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CONTINUOUS ENSEMBLES 87veri�ed in partiular in the ase of bosoni Gaussian hannels with onstrained meanenergy. In the ase of onvex onstraints we give a haraterization of the optimalgeneralized ensemble extending the \maximal distane property" (see [15℄, [10℄).2. Preliminaries. We give below for referene some results from nonommuta-tive probability theory (see details in [7℄ and [14℄).Let H be a separable Hilbert spae, B(H) the algebra of all bounded operatorsinH, and T(H) the Banah spae of all trae-lass operators with the trae norm k�k1.State is a positive trae lass operator � in H with unit trae: � = 0, Tr � = 1.The algebra B(H) is alled the algebra of observables of a quantum system; then astate determines the expetation funtional A 7! Tr �A, A 2 B(H). The set of allstates S(H) is a onvex losed subset of T(H) whih is a omplete separable metrispae with the metri de�ned by the norm.In what follows we shall use the fat that onvergene of a sequene of states to astate in the weak operator topology is equivalent to the trae norm onvergene [1℄.Note also the following haraterization of ompat subsets of states (a nonommu-tative analogue of Prokhorov's theorem): A losed subset K of states in S(H) isompat if and only if for any " > 0 there is a �nite-dimensional projetor P suhthat Tr �P = 1� " for all � 2 K. A proof of this result is given in Appendix A.A �nite set �i; �i of the states �i with respetive probabilities �i is alled anensemble; the state � =Pi �i�i is alled an average of the ensemble.Definition. We all an arbitrary Borel probability measure � on S(H) a gener-alized ensemble. The average1 of the generalized ensemble � is de�ned by the Pettisintegral ��(�) = ZS(H) � �(d�):Using the result of [1℄ it is possible to show that the integral also exists inBohner's sense (see [5℄) with respet to the trae norm. The onventional ensemblesorrespond to measures with �nite support.Denote by P the onvex set of all probability measures on S(H) equipped withthe topology of weak onvergene [2℄. The mapping � 7! ��(�) is ontinuous in thistopology. In fat the weak onvergene of a sequene f�ng � P to � 2 P impliesonvergene of the sequene of states f��(�n)g to the state ��(�) in the weak operatortopology, and, hene, by the result in [1℄, in the trae norm.Lemma 1. The subset of measures with �nite support is dense in the set of allmeasures with given average ��.A proof of this statement is given in Appendix B.In what follows, log denotes the funtion on [0;+1), whih oinides with theusual logarithm on (0;+1) and vanishes at zero. If A is a positive �nite rank operator,then the entropy is de�ned asH(A) = TrA(I logTrA� logA);(1)where I is the unit operator inH. In partiular, the entropy of a state � (von Neumannentropy) is equal to H(�) = �Tr� log �:1Also alled a baryenter of the measure �.



88 A. S. HOLEVO AND M. E. SHIROKOVIf A and B are two suh operators, then the relative entropy is de�ned asH(A kB) = Tr(A logA�A logB +B �A)(2)provided ranA � ranB, and H(A kB) = +1 otherwise (throughout this paper, randenotes the losure of the range of an operator).These de�nitions an be extended to arbitrary positive trae lass operators Aand B with the help of the following lemma [11℄.Lemma 2. Let fPng be an arbitrary sequene of �nite-dimensional projetorsmonotonously inreasing to the unit operator I in the strong operator topology. Thesequenes fH(PnAPn)g and fH(PnAPn kPnBPn)g are monotonously inreasing andtheir limits (�nite or in�nite) do not depend on the hoie of the sequene fPng.We an thus de�ne the entropy and the relative entropy asH(A) = limn!+1H(PnAPn); H(A kB) = limn!+1H(PnAPn kPnBPn):As is well known, the properties of the entropy for in�nite- and �nite-dimensionalHilbert spaes di�er quite substantially: In the latter ase the entropy is a boundedontinuous funtion on S(H), while in the former it is disontinuous (lower semion-tinuous) at every point, and in�nite \almost everywhere" in the sense that the set ofstates with �nite entropy is a �rst ategory subset of S(H) [19℄.3. The �-apaity of onstrained hannels. LetH;H0 be a pair of separableHilbert spaes whih we shall all orrespondingly the input and the output spae.A hannel � is a linear positive trae-preserving map from T(H) to T(H0) suh thatthe dual map �� : B(H0) 7! B(H) (whih exists sine � is bounded) is ompletelypositive [7℄. In partiular, a hannel maps (input) states in H to (output) states in H0.Let A be an arbitrary subset ofS(H). Consider the onstraint on an input ensem-ble f�i; �ig, de�ned by the requirement �� 2 A. The hannel � with this onstraintis alled the A-onstrained hannel. We de�ne the �-apaity of the A-onstrainedhannel � as C(�;A) = sup��2A���f�i; �ig�;(3)where ���f�i; �ig� =Xi �iH��(�i) k�(��)�:(4) Throughout this paper we shall onsider the onstraint sets A suh thatC(�; A) < +1:(5) The subset of P onsisting of all measures � with the average state ��(�) inA � S(H) will be denoted by PA.Lemma 2 implies, in partiular, that the nonnegative funtion� 7! H��(�) k����(�)��is measurable on S(H). Hene the funtional��(�) = ZS(H)H��(�) k����(�)���(d�)is well de�ned on the set P (with the range [0;+1℄).



