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Abstract. We show that the plane Cremona group over a field of
characteristic p > 0 does not contain elements of power of p larger
than 2. We also describe conjugacy classes of elements of order p2.

1. Introduction

The classification of conjugacy classes of elements of finite order `
in the plane Cremona group Cr2(k) over an algebraically closed field k
of characteristic 0 has been known for more than a century. The pos-
sible orders of elements not conjugate to a projective transformation
are 2, . . . , 10, 12, 14, 15, 18, 20, 24 and 30 (see [3] and historic references
there). Much less is known in the case when k is of positive character-
istic p and the order is divisible by p.

In this note we prove the following Main Theorem.

Theorem 1. Let k be a field of characteristic p > 0. Then the group
Cr2(k) does not contain elements of order ps with s > 2.

We will also describe conjugacy classes of elements of order p2 over
algebraically closed field of characteristic p > 0.

I thank J.-P. Serre for asking about the existence of elements of order
8 in Cr2(k) over a field of characteristic 2. The question had initiated
the present paper.

It is a great pleasure to dedicate this paper to Vasya Iskovskikh,
a long-time friend and one of the main contributers to the modern
development of the theory of Cremona transformations.

2. Conic bundles

It is clear that in the proof of Main Theorem, we may assume that
k is an algebraically closed field of characteristic p > 0. On several
occasions I refer to [3] where the ground field was assumed to be the
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field of complex numbers. The proofs of the facts which I will use
extend to our case.

Let σ ∈ Cr2(k) be of order ps. A standard argument (see [3]) shows
that σ acts biregularly on one of the following rational surfaces X

(i) X has a structure of a conic bundle f : X → P1
k with m ≥ 0

singular fibres,
(ii) X is a Del Pezzo surface of degree d.

Moreover, we may assume that X is σ-minimal, i.e. Pic(X)σ is of
rank 2 in the first case and of rank 1 in the second case. This is
equivalent to that any σ-equivariant birational morphism X → X ′

must be an isomorphism. When X is σ-minimal, we say that σ acts
minimally on X.

We start from the first case. Recall the following well-known fact.

Lemma 2. Let σ be an element of order ps in Aut(Pr
k). Then s ≤

logp(r + 1).

Proof. Let A ∈ GLr+1(k) represent σ and Aps
= cIr+1 for some constant

c. Multiplying A by c
1

ps we may assume that Aps
= 1. Since k∗ does not

contain non-trivial ps-th roots of unity, we can reduce A to the Jordan
form with 1 at the diagonal. Obviously Aps

= Ir+1 + (A − Ir+1)
ps

.
Since, for any Jordan block-matrix J with zeros at the diagonal we
have Jr+1 = 0, we get Aps

= 0 as soon as ps ≥ r + 1. The assertion
follows. ¤

Corollary 3. Let f : X → P1
k be a conic bundle and σ be an automor-

phism of X of order ps preserving the conic bundle. Then s ≤ 2.

Proof. Let ḡ be the image of σ in the automorphism group of the base of
the fibration. By the previous lemma σ̄p = 1. Thus σp acts identically
on the base and hence acts on the general fibre of f . The latter is
isomorphic to the projective line over the functional field of the base.
Applying the lemma again we obtain that σp2

= 1. ¤

This checks the theorem in the case of a conic bundle. Let us give a
closer look at elements of order p2.

Theorem 4. Let σ be a minimal automorphism of order p2 of a conic
bundle X → P1

k. Then p = 2.

Proof. Let m = K2
X − 8 be the number of singular fibres of the conic

bundle. Assume first that m = 0, i.e. π : X → P1
k is a minimal ruled

surface Fn. If n = 1, the surface is not σ-minimal. If n = 0, the
automorphism group of F0

∼= P1
k × P1

k preserving one of the rulings is
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isomorphic to Aut(P1
k)×Aut(P1

k). It does not contain elements of order
p2.

So we may assume that n ≥ 2. The automorphism group Aut(X) of
the surface Fn is well-known (see [3]). By blowing down the exceptional
section, we obtain that Aut(X) is isomorphic to the group of auto-
morphisms of the weighted projective plane P(1, 1, n) with coordinates
t0, t1 of degree 1 and coordinate t2 of degree n. Any automorphism g
of P(1, 1, n) can be given by the formula

σ : (t0, t1, t2) 7→ (at0 + bt1, ct0 + dt1, et2 + fn(t0, t1)),

where fn is a binary form of degree n. In our case we can change the
coordinates to assume that a = b = d = 1, c = 0. By iterating, we get
eps

= 1, hence e = 1. Also

σp : (t0, t1, t2) = (t0, t1, t2 +

p−1∑
j=0

fn(t0 + jt1, t1).

