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Аннотация. This paper is devoted to further study of the Holevo capacity of infinite dimensional
quantum channels. Existence of the unique optimal average state for quantum channel constrained
by arbitrary convex set of states is shown. The minimax expression for the Holevo capacity of a
constrained channel is obtained.

The χ-function and the convex closure of the output entropy of an infinite dimensional quantum
channel are considered. It is shown that the χ-function of an arbitrary channel is lower semicontinuous
on the set of all states and has continuous restrictions to subsets of states with continuous output
entropy. The explicit expression for the convex closure of the output entropy of an infinite dimensional
quantum channel is obtained and its properties are explored. It is shown that the convex closure of
the output entropy coincides with the convex hull of the output entropy on the set of states with finite
output entropy and, similarly to the χ-function, it has continuous restrictions to subsets of states with
continuous output entropy. The applications of the obtained results to the theory of entanglement are
considered. The properties of the convex closure of the output entropy make possible to generalize
some results related to the additivity problem to the infinite dimensional case.
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1. Introduction. One of the basic notions of the quantum information theory
is the notion of a quan-tum channel defined as completely positive trace preserving
map from the set of states of input quantum system into the set of states of output
quantum system. Quantum channels are characterized by a set of capacities defined
by type of transmitted information (quantum or classical) and by resources used for
this transmission [7], [25].

While major attention in quantum information theory up to now was paid to
finite dimensional systems, interest to infinite dimensional systems is increasing. For
mathematically rigorous treatment of these systems it is necessary to use specific
results from the operator theory in a Hilbert space, measure theory and infinite
dimensional convex analysis.

This paper is devoted to study of the Holevo capacity2 of infinite dimensional
quantum channels and related entropic characteristics of quantum channels, following
[9], [10], [21], [31].

Frommathematical viewpoint the essential features of infinite dimensional quantum
channels are noncompactness of state space and discontinuity and unboundedness of
the output entropy. As a result for infinite dimensional constrained channel with finite
Holevo capacity generally there exist no optimal ensembles, which plays important
role in study of finite dimensional channels [29]. In [10] the sufficient condition of
existence of an optimal measure (generalized ensemble) for arbitrary constrained
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channel is obtained, but in [10], [32] the examples of constrained channels with
no optimal measure are constructed. In section 3 of this paper it is shown that
despite possible nonexistence of optimal measure for arbitrary channel constrained
by convex set of states there exists the unique state, called output optimal average,
which inherits properties of the image of the average state of an optimal ensemble for
a finite dimensional constrained channel (proposition 1). The minimax expression for
the Holevo capacity is obtained and the alternative definition of the output optimal
average state as the minimum point of the lower semicontinuous function on a compact
set is given (proposition 2).

In section 4 the notion of the χ-function of an infinite dimensional quantum
channel is introduced. By using properties of the output optimal average state the
inequality for the χ-function, derived in [21] for finite dimensional channels, is generalized
to the infinite dimensional case (proposition 3). It is shown that the χ-function of
arbitrary quantum channel is a lower semicontinuous function with natural chain
properties (propositions 4–5). The χ-function version of Simon’s dominated convergence
theorem for quantum entropy is proved (corollary 3).

The another important characteristic of a quantum channel is the convex closure
of the output entropy considered in section 5. Since in the finite dimensional case
the entropy is a continuous function on a compact set, its convex hull coincides with
its convex closure [4] (lower envelope in terms of [12]). The important role of this
function in study of finite dimensional channels is justified by its close relation to the
χ-function: the later is a difference between the output entropy and its convex hull
(closure). In the infinite dimensional case the above coincidence do not hold generally
and it is natural to consider the convex closure of the output entropy instead of its
convex hull. The explicit expression for the convex closure of the output entropy of
an infinite dimensional quantum channel is obtained and its properties are explored
(propositions 6–8, corollary 4). The main technical problem is noncompactness of
the state set, which prevents to use general theory of integral representations on the
compact convex sets [2], [12]. The basic instrument of our approach is the criterion of
compactness of families of probability measures on the set of quantum states as well
as other results from [10]. It is shown that the convex closure of the output entropy
coincides with the convex hull of the output entropy on the set of states with finite
output entropy. Thus, the representation of the χ-function as the difference between
the output entropy and its convex closure is valid on this set similarly to the finite
dimensional case.

By using the results of the previous sections the following continuity observation is
obtained in section 6: the χ-function and the convex closure of the output entropy have
continuous restrictions to arbitrary set of continuity of the output entropy (theorem
1). This and the observation in [10] imply, in particular, continuity of the χ-function
for Gaussian channels with constrained mean energy.

Section 7 is devoted to the additivity problem – one of the basic open problems
of quantum information theory. The results of the previous sections make possible
to prove infinite dimensional versions of the theorems in [21] and [30] concerning
equivalence of different additivity properties for given two quantum channels.

The important partial case of the convex closure of the output entropy is a
special entanglement measure of a state of a bipartite system called Entanglement of
Formation (EoF) [17]. In the finite dimensional case the EoF coincides with the convex
closure of the output entropy of a partial trace, which can be considered as a channel
from the state space of a bipartite system into the state space of a single subsystem.
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In section 8 the arguments for definition of the EoF in the infinite dimensional case as
the convex closure of the output entropy of a partial trace are considered. It is shown
that this definition is natural and implies such properties of the EoF as convexity,
lower semicontinuity on the whole state space and continuity on the set of states with
bounded mean energy. It is shown that this definition coincides with the definition
proposed in [19] for all states with finite entropy of partial states. The question of
their coincidence on the whole state space remains open.

2. Basic notations. Let H be a separable Hilbert space, B(H) be the algebra
of all bounded operators in H, T(H) be the Banach space of all trace class operators
with the trace norm ‖ · ‖1. In what follows we use the term state for positive operator
ρ in H with unit trace: ρ = 0; Tr ρ = 1. The algebra B(H) is generally called the
algebra of observables of a quantum system while the state ρ defines the expectation
functional A 7→ Tr ρA; A ∈ B(H), t.i. normal states in terms of the operator algebras
theory [2]. The set of all states S(H) is a convex closed subset of T(H), which is a
complete separable metric space with the metric defined by the trace norm.

A finite collection of states {ρi} with the corresponding probabilities {πi} is called
(finite) ensemble and is denoted by {πi, ρi}, the state ρ =

∑
i πiρi is called the average

state of this ensemble. In [10] the notion of generalized ensemble as Borel probability
measure π on S(H) is introduced. The average state of a generalized ensemble π is
the state (also called barycenter of the measure π), defined by the Bochner integral

ρ(π) =
∫

S(H)

ρ π(dρ).

Conventional ensembles correspond to measures with finite support.
A convex combination of ensembles is defined as a convex combination of corresponding

probability measures. In particular, for arbitrary set of ensembles {{πk
i , ρk

i }n(k)
i=1 }m

k=1

and probability distribution {λk}m
k=1 the convex combination

∑m
k=1 λk{πk

i , ρk
i }n(k)

i=1 of
the above ensembles is the ensemble, consisting of

∑m
k=1 n(k) states {ρk

i }k,i with the
corresponding probabilities {λkπk

i }k,i.
Let P be the convex set of all probability measures on S(H), endowed with the

topology of weak convergence [1]. In [10] it is noted that the map P 3 π 7→ ρ(π) is
continuous in the above topology. The subset of P, consisting of all measures π with
the barycenter ρ(π) in A ⊆ S(H), will be denoted by PA.

Let A and B be positive operators in T(H). The von Neumann entropy of the
operator A and the relative entropy of the operators A and B are defined correspondingly
by the expressions

H(A) = −
∑

i

〈i|A log A |i〉 and H(A‖B) =
∑

i

〈i|A log A−A log B + B −A|i〉,

where {|i 〉} is the basis of eigenvectors of the operator A (see details in [22], [34]).
The entropy and the relative entropy are lower semicontinuous functions of their
arguments taking values in [0;+∞], the first function is concave while the second one
is convex [22], [34]. The following inequality

(1) H(ρ‖σ) = 1
2
‖ρ− σ‖21,

holds for arbitrary states ρ and σ in S(H) [27].



4 M. E. SHIROKOV

The relative entropy H(ρ‖σ) of states ρ and σ can be considered as a measure
of divergence of these states, its classical analog is called Kulback-Leibler distance.
Despite the fact that this measure is not a metric (it is nonsymmetric and do not
satisfy the triangle inequality), it is possible to introduce the notion of convergence of a
sequence of states {ρn} to a particular state ρ∗, defined by the condition limn→+∞H(ρn‖ρ∗) =
0. In the classical case the topology on the state space, related with this convergence,
is explored in [20], where it is called strong information topology. In quantum
information theory this convergence, which will be called H-convergence, also plays
important role (see. [11, proposition 2]). It follows from inequality (1) that

{
H- lim
n→+∞

ρn = ρ∗
}
⇔

{
lim

n→+∞
H(ρn‖ρ∗) = 0

}
⇒

{
lim

n→+∞
ρn = ρ∗

}
.

We will use Donald’s identity [15], [27]

(2)
n∑

i=1

πiH(ρi ‖ ρ̂) =
n∑

i=1

πiH(ρi ‖ ρ) + H(ρ‖ρ̂),

which holds for arbitrary ensemble {πi, ρi}n
i=1 with the average state ρ and arbitrary

state ρ̂.
LetH, H′ be a pair of separable Hilbert spaces, which will be called correspondingly

input and output spaces. Channel Φ is a linear positive trace preserving map from
T(H) into T(H′) such that the dual map Φ∗ : B(H′) 7→ B(H) (which exists since Φ
is bounded) is completely positive, see. [8, ch. 3, p. 1]. In particular, channel maps
input states in S(H) into output states in S(H′).