CONTINUOUS ENSEMBLES 89Proposition 1. The funtional ��(�) is lower semiontinuous on the set P.If H(�(��(�))) <1, then��(�) = H�����(�)��� ZS(H)H��(�)��(d�):(6) Proof. Let fPng be an arbitrary sequene of �nite-dimensional projetors mono-tonously inreasing to the unit operator I . We show �rst that the funtionals�n�(�) = ZS(H)H�Pn�(�)Pn kPn����(�)�Pn��(d�)are ontinuous on the set P .We have ran �Pn�(�)Pn� � ran �Pn����(�)�Pn�for �-almost all �. Indeed, losure of the range is the orthogonal omplement tothe null subspae of a Hermitian operator, and for the null subspaes the oppositeinlusion holds obviously. It follows thatH�Pn�(�)Pn kPn����(�)�Pn�= Tr�Pn�(�)Pn log �Pn�(�)Pn�� Pn�(�)Pn log �Pn����(�)�Pn�+Pn����(�)�Pn � Pn�(�)Pn�for �-almost all �. By using (1) we have�n�(�) = � ZS(H)H�Pn�(�)Pn��(d�) + ZS(H) Tr �Pn�(�)� logTr �Pn�(�)��(d�)� ZS(H) Tr �Pn�(�)Pn� log �Pn����(�)�Pn�� (d�)+ ZS(H) Tr �Pn����(�)���(d�) � ZS(H)Tr �Pn�(�)��(d�):It is easy to see that the two last terms anel, while the entral term an be trans-formed in the following way:� ZS(H)Tr �Pn�(�)Pn� log �Pn����(�)�Pn��(d�)= �TrZS(H) �Pn�(�)Pn� log �Pn����(�)�Pn��(d�)= H�Pn����(�)�Pn��Tr �Pn����(�)�� logTr �Pn����(�)��:Hene�n�(�) = H�Pn����(�)�Pn��Tr �Pn����(�)�� logTr �Pn����(�)��� ZS(H)H�Pn���)Pn��(d�) + ZS(H)Tr �Pn�(�)� logTr �Pn�(�)��(d�):(7)The ontinuity and boundedness of the quantum entropy in the �nite-dimensionalase and similar properties of the funtion � 7! Tr(Pn�(�)) logTr(Pn�(�)) implyontinuity of the funtionals �n�(�) for all n.