Let σ̄ be the transformation (t0, t1) 7→ (t0 + t1, t1). Since
∑p−1

i=0 σ̄i = 0,
we get that the sum in above is equal to zero, hence σp = 1. Thus
there are no automorphisms of order p2.

Assume now that m > 0, i.e. X is obtained from a minimal ruled
surface Fn by blowing up m points. If n > 0, the proper transform
of the exceptional section of Fn is a section of the conic bundle with
negative self-intersection. If n = 0, the proper transform of a section
of F0 passing through a point we blow up, is a section with negative
self-intersection. So, in any case we have a section of the conic bundle
with negative self-intersection. It intersects a component of a singular
fibre at its nonsingular point. Since X is σ-minimal, σ cannot fix this
component, so σ(E) 6= E. By Lemma 2, σp acts identically on the
base of the conic bundle. Since p > 2, σp cannot switch components
of singular fibres, hence it must act identically on Pic(X). Since an
irreducible curve with negative self-intersection does not move in a
linear system, σp fixes E and σ(E). But in characteristic p > 0 an
automorphism of order p of a general fibre has only one fixed point.
This shows that σp = 1 if p > 2. ¤

Example 1. Recall that Cr2(k) contains a subgroup of de Jonquières

transformations of the form (x, y) 7→ (
αx+β
γx+δ

, a(x)y+b(x)
c(x)y+d(x)

)
. Each element

of finite order in this subgroup is realized as an automorphism of a conic
bundle. Assume p = 2. Without loss of generality we may assume that
x 7→ x + 1.
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Let a(x) = d(x) = x2n+1 + 1. We have

a(x + 1) = (x + 1)2n+1 + 1 = 1 + (x + 1)(x + 1)2n

= x(x2n + x2n−1 + 1).

Let b(x) = (x2n + x2n−1 + 1), c(x) = x + 1, so that

a(x)a(x + 1) + b(x)c(x + 1) = a(x)a(x + 1) + b(x + 1)c(x) = 0.

With this choice, we have σ2 : (x, y) 7→ (x, R(x)/y), where

R(x) = a(x+1)b(x)+a(x)b(x+1)
a(x)c(x+1)+a(x+1)c(x)

= a(x)a(x+1)2/x+a(x)2a(x+1)/(x+1)
a(x)x+a(x+1)(x+1)

=
a(x)a(x + 1)

x(x + 1)
= P (x) := (x2n

+ x2n−1 + . . . + 1)(x2n

+ x2n−1 + 1).

For n > 1, the polynomial P (x) has no multiple roots. It is known
that the de Jonquières involution (x, y) 7→ (x, P (x)/y) is realized as a
minimal automorphism of a conic bundle with the number m of singular
fibres equal to the degree of P (x). On the other hand, it is known
that for m ≥ 8 a minimal automorphism of such a conic bundle is
not conjugate to neither a projective automorphism, nor a minimal
automorphism of a Del Pezzo surface, nor a minimal automorphism
of a conic bundle with number of singular fibres different from m (see
Corollary 7.11 in [3]). Thus we have constructed a countable set of
conjugacy classes of elements of order 4 in Cr2(k).

3. Del Pezzo surfaces of degree ≥ 3

Now we consider the case when σ is an automorphism of order ps of
a Del Pezzo surface X of degree d := K2

X ≥ 4.
If d = 9, X = P2

k and by Lemma 2 we get s ≤ 2. All elements of
order p2 are conjugate in Aut(P2

k).
If d = 8, then X ∼= P1

k × P1
k because the ruled surface F1 is not

σ-minimal. We know that Aut(F0) contains a subgroup of index 2
isomorphic to Aut(P1

k)×Aut(P1
k). Applying Lemma 2 we obtain s = 1

if p 6= 2, and s ≤ 2 otherwise. The automorphism of X given in affine
coordinates by (x, y) 7→ (y + 1, x) is of order 4.

If d = 7, the surface is not σ-minimal since it is obtained by blowing
up two points in P2

k, the proper transform of the line joining the points
is a σ-invariant (−1)-curve.