The important characteristic of a channel Φ is its output entropy HΦ(ρ) =
H(Φ(ρ)) — concave lower semicontinuous nonnegative function on the set of input
states S(H).

Let A be an arbitrary subset of S(H). Consider the constraint on input ensemble
{πi, ρi}, defined by the inclusion ρ ∈ A. A channel Φ with this constraint is called
A-constrained channel. The Holevo capacity of the A-constrained channel Φ is defined
as follows [9], [10]:

(3) C(Φ,A) = sup
ρ∈A

χΦ({πi, ρi}),

where

(4) χΦ({πi, ρi}) =
∑

i

πiH(Φ(ρi) ‖Φ(ρ)).

In [10] it is shown that the Holevo capacity of the A-constrained channel Φ can
be also defined by the expression

(5) C(Φ,A) = sup
π∈PA

∫

S(H)

H(Φ(ρ) ‖Φ(ρ(π))) π(dρ),

which means coincidence of the supremum over all measures in PA with the supremum
over finitely supported measures in PA.

3. The optimal average state. It is well known that for arbitrary finite
dimensional channel Φ and arbitrary closed set A there exists optimal ensemble
{πi, ρi}, at which the supremum in definition (3) of the Holevo capacity is achieved
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[18], [29]. The image of the average state of an optimal ensemble plays important role
in study of finite dimensional channels [21].

For infinite dimensional quantum channels generally there exist no optimal finite
ensembles. Thus it is natural to introduce the notion of generalized optimal ensemble
as a probability measure on the set of all states, at which the supremum in definition (5)
of the Holevo capacity is achieved. In [10] the sufficient condition of existence of
optimal measure for arbitrary constrained channel is obtained, but examples in [10], [32]
shows that optimal measure does not exist in some cases.

The aim of this section is to show that despite possible nonexistence of an optimal
measure there exists the unique state, inheriting basic properties of the image of the
average state of optimal ensemble for finite dimensional channel. This state is naturally
called the output optimal average for constrained channel. If optimal measure exists
then the image of its average state (barycenter) coincides with the above output
optimal average. By using properties of this state it is possible to generalize some
results in [21] to the case of infinite dimensional channels.

Lemma 1. Let {{πk
i , ρk

i }n(k)
i=1 }m

k=1 be a finite set of ensembles and {λk}m
k=1 be a

probability distribution. Then

χΦ

(
m∑

k=1

λk{πk
i , ρk

i }n(k)
i=1

)
=

m∑

k=1

λkχΦ

(
{πk

i , ρk
i }n(k)

i=1

)
+ χΦ ({λk, ρk}m

k=1) ,

where ρk is the average state of the ensemble {πk
i , ρk

i }n(k)
i=1 , k = 1, . . . , m.

If m = 2 then for arbitrary λ ∈ [0, 1] the following inequality holds

χΦ

(
λ{π1

i , ρ1
i }n(1)

i=1 + (1− λ){π2
i , ρ2

i }n(2)
i=1

)
= λχΦ

(
{π1

i , ρ1
i }n(1)

i=1

)

+(1− λ)χΦ

(
{π2

i , ρ2
i }n(2)

i=1

)
+

λ(1− λ)
2

‖Φ(ρ2)− Φ(ρ1)‖21.

Proof. Let ρ =
∑m

k=1 λkρk be the average state of the ensemble
∑m

k=1 λk{πk
i , ρk

i }n(k)
i=1 .

By definition

χΦ

(
m∑

k=1

λk{πk
i , ρk

i }n(k)
i=1

)
=

m∑

k=1

λk

n(k)∑

i=1

πk
i H

(
Φ(ρk

i )‖Φ(ρ)
)
.

By applying Donald’s identity (2) to each inner sum in the right side of this expression
we obtain the main identity of the lemma.

To prove inequality for m = 2 it is sufficient to use inequality (1) for estimation
of the last term in the right side of the main identity of the lemma:

λH (Φ(ρ1) ‖Φ(λρ1 + (1− λ) ρ2)) + (1− λ)H (Φ(ρ2)‖Φ (λρ1 + (1− λ) ρ2))

= 1
2

λ‖(1− λ)Φ(ρ2 − ρ1)‖21 +
1
2

(1− λ)‖λΦ(ρ2 − ρ1)‖21

=
1
2

λ(1− λ)‖Φ(ρ2)− Φ(ρ1)‖21.

Lemma 1 is proved.
Despite possible nonexistence of optimal ensemble for the A-constrained channel

Φ, the definition of the Holevo capacity implies existence of the sequence with the
following properties.
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Definition 1. A sequence of ensembles {{πk
i , ρk

i }}k such that ρk =
∑

i πk
i ρk

i ∈ A
for all k and limk→+∞ χΦ({πk

i , ρk
i }) = C(Φ,A) is called approximating sequence for

the A-constrained channel Φ.
A state is called input optimal average for the A-constrained channel Φ, if it

is a limit of the sequence of the average states of some approximating sequence of
ensembles for the A-constrained channel Φ.

This definition guarantees neither existence nor uniqueness of input optimal average
(the examples of channels with no input optimal average are considered in [3]).
Existence of at least one input optimal average is a necessary condition of existence
of optimal measure for the A-constrained channel Φ, which also becomes a sufficient
condition if some additional requirements hold. This input optimal average coincides
with the barycenter of the optimal measure (see details in [10]).

Despite possible nonexistence of limit points of the sequence of the average states
of approximating sequence of ensembles for the A-constrained channel, finiteness of
its Holevo capacity guarantees convergence of the sequence of the images of these
averages.

The following proposition is a generalization of proposition 1 in [31] to the case
of noncompact set A.

Proposition 1. Let Φ: S(H) 7→ S(H′) be an arbitrary channel and A be a
convex subset of S(H) such that C(Φ,A) < +∞. There exists the unique state Ω(Φ,A)
in S(H′) such that

∑
j µjH(Φ(σj) ‖Ω(Φ,A)) 5 C(Φ,A) for any ensemble {µj , σj}

with the average σ ∈ A.
The state Ω(Φ,A) lies in Φ(A). For arbitrary approximating sequence of ensembles

{{πk
i , ρk

i }}k for the A-constrained channel Φ with the corresponding sequence of the
average states {ρk}k there exists

H- lim
k→+∞

Φ(ρk) = Ω(Φ,A).

Proof. Show first that for arbitrary approximating sequence of ensembles {Σk =
{πk

i , ρk
i }n(k)

i=1 } for the A-constrained channel Φ the sequence {Φ(ρk)} converges to
some state in S(H′). By definition of approximating sequence for arbitrary ε > 0
there exists Nε such that χΦ(Σk) > C(Φ,A)− ε for any k = Nε. By lemma 1 (with
m = 2 and λ = 1

2 ) we have

C(Φ,A)− ε 5 1
2

χΦ(Σk1) +
1
2

χΦ(Σk2) 5 χΦ

(
1
2

Σk1 +
1
2

Σk2

)

− 1
8
‖Φ(ρk2

)− Φ(ρk1
)‖21 5 C(Φ,A)− 1

8
‖Φ(ρk2

)− Φ(ρk1
)‖21,

for any k1 = Nε and k2 = Nε. Hence, ‖Φ(ρk2
)− Φ(ρk1

)‖1 <
√

8ε. Thus the sequence
{Φ(ρk)} is a Cauchy sequence and hence it converges to some state ω in S(H′).

Let {µj , σj}m
j=1 be arbitrary ensemble of m state with the average σ ∈ A.

Consider the family of ensembles

Σλ
k = (1− λ){πk

i , ρk
i }n(k)

i=1 + λ{µj , σj}m
j=1, λ ∈ [0, 1], k ∈ N,

with the average states ρλ
k = (1−λ) ρk +λσ. By convexity of the set A we have ρλ

k ∈ A
for all λ ∈ [0, 1] and k ∈ N and the above observation implies

(6) lim
k→+∞

Φ(ρλ
k) = (1− λ)ω + λΦ(σ).
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By definition

(7) χΦ(Σλ
k) = (1− λ)

n(k)∑

i=1

πk
i H

(
Φ(ρk

i ) ‖Φ(ρλ
k)

)
+ λ

m∑

j=1

µjH
(
Φ(σj) ‖Φ(ρλ

k)
)
.

By the condition C(Φ,A) < +∞ the both sums in the right side of this expression
are finite. Applying Donald’s identity (2) to the first sum we obtain

n(k)∑

i=1

πk
i H

(
Φ(ρk

i ) ‖Φ(ρλ
k)

)
= χΦ

(
Σ0

k) + H(Φ(ρk) ‖Φ(ρλ
k)

)
.

Substitution of this expression to (7) leads to

χΦ(Σλ
k) = χΦ(Σ0

k) + (1− λ) H
(
Φ(ρk) ‖Φ(ρλ

k)
)

+λ

(
m∑

j=1

µjH(Φ(σj) ‖Φ(ρλ
k))− χΦ(Σ0

k)

)
.

Thus by nonnegativity of the relative entropy we obtain

(8)
m∑

j=1

µjH
(
Φ(σj) ‖Φ(ρλ

k)
)

5 λ−1
(
χΦ

(
Σλ

k

)− χΦ(Σ0
k)

)
+ χΦ(Σ0

k)

for λ 6= 0. The definition of approximating sequence implies

(9) lim
k→+∞

χΦ

(
Σ0

k

)
= C(Φ,A) = χΦ

(
Σλ

k

)

for all k and all λ ∈ [0, 1]. Thus

(10) lim inf
λ→+0

lim inf
k→+∞

λ−1
(
χΦ

(
Σλ

k

)− χΦ

(
Σ0

k

))
5 0.

By lower semicontinuity of the relative entropy if follows from (6), (8), (9) and
(10) that

m∑

j=1

µjH(Φ(σj) ‖ω) 5 lim inf
λ→+0

lim inf
k→+∞

m∑

j=1

µjH(Φ(σj) ‖Φ(ρλ
k)) 5 C(Φ,A).