90 A. S. HOLEVO AND M. E. SHIROKOVBy the monotonous onvergene theorem the sequene of funtionals �n�(�) ismonotonously inreasing and pointwise onverges to ��(�). Hene the funtional ��(�)is lower semiontinuous as an upper bound of a family of ontinuous funtionals.To prove (6) note that Lemma 2 implieslimn!+1H�Pn����(�)�Pn� = H�����(�)��and limn!+1 ZS(H)H�Pn���)Pn��(d�) = ZS(H)H��(�)� �(d�)due to the monotonous onvergene theorem. For every � the sequene fTr(Pn�(�))gis in [0; 1℄ and onverges to 1 and therefore, limn!+1 Tr(Pn(�)) logTr(Pn(�)) = 0; inpartiular the seond term in (7) tends to 0. Sine jx log xj < 1 for all x 2 (0; 1℄; thelast term in (7) also tends to 0 by the dominated onvergene theorem. So, passingto the limit n!1 in (7) gives (6). Proposition 1 is proved.Corollary 1. The �-apaity of A-onstrained hannel � an be de�ned byC(�; A) = sup�2PA ��(�):Proof. De�nition (3) is a similar expression in whih the supremum is over allmeasures in PA with �nite support. By Lemma 1 we an approximate arbitrarymeasure � in PA by a sequene f�ng of measures in PA with �nite supports. ByProposition 1 lim infn!+1 ��(�n) = ��(�). It follows that the supremum over allmeasures in PA oinides with the supremum over all measures in PA with �nitesupport. Corollary 1 is proved.4. Compat onstraints. It will be onvenient to use the following terminol-ogy: an unbounded positive operatorH inH with disrete spetrum of �nite multipli-ity will be alled an H-operator. Let Qn be the spetral projetor of H orrespondingto the lowest n eigenvalues. Following [8℄ we shall denoteTr �H = limn!1Tr �QnH;(8)where the sequene on the right side is monotonously nondereasing. It was shownin [8℄ that K = f� : Tr �H 5 hg(9)is a ompat subset of S(H) for the arbitrary H-operator H .Lemma 3. Let A be a ompat subset of S(H). Then there exist an H-operator Hand a positive number h suh that Tr �H 5 h for all � 2 A.Proof. By the ompatness riterion (see Appendix A) for any natural n thereexists a �nite rank projetor Pn suh that Tr �Pn = 1�n�3 for all � in A. Without lossof generality we may assume that W+1k=1Pk(H) = H, where W denotes a losed linearspan of the subspaes. Let bPn be the projetor on the �nite-dimensional subspaeW nk=1Pk(H). Thus H =P+1n=1 n( bPn+1 � bPn) is an H-operator satisfyingTr �H = +1Xn=1nTr �( bPn+1 � bPn) 5 +1Xn=1nTr �(IH � bPn) 5 +1Xn=1n�2 = hfor arbitrary state � in the set A. Lemma 3 is proved.



CONTINUOUS ENSEMBLES 91This lemma an be used to establish ompatness of some subsets of states. Con-sider, for example, the set C(�; �) of all states ! in the tensor produt of Hilbertspaes H and K having �xed partial traes TrK ! = � and TrH ! = �. By Lemma 3there exist H-operators A and B in the spaes H and K, respetively, suh thatTr �A = � < +1 and Tr�B = � < +1. It is easy to see that C = A
IK+IH
B isan H-operator in the spae H
K andTr!C = Tr �A+Tr�B = �+ � < +1 8! 2 C(�; �):The remark before Lemma 3 implies the ompatness of the set C(�; �).Proposition 2. The set PA is a ompat subset of P if and only if the set A isa ompat subset of S(H).Proof. Let the set PA be ompat. The set A is the image of the set PA underthe ontinuous mapping � 7! ��(�), and hene it is ompat.Let the set A be ompat. By Lemma 3 there exists an H-operator H suh thatTr �H 5 h for all � in A. For arbitrary � 2 PA we haveZS(H)(Tr �H)�(d�) = Tr�ZS(H) � �(d�)H� = Tr ��(�)H 5 h:(10)The existene of the integral on the left side and the �rst equality follows from themonotonous onvergene theorem, sine the funtion Tr �H is the limit of the nonde-reasing sequene of ontinuous bounded funtions Tr �QnH by (8).Let K" = f� : Tr �H 5 h"�1g. The set K" is ompat for any ". By (10) for anymeasure � in PA we have��S(H)nK"� = ZS(H)nK" �(d�) 5 "h�1 ZS(H)nK"(Tr �H)�(d�) 5 ":(11)Compatness of the set PA follows from Prokhorov's theorem [12℄. Proposition 2 isproved.We will use the following notions, introdued in [17℄. The sequene of ensem-bles f�ki ; �ki g with the averages ��k 2 A is alled an approximating sequene iflimk!+1���f�ki ; �ki g� = C(�; A):The state �� 2 A is alled an optimal average state for the A-onstrained hannel � ifit is a partial limit of a sequene of average states for some approximating sequeneof ensembles. Compatness of the set A implies that the set of optimal average statesis not empty.Theorem. Let A be a ompat subset. If the restrition of the output en-tropy H(�(�)) to the set A is ontinuous at an optimal average state ��0 2 A, then thereexists an optimal generalized ensemble �� in PA suh that supp�� � ExtrS(H) andC(�; A) = ��(��) = ZS(H)H��(�) k����(��)����(d�):Proof. We will show �rst that the funtional� 7�! ZS(H)H��(�)� �(d�)is well de�ned and lower semiontinuous on the set P .