Assume d = 6. Then Aut(X) is isomorphic to the semi-direct prod-
uct T oG, where T ∼= k∗2 is a 2-dimensional torus and G is a dihedral
group D12

∼= (Z/2Z)× S3. Since T does not contain elements of order
p and D12 does not contain elements of order ps, s > 1, we obtain that
the only possibility is s = 1 and p = 2, 3.

Assume d = 5. It is known that Aut(X) acts faithfully on the Picard
group of X of a Del Pezzo surface of degree ≤ 5. Via this action it
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becomes isomorphic to a subgroup of the Weyl group W (A4) ∼= S5.
Thus s = 1 unless p = 2 and s = 2. The group W (A4) acts on
K⊥

X
∼= Z4 via its standard irreducible representation on {(a1, . . . , a5) ∈

Z5 : a1 + . . . + a5 = 0}. A cyclic permutation of order 4 has a fixed
vector. This shows that X is not σ-minimal.

Assume d = 4. In this case Aut(X) is isomorphic to a subgroup of
the Weyl group W (D5) ∼= (Z/2Z)4 o S5. Thus an automorphism of
order ps with s > 1 may exist only if p = 2.

It is known that X is isomorphic to the blow-up of 5 points p1, . . . , p5

in the plane, no three among them are collinear. The surface admits
5 pairs (|Ci|, |C ′

i|) of pencils of conics in the anti-canonical embedding
X ↪→ P4

k. The pencil |Ci| is the proper transform of the pencil of lines
through the point pi and the pencil |C ′

i| is the proper transform of the
pencil of conics through the points pj, j 6= i. Since Ci + C ′

i ∼ −KX ,
the Weil group permutes the 5 pairs of the divisor classes [Ci], [Ci]

′

and switches [Ci] with [C ′
i] in even pairs of them (see [3], Proposition

6.6). It is known that the anti-canonical linear system |−KX | maps X
isomorphically onto the intersection of two quadrics in P4

k. Under the
multiplication map |Ci| × |C ′

i| → | − KX |, the two pencils generate a
hyperplane Hi in | −KX | and the map fi × f ′i : X → P1

k × P1
k defined

by the two pencils is equal to the composition of the anti-canonical
map and the projection from the point hi ∈ | − KX |∗ corresponding
to the hyperplane Hi. Since the image of X under this projection is a
nonsingular quadric, we see that the center of the projection lies on a
singular quadric Qi of corank 1 in the pencil Q of quadrics containing
X. Conversely, every such quadric defines a degree 2 map f : X →
P1

k×P1
k, and the pre-images of the ruling define a pair of pencils of conics

on X. Thus we see that the pencil of quadrics Q contains exactly five
singular quadrics. Any automorphism σ of X acts on the pencil Q
leaving the set of five quadrics invariant. Its square σ2 acts identically
on the pencil and hence leaves invariant all pairs of conic pencils. Since
the divisor classes [Ci] together with KX generate Pic(X), we obtain
that σ4 acts identically on Pic(X), hence it is the identity.

Remark 1. Another proof of non-existence of an automorphism of order
8 on a Del Pezzo surface of degree 4 was suggested by J.-P. Serre. It is
known that an element of order 8 in W (D5) has trace equal to −1 in the
root lattice. Since the latter is isomorphic to K⊥

X , the automorphism
of order 8 has trace 0 in Pic(X) and hence in the second cohomology
group with `-adic coefficients. Thus the Lefschetz number of σ is equal
to 2, and hence, by the Lefschetz-fixed-point formula, σ has a fixed
point. Blowing it up we get an automorphism of order 8 of a cubic
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surface. Since any automorphism of a cubic surface is the restriction
of an automorphism of P3

k, applying Lemma 2 we find a contradiction.

Let us summarize what we have learnt.

Theorem 5. A Del Pezzo surface of degree ≥ 4 does not contain el-
ements of order p3. An automorphism of order p2 not conjugate to a
projective automorphism in Cr2(k) exists only if p = 2. It is minimally
realized on X = P1

k × P1
k or on a Del Pezzo surface of degree 4.

Note that any automorphism of order 4 of P1
k×P1

k has a fixed point,
and the projection from this fixed point makes it conjugate to a pro-
jective transformation.

Assume now that d = 3, i.e. X is a cubic surface embedded in P3
k by

the anti-canonical linear system |−KX |. In this case Aut(X) is isomor-
phic to a subgroup of the Weil group W (E6) of a simple root lattice of
type E6. By Corollary 6.11 from [3], all elements of order ps, s > 1, in
W (E6) have an invariant vector in the lattice E6

∼= K⊥
X unless ps = 9.