Thus it is proved that

(11)
∑

j

µjH(Φ(σj) ‖ω) 5 C(Φ,A)

for arbitrary ensemble {µj , σj} with the average state σ ∈ A.
Let {{µk

i , σk
i }}k be arbitrary approximating sequence of ensembles for the A-

constrained channel Φ with the corresponding sequence of the average states {σk}k.
Property (11) implies

∑

i

µk
i H(Φ(σk

i ) ‖ω) 5 C(Φ,A) ∀ k.
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Applying identity (2) we obtain

(12)
∑

i

µk
i H(Φ(σk

i ) ‖ω) =
∑

i

µk
i H(Φ(σk

i ) ‖Φ(σk)) + H(Φ(σk) ‖ω).

The last two expressions imply

H(Φ(σk) ‖ω) 5 C(Φ,A)−
∑

i

µk
i H(Φ(σk

i ) ‖Φ(σk)).

By approximating property of the sequence {{µk
i , σk

i }}k the right side of this inequality
tends to zero as k → +∞, hence there exists limk→+∞H(Φ(σk)‖ω) = 0, which implies
convergence of the sequence {σk} to the state ω. Thus the state ω does not depend
on the choice of approximating sequence and hence it is defined only by the channel
Φ and the set A. Denote this state by Ω(Φ,A). The above observation also implies
that ω = Ω(Φ,A) is the unique state such that property (11) holds. Proposition 1 is
proved.

Proposition 1 shows in particular that the set of input optimal averages for the
A-constrained channel Φ is either empty or mapped by the channel Φ to the single
state.

Corollary 1. Let A be a convex subset of S(H). If there exists input optimal
average ρ∗ for the A-constrained channel Φ then Φ(ρ∗) = Ω(Φ,A).

If the set A is compact then there exists at least one input optimal average state.
This corollary justifies the following definition.
Definition 2. The state Ω(Φ,A) is called the output optimal average for the

A-constrained channel Φ.
Note that there exist examples of the A-constrained channels Φ with finite Holevo

capacity with no input optimal averages while the output optimal average Ω(Φ,A)
is explicitly determined and plays important role in analysis of these channels (see.
examples in [3], [32]).

There exists the another approach to the definition of the state Ω(Φ,A). In [11]
it is shown (corollary 6) that finiteness of the Holevo capacity of the A-constrained
channel Φ implies compactness of the set Φ(A). For any ensemble {µj , σj} with the
average σ ∈ A consider lower semicontinuous function F{µj ,σj}(ω) =

∑
j µjH(Φ(σj) ‖ω)

on the set Φ(A). The function F (ω) = supP
j µjσj∈A F{µj ,σj}(ω) is also lower semicontinuous

and hence it achieves its minimum on the compact set Φ(A). The following proposition
shows in particular that the state Ω(Φ,A) can be defined as the unique minimum point
of the function F (ω) on the set Φ(A).

Proposition 2. Let Φ: S(H) 7→ S(H′) be an arbitrary channel and A be a
convex subset of S(H). The Holevo capacity of the A-constrained channel Φ is defined
by the expression

C(Φ,A) = inf
ω∈Φ(A)

(
supP

j µjσj∈A

∑

j

µjH(Φ(σj) ‖ω)

)
.

If C(Φ,A) < +∞ then Ω(Φ,A) is the unique state at which the infimum in the right
side of this expression is achieved.

Proof. Let C(Φ,A) < +∞. Show first that

(13) supP
j µjσj∈A

∑

j

µjH(Φ(σj) ‖Ω(Φ,A)) = C(Φ,A).



ON PROPERTIES OF QUANTUM CHANNELS 9

Proposition 1 implies inequality “5” in (13). To prove the converse inequality consider
arbitrary approximating sequence {{πk

i , ρk
i }}k. By using Donald’s identity (2) we

obtain
∑

i

πk
i H(Φ(ρk

i ) ‖Ω(Φ,A)) =
∑

i

πk
i H(Φ(ρk

i ) ‖Φ(ρk)) + H(Φ(ρk) ‖Ω(Φ,A))

for all k. By approximating property of the sequence {{πk
i , ρk

i }}k the first term in the
right side tends to C(Φ,A) as k → +∞ while the second one is nonnegative. This
proves inequality “ = ” and hence equality in (13).

Let ω∗ be a minimal point of the function F (ω). By equality (13) we have

supP
j µjσj∈A

∑

j

µjH(Φ(σj) ‖ω∗) = F (ω∗) 5 F (Ω(Φ,A)) = C(Φ,A).

Proposition 1 implies ω∗ = Ω(Φ,A).
If C(Φ,A) = +∞ then the right side of the expression in proposition 2 is equal to

+∞. Indeed, if there exists state ω in S(H′) such that supP
j µjσj∈A

∑
j µjH(Φ(σj) ‖ω) <

+∞ then equality (12), valid for arbitrary approximating sequence of ensembles
{{µk

i , σk
i }}k, implies C(Φ,A) < +∞. Proposition 2 is proved.

Remark 1. The assumption of convexity of the set A in propositions 1, 2 and
corollary 1 is essential. Consider the noiseless channel Φ = Id and the set A consisting
of two states ρ1 and ρ2 such that H(ρ1) = H(ρ2) < +∞. In this case C(Φ,A) =
H(ρ1) = H(ρ2), the states ρ1 and ρ2 are input optimal averages in the sense of
definition 1 with different images Φ(ρ1) = ρ1 and Φ(ρ2) = ρ2.

4. χ-function. Let Φ: S(H) 7→ S(H′) be an arbitrary channel. Consider the
function χΦ on the set S(H), which takes value C(Φ, {ρ}) at state ρ. By using
definitions of the Holevo capacity (3) and (5), we obtain

(14) χΦ(ρ) = supP
i πiρi=ρ

∑

i

πiH(Φ(ρi)‖Φ(ρ)) = sup
π∈P{ρ}

∫

S(H)

H(Φ(σ) ‖Φ(ρ)) π(dσ).

In the finite dimensional case χΦ is a continuous concave nonnegative function on the
set of input states S(H), used in study of the classical capacity of quantum channels,
in particular, of the additivity problem [21]. In this section the properties of the
χ-function of arbitrary infinite dimensional channel Φ are considered.

In [10] it is shown that if HΦ(ρ) < +∞ then the supremum in the last expression
in (14) is achieved at some measure supported by the set of pure states.

Definition 3. A measure π0 with the barycenter ρ0 supported by the set of
pure states such that

χΦ(ρ0) =
∫

S(H)

H(Φ(σ) ‖Φ(ρ0)) π0(dσ),

is called χΦ-optimal measure for the state ρ0.
Note that χΦ(ρ) < +∞ does not imply HΦ(ρ) < +∞. Indeed, it is easy to

construct the channel Φ from finite dimensional into infinite dimensional spaces such
that HΦ(ρ) = +∞ for any state ρ in S(H).3 By monotonicity property of the relative

3For example the channel Φ: T(H) 3 A 7→ 1
2

A⊕ 1
2

σ Tr A ∈ T(H′), where σ is a fixed state with
infinite entropy.
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entropy [23] we have
∑

i

πiH(Φ(ρi)‖Φ(ρ)) 5
∑

i

πiH(ρi‖ρ) 5 log dimH < +∞

for any ensemble {πi, ρi} and hence χΦ(ρ) 5 log dimH < +∞ for any state ρ in S(H).
The definition of the Holevo capacity of the A-constrained channel Φ implies

C(Φ,A) = supρ∈A χΦ(ρ). In [10] it is shown that the question of attainability of the
above supremum is closely related with the question of existence of optimal measure
for the A-constrained channel Φ and due to examples in [32] it can have negative
answer.

The results of the previous section make possible to prove the important inequality,
determining behavior of the χ-function on any convex subset of states, which is proved
in [21] in the finite dimensional case. This inequality plays the essential role in the
proof of theorem 2 in section 7.

Proposition 3. Let Φ: S(H) 7→ S(H′) be an arbitrary channel and A be a
convex subset of S(H). Then for any state ρ in A the following inequality holds

χΦ(ρ) 5 C(Φ,A)−H(Φ(ρ) ‖Ω(Φ,A)) 5 C(Φ,A)− 1
2
‖Φ(ρ)− Ω(Φ,A)‖21.

Proof. Let C(Φ,A) < +∞ and {πi, ρi} be arbitrary ensemble such that
∑

i πiρi =
ρ. By proposition 1

∑

i

πiH(Φ(ρi) ‖Ω(Φ,A)) 5 C(Φ,A).

This inequality, Donald’s identity
∑

i

πiH(Φ(ρi) ‖Ω(Φ,A)) =
∑

i

πiH(Φ(ρi) ‖Φ(ρ)) + H(Φ(ρ) ‖Ω(Φ,A))

and definition of the χ-function (14) imply the first inequality of the proposition. The
second one follows from inequality (1). Proposition 3 is proved.

For arbitrary state ρ with finite output entropy the χ-function has the following
representation:

χΦ(ρ) = HΦ(ρ)− coHΦ(ρ),(15)
where

co HΦ(ρ) = infP
i πiρi=ρ

∑

i

πiHΦ(ρi).(16)

is the convex hull of the output entropy (see. appendix А).
In the finite dimensional case the output entropy HΦ and its convex hull co HΦ are

continuous functions on the set S(H), the first function is concave while the second
one is convex and representation (15) holds for all states. Hence in this case the
function χΦ is continuous and concave on the set S(H).