92 A. S. HOLEVO AND M. E. SHIROKOVBy Lemma 2 the funtion H(�(�)) is a pointwise limit of the monotonouslyinreasing sequenes of funtionsfn(�) = Tr��Pn�(�)Pn��I logTr �Pn�(�)Pn�� log �Pn�(�)Pn���;whih are ontinuous and bounded on S(H). Hene the funtion H(�(�)) is measur-able and the monotonous onvergene theorem impliesZS(H)H��(�)��(d�) = limn!1 ZS(H) fn(�)�(d�):The sequene of ontinuous funtionals� 7�! ZS(H) fn(�)�(d�)is nondereasing. Hene its pointwise limit is lower semiontinuous.By the assumption the restrition of the funtion H(�(�)) to the set A is on-tinuous at some optimal average state ��0. The ontinuity of the mapping � 7! ��(�)implies that the restrition of the funtional � 7! H(�(��(�))) to the set PA is ontin-uous at any point �0 suh that ��(�0) = ��0. Hene H(�(��(�))) < +1 for any point �in the intersetion of PA with some neighborhood of �0. For every suh point � re-lation (6) holds. Therefore the restrition of the funtional ��(�) to the set PA isupper semiontinuous, and by Proposition 1 it is ontinuous at any point �0 in PAsuh that ��(�0) = ��0.Let f�ni ; �ni g be an approximating sequene of ensembles with the orrespondingsequene of average states ��n onverging to the state ��0. Deomposing eah state ofthe ensemble f�ni ; �ni g into a ountable onvex ombination of pure states we obtainthe sequene fb�nj ; b�nj g of generalized ensembles onsisting of a ountable number ofpure states with the same sequene of the average states ��n. Let b�n be the sequeneof measures asribing value b�nj to the set fb�nj g for eah j. It follows that��(b�n) =Xj b�nj H��(b�nj ) k�(��n)� =Xi �ni H��(�ni ) k�(��n)� = ���f�ni ; �ni g�;(12)where the inequality follows from the onvexity of the relative entropy. By onstru-tion supp b�n � ExtrS(H) for eah n. By Proposition 2 there exists a subsequene b�nk ,onverging to some measure �� in PA. Sine the set ExtrS(H) of all pure states isa losed subset of S(H)2, we have supp�� � ExtrS(H) due to Theorem 6.1 in [13℄.It is lear that ��(��) = ��0, and, hene, as shown above, the restrition of the fun-tional ��(�) to the set PA is ontinuous at the point ��. Thus the approximatingproperty of the sequene f�ni ; �ni g and (12) implyC(�; A) = limk!1���f�nki ; �nki g� 5 limk!1��(b�nk ) = ��(��):Sine the onverse inequality follows from Corollary 1, we obtain C(�;A) = ��(��),whih means that the measure �� is an optimal generalized ensemble for the A-onstrained hannel �. The theorem is proved.2The set ExtrS(H) is desribed by the inequality H(�) 5 0, and due to the lower semiontinuityof the quantum entropy it is losed.