Thus we have to consider the existence of an automorphism σ of order
9 of a cubic surface over a field of characteristic p = 3.

The following argument was suggested to me by J.-P. Serre. It follows
from the classification of conjugacy classes of elements of W (E6) that
the trace of σ in its action in K⊥

X is equal to 0. Thus the Lefschetz
number of σ in in the `-adic cohomology of X is equal to 3. This implies
that σ has a fixed point x0. Since σ acts trivially on |−KX−x0| ∼= P2

k,
we obtain that it acts trivially on | −KX | ∼= P3

k.
We have proved the following.

Theorem 6. A cubic surface does not admit minimal automorphisms
of order ps with s > 1.

4. Del Pezzo surfaces of degree 2

It is known (see [2]) that the linear system | −KX | defines a degree
2 map f : X → P2

k. The map must be finite since −KX is ample. It
is also a separable map because otherwise X must be homeomorphic
to P2

k, but comparing the l-adic Betti numbers we find this impossible.
The cover f is a Galois cover with order 2 cyclic Galois group 〈γ〉. The
automorphism γ of X is called the Geiser involution. For any divisor
D we have

D + γ∗(D) ∼ (D ·KX)KX .

This implies that γ∗ acts on K⊥
X as the minus identity. The lattice

K⊥
X is isomorphic to the root lattice of type E7, and the isometry γ∗

generates the center of the Weyl group W (E7).
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It follows from the classification of conjugacy classes in W (E7) that
for any automorphism of order ps, s > 1, the rank of Pic(X)σ is greater
than 1, unless p = s = 2. So, it suffices to consider the latter case. All
such automorphisms form one conjugacy class (of type 2A3 +A1 in the
notation from [3]). It follows from the description of degree 2 covers of
smooth varieties (see [1], Chapter 0) that X is isomorphic to a surface
P(1, 1, 1, 2) given by an equation

u2 + a2(x, y, z)u + a4(x, y, z) = 0,

where a2, a4 are homogeneous forms of degree 2 and 4. Since the an-
ticanonical map is separable we have a2 6= 0. An automorphism σ
of order 4 acts linearly in P2

k = | − KX |∗ leaving the branch curve
V (a2) invariant. If V (a2) is an irreducible conic, then σ2 is identical on
the conic, and hence it is identical on P2

k. This implies that σ2 is the
Geiser involution u 7→ u + a2. However, the Weil group W (E7) does
not contain square roots of the Geiser involution. Suppose now that
V (a2) is reducible. If it is not a double line, we can choose projective
coordinates x, y, z to assume that a2 = xy. Then σ2 must change z to
z + ax + by and leave x, y unchanged. This forces a4 to be invariant
with respect to this transformation. Writing

a4 = l0z
4 + z3l1 + z2l2 + zl3 + l4,

where li are binary forms in x, y, we find that l1 = 0. This implies that
the point (x, y, z, u) = (0, 0, 1, 0) is a singular point on the surface.
Thus σ2 must be the Geiser involution and we finish as in the previous
case. Finally we may assume that the equation of X looks like u2 +
x2u + a4 = 0. In this case, σ∗(x) = x and we may assume that σ
acts on the variables x, y, z by x 7→ x, y 7→ y + x, z 7→ z + y. The
polynomial a4(x, y, z) must be invariant with respect to the coordinate
change σ2 : (x, y, z) 7→ (x, y, z + x). It is easy to see that the ring
of polynomials in x, z invariant with respect (x, z) 7→ (x, z + x) is
generated by x and z(z + x). This implies that a4 can be written as a
polynomial in z(z + x), x, y

a4 = cz2(z + x)2 + z(z + x)g(x, y) + h(x, y).

It is immediate to check that the point (x, y, z, u) = (0, 0, 1,
√

c) is a
singular point of the surface.

To sum up, a Del Pezzo surface of degree 2 does not contain minimal
automorphisms of order ps, s > 1.
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5. Del Pezzo surfaces of degree 1

This is the most difficult and interesting case. The linear system
| − 2KX | defines a degree 2 map f : X → Q, where Q is a quadratic
cone in P3

k. Again, since −KX is ample, f is a finite map, and arguing
as in the previous case we see that the map is separable. The Galois
group of the cover is generated by an automorphism β of X known as
the Bertini involution. For any divisor D we have

(1) D + γ∗(D) ∼ 2(D ·KX)KX .