In the infinite dimensional case the output entropy HΦ is only lower semicontinuous
and hence the function χΦ is not continuous even in the case of the noiseless channel Φ
for which χΦ = HΦ. The following proposition shows that the function χΦ of arbitrary
channel Φ has properties similar to the properties of the output entropy HΦ.
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Proposition 4. For arbitrary channel Φ the function χΦ is a nonnegative lower
semicontinuous concave function on the set S(H) and

(17) χΦ(ρ)−
n∑

i=1

πiχΦ(ρi) =
n∑

i=1

πiH (Φ(ρi)‖Φ(ρ))

for any ensemble of states {πi, ρi}n
i=1 with the average ρ.

Inequality (17) can be considered as a generalization to the case of the χ-function
of the well known identity for quantum entropy

H(ρ)−
n∑

i=1

πiH(ρi) =
n∑

i=1

πiH(ρi‖ρ).

Proof. Nonnegativity of the χ-function is obvious. Lower semicontinuity is proved
in [31] (proposition 3). To show concavity of the χ-function it is sufficient to prove
inequality (17). Let ε > 0. By the definition of the χ-function for each i = 1, . . . , n

there exists ensemble {µi
j , σ

i
j}m(i)

j=1 with the average state ρi such that χΦ({µi
j , σ

i
j}) >

χΦ(ρi)− ε. Since the average state of the ensemble
∑n

i=1 πi{µi
j , σ

i
j} coincides with ρ,

by using lemma 1 we obtain

χΦ(ρ) = χΦ

(
n∑

i=1

πi{µi
j , σ

i
j}

)
=

n∑

i=1

πiχΦ({µi
j , σ

i
j}) +

n∑

i=1

πiH (Φ(ρi)‖Φ(ρ))

=
n∑

i=1

πiχΦ(ρi) +
n∑

i=1

πiH (Φ(ρi)‖Φ(ρ))− ε.

Since ε is arbitrary this implies inequality (17). Proposition 4 is proved.
In the modern convex analysis the notion of strong convexity (concavity) is widely

used [6]. Proposition 4 and inequality (1) imply the following observation.
Corollary 2. For arbitrary channel Φ the function χΦ is a strong concave

function on S(H) in the following sense:

χΦ(λρ1 + (1− λ)ρ2) = λχΦ(ρ1) + (1− λ)χΦ(ρ2) +
1
2

λ(1− λ)‖Φ(ρ2)− Φ(ρ1)‖21
for any states ρ1 and ρ2 in S(H) and any λ in [0, 1].

Similarity of the properties of the functions χΦ(ρ) and HΦ(ρ) is stressed by the
following analog of Simon’s dominated convergence theorem for quantum entropy [33].4

Corollary 3. Let {ρn} be a sequence of states in S(H) converging to the state
ρ0 such that λnρn 5 ρ0 for some sequence {λn} of positive numbers converging to 1.
Then

lim
n→+∞

χΦ(ρn) = χΦ(ρ0).

Proof. The condition λnρn 5 ρ0 implies decomposition ρ0 = λnρn + (1 − λn)σn,
where σn = (1− λn)−1(ρ0− λnρn) is a state in S(H). By concavity of the χ-function
we have

χΦ(ρ0) = λnχΦ(ρn) + (1− λn) χΦ(σn) = λnχΦ(ρn) ∀n,

4This theorem can be formulated as corollary 3 with the quantum entropy H instead of the
function χΦ.
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and hence lim supn→+∞ χΦ(ρn) 5 χΦ(ρ0). Lower semicontinuity of the χ-function
implies existence of the above limit. Corollary 3 is proved.

Remark 2. Corollary 3 provides possibility to approximate the value χΦ(ρ0) for
arbitrary state ρ0 by the sequence {χΦ(ρn)}, in which ρn = (TrPnρ0)−1Pnρ0 is a finite
rank state for each n, where Pn is the spectral projector of the state ρ0, corresponding
to n maximal eigenvalues.

By exploring the properties of the convex closure of the output entropy in the
next section we will establish continuity of the restriction of the χ-function to any set
of continuity of the output entropy (theorem 1).

We shall also use the following chain properties of the χ-function.
Proposition 5. Let Φ: S(H) 7→ S(H′) and Ψ: S(H′) 7→ S(H′′) be two

arbitrary channels. Then

χΨ◦Φ(ρ) 5 χΦ(ρ) and χΨ◦Φ(ρ) 5 χΨ(Φ(ρ)) for all ρ in S(H).

Proof. The first inequality follows from the monotonicity property of the relative
entropy [23] and definition (14), the second one is a direct corollary of definition (14).

5. Convex closure of the output entropy. In the finite dimensional case the
output entropy HΦ is finite and the function χΦ can be represented by expression (15)
as a difference between the output entropy HΦ and its convex hull co HΦ. In this case
the function co HΦ is continuous and hence it is closed (see appendix А). This means
that the convex hull coHΦ of the output entropy coincides with the convex closure
co HΦ of the output entropy.

In the infinite dimensional case the function co HΦ is not closed even in the
case of the noiseless channel Φ. Indeed, co HΦ(ρ) = +∞ for any state ρ such that
HΦ(ρ) = +∞ (see the proof of lemma 2), but this state ρ is a limit of some sequence
{ρn} of finite rank states, for which coHΦ(ρn) = 0. Thus the function coHΦ is not
lower semicontinuous.

It seems natural to suppose that in the infinite dimensional case the role of the
function coHΦ is played by the function co HΦ. The aim of this section is to confirm
this conjecture by exploring properties of the function co HΦ(ρ) and its relation to
the χ-function.

First of all we will obtain the explicit representation for co HΦ. Consider the
function

ĤΦ(ρ) = inf
π∈P{ρ}

∫

S(H)

HΦ(ρ)π(dρ) 5 +∞,

where P{ρ} is the set of all probability measures with the barycenter ρ. It is clear that
ĤΦ(ρ) 5 coHΦ(ρ) 5 HΦ(ρ) for all states ρ in S(H). By considering properties of the
function ĤΦ we will establish that ĤΦ = co HΦ (proposition 7).

In the previous section it is mentioned that in the definition of the χ-function the
supremum over all measures coincides with the supremum over all measures with finite
support (conventional ensembles). In contrast to this in the case of the Ĥ-function we
have the following observation.

Lemma 2. Equality ĤΦ(ρ) = infP
i πiρi=ρ

∑
i πiHΦ(ρi) = co HΦ(ρ) holds if and

only if either HΦ(ρ) < +∞ or ĤΦ(ρ) = +∞.
Proof. If HΦ(ρ) < +∞ then χΦ(ρ) = HΦ(ρ)−co HΦ(ρ). By [10, proposition 1 and

corollary 1] we have χΦ(ρ) = HΦ(ρ)− ĤΦ(ρ) and hence ĤΦ(ρ) = co HΦ(ρ).
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If HΦ(ρ) = +∞ then co HΦ(ρ) = +∞ since the set of states with finite output
entropy is convex [34]. Lemma 2 is proved.

Lemma 2 implies that ĤΦ(ρ) < co HΦ(ρ) for any state ρ such that HΦ(ρ) = +∞
and ĤΦ(ρ) < +∞. Note that the set of such states is nonempty. For example, in the
case of the noiseless channel Φ it is easy to see that ĤΦ(ρ) = 0 for any state ρ, but
the set of all states ρ such that HΦ(ρ) < +∞ is a subset of the first category in the
set of all states S(H) [34].

Show first that the infimum in the definition of the function ĤΦ(ρ) can be taken
only over measures supported by pure states. Consider the following partial order on
the set P. Let S be the set of all convex continuous bounded functions on the set
S(H). We say that µ Â ν if and only if

∫

S(H)

f(ρ)µ(dρ) =
∫

S(H)

f(ρ) ν(dρ) for all f in S.

This partial order on the sets of probability measures on convex sets, often called the
Choquet ordering, is studied in details (see., for example, [14]).

Proposition 6. For any state ρ0 there exists a measure π0 supported by the set
of pure states with the barycenter ρ0 such that

ĤΦ(ρ0) =
∫

S(H)

HΦ(ρ)π0(dρ).

The measure π0 can be chosen to be a measure with support consisting of n2 atoms
(ensemble of n2 pure states) if and only if the state ρ0 has finite rank n

Proof. In the proof of the theorem in [10] it is shown that the functional

(18) π 7→
∫

S(H)

HΦ(ρ)π(dρ)

is well defined and lower semicontinuous on the set P (endowed with the topology of
weak convergence). By proposition 2 in [10] the set P{ρ0} is compact in this topology.
Hence this functional achieves its minimum on the set P{ρ0} at some measures π∗ ∈
P{ρ0}, t.i.

(19) ĤΦ(ρ0) =
∫

S(H)

HΦ(ρ) π∗(dρ).

To show that among all such measures π∗ there exists a measure π0 supported by
pure states we will use the following two simple properties of the above partial order.

1. Let {µn} and {νn} be two sequences in P, weakly converging to measures µ and
ν correspondingly, such that µn Â νn for all n. Then µ Â ν.

2. If µ Â ν then
∫

S(H)

g(ρ)µ(dρ) =
∫

S(H)

g(ρ) ν(dρ)

for any function g, which can be represented as a pointwise limit of monotonous
sequence of functions in S.

By lemma 1 in [10] there exists the sequence {πn} of measures in P{ρ0} with finite
supports, weakly converging to π∗. Decomposing each atom of the measure πn into
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convex combination of pure states we obtain the measure π̂n with the same barycenter
supported by the set of pure states. It is easy to see that π̂n Â πn. By compactness of
the set P{ρ0} there exists subsequence {π̂nk

} converging to some measure π0 supported
by the set of pure states due to theorem 6.1 in [28]. Since π̂nk

Â πnk
, the above

property 1 of the partial order Â implies π0 Â π∗.
By lemma 4 in [22] the convex function g(ρ) = −HΦ(ρ) = −H(Φ(ρ)) is a pointwise

limit of the monotonous sequence of bounded continuous functions

gn(ρ) = −(Tr PnΦ(ρ)) H((TrPnΦ(ρ))−1PnΦ(ρ)Pn),

where {Pn} is an arbitrary sequence of finite dimensional projectors strongly increasing
to the unit operator I. It is easy to see that the functions gn are convex and hence lie
in S for all n. By the above property 2 of the partial order Â (with g(ρ) = −HΦ(ρ))
and (19) we have

ĤΦ(ρ0) =
∫

S(H)

HΦ(ρ) π∗(dρ) =
∫

S(H)

HΦ(ρ) π0(dρ).