CONTINUOUS ENSEMBLES 93Corollary 2. For the arbitrary state �0 with H(�(�0)) < +1 there exists ageneralized ensemble3 �0 suh that ��(�0) = �0 and��(�0) � supPi �i�i=�0 ���f�i; �ig� = ZS(H)H��(�) k�(�0)��0(d�):Proof. It is suÆient to note that the onditions of the theorem hold triviallyfor A = f�0g.In the �nite-dimensional ase we obviously haveC(�;A) = ��(��);(13)where �� is the average state of any optimal ensemble. The generalization of thisrelation to the in�nite-dimensional ase is losely onneted to the question of theexistene of the optimal generalized ensemble.Corollary 3. If an optimal generalized ensemble for the A-onstrained han-nel � exists, then equality (13) holds for some optimal average state �� for the A-onstrained hannel �.If equality (13) holds for some optimal average state �� for the A-onstrained han-nel � with H(�(��)) < +1, then there exists an optimal generalized ensemble for theA-onstrained hannel �.Proof. The �rst assertion is obvious while the seond one follows from Corollary 2.Remark. The ontinuity ondition in the theorem is essential, as is shown inAppendix C. It is possible to show that this ondition holds automatially if theset A is onvex with a �nite number of extreme points with �nite output entropy. Weonjeture that this ondition holds for the arbitrary onvex ompat set A due tothe speial properties of optimal average states in this ase, onsidered in [17℄.Proposition 3. Let A be a ompat set and H 0 be an H-operator in the spae H0suh that Tr exp(��H 0) < +1 for all � > 0(14)and Tr�(�)H 0 5 h0 for all � 2 A. Then there exists an optimal generalized ensemblefor the A-onstrained hannel �.Proof. We show that under the onditions of the lemma the restrition of theoutput entropy H(�(�)) to the set A is ontinuous, whih implies validity of theonditions of the theorem.Let �0� = (Tr exp(��H 0))�1 exp(��H 0) be a state in S(H0). For arbitrary � in Awe have H��(�) k �0�� = �H��(�)�+ � Tr�(�)H 0 + logTr exp(��H 0):(15)Let f�ng be an arbitrary sequene of states in A onverging to the state �. Byusing (15) and the lower semiontinuity of the relative entropy we obtainlim supn!1 H��(�n)� = H��(�)�+H��(�) k �0��� lim infn!1 H��(�n) k �0��+ lim supn!1 � Tr�(�n)H 0 � �Tr�(�)H 0 5 H��(�)�+ �h0:3In what follows we an onsider the generalized ensembles as measures supported by the set ofpure states.



94 A. S. HOLEVO AND M. E. SHIROKOVBy letting � in the above inequality tend to zero we an establish the upper semionti-nuity of the restrition of the funtion H(�(�)) to the set A. The lower semiontinuityof this funtion follows from the lower semiontinuity of the entropy [19℄. Hene therestrition of the funtion H(�(�)) to the set A is ontinuous. Proposition 3 is proved.The ondition of Proposition 3 is ful�lled for Gaussian hannels with the poweronstraint of the form (9) where H = RT �R is the many-mode osillator Hamiltonianwith nondegenerate energy matrix �, and R are the anonial variables of the system.We give a brief sketh of the argument whih an be made rigorous by taking are ofthe unboundedness of the anonial variables. Indeed, letR0 = KR+KEREbe the equation of the hannel in the Heisenberg piture, where RE are the anonialvariables of the environment whih is in the Gaussian state with zero mean and theorrelation matrix �E [9℄. Taking H 0 = [RTR � I�EKTE KE℄, where denotes thetrae of a matrix, we have ��(H 0) = RTKTKR, and we an always hoose a positive suh that ��(H 0) 5 H . Moreover, H 0 satis�es ondition (14). Thus the onditionsof Proposition 3 an be ful�lled in this ase.Conjeture. For an arbitrary Gaussian hannel with the power onstraint anoptimal generalized ensemble is given by a Gaussian measure supported by the set ofpure Gaussian states with arbitrary mean and a �xed orrelation matrix.This onjeture was stated in [9℄ for the attenuation/ampli�ation hannel withlassial noise. For the ase of a pure attenuation hannel haraterized by the prop-erty of zero minimal output entropy the validity of this onjeture was establishedin [4℄. Note also that the lassial analogue of the above onjeture is the asser-tion that the optimal input distribution for a Gaussian hannel with quadrati inputonstraint is Gaussian.5. Convex onstraints. In the ase of a onvex onstraint set there are furtherspeial properties, suh as the uniqueness of the output of an optimal average state;see [17℄. The following lemma is a generalization of Donald's identity [3℄.Lemma 4. For an arbitrary measure � in P and an arbitrary state � in S(H)the following identity holds:ZS(H)H(� k�)�(d�) = ZS(H)H�� k ��(�)��(d�) +H���(�) k��:(16)Proof. We �rst notie that in the �nite-dimensional ase Donald's identityXi �iH(�i k�) =Xi �iH��i k ��(�)� +H���(�) k��holds for not neessarily normalized positive operators with the generalized de�nitionof the relative entropy (2). This an obviously be extended to generalized ensemblesin �nite-dimensional Hilbert spae, giving (16) for this ase. Thus this relation holdsfor the operators Pn�Pn; Pn�Pn, where Pn is an arbitrary sequene of �nite projetorsinreasing to IH. Passing to the limit as n ! 1 and referring to the monotonousonvergene theorem, we obtain (16) in the in�nite-dimensional ase. Lemma 4 isproved.The following proposition is a generalization of the \maximal distane prop-erty" [10, Proposition 1℄.