This shows that β∗ acts as the minus identity on the lattice K⊥
X . The

lattice K⊥
X is isomorphic to the root lattice of type E8. The involution

β∗ generates the center of the Weyl group W (E8).
The automorphism group Aut(X) is a subgroup of W (E8). Possible

orders ps, s > 1, of minimal automorphisms are 4 and 8 (see [3]).
So we assume p = 2. The linear system | −KX | has one base point

p0. Blowing it up we obtain a fibration π : X ′ → P1
k whose general

fibre is an irreducible curve of arithmetic genus 1. Since −KX is am-
ple, all fibres are irreducible, and this implies that a general fibre is an
elliptic curve (see [1]). Let S0 be the exceptional curve of the blow-up.
It is a section of the elliptic fibration. We take it as the zero in the
Mordell-Weil group of sections of π. The map f : X → Q extends to
a degree 2 separable finite map f ′ : X ′ → F2, where F2 is the mini-
mal ruled surface with the exceptional section E satisfying E2 = −2.
Its branch curve is equal to the union of E and a curve B from the
divisor class 3f + e, where f is the class of a fibre and e = [E]. We
have f ′∗(E) = 2S0. The elliptic fibration on X ′ is the pre-image of the
ruling of F2. We know that τ = σ2 acts identically on the base of the
elliptic fibration. Since it also leaves invariant the section S0, it defines
an automorphism of the generic fibre considered as an abelian curve
with zero section defined by S0. If τ 2 = 1, then τ is the negation auto-
morphism, hence defines the Bertini transformation of the projective
plane. Its image in the Weyl group W (E8) generates the center. The
group of automorphisms of an abelian curve in characteristic 2 is of or-
der 2 if the absolute invariant of the curve is not equal to 0 or of order
24 otherwise. In the latter case it is isomorphic to Q8 o Z/3, where
Q8 is the quaternion group with the center generated by the negation
automorphism (see [4], Appendix A). Thus τ 4 = 1 and the Weierstrass
model of the generic fibre is

y2 + a3y + x3 + a4x + a6 = 0.



ON ELEMENTS OF ORDER pn 9

In global terms the Weierstrass model of the elliptic fibration π : X ′ →
P1

k is a surface in P(1, 1, 2, 3) given by the equation

y2 + a3(u, v)y + x3 + a4(u, v)x + a6(u, v),

where ai are binary forms of degree i. It is obtained by blowing down
the section S0 to the point (u, v, x, y) = (0, 0, 1, 1) and is isomorphic
to our Del Pezzo surface X. The image of the branch curve B is given
by the equation a3(u, v) = 0, i.e. B consists of three fibres of the
fibration plus the section S0. Since a general point of B is a 2-torsion
point of a general fibre, we see that all nonsingular fibres of the elliptic
fibration are supersingular elliptic curves (i.e. have no non-trivial 2-
torsion points). An automorphism of order 4 of X is defined by

(u, v, x, y) 7→ (u, v, x + s(u, v)2, y + s(u, v)x + t(u, v)),

where s is binary forms of degree 1 and t is a binary form of degree 3
satisfying

(2) a3 = s3, t2 + a3t + s6 + a4s
2 = 0.

In particular, it shows that a3 must be a cube, so we can change the
coordinates (u, v) to assume that s = u, a3 = u3. The second equality
in (2) tells that t is divisible by u, so we can write it as t = uq for some
binary form q of degree 2 satisfying q2 + u2q + u4 + a4 = 0. Let α be a
root of the equation x2 + x + 1 = 0 and b = q + αu2. Then b satisfies
a4 = b2 + u2b and t = ub + αu3. Conversely, any surface in P(1, 1, 2, 3)
with equation

(3) y2 + u3y + x3 + (b(u, v)2 + u2b(u, v))x + a6(u, v) = 0

where b is a quadratic form in (u, v) and the coefficient at uv5 in a6 is
not zero (this implies that the surface is nonsingular) is a Del Pezzo
surface of degree 1 admitting an automorphism of order 4

τ : (u, v, x, y) 7→ (u, v, x + u2, y + ux + ub + αu3).

Note that τ 2 : (u, v, x, y) 7→ (u, v, x, y + u3) coincides with the Bertini
transformation.