The definition of the function ĤΦ implies equality in the above inequality.
Let us prove the last statement of the proposition. If the state ρ0 has infinite rank

then the set P{ρ0} contains no measures finitely supported by pure states.
Let the state ρ0 has finite rank n, H0 = supp ρ0 be the n-dimensional subspace

and Φ0 be the subchannel of the channel Φ, corresponding to the subspace H0 (the
subchannel Φ0 of the channel Φ, corresponding to the subspace H0, is the restriction
of the channel Φ to the set of states supported by the subspace H0 [31]).

If HΦ0(ρ0) = HΦ(ρ0) < +∞ then the function HΦ0 is continuous on the compact
set S(H0) by the below lemma 3. Hence we can apply lemma A-2 in [35] to prove
existence of ensemble consisting of (dimH0)2 states with the average ρ0, at which
the infimum in the definition of the function co HΦ0 , coinciding with the restriction
of the function coHΦ to the subset S(H0) of S(H), is achieved. By lemma 2 the
restriction of the function co HΦ to the set S(H0) coincides with the restriction of the
function ĤΦ to this set.

If HΦ0(ρ0) = HΦ(ρ0) = +∞ then ĤΦ(ρ0) = +∞ and hence any ensemble with the
average state ρ0 is optimal. To prove this note that HΦ(ρ0) = +∞ implies HΦ(σ) =
+∞ for any state σ such that supp σ = supp ρ0 = H0. Indeed, for this state σ there
exists a positive number λσ such that λσσ ≥ ρ0. Nonnegativity of the relative entropy
implies

λσ TrΦ(σ)(− log Φ(σ))=TrΦ(ρ0)(− log Φ(σ))=TrΦ(ρ0)(− log Φ(ρ0)) = +∞.

Suppose that ĤΦ(ρ0) < +∞. Then there exists measure π with the barycenter ρ0 such
that the function HΦ is finite π-almost everywhere. Let F be subset of S(H0) such that
the function HΦ is finite on the set F and π(F) = 1. The equality ρ0 =

∫
F ρ π(dρ)

implies that the linear hull of subspaces {supp ρ}ρ∈F coincides with H0 and hence
there exists finite set {ρi}n

i=1 of states in F such that supp(n−1
∑n

i=1 ρi) = H0. Since
the state n−1

∑n
i=1 ρi is a finite convex combination of the states ρi, i = 1, . . . , n such

that HΦ(ρi) < +∞ for all i = 1, . . . , n we conclude that HΦ(n−1
∑n

i=1 ρi) < +∞ [34].
But this contradicts to the previous observation. Proposition 6 is proved.

Lemma 3. Let Φ: S(H) 7→ S(H′) be such channel that dimH < +∞. If there
exists a full rank state ρ0 such that HΦ(ρ0) < +∞ then the function HΦ is continuous
on the set S(H).
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Proof. Let IH be the unit operator in the space H. Finite dimensionality of the
space H implies that λIH 5 ρ0 for some positive λ, and hence HΦ(IH) < +∞. The
assertion of the lemma follows from Simon’s dominated convergence theorem [33]
(with using Φ(IH) in the role of the operator B).

Definition 4. A measure π0 with the properties stated in proposition 6 is called
ĤΦ-optimal measure for the state ρ0.

It is easy to see that the set of ĤΦ-optimal measures coincides with the set of
χΦ-optimal measures for any state ρ0 with finite output entropy HΦ(ρ0).

The other important properties of the function ĤΦ(ρ) are established in the
following lemma.

Lemma 4. The function ĤΦ(ρ) is convex and lower semicontinuous on the
set S(H).

Proof. To prove convexity of the function ĤΦ it is sufficient to note that

λP{ρ1} + (1− λ)P{ρ2} ⊆ P{λρ1+(1−λ)ρ2}

for arbitrary states ρ1, ρ2 and λ ∈ [0, 1].
Suppose that the function ĤΦ is not lower semicontinuous. This implies existence

of a sequence {ρn} converging to some state ρ0 such that

(20) lim
n→+∞

ĤΦ(ρn) < ĤΦ(ρ0).

By proposition 6 for each n = 1, 2, . . . there exists measure πn in P{ρn} such that

ĤΦ(ρn) =
∫

S(H)

HΦ(ρ)πn(dρ).

The set A = {ρn}+∞n=0 is a compact subset of S(H). By proposition 2 in [10] the
set PA is compact. Since {πn} ⊂ PA, there exists subsequence {πnk

} converging to
some measure π0. Continuity of the map π 7→ ρ(π) implies π0 ∈ P{ρ0}. By lower
semicontinuity of the functional (18) we obtain

ĤΦ(ρ0) 5
∫

S(H)

HΦ(ρ) π0(dρ) 5 lim inf
k→+∞

∫

S(H)

HΦ(ρ) πnk
(dρ)

= lim
k→+∞

ĤΦ(ρnk
),

which contradicts to (20). Lemma 4 is proved.
Proposition 7. The function ĤΦ coincides with the convex closure 5 co HΦ of

the output entropy HΦ and if co HΦ(ρ) < +∞ then

{co HΦ(ρ) = co HΦ(ρ)} ⇐⇒ {HΦ(ρ) < +∞}.

Proof. Lemma 4 and the definition of the convex closure imply

(21) ĤΦ(ρ) 5 co HΦ(ρ) 5 coHΦ(ρ) 5 HΦ(ρ) ∀ ρ ∈ S(H).

By lemma 2 ĤΦ(ρ0) coincides with coHΦ(ρ0) for any state ρ0 with finite output
entropy HΦ(ρ0). Thus (21) means that ĤΦ(ρ0) = co HΦ(ρ0) for all such states.

5see. appendix А.
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Let ρ0 be an arbitrary state such that ĤΦ(ρ0) < +∞. By the below lemma 5 there
exists sequence {ρn} of states with finite output entropy, converging to the state ρ0,
such that limn→+∞ ĤΦ(ρn) = ĤΦ(ρ0). By the above observation ĤΦ(ρn) = co HΦ(ρn)
for all n. Since the function co HΦ is lower semicontinuous (by definition), we obtain

coHΦ(ρ0) 5 lim inf
n→+∞

co HΦ(ρn) = lim
n→+∞

ĤΦ(ρn) = ĤΦ(ρ0).

This inequality and (21) imply that ĤΦ(ρ0) = co HΦ(ρ0) for arbitrary state ρ0.
Proposition 7 is proved.

The following observation plays essential role in study of the properties of the
function ĤΦ .

Lemma 5. For arbitrary state ρ0 such that ĤΦ(ρ0) < ∞ there exists sequence
{ρn} of finite rank states, converging to the state ρ0, such that

HΦ(ρn) < +∞ for all n and lim
n→+∞

ĤΦ(ρn) = ĤΦ(ρ0).

Proof. Let π0 be a ĤΦ-optimal measure for the state ρ0, which exists by proposition
6. Since any probability measure on complete separable metric space S(H) is tight [1], [28],
for any n ∈ N there exists compact subset Kn of the set Extr(S(H)) such that
π0(Kn) > 1−1/n. Compactness of the set Kn implies decomposition Kn =

⋃m(n)
i=1 An

i ,
where {An

i }m(n)
i=1 is a finite collection of disjoint measurable subsets with diameter less

than 1/n. Without loss of generality we may assume that π0(An
i ) > 0 for all i and n.

By construction compact set An
i lies within some closed ball Bn

i of diameter 1/n for
all i and n.

By assumption ĤΦ(ρ0) =
∫

S(H)
HΦ(ρ) π0(dρ) < +∞, and hence the function

HΦ is finite π0-almost everywhere. Since the function HΦ is lower semicontinuous it
achieves its finite minimum on the compact set An

i of positive measure at some pure
state ρn

i ∈ An
i . Consider the state ρn = (π0(Kn))−1

∑m(n)
i=1 π0(An

i )ρn
i . We want to

show that

(22) ‖ρn − ρ0‖1 5 3
n

.

The state ρ̂n
i = (π0(An

i ))−1
∫
An

i
ρ π0(dρ) lies in the set Bn

i by convexity of Bn
i .

Hence ‖ρn
i − ρ̂n

i ‖1 5 1/n. By noting that π0(Kn) =
∑m(n)

i=1 π0(An
i ), we have

‖ρn − ρ0‖1 =

∥∥∥∥∥(π0(Kn))−1

m(n)∑

i=1

π0(An
i ) ρn

i

−
m(n)∑

i=1

∫

An
i

ρπ0(dρ)−
∫

S(H)\Kn

ρπ0(dρ)

∥∥∥∥∥
1

5
m(n)∑

i=1

π0(An
i )‖(π0(Kn))−1ρn

i − ρ̂n
i ‖1 +

∥∥∥∥
∫

S(H)\Kn

ρπ0(dρ)
∥∥∥∥

1

5 (1− π0(Kn)) +
m(n)∑

i=1

π0(An
i )‖ρn

i − ρ̂n
i ‖1 + π0(S(H)\Kn) <

3
n

,

t.i. (22).
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By the choice of the states ρn
i for each i and n we have HΦ(ρn

i ) 5 HΦ(ρ) for all
ρ in An

i . Hence,

ĤΦ(ρn) 5 (π0(Kn))−1

m(n)∑

i=1

π0(An
i ) HΦ(ρn

i )

5 (π0(Kn))−1

m(n)∑

i=1

∫

An
i

HΦ(ρ)π0(dρ)

5 (π0(Kn))−1

∫

S(H)

HΦ(ρ) π0(dρ) = (π0(Kn))−1ĤΦ(ρ0).