CONTINUOUS ENSEMBLES 95Proposition 4. Let A be a onvex subset of S(H). A measure � 2 PA is anoptimal generalized ensemble for the A-onstrained hannel � if and only ifZS(H)H��(�) k����(�)���(d�) 5 ZS(H)H��(�) k����(�)���(d�) = ��(�)(17)for the arbitrary measure � 2 PA.Proof. Let inequality (17) hold for the arbitrary measure � 2 PA. By Lemma 4we have ��(�) 5 ZS(H)H��(�) k����(�)���(d�) +H�����(�)� k����(�)��= ZS(H)H��(�) k����(�)���(d�) 5 ��(�);whih implies the optimality of the measure �.Conversely, let � be an optimal generalized ensemble for the A-onstrained han-nel � and let � be an arbitrary measure in PA. By the onvexity of the set A themeasure �� = ��+(1� �)� is also in PA for arbitrary � 2 (0; 1). By using Lemma 4we obtain ��(�) = ��(��) = ZS(H)H��(�) k����(��)����(d�)= � ZS(H)H��(�) k����(��)���(d�)+ (1� �)��(�) + (1� �)H���(�) k ��(��)�:By the nonnegativity of the relative entropy we haveZS(H)H��(�) k����(��)���(d�) 5 ��(�):(18)By using the lower semiontinuity of the relative entropy we obtainlim inf�!0 ZS(H)H��(�) k����(��)���(d�) = ZS(H) lim inf�!0 H��(�) k����(��)���(d�)= ZS(H)H��(�) k����(�)���(d�):Proposition 4 is proved.Appendix A.Theorem (see [1℄). Let �n be a sequene of positive trae lass operators on-verging to � in the weak operator topology and suh that limn!1Tr �n = Tr �. Thenthe sequene �n onverges to � in the trae norm.This implies that a sequene of quantum states onverging to a state in theweak operator topology onverges to it in the trae norm. One an onsider thisas a nonommutative generalization of the fat that weak onvergene of probabilitydistributions on a disrete probability spae implies l1 onvergene. By using thistheorem we an amplify to the trae norm topology the ompatness riterion givenin [14℄ under the name \the nonommutative Prokhorov theorem."



96 A. S. HOLEVO AND M. E. SHIROKOVThe ompatness riterion. A trae norm losed subset K of S(H) is ompatin the trae norm topology if and only if for arbitrary " > 0 there exists a �nite rankprojetor P" suh that TrP"� > 1� " for all � 2 K.Proof. Let K be a ompat subset of S(H). Suppose that there is " > 0 suhthat for an arbitrary �nite rank projetor P there exists a state � 2 K suh thatTrP� 5 1 � ". Let Pn be a sequene of �nite rank projetors in H monotonouslyonverging to the identity operator IH in the weak operator topology and �n bethe orresponding sequene of states in K. By the ompatness of K there exists asubsequene �nk onverging to a state �� 2 K. By onstrutionTrPnl�nk 5 TrPnk�nk 5 1� " for all k > l:Hene Tr �� = liml!+1TrPnl�� = liml!+1 limk!+1TrPnl�nk 5 1� ";whih ontradits the fat that �� 2 K � S(H).Conversely, let K be a subset of S(H) satisfying the riterion. Let �n be anarbitrary sequene in K. Sine the unit ball in B(H) is ompat in the weak operatortopology, there exists a subsequene �nk onverging to a positive operator �� in thistopology. We have Tr �� 5 lim infk!1 Tr �nk = 1;therefore to prove that �� is a state it is suÆient to show that Tr �� = 1. Let " > 0and P" be the orresponding projetor. ThenTr �� = TrP"�� = limk!1TrP"�nk > 1� ";where the equality follows from the �nite dimensionality of the spae P"(H). Thus ��is a state. The theorem given above implies that the subsequene �nk onverges tothe state �� in the trae norm. Thus the set K is trae norm ompat.Appendix B.Proof of Lemma 1. We �rst notie that supp� � U , where U is a losed