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Superadditivity of the convex closure
of the output entropy of a quantum channel

M.E. Shirokov

One of the main recent achievements of quantum information theory [1] is the proof
of the equivalence of several (sub-, super-) additivity conjectures for finite-dimensional
quantum channels and systems [2] (see the survey in [3]). The main purpose of this paper
is to give a generalization of this result to the infinite-dimensional case.

Let H and H ′ be separable Hilbert spaces. A quantum channel is a linear completely
positive trace-preserving map Φ: T(H ) 7→ T(H ′), where T(H ) is the ideal of all trace
class operators on H . In particular, Φ generates an affine map of the convex set S(H )
of states (that is, density operators) on the space H to the set S(H ′) of states on the
space H ′ [1].

Important characteristics of a quantum channel are the output entropy HΦ(ρ) =
H(Φ(ρ)), a lower-semicontinuous concave function on the input state space with values in

[0, +∞], and its convex closure (see [4]), denoted by bHΦ(ρ) and called the bH-function of
the channel Φ. It was shown in [5] that the convex closure of the output entropy of an
arbitrary quantum channel Φ is given by the expression

bHΦ(ρ) = inf
µ

Z
S(H )

HΦ(σ) µ(dσ), (1)

where the infimum is taken over all probability measures on S(H ) with barycentre ρ, and
that this infimum is always achieved at some measure supported on the set of pure states.

A continuity condition for the bH-function of an infinite-dimensional channel Φ was
obtained in [5] (Proposition 7). This condition is equivalent to the conditionn

lim
n→+∞

HΦ(ρn) = HΦ(ρ0) < +∞
o

=⇒
n

lim
n→+∞

bHΦ(ρn) = bHΦ(ρ0)
o

. (2)

The superadditivity property of the bH-function for channels Φ and Ψ is the validity of
the inequality bHΦ⊗Ψ(ω) > bHΦ(ωH ) + bHΨ(ωK ) (3)

for all ω ∈ S(H ⊗K ), where ωH = TrK ω and ωK = TrH ω. This property implies
the additivity of the minimal output entropy for the channels Φ and Ψ (see [1], [3]). If

Φ and Ψ are partial traces, then the superadditivity of the bH-function means the super-
additivity of the Entanglement of Formation (EoF), which is an important characteristic
of the state of a bipartite quantum system indicating the degree of entanglement of this
state (see [1], [5]).

For finite-dimensional channels Φ and Ψ the superadditivity of the bH-function is equiva-
lent to the additivity of the Holevo capacity of these channels with arbitrary constraints [6].
One of the obstacles to proving an analogous assertion for infinite-dimensional channels
is the existence of superentangled states—pure states of a bipartite system having partial
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traces with infinite entropy (see Remark 4 in [7]). Namely, the existence of such states

prevented, until now, proving the superadditivity of the bH-function (and even the additiv-
ity of the minimal output entropy) for several classes of infinite-dimensional channels for
which the additivity of the Holevo capacity with arbitrary constraints was derived in [7]
from the corresponding finite-dimensional results [6], [8].

The problem of superentangled states can be partially solved by the following assertion
based on the continuity condition (2) and on some other results in [5].

Lemma. Let Φ: S(H ) 7→ S(H ′) and Ψ: S(K ) 7→ S(K ′) be arbitrary quantum
channels. The inequality (3) holds for all ω in S(H ⊗K ) if for an arbitrary finite-rank
state ω0 in S(H ⊗K ) with finite output entropy HΦ⊗Ψ(ω0) there exists a sequence {ωn}
of states in S(H ⊗K ) such that the following properties are satisfied :

(i) limn→+∞ ωn = ω0 and limn→+∞HΦ⊗Ψ(ωn) = HΦ⊗Ψ(ω0);

(ii) the inequality (3) holds with ω = ωn for all n ∈ N.

Using this lemma, Proposition 7 and Theorem 2 in [7], as well as Theorem 1 in [9], we
obtain the following infinite-dimensional version of the results in [9], [6], [8].

Proposition. Let Ψ be an arbitrary channel. Superadditivity of the bH-function holds in
the following cases : (i) Φ is a noiseless channel ; (ii) Φ is an entanglement-breaking channel
(see [3]); (iii) Φ is a channel complementary (see [9]) to an entanglement-breaking channel ;
(iv) Φ is a direct sum mixture (see [6]) of a noiseless channel and a channel Φ0 such that

superadditivity of the bH-function holds for the channels Φ0 and Ψ.

The above lemma makes it possible to prove the following assertion.

Theorem 1. If superadditivity of the bH-function holds for all finite-dimensional quantum
channels, then this property holds also for all infinite-dimensional quantum channels.

Corollary 1. If superadditivity of EoF holds for all states of a finite-dimensional bipartite
quantum system, then this property holds also for all states of an infinite-dimensional
bipartite quantum system.

Corollary 2. If additivity of the minimal output entropy holds for all finite-dimensional
quantum channels, then this property holds also for all infinite-dimensional quantum chan-
nels.

Theorem 1 and Theorem 3 in [7] provide the following infinite-dimensional generaliza-
tion of Shor’s theorem [2].

Theorem 2. The following properties are equivalent : (i) additivity of the Holevo capacity
holds for all infinite-dimensional quantum channels with arbitrary constraints ; (ii) addi-
tivity of the minimal output entropy holds for all infinite-dimensional quantum channels ;
(iii) superadditivity of EoF holds for all states of an arbitrary infinite-dimensional bipartite
quantum system.

The last property in Theorem 2 is equivalent to the superadditivity of the bH-function
for all infinite-dimensional quantum channels.

All the above assertions are proved in [10].
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