Thus lim supn→+∞ ĤΦ(ρn) 5 ĤΦ(ρ0). But limn→+∞ ρn = ρ0 due to (22) and by
applying lemma 4 we obtain lim infn→+∞ ĤΦ(ρn) = ĤΦ(ρ0). Hence there exists
limn→+∞ ĤΦ(ρn) = ĤΦ(ρ0).

By construction the state ρn for each n is a finite convex combination of pure states
ρn

i , i = 1, . . . , m(n), with finite output entropy HΦ(ρn
i ). It follows that HΦ(ρn) < +∞

for all n [34]. Lemma 5 is proved.
The real Banach space Bh(H) of all hermitian operators is a dual space for the

space Th(H) of all hermitian trace class operators. The nonnegative lower semicontinuous
function HΦ on S(H) can be extended to the nonnegative lower semicontinuous
function HΦ on Th(H) by ascribing the value +∞ to arbitrary operator in Th(H)\S(H).
The Fenchel transform of the function HΦ (see appendix А) is defined on the set Bh(H)
by the expression

(23) H∗
Φ(A) = sup

ρ∈Th(H)

(
TrAρ−HΦ(ρ)

)
= sup

ρ∈S(H)

(Tr Aρ−HΦ(ρ)) .

The double Fenchel transform H∗∗
Φ is defined on the set Th(H) by the expression

(24) H∗∗
Φ (ρ) = sup

A∈Bh(H)

(TrAρ−H∗
Φ(A)) .

Since the function HΦ is nonnegative, its convex closure co HΦ coincides with its
double Fenchel transform H∗∗

Φ . Since the restriction of the function co HΦ to the set
S(H) coincides with coHΦ, proposition 7 implies the following representation for the
Ĥ-function.

Corollary 4. Let Φ: S(H) 7→ S(H′) be a quantum channel. Then

ĤΦ(ρ) = H∗∗
Φ (ρ) = sup

A∈Bh(H)

inf
σ∈S(H)

(HΦ(σ) + TrA(ρ− σ))

for any state ρ ∈ S(H).
Consider the set Ĥ−1

Φ (0) = {ρ ∈ S(H) | ĤΦ(ρ) = 0}. Note that the set H−1
Φ (0) =

{ρ ∈ S(H) |HΦ(ρ) = 0} is a closed subset of S(H) due to lower semicontinuity of the
quantum entropy [34].

Proposition 8. The set Ĥ−1
Φ (0) coincides with the convex closure of the set

H−1
Φ (0) ∩ Extr S(H).
Proof. Let ρ0 ∈ co (H−1

Φ (0) ∩ Extr S(H)). Then there exists sequence of states
{ρn} ⊂ co(H−1

Φ (0) ∩ Extr S(H)), converging to the state ρ0. By definition ĤΦ(ρn) =
0. Nonnegativity and lower semicontinuity of the function ĤΦ (lemma 4) implies
ĤΦ(ρ0) = 0.
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Let ρ0 ∈ Ĥ−1
Φ (0). By proposition 6 the state ρ0 is the barycenter of some measure

π0 supported by pure states such that HΦ(ρ) = 0 for π0-almost all ρ. By using the
arguments from the proof of theorem 6.3 in [28] it is easy to see that this measure π0

can be approximated by the sequence of measures πn, finitely supported by the set of
pure states, such that HΦ(ρ) = 0 for πn-almost all ρ. It follows that for each n all atoms
of the measure πn are pure states in H−1

Φ (0). By continuity of the map π 7→ ρ(π) the
state ρ0 = ρ(π0) is a limit of the sequence {ρ(πn)} of states in co(H−1

Φ (0)∩Extr S(H)).
Proposition 8 is proved.

6. On continuity of the functions χΦ and ĤΦ. Lemma 2 implies

(25) χΦ(ρ) = HΦ(ρ)− ĤΦ(ρ)

for all states ρ with finite output entropy. This expression remains valid in the case
HΦ(ρ) = +∞ and ĤΦ(ρ) < +∞. Indeed, by substituting ĤΦ-optimal measure π for
the state ρ into expression (4) in [10] it is easy to obtain that χΦ(ρ) = +∞. Note also
that for any state ρ finiteness of χΦ(ρ) and ĤΦ(ρ) implies finiteness of HΦ(ρ) and hence
validity of expression (25). The last assertion can be proved by using proposition 4
and lemma 5.

By expression (25) continuity of the functions χΦ and ĤΦ on some set A ⊆ S(H)
implies continuity of the output entropy HΦ on this set. It is essential that the converse
assertion also holds and follows from expression (25) due to lower semicontinuity of
the function χΦ (proposition 4) and lower semicontinuity of the function ĤΦ (lemma
4).

Theorem 1. Let Φ: S(H) 7→ S(H′) be a quantum channel. If the restriction of
the output entropy HΦ to some set A ⊆ S(H) is continuous then the restrictions of
the functions χΦ and ĤΦ to the set A are also continuous.

Remark 3. The statement of theorem 1 seems surprising by the following reason.
The value of the output entropy HΦ at a particular state ρ is completely defined by
the output state Φ(ρ) and it does not depend on the action of the channel Φ on other
input states. Thus continuity of the function HΦ on some set A means continuity of
the entropy on the set Φ(A), which depends only on the set Φ(A). In contrast to
this the values of the functions χΦ and ĤΦ at some state ρ0 depend (due to their
definitions) on the action of the channel Φ to all states contained in the union of
supports of all measures with the barycenter ρ0. Thus behavior of these functions on
some set A depends on action of the channel Φ to all states contained in the union
of supports of all measures with the barycenter in A. Nevertheless, by theorem 1
continuity of the entropy on the set Φ(A) guarantees continuity of the functions χΦ

and ĤΦ on the set A independently of the action of the channel Φ to all states, which
are not contained in A.

Note also that continuity of one of the functions χΦ and ĤΦ on some set A does
not imply continuity of the output entropy on this set. For example, in the case of
the noiseless channel Φ the function ĤΦ is equal to zero on S(H), but the function
HΦ (the entropy of a state) is discontinuous on S(H).

Proposition 3 in [10] implies the following observation.
Corollary 5. Let H ′ be positive unbounded operator in the space H′ such that

Tr exp(−βH ′) < +∞ for all β > 0.6 Then the restrictions of the functions χΦ and

6In [10] such operator is called H-operator.
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ĤΦ to the subset

Ah′ = {ρ ∈ S(H) | Tr Φ(ρ)H ′ 5 h′}

are continuous for each h′ = 0.
In [10] it is mentioned that the condition of corollary 5 is fulfilled for quantum

Gaussian channels with the energy constraint Tr ρH 5 h, where H = RTεR is the
Hamiltonian of a system of oscillators with nongenerate energy matrix ε and R are
the canonical variables of the system.

Proposition 9. Let {ρn} be a sequence of states converging to the state ρ0 such
that limn→+∞ ĤΦ(ρn) = ĤΦ(ρ0)7 and πn be a ĤΦ-optimal measure for the state ρn

for each n = 1, 2 . . . . The set of partial limits of the sequence {πn}+∞n=1 is nonempty
and consists of ĤΦ-optimal measures for the state ρ0.

Proof. Let {ρn} and {πn} be the above sequences. Since the set {ρn}+∞n=0 is a
compact subset of S(H), the set P{{ρn}+∞n=0} is a compact subset of P by proposition 2
in [10]. Hence the sequence {πn} ⊆ P{{ρn}+∞n=0} has partial limits. Let π0 be a limit of
some subsequence {πnk

} of the sequence {πn}. By lower semicontinuity of functional (18)
we have

ĤΦ(ρ0) = lim
k→+∞

ĤΦ(ρnk
) = lim

k→+∞

∫

S(H)

HΦ(ρ) πnk
(dρ)

=
∫

S(H)

HΦ(ρ) π0(dρ),

which means that π0 is a ĤΦ-optimal measure for the state ρ0. Proposition 9 is proved.
Theorem 1 and proposition 9 make possible to represent ĤΦ-optimal (χΦ-optimal)

measure for any state with finite output entropy as a limit point of the sequence of
measures with finite support (conventional ensembles). Recall that by proposition 6
for any state of finite rank n there exists ĤΦ-optimal measure with finite support
consisting of n2 atoms (pure states).

Corollary 6. Let ρ0 be such state that HΦ(ρ0) < +∞, Pn be the spectral
projector of ρ0 corresponding to its n maximal eigenvalues and πn be a ĤΦ-optimal
(χΦ-optimal) measure with finite support (ensemble of n2 pure states) for the finite
rank state ρn = (TrPnρ0)−1Pnρ0 for each n ∈ N. Then any partial limit of the
sequence {πn} is a ĤΦ-optimal measure for the state ρ0.

Proof. By using Simon’s dominated convergence theorem [33] it is easy to show
that

lim
n→+∞

HΦ(ρn) = HΦ(ρ0).

Hence the conditions of theorem 1 are valid for the set A = {ρn}+∞n=0. Thus
limn→+∞ ĤΦ(ρn) = ĤΦ(ρ0), and proposition 9 implies the assertion of the corollary.

7For example, the sequence of finite rank states provided by lemma 5.
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7. The additivity problem. Let Φ: S(H) 7→ S(H′) and Ψ: S(K) 7→ S(K′)
be channels with the constraints defined by the setsA and B correspondingly. Consider
the channel Φ⊗Ψ: S(H⊗K) 7→ S(H′⊗K′). For this channel it is natural to consider
constraint defined by the set

A⊗ B = {ω ∈ S(H⊗K) |ωH ∈ A, ωK ∈ B},
where the following notations ωH = TrK ω and ωK = TrH ω are used.