onvexsubset of S(H), implies ��(�) 2 U:(19)This is obvious for an arbitrary measure � with �nite support. By Theorem 6.3 in [13℄the set of suh measures is dense in P . The ontinuity of the mapping � 7! ��(�)ompletes the proof of (19).Now let � be an arbitrary measure in P . Sine S(H) is separable, for eahn 2 N there exists a sequene fAni g of Borel sets of diameters less than 1=n suh thatS(H) = S iAni , Ani \ Anj = ? provided j 6= i. Let m = m(n) be a number suh thatP+1i=m+1 �(Ani ) < 1=n. Consider the �nite olletion of Borel sets f bAni gm+1i=1 , wherebAni = Ani for all i = 1; : : : ;m and bAnm+1 = S+1i=m+1Ani . We have��(�) = m+1Xi=1 Z bAni � �(d�) = m+1Xi=1 �ni �ni ;(20)



CONTINUOUS ENSEMBLES 97where �ni = Tr R bAni � �(d�) = �( bAni ) and �ni = (�( bAni ))�1 R bAni � �(d�) (without loss ofgenerality we assume �ni > 0). Let �n be the probability measure on S(H) asribingthe value �ni to the set f�ni g. Equality (20) implies ��(�n) = ��(�). Sine the measure �nhas �nite support for eah n, to prove the assertion of the lemma it is suÆient to showweak onvergene of the sequene of measures �n to the measure �. By Theorem 6.1in [13℄, to establish the above onvergene it is suÆient to show thatlimn!+1 ZS(H) f(�)�n(d�) = ZS(H) f(�)�(d�)for the arbitrary bounded uniformly ontinuous funtion f(�) on S(H). Let Mf =sup�2S(H) jf(�)j. For arbitrary " > 0 let n" be suh that "n" > 2Mf andsup�2U(n") f(�)� inf�2U(n") f(�) < "for the arbitrary losed ball U(n") of diameter 1=n". Let n = n". By onstrutionthe set bAni is ontained in some ball Ui(n) for eah i = 1; : : : ;m. By (19) the state�ni lies in the same ball Ui(n). Hene we have���� ZS(H) f(�)�n(d�)� ZS(H) f(�)�(d�)���� 5 m+1Xi=1 Z bAni ��f(�)� f(�i)���(d�)5 " mXi=1 �( bAni ) + 2Mf�( bAnm+1) < 2" for all n = n":Appendix C. Example of a hannel without optimal generalized en-sembles. We give an example of a lassial hannel, whih an be extended to thequantum one in a standard way. Consider the abelian von Neumann algebra l1 andits predual l1, whih an be onsidered as spaes of diagonal operators in the separableHilbert spae l2. Let � be the identity hannel in l1. Consider the sequene of states(probability distributions)�n = f1� qn; n�1qn; n�1qn; : : : ; n�1qn| {z }n ; 0; 0; : : :g;where qn is a sequene in [0; 1℄, whih will be de�ned below. Note that in this ase��(�n) = H(�n) = h2(qn) + qn logn, where h2(x) = �x logx � (1 � x) log(1 � x).We will show later that there exists a sequene qn suh that limn!+1 qn = 0, whilethe orresponding sequene ��(�n) = H(�n) monotonously inreases to 1. Let qn besuh a sequene and let A be the losure of the sequene �n, whih obviously onsistsof states �n and the pure state �� = limn!+1 �n = f1; 0; 0; : : :g. By the de�nitionand the monotoniity C(�;A) = limn!+1 ��(�n) = 1, while �� is the only optimalaverage state for the A-onstrained hannel � and ��(��) = H(��) = 0. Thus wehave C(�;A) > ��(��) and Corollary 3 implies that there is no optimal ensemble forthe A-onstrained hannel �.Let us onstrut the sequene qn with the above properties. Consider the stritlyinreasing funtion f(x) = x(1 � logx) on [0; 1℄. It easy to see that f 0(x) = � logxand f([0; 1℄) = [0; 1℄. Let f�1 be the onverse funtion and g(x) = xf�1((log 2)=x)for all x = 1. Note that the funtion g(x) is impliitly de�ned by the equationg�1� log�gx�� = log 2:(21)
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