
losure of the sequen
e �n, whi
h obviously 
onsistsof states �n and the pure state �� = limn!+1 �n = f1; 0; 0; : : :g. By the de�nitionand the monotoni
ity C(�;A) = limn!+1 ��(�n) = 1, while �� is the only optimalaverage state for the A-
onstrained 
hannel � and ��(��) = H(��) = 0. Thus wehave C(�;A) > ��(��) and Corollary 3 implies that there is no optimal ensemble forthe A-
onstrained 
hannel �.Let us 
onstru
t the sequen
e qn with the above properties. Consider the stri
tlyin
reasing fun
tion f(x) = x(1 � logx) on [0; 1℄. It easy to see that f 0(x) = � logxand f([0; 1℄) = [0; 1℄. Let f�1 be the 
onverse fun
tion and g(x) = xf�1((log 2)=x)for all x = 1. Note that the fun
tion g(x) is impli
itly de�ned by the equationg�1� log�gx�� = log 2:(21)



98 A. S. HOLEVO AND M. E. SHIROKOVUsing this fa
t, it is easy to see that the fun
tion g(x) satis�es the following di�erentialequation log�gx� g0 = gx :(22)Sin
e g(x)=x = f�1((log 2)=x), we have g(x)=x 2 [0; 1℄. This fa
t, with (21) and (22),implies g(x) 2 [0; 1℄, limx!+1 g(x) = 0, and g0(x) < 0. Consider the fun
tion H(x) =h2(g(x)) + g(x) logx. By the above-mentioned properties of the fun
tion g(x), (21)and (22) we obtain limx!+1H(x) = (log 2)�1 limx!+1 g(x) log x = 1 andH 0(x) = (log 2)�1�g0(x) log �1� g(x)�� g0(x) log g(x) + g0(x) logx+ g(x)x �= (log 2)�1g0(x) log(1� g(x)) > 0 8x > 1:It follows that H(x) is an in
reasing fun
tion on [1;+1), tending to 1 at in�nity.Setting qn = g(n) we obtain the sequen
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