Additivity of the Holevo capacity for the A-constrained channel Φ and the B-
constrained channel Ψ means equality

(26) C (Φ⊗Ψ,A⊗ B) = C(Φ,A) + C(Ψ,B).

Remark 4. Let Ω(Φ,A) and Ω(Ψ,B) be the output optimal average states for the
A-constrained channel Φ and the B-constrained channel Ψ correspondingly. Additivity
of the Holevo capacity (26) implies that the state Ω(Φ,A) ⊗ Ω(Ψ,B) is the output
optimal average for the A⊗B-constrained channel Φ⊗Ψ. Indeed, let {{πk

i , ρk
i }}k and

{{µk
j , σk

j }}k be approximating sequences of ensembles for the A-constrained channel Φ
and the B-constrained channel Ψ. By proposition 1 the sequences {Φ(ρk)}k and
{Ψ(σk)}k converge to the states Ω(Φ,A) and Ω(Ψ,B) correspondingly. It follows
from (26) that the sequence of ensembles {{πk

i µk
j , ρk

i ⊗ σk
j }}k is approximating for

the A⊗ B-constrained channel Φ⊗Ψ. By proposition 1 the limit Ω(Φ,A)⊗ Ω(Ψ,B)
of the sequence {Φ(ρk)⊗Ψ(σk)}k is the output optimal average state for the A⊗B-
constrained channel Φ⊗Ψ.

Additivity of the Holevo capacity (26) for arbitrary sets A and B is equivalent to
validity of the following inequality:

(27) χΦ⊗Ψ(ω) 5 χΦ(ωH) + χΨ(ωK)

for any state ω ∈ S(H⊗K) (subadditivity of the χ-function). Indeed, let ω be arbitrary
state in S(H⊗K). Let A = {ωH} and B = {ωK}. Then (26) and the definition of the
χ-function imply

χΦ(ωH) + χΨ(ωK) = C(Φ, {ωH}) + C(Ψ, {ωK})
= C

(
Φ⊗Ψ, {ωH} ⊗ {ωK}) = χΦ⊗Ψ(ω).

Conversely, it follows from (27) that

C (Φ⊗Ψ,A⊗ B) 5 C(Φ,A) + C(Ψ;B).

Since the converse inequality is obvious we obtain (26). In [31] it is shown that
subadditivity of the χ-function holds for nontrivial class of infinite dimensional channels.

In [13] the approach to the additivity problem in the finite dimensional case based
on the convex analysis is proposed. The results of the previous sections make possible
to generalize this approach to the case of infinite dimensional channels.

For channel Φ: S(H) 7→ S(H′) and operator A ∈ B+(H) consider the following
characteristic [30]:

(28) νH (Φ, A) = inf
ρ∈S(H)

(HΦ(ρ) + TrAρ) .

Note that this characteristic is a generalization of the minimal output entropy of
the channel Φ, defined by the expression

(29) Hmin(Φ) = inf
ρ∈S(H)

HΦ(ρ) = νH(Φ, 0).
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Concavity of the quantum entropy implies that the infimum in (28) and (29) can be
taken over the set of all pure states ρ in S(H).

Additivity of the minimal output entropy for the channels Φ and Ψ means equality

(30) Hmin(Φ⊗Ψ) = Hmin(Φ) + Hmin(Ψ),

which is a partial case of additivity of the above characteristic with respect to the
Kronecker sum:

(31) νH (Φ⊗Ψ, A⊗ I + I ⊗B) = νH(Φ, A) + νH(Ψ, B).

If Φ and Ψ are finite dimensional channels then in [21] it is shown that validity
of inequality (27) for all states ω is equivalent to validity of the following inequality

(32) ĤΦ⊗Ψ(ω) = ĤΦ(ωH) + ĤΨ(ωK)

for all states ω ∈ S(H ⊗ K) (superadditivity of the Ĥ-function). In the infinite
dimensional case the relations between these properties of sub-(super-)additivity are
presented in the following theorem.

Let SΦ,Ψ = {ω ∈ S(H ⊗ K) |HΦ(ωH) < +∞, HΨ(ωK) < +∞} be a convex
subset of S(H⊗K).

Theorem 2. Let Φ: S(H) 7→ S(H′) and Ψ: S(K) 7→ S(K′) be arbitrary
channels.

1) Validity of inequality (32) for all states ω ∈ S(H⊗K) is equivalent to validity
of equality (31) for all positive operators A ∈ B+(H) and B ∈ B+(K), which implies
additivity of the minimal output entropy (30).

2) Validity of inequality (32) for all states ω ∈ SΦ,Ψ is equivalent to validity
of inequality (27) for all states ω ∈ SΦ,Ψ, which means additivity of the Holevo
capacity (26) for all sets A and B such that

HΦ(ρ) < +∞ ∀ ρ ∈ A and HΨ(σ) < +∞ ∀σ ∈ B.

Proof. 1) By considering product states it is easy to obtain the following subadditivity
property:

(33) νH(Φ⊗Ψ, A⊗ I + I ⊗B) 5 νH(Φ, A) + νH(Ψ, B).

By proposition 7 the function ĤΦ is the convex closure of the function HΦ. The
Fenchel transform H∗

Φ of the function HΦ is defined on the set Bh(H) of all hermitian
operators by expression (23). By lemma 1 in [13] (formally the considered functions
do not satisfy the conditions of this lemma, but it is easy to see that all arguments in
its proof remain valid in this case), superadditivity of the Ĥ-function is equivalent to
subadditivity of the Fenchel transform with respect to the Kronecker sum:

H∗
Φ⊗Ψ(A⊗ IK + IH ⊗B) 5 H∗

Φ(A) + H∗
Ψ(B)

∀A ∈ Bh(H), ∀B ∈ Bh(K).

By definition the last inequality means the following one:

sup
ω∈S(H⊗K)

(
Tr AωH + TrBωK −H(Φ⊗Ψ(ω))

)

5 sup
ρ∈S(H)

(Tr Aρ−H(Φ(ρ))) + sup
σ∈S(K)

(TrBσ −H(Ψ(σ)))
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for all A ∈ Bh(H) and B ∈ Bh(K).
By using invariance of the last inequality with respect to substitution for A and

B by A±‖A‖IH and B±‖B‖IK correspondingly and using (33), we obtain assertion
1) of the theorem.

2) By representation (25) and subadditivity of the quantum entropy, inequality (32)
for arbitrary state ω ∈ SΦ,Ψ implies inequality (27) for this state.

Suppose that inequality (27) holds for any state ω ∈ SΦ,Ψ. By the observation
after remark 4 this means additivity of the Holevo capacity (26) for all A and B
such that HΦ(ρ) < +∞ for all ρ ∈ A and HΨ(σ) < +∞ for all σ ∈ B. In particular,
C(Φ⊗Ψ, {ωH} ⊗ {ωK}) = C(Φ, {ωH}) + C(Ψ, {ωK}).

By remark 4 the state Φ(ωH) ⊗ Ψ(ωK) is the output optimal average for the
{ωH}⊗{ωK}-constrained channel Φ⊗Ψ. By noting that ω ∈ {ωH}⊗{ωK} and using
proposition 3 we obtain

χΦ(ωH) + χΨ(ωK) = C(Φ, {ωH}) + C(Ψ, {ωK})
= C

(
Φ⊗Ψ, {ωH} ⊗ {ωK})

= χΦ⊗Ψ(ω) + H((Φ⊗Ψ)(ω) ‖Φ(ωH)⊗Ψ(ωK)).(34)

Since

H((Φ⊗Ψ)(ω) ‖Φ(ωH)⊗Ψ(ωK))

= H(Φ(ωH)) + H(Ψ(ωK))−H((Φ⊗Ψ)(ω)),

inequality (34) coming with (25) leads to (32). Theorem 2 is proved.
In contrast to the finite dimensional case theorem 2 does not allow to show that

subadditivity of the χ-function (validity of inequality (27) for all states ω) implies
superadditivity of the Ĥ-function (validity of inequality (32) for all states ω) for
given two channels and vice versa. But for the nontrivial class of channels with finite
output entropy (see the examples in [3]) theorem 2 guarantees equivalence of these
properties.

Corollary 7. For arbitrary two channels Φ and Ψ with finite output entropy
subadditivity of the χ-function is equivalent to superadditivity of the Ĥ-function.

The main difficulty preventing to prove the analogous assertion for arbitrary
channels is related with existence of “superentangled” pure states ω, having partial
states with infinite entropy (see remark 4 in [31]).

8. On definition of the Entanglement of Formation. Entanglement is a
specific feature of composed quantum systems. One of the measures of entanglement
of a state of a bipartite system is the Entanglement of Formation (EoF) [17]. In the
finite dimensional case it is defined as follows:

EF (ρ) = minP
i πiρi=ρ

∑

i

πiHΦ(ρi),

where Φ is the partial trace considered as a channel from the state space of composed
system into the state space of its subsystem. In terms of convex analysis this definition
means that the EoF coincides with the convex hull of the output entropy of the partial
trace channel. Continuity of the EoF established in [26] implies that it coincides with
the convex closure of the output entropy of the partial trace channel in this case.
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The following generalization of the EoF to the infinite dimensional case is considered
in [19]:

ED
F (ρ) = infP

i πiρi=ρ

∑

i

πiHΦ(ρi),

where the infimum is over all countable decompositions of the state ρ into pure states
and Φ is the partial trace channel.

