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Characterization of convex µ-compact sets

M.E. Shirokov

The properties of compact sets in the context of convex analysis have been studied

by many authors (see [1] and the references therein). It is natural to ask about possible

generalizations of results proved for compact convex sets to non-compact sets. In [2]

one such generalization concerning the particular class of sets called µ-compact sets is

considered. In [2], [3] it is shown that for this class of sets, which includes all compact

convex sets as well as some non-compact sets widely used in applications, many results

of the Choquet theory [1] and the Vesterstrøm–O’Brien theory [4], [5] can be proved. In

this paper we give a characterization of a convex µ-compact set in terms of properties of

functions defined on this set.

In what follows, A is a bounded convex complete separable metrizable subset of

a locally convex space, C(A ) is the set of all continuous bounded functions on A ,

and M(A ) is the set of all Borel probability measures on A endowed with the weak-

convergence topology [6]. Let co f be the convex closure of a function f [7] (the lower

envelope in the terminology of [1]).

The barycenter b (µ) of an arbitrary measure µ ∈ M(A ) is the state defined by the

Pettis integral (cf. [6]):

b(µ) =

∫
A

x µ(dx) ∈ A . (1)

Definition. A set A is said to be µ-compact if the pre-image of any compact subset of

A under the barycenter map (1) is a compact subset of M(A ).

Any compact set is µ-compact. Indeed, compactness of A implies compactness of

M(A ) [6]. In [2], [3] the µ-compactness property is proved for the following non-compact

closed sets:

– bounded parts of the positive cones of the Banach space l1 and the Banach space

T(H ) of trace class operators in a separable Hilbert space H ;

– a variation-bounded set of Borel measures, endowed with the weak-convergence

topology, on an arbitrary complete separable metric space;

– a norm-bounded set of positive linear operators, endowed with the strong operator

topology, on the Banach spaces l1 and T(H ).

In particular, this implies µ-compactness of the set of all Borel probability measures,

endowed with the weak-convergence topology, on an arbitrary complete separable metric

space, of the set of quantum states, and of the set of quantum operations endowed with

the strong operator topology [8].

It is essential to note that the µ-compactness property of a convex set is not purely

topological but reflects a special relation between the topology and the convex structure

of this set [3].

The following theorem shows that the class of convex µ-compact sets can be charac-

terized by the continuity of the operation of convex closure with respect to monotone

pointwise converging sequences of functions.
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Theorem. The following properties are equivalent :

(i) the set A is µ-compact ;

(ii) for an arbitrary increasing sequence {fn} of functions in C(A ) converging pointwise

to a function f0 in C(A ), the sequence {co fn} converges pointwise to the function

co f0;

(iii) for an arbitrary increasing sequence {fn} of lower semicontinuous functions bounded

below on A and converging pointwise to a function f0, the sequence {co fn} converges

pointwise to the function co f0.

If these equivalent properties hold, then for an arbitrary decreasing sequence {fn} of

lower semicontinuous bounded functions on A converging pointwise to a lower semicontin-

uous bounded function f0, the sequence {co fn} converges pointwise to the function co f0.

The proof of this theorem is presented in [9], while some its applications in quantum

information theory are considered in [10].
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