Counting parameters it is easy to see that our surfaces depend on 4
parameters (3 coefficients in b and 7 coefficients in a6 modulo transfor-
mation a6 7→ a6 + g2 + u3g, (u, v) 7→ (u, c1u + c2v), where g is a binary
form of degree 3).

Theorem 7. Let X be a Del Pezzo surface (3). Then it does not admit
an automorphism of order 8.
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Proof. Assume τ = σ2. Since σ leaves invariant | − KX |, it fixes its
unique base point, and lifts to an automorphism of the elliptic surface
X ′ preserving the zero section S0. Since the general fibre of the elliptic
fibration f : X ′ → P1

k has no automorphism of order 8, the transfor-
mation σ acts nontrivially on the base of the fibration. Note that the
fibration has only one singular fibre F0 over (u, v) = (0, 1). It is a
cuspidal cubic. The transformation σ leaves this fibre invariant and
hence acts on P1

k by (u, v) 7→ (u, u+ c). Since the restriction of σ to F0

has at least two fixed points: the cusp and the origin F0 ∩ S0, it acts
identically on F0 and freely on its complement X ′ \ F0.

Recall that X ′ is obtained by blowing up 9 points p1, . . . , p9 in P2
k,

the base points of a pencil of cubic curves. We may assume that X
is the blow-up of the first 8 points, and the exceptional curve over p9

is the zero section S0. Let S be the exceptional curve over any other
point. We know that β = σ4 is the Bertini involution of X. Applying
formula (1), we obtain that S · β(S) = 3. Identifying β(S) and S with
their pre-images in X ′, we see that β(S)⊕ S = S0 in the Mordell-Weil
group of sections of π : X ′ → P1

k. Thus S and β(S) meet at 2-torsion
points of fibres. However, all nonsingular fibres of our fibration are
supersingular elliptic curves, hence S and β(S) can meet only at a
singular fibre F0. Let Q ∈ F0 be the intersection point. The sections
S and β(S) are tangent to each other at Q with multiplicity 3. Now
consider the orbit of the pair (S, β(S)) under the cyclic group 〈σ〉. It
consists of 4 pairs

(S, σ4(S)), (σ(S), σ5(S)), (σ2(S), σ6(S)), (σ3(S), σ7(S)).

Let Di = σi(S) + σi+4(S), i = 1, 2, 3, 4. We have D1 + . . . + D4 ∼
−8KX ,, hence for i 6= j we have Di · Dj = (64 − 16)/12 = 4. Let
Y → X be the blow-up of Q. Since Q is a double point of each Di,
the proper transform D̄i of each Di in Y has self-intersection 0 and
consists of two smooth rational curves intersecting at one point with
multiplicity 2. Moreover, we have D̄i · D̄j = 0. Applying (1), we get
Di ∈ |−2KX |. Since Q is a double point of Di, we obtain D̄i ∈ |−2KY |.
The linear system | − 2KY | defines a fibration Y → P1

k with a curve
of arithmetic genus 1 as a general fibre (an elliptic or a quasi-elliptic
fibration). The curves D̄i are singular fibres of Kodaira’s type III. The
automorphism σ acts on the base of the fibration and the four special
fibres form one orbit. But the action of σ on P1

k is of order 2 and this
gives us a contradiction. ¤
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6. Conjugacy classes of elements of order p2

Assume that k is algebraically closed. As we have seen in the pre-
vious sections, an element of order p2 not conjugate to a projective
transformation exists only for p = 2. It can be realized as a minimal
automorphism of a conic bundles, or a Del Pezzo surfaces of degree 1
or 4. Del Pezzo surfaces of degree 1 are super-rigid, i.e. a minimal
automorphism of such a surface could be conjugate only to a minimal
automorphism of the same surface. A minimal automorphism of a Del
Pezzo surface of degree 4 is conjugate to a minimal automorphism of a
conic bundle with 5 singular fibres (see [3], §8).

Thus we have proved the following.

Theorem 8. An element of order p2 not conjugate to a projective
transformation exists only if p = 2. Assume that k is algebraically
closed. An element of order 4 is either conjugate to a projective trans-
formation, or conjugate to an element realized by a minimal automor-
phism of a conic bundle, or a Del Pezzo surface of degree 1.

For the completeness sake let us add that elements of order p not
conjugate to a projective transformations occur for any p. They can
be realized as automorphisms of conic bundles, and if p = 2, 3, 5 as
automorphisms of Del Pezzo surfaces.
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