
Communications of the Moscow Mathematical Society 359

On the notion of entanglement in Hilbert spaces

A. S. Kholevo [Holevo], M. E. Shirokov, and R. F. Werner

A density operator (state) on a tensor product H ⊗ K of Hilbert spaces is separable if it is
in the convex closure of the subset of all tensor product states. Non-separable states are called

entangled. These concepts are of great importance in quantum information theory, but they have
been studied in depth only in the finite-dimensional context [1]. In this note we give a general

integral representation for separable states and provide the first example of separable states that
are not countably decomposable. We also prove a structure theorem for quantum communication

channels that are entanglement-breaking, generalizing the finite-dimensional result of [2]. In
the finite-dimensional case such channels can be characterized as having a Stinespring–Kraus

representation (3) with operators Vj of rank 1. The above example implies the existence of
infinite-dimensional entanglement-breaking channels having no such representation.

In what follows,H,K, . . . are separable Hilbert spaces, T(H) is the Banach space of trace-class
operators and S(H) is the convex subset of all density operators on H. For brevity we shall also

call them states, having in mind that a density operator ρ uniquely determines a normal state
on the algebra B(H) of all bounded operators on H. Equipped with the trace-norm topology,

S(H) is a complete separable metric space. If π is a Borel probability measure on S(H), then
the Bochner integral

ρ̄(π) =

∫
S(H)

σ π(dσ) (1)

defines a state called the barycenter of π.
The following lemma, which strengthens the Choquet decomposition for the case of closed

convex subsets of S(H), is proved using the compactness criterion for subsets of probability
measures on S(H) [3]. We denote by coA the convex closure of a set A [4].

Lemma. Let A be a closed subset of S(H). Then coA coincides with the set of barycenters of
all Borel probability measures supported by A.

Definition 1. A state on H⊗K is called separable if it is in the convex closure of the subset of
all tensor product states ρ⊗ σ, where ρ ∈ S(H) and σ ∈ S(K). A state is called entangled if it
is not separable.

In this definition one can replace the set of all product states by the set of all products of

pure states (extreme points of S(H⊗K)). The subset P(H⊗K) of pure states is closed in the
trace-norm topology. The lemma then implies that a state ρ is separable if and only if there is a

Borel probability measure µ on P(H)×P(K) such that

ρ =

∫
P(H)

∫
P(K)

|ϕ〉〈ϕ| ⊗ |ψ〉〈ψ|µ(dϕdψ). (2)

In the finite-dimensionalcase application of Carathéodory’s theorem reduces this to the familiar
definition of a separable state as a finite convex combination of pure product states [1]. In general,

we call the state countably decomposable if it is possible to find a representation (2) with purely
atomic measure µ.

A channel is a positive trace-preserving linear map Φ from T(H) to T(H′) such that the dual
map Φ∗ : B(H′) �→ B(H) (which exists since Φ is bounded) is completely positive. An arbitrary
channel admits a (non-unique) Stinespring–Kraus representation

Φ(ρ) =
∑
j

VjρV
∗
j , (3)

where the Vj are bounded operators from H to H
′ such that

∑
j V
∗
j Vj = I.
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Definition 2. A channel Φ is called entanglement-breaking if for an arbitrary Hilbert space K
and an arbitrary state ω ∈ S(H⊗K) the state (Φ⊗ IdK)(ω), where IdK is the identity channel
on S(K), is separable.

Theorem 1. A channel Φ is entanglement-breaking if and only if there is a complete separable
metric space X, a Borel S(H′)-valued function x �→ ρ′(x), and a resolution of the identity (a
positive operator-valued Borel measure) M(dx) on X such that

Φ(ρ) =

∫
X

ρ′(x)µρ(dx), (4)

where µρ(B) = Tr ρM(B) for all Borel sets B ⊆ X.

The proof uses a generalization of the well-known correspondence between completely positive

maps and states in H′ ⊗K (see [5]).
If there is a representation (4) with purely atomic measure M(dx), then we call the channel Φ

countably decomposable. This is easily seen to be equivalent to the channel having a representa-
tion (3) with operators Vj of rank 1. On the other hand, the channel is countably decomposable

if and only if the states in (Φ⊗ IdK)(S(H⊗K)) are countably decomposable. This reduces the
question of the existence of entanglement-breaking channels which have no representation (3) with

operators of rank 1 to the question of the existence of a separable state which is not countably
decomposable. We give a construction of such states below.

Let T be the one-dimensional torus parametrized as the interval [0,2π) with addition mod 2π,

and let H = L2(T) with the normalized Lebesgue measure dx
2π
. We consider the unitary represen-

tation x→ Vx of T, where (Vuψ)(x) = ψ(x− u).

Theorem 2. For arbitrary state vectors |ϕj〉 ∈ Hj � L2(T), j = 1,2, with non-vanishing Fourier
coefficients the separable state

ρ12 =

∫ 2π
0
V
(1)
x |ϕ1〉〈ϕ1|V (1)∗x ⊗ V (2)x |ϕ2〉〈ϕ2|V (2)∗x

dx

2π

on H1 ⊗H2 is not countably decomposable.

Corollary 1. There exists an entanglement-breaking channel which has no representation (3)

with operators of rank 1.

The proof is by explicit construction using the example of Theorem 2 and the correspondence

between channels and the states on the tensor product of the spaces. We conjecture that the
subset of states that are not countably decomposable is dense in the set of all separable states.

The following result is a step in this direction.

Corollary 2. There is a separable state that is not countably decomposable in an arbitrary neigh-
borhood of an arbitrary pure product state.
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