Characterization of convex μ-compact sets

M. E. Shirokov

The properties of compact sets in the context of convex analysis have been studied by many authors (see [1] and the references therein). It is natural to ask about possible generalizations of results proved for compact convex sets to non-compact sets. In [2] one such generalization concerning the particular class of sets called μ-compact sets is considered. In [2], [3] it is shown that for this class of sets, which includes all compact convex sets as well as some non-compact sets widely used in applications, many results of the Choquet theory [1] and the Vesterstrøm-O'Brien theory [4], [5] can be proved. In this paper we give a characterization of a convex μ-compact set in terms of properties of functions defined on this set.

In what follows, \mathscr{A} is a bounded convex complete separable metrizable subset of a locally convex space, $C(\mathscr{A})$ is the set of all continuous bounded functions on \mathscr{A}, and $M(\mathscr{A})$ is the set of all Borel probability measures on \mathscr{A} endowed with the weakconvergence topology [6]. Let $\overline{\operatorname{co}} f$ be the convex closure of a function f [7] (the lower envelope in the terminology of [1]).

The barycenter $\mathbf{b}(\mu)$ of an arbitrary measure $\mu \in M(\mathscr{A})$ is the state defined by the Pettis integral (cf. [6]):

$$
\begin{equation*}
\mathbf{b}(\mu)=\int_{\mathscr{A}} x \mu(d x) \in \mathscr{A} \tag{1}
\end{equation*}
$$

Definition. A set \mathscr{A} is said to be μ-compact if the pre-image of any compact subset of \mathscr{A} under the barycenter map (1) is a compact subset of $M(\mathscr{A})$.

Any compact set is μ-compact. Indeed, compactness of \mathscr{A} implies compactness of $M(\mathscr{A})$ [6]. In [2], [3] the μ-compactness property is proved for the following non-compact closed sets:

- bounded parts of the positive cones of the Banach space l_{1} and the Banach space $\mathfrak{T}(\mathscr{H})$ of trace class operators in a separable Hilbert space \mathscr{H};
- a variation-bounded set of Borel measures, endowed with the weak-convergence topology, on an arbitrary complete separable metric space;
- a norm-bounded set of positive linear operators, endowed with the strong operator topology, on the Banach spaces l_{1} and $\mathfrak{T}(\mathscr{H})$.

In particular, this implies μ-compactness of the set of all Borel probability measures, endowed with the weak-convergence topology, on an arbitrary complete separable metric space, of the set of quantum states, and of the set of quantum operations endowed with the strong operator topology [8].

It is essential to note that the μ-compactness property of a convex set is not purely topological but reflects a special relation between the topology and the convex structure of this set [3].

The following theorem shows that the class of convex μ-compact sets can be characterized by the continuity of the operation of convex closure with respect to monotone pointwise converging sequences of functions.

[^0]DOI 10.1070/RM2008v063n05ABEH004562.

Theorem. The following properties are equivalent:
(i) the set \mathscr{A} is μ-compact;
(ii) for an arbitrary increasing sequence $\left\{f_{n}\right\}$ of functions in $C(\mathscr{A})$ converging pointwise to a function f_{0} in $C(\mathscr{A})$, the sequence $\left\{\overline{\mathrm{o}} f_{n}\right\}$ converges pointwise to the function $\overline{\mathrm{co}} f_{0}$;
(iii) for an arbitrary increasing sequence $\left\{f_{n}\right\}$ of lower semicontinuous functions bounded below on \mathscr{A} and converging pointwise to a function f_{0}, the sequence $\left\{\overline{\mathrm{co}} f_{n}\right\}$ converges pointwise to the function $\overline{\operatorname{co}} f_{0}$.
If these equivalent properties hold, then for an arbitrary decreasing sequence $\left\{f_{n}\right\}$ of lower semicontinuous bounded functions on \mathscr{A} converging pointwise to a lower semicontinuous bounded function f_{0}, the sequence $\left\{\overline{\operatorname{co}} f_{n}\right\}$ converges pointwise to the function $\overline{\operatorname{co}} f_{0}$.

The proof of this theorem is presented in [9], while some its applications in quantum information theory are considered in [10].

Bibliography

[1] E. M. Alfsen, Compact convex sets and boundary integrals, Ergeb. Math. Grenzgeb., vol. 57, Springer-Verlag, New York-Heidelberg 1971.
[2] М. Е. Широков, Матем. заметки 82:3 (2007), 441-458; English transl., M. E. Shirokov, Math. Notes 82:3-4 (2007), 395-409.
[3] В. Ю. Протасов, М. Е. Широков, "Обобщенная компактность в линейных пространствах и ее приложения", Матем. сб. (to appear). [V. U. Protasov and M. E. Shirokov, "Generalized compactness in linear spaces and its application", Mat. Sb. (to appear).]
[4] J. Vesterstrøm, J. London Math. Soc. (2) 6 (1973), 289-297.
[5] R. O'Brien, Math. Ann. 223:3 (1976), 207-212.
[6] P. Billingsley, Convergence of probability measures, Wiley, New York-London-SydneyToronto 1968.
[7] А. Д. Иоффе, В. М. Тихомиров, Теория экстремальных задач, Нелинейный анализ и его приложения, Наука, M. 1974; English transl., A. D. Joffe and V. M. Tikhomirov, Theory of extremal problems, Stud. Math. Appl., vol. 6, North-Holland, Amsterdam-New York 1979.
[8] А. С. Холево, Статистическая структура квантовой теории, РХД, М.-Ижевск 2003; A. S. Holevo, Statistical structure of quantum theory, Lect. Notes Phys. Monogr., vol. 67, Springer-Verlag, Berlin 2001.
[9] М. Е. Широков, Современные проблемь фундаментальной и прикладной математики, Сборник научных трудов МФТИ, М. 2008, 193-203. [М. E. Shirokov, Modern problems of applied and fundamental mathematics, Research publications of Moscow Institute of Physics and Technology, Moscow 2008, pp. 193-203.]
[10] M. E. Shirokov, arXiv: 0804.1515, 2008.
M. E. Shirokov

Steklov Mathematical Institute, Russian Academy of Sciences
E-mail: msh@mi.ras.ru

Presented by V. M. Tikhomirov
Accepted 10/JUL/08
Translated by M. SHIROKOV

[^0]: This work was partially supported by the RFBR (grant nos. 06-01-00164-a and 07-01-00156).
 AMS 2000 Mathematics Subject Classification. Primary 46A55.