The alternative approach to the definition of the EoF is considered in [24] in the
case of tensor product of two systems with one of them finite dimensional. By using
the results of the previous section we can generalize this approach and define the EoF
in the general case by

EC
F (ρ) = ĤΦ(ρ) = inf

π∈P{ρ}

∫

S(H)

HΦ(ρ) π(dρ),

where Φ is the partial trace.
Proposition 7 shows that EC

F is a convex lower semicontinuous function, coinciding
with the convex closure of the output entropy of the partial trace channel. Proposition
6 implies that the infimum in the above expression is achieved at some measure
supported by pure states. Proposition 8 guarantees the following natural property
of EC

F :

{EC
F (ρ) = 0} ⇐⇒ {state ρ is separable},

where the set of separable (nonentangled) states is defined as the convex closure of
pure product states [3]. Indeed, if Φ is the partial trace channel then the set H−1

Φ (0)∩
Extr S(H) coincides with the set of pure product states. Theorem 1 guarantees
continuity of EC

F on subsets of states, on which the output entropy of one of the
partial traces is continuous. By proposition 3 in [19] this implies continuity of EC

F on
the subsets of states with constrained mean energy. Note also that theorem 1 implies
continuity of EC

F = ED
F on the whole state space of composed system, which contains

at least one finite dimensional subsystem. (Proof of continuity of the EoF is nontrivial
even in the finite dimensional case [26].)

The interesting question is the relations between ED
F and EC

F . Proposition 6
implies

ED
F (ρ) = EC

F (ρ)

for all states ρ. Since an arbitrary state can be represented as a countable convex
combination of pure states it follows from lemma 2 and concavity of the output entropy
that

(35) ED
F (ρ) = EC

F (ρ)

for all states ρ having at least one partial trace with finite entropy. It is easy to see
that (35) holds for all nonentangled and all pure states (for which ĤΦ coincides with
HΦ). Note that lemma 5 implies

EC
F (ρ) = lim

ε→+0
infP

i πiρi∈Uε(ρ)

∑

i

πiHΦ(ρi),

where Uε(ρ) is ε-vicinity of the state ρ and the infimum is over all (finite) ensembles
of pure states. But validity of equality (35) for mixed states having partial traces with
infinite entropy remains an open problem. In the appendix B it is shown that validity
of this equality can not be proved by using only general functional properties of the
output entropy.
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9. Appendixes.

A. Convex hull and convex closure. Here the notions from the convex
analysis used in the main text are presented, following [4]. Let f be an arbitrary
real valued function defined on closed convex subset X of some locally convex linear
topological space. Consider the subset epi(f) = {(x, λ) ∈ X×R |λ = f(x)} ⊆ X×R.

Note that a function f is uniquely determined by the corresponding set epi(f).
Function f is called convex if the set epi(f) is a convex subset of X×R. Function f is
called closed if the set epi(f) is a closed subset of X ×R. Function f is called proper
if it does not take the value −∞. For proper function f convexity means

f(λx1 + (1− λ)x2) 5 λf(x1) + (1− λ)f(x2) ∀x1, x2 ∈ X, ∀λ ∈ [0, 1].

Each closed function f is lower semicontinuous in the sense that the set defined by
the inequality f(x) 5 λ is a closed subset of X for arbitrary λ ∈ R and, conversely,
each lower semicontinuous function f is closed. It is possible to show that lower
semicontinuity of a function f means that

lim inf
n→+∞

f(xn) = f(x0)

for any sequence {xn} ⊂ X converging to x0.
Let f be an arbitrary function on X. The convex hull co f of the function f is

defined by the expression

co f(x) = inf
(x,λ)∈co(epi(f))

λ,

in which symbol co in the right side denotes the convex hull of a set. This is equivalent
to the following representation:

co f(x) = infP
i πixi=x

∑

i

πif(xi), πi > 0,
∑

i

πi = 1.

It follows that co f is the greatest convex function majorized by f . The convex closure
co f of the function f is defined by the relation epi(co f) = co (epi(f)), in which symbol
co in the right side denotes the convex closure of a set. Hence co f is the greatest
convex closed function majorized by f . This implies:

co f(x) 5 co f(x) 5 f(x) ∀x ∈ X.

If f is a continuous function on compact convex set X then co f = co f [12].
For arbitrary real valued function f on locally convex real linear topological space

X the Fenchel transform f∗ is the function on the dual space X∗ defined by the
expression

f∗(y) = sup
x∈X

(〈y, x〉 − f(x)) ∀ y ∈ X∗.

The double Fenchel transform f∗∗ is the function on the space X defined by the
expression

f∗∗(x) = sup
y∈X∗

(〈y, x〉 − f∗(y)) ∀x ∈ X.

By Fenchel’s theorem f∗∗(x) = co f for arbitrary proper function f . This implies that
for any proper function f its convex closure cof coincides with the upper bound of
the set of all affine continuous functions majorized by f .
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B. On coincidence of two definitions of the EoF. Many questions related
with the quantum entropy H(ρ) can be solved by using the following properties of
this characteristic:
— nonnegativity;
— concavity;
— lower semicontinuity.

These properties follows from the substantially stronger property of the quantum
entropy: the function H(ρ) is a pointwise limit of the increasing sequence of the
nonnegative concave continuous and bounded 8 functions H(PnρPn)+Tr ρPn log Tr ρPn,
where Pn is arbitrary increasing sequence of finite rank projectors, converging to the
unit operator in the strong operator topology [22].

The output entropy HΦ(ρ) of any quantum channel Φ (in particular the partial
trace channel) has all the above properties, which are used in proving many results
of this paper. For example, the representation of the function HΦ(ρ) as a limit
of increasing sequence of nonnegative concave continuous and bounded functions
provides the proof of existence of ĤΦ-optimal measure supported by pure states
(proposition 6).

The aim of this section is to show that the above properties of the output entropy
HΦ(ρ) are not sufficient for proof of validity of equality (35) for all states.

Let E be the class of all functions on S(H), represented as a pointwise limit
of increasing sequence of nonnegative concave continuous and bounded functions
on S(H).

This definition implies that all functions of the class E are concave lower semicontinuous
functions on S(H) with the range in [0, +∞].

Proposition. In E there exists bounded function F such that

infP
i πiρi=ρ0

∑

i

πiF (ρi) = 1 and inf
π∈P{ρ0}

∫

S(H)

F (ρ)π(dρ) = 0

for some state ρ0 in S(H), where the infimum in the first expression is taken over all
countable decompositions of the state ρ0.

In the proof of this proposition the essential role is played by the following lemma,
in which the indicator function of an arbitrary set of pure states is introduced.

Lemma. Let A be an arbitrary set of pure states in S(H). The function fA(ρ) =
infσ∈A(1−Tr ρσ) is a continuous and concave function on S(H) such that 0 5 f(ρ) 5
1 and f−1(0) = A.

Proof. It is sufficient to prove convexity and continuity of the function 1− f(ρ) =
g(ρ) = supσ∈A Tr ρσ, since the other properties are easily verified. Convexity and
lower semicontinuity of the function g(ρ) follows from its representation as an upper
bound of the family {Tr ρσ}σ∈A of continuous affine functions on S(H).

Suppose the function g(ρ) is not upper semicontinuous. This means existence of
such sequence of states {ρn}, converging to some state ρ0, that

(36) lim
n→+∞

g(ρn) > g(ρ0).

Let A = {|ϕ〉 ∈ H | |ϕ〉〈ϕ| ∈ A} be the set of unit vectors in H and A be the closure

8Since the set S(H) is noncompact continuity does not imply boundedness.
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of this set the weak topology in Hilbert space H. By lemma 2 in [5, p. 284]9 we have

(37) g(ρ0) = sup
σ∈A

Tr ρ0σ = sup
ϕ∈A

〈ϕ|ρ0|ϕ〉 = sup
ϕ∈A

〈ϕ|ρ0|ϕ〉.

For any ε > 0 and n there exists vector ϕε
n in A such that 〈ϕε

n|ρn|ϕε
n〉 > g(ρn)−ε.

Since the unit ball in the space H is compact in the weak topology, there exists
subsequence {ϕε

nk
}k of the sequence {ϕε

n}n, weakly converging to some vector ϕε
0 ∈

A. By lemma 2 in [5] mentioned above the sequence {〈ϕε
nk
|ρ0|ϕε

nk
〉}k converges to

〈ϕε
0|ρ0|ϕε

0〉 as k → +∞. Thus by using the estimation |〈ϕε
nk
|ρnk

− ρ0|ϕε
nk
〉| 5 ‖ρnk

−
ρ0‖1 we obtain

lim
k→+∞

g(ρnk
) 5 lim

k→+∞
〈ϕε

nk
|ρnk

|ϕε
nk
〉 − ε = 〈ϕε

0|ρ0|ϕε
0〉 − ε 5 g(ρ0)− ε,

where the last inequality follows from (37). Since ε is arbitrary this inequality contradicts
to (36). Lemma is proved.

Proof of Proposition. Let As be the set of all pure product states in the tensor
product of two separable Hilbert spaces and ρ0 be the separable state, constructed
in [3], such that any measure with the barycenter ρ0 has no atoms in As. Let F be
the characteristic function of the complement of the set As. For each n = 1, 2, . . .
the function Fn(ρ) = n

√
fAs(ρ), where fAs(ρ) is the function from the above lemma,

is continuous and concave. Hence, the pointwise limit F of the sequence {Fn} is a
function of the class E . By lemma 1 in [3] there exists (purely nonatomic) measure π0

supported by the setAs and having barycenter ρ0. Thus infπ∈P{ρ0}

∫
S(H)

F (ρ)π(dρ) =
0. Since support of any atomic measure with the barycenter ρ0 does not intersect
with As, it easy to see that infP

i πiρi=ρ0

∑
i πiF (ρi) = 1.

The author is grateful to A.S.Holevo for permanent help in preparing of this
paper. The author is also grateful to М.Wolf for the useful remarks.
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