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Introduction

It is well-known that functions on a smooth symplectic manifold M are equipped
with a canonical skew-linear operation called the Poisson bracket. The bracket
is compatible with multiplication in a certain precise way. Formalizing this
structure, one obtains the notion of a Poisson algebra (see Definition 1.1).

The definition of a Poisson algebra is quite general; among other things, it
involves no assumption of smoothness. Recently there appeared good reasons
to study Poisson algebras in full generality. In particular, they seem to be
quite useful in the study of the so-called symplectic singularities initiated by A.
Beauville [B].

However, while non-trivial Poisson structures on smooth manifolds have been
under close scrutiny for fifty years or more, the general theory is much less
developed. It seems that even the simplest facts are not known, or at least, not
easy to find in the existing literature.

The goal of the present note is to prove one of these simple facts – namely,
we prove that under some natural assumptions, the integral closure of a Pois-
son algebra is again Poisson (Theorem 1.5). The exposition is essentially self-
contained. We need a couple of preliminary lemmas which are definitely not
new, but not quite standard, either. For the convenience of the reader, we have
taken the liberty of re-proving them from scratch.

1 Statements and definitions.

Fix once and for all a base field k of characteristic char k = 0.

Definition 1.1. A Poisson algebra over the field k is a commutative algebra A
over k equipped with an additional skew-linear operation {−,−} : A ⊗ A → A
such that

(1.1) {a, bc} = {a, b}c + {a, c}b , 0 = {a, {b, c}}+ {b, {c, a}}+ {c, {a, b}},

for all a, b, c ∈ A. An ideal I ⊂ A is called a Poisson ideal if {i, a} ∈ I for any
i ∈ I, a ∈ A.
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Additionally, we will always assume that a Poisson algebra A has a unit
element 1 ∈ A such that {1, a} = 0 for every a ∈ A.

Definition 1.2. A Poisson scheme over k is a scheme X over k equipped with
a skew-linear bracket in the structure sheaf OX satisfying (1.1).

Lemma 1.3. Let A be a Poisson algebra.

(i) For any multiplicative system S ⊂ A, the localization A[S−1] carries a
canonical Poisson algebra structure.

(ii) Any associated prime ideal p ⊂ A is a Poisson ideal.

(iii) The radical J ⊂ A of the algebra A is a Poisson ideal.

Proof. For (i), set

{a1s
−1
1 , a2s

−1
2 } = {a1, a2}(s1s2)−1 − {a1, s2}a2

(
s1s

2
2

)−1

− {s1, a2}a1

(
s2
1s2

)−1
+ a1a2{s1, s2}

(
s2
1s

2
2

)−1
.

For (ii), note that p ⊂ A is the kernel of the canonical Poisson map from
the Poisson algebra A to the fraction field Ap. For (iii), note that J is the
intersection of all the associated primes. �

Lemma 1.3 (i), in particular, means that the spectrum of a Poisson algebra
is a Poisson scheme. We also note the following geometric corollary.

Corollary 1.4. Let X be a Poisson scheme over k. Then the reduction Xred

of the scheme X is a Poisson scheme, and so is every irreducible component X0

of the reduction Xred. �

Our main result is the following.

Theorem 1.5. Let A0 be an excellent Noetherian domain over k, and let A be
its integral closure in its fraction field.

(i) Every derivation ξ of the algebra A0 extends to a derivation of the algebra
A.

(ii) Every Poisson bracket {−,−} on the algebra A0 extends to a Poisson
bracket on the algebra A.

Note that both derivations and Poisson brackets extend naturally and uni-
quely to the fraction field Frac A0 = Frac A. The point is that both preserve the
integral closure A ⊂ Frac A. The first claim is well-known; nevertheless, we will
prove it, because it is needed in the proof of (ii).

The geometric corollary (in fact, an equivalent geometric formulation) of
Theorem 1.5 is the following.

Corollary 1.6. Let X0 be an excellent Noetherian integral scheme over k, and
let X be its normalization. Then every vector field ξ on X0 and every Poisson
scheme structure on X0 extend to X.
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2 Discrete valuation rings.

To prove Theorem 1.5, we first study the situation in codimension 1. In this
section, assume given an excellent local Noetherian algebra A0 over k of dimen-
sion 1. Let K0 be its residue field. Let A be the integral closure of the algebra
A0. Since A0 is excellent, A is finite over A0; therefore it is a semilocal ring with
a finite number l of maximal ideals mi ⊂ A, 1 ≤ i ≤ l. For every such mi, the
localization Ami is a normal local ring of dimension 1, thus a discrete valuation
ring whose residue field Ki = A/mi is a finite extension of the residue field K0.
Denote the valuation on Ami

by vi, and fix uniformizing elements πi ∈ Ami
,

vi(πi) = 1. The ring A is regular and coincides with the intersection

(2.1) A =
⋂

1≤i≤l

Ami ⊂ Frac(A)

in the fraction field Frac(A) = Frac(A0).

Lemma 2.1. In the assumptions above, for any i, 1 ≤ i ≤ l, there exists a
single element x ∈ Ami

generating Ami
over A0.

Proof. By the Primitive Element Theorem, the residue field Ki is generated
over K0 by a single element, say x. Let P (x) be the minimal polynomial for x
over K0. Lift x to an element x ∈ Ami and consider

y = P (x) ∈ A.

By definition, we have y = 0 mod πi, so that vi(y) > 0. If vi(y) = 1, we are
done: x and y generate Ami

over A0, and y = P (x). If not, replace y with

y′ = P (x + πi).

By the binomial formula, we have

y′ = P ′(x)πi mod π2
i .

Since the polynomial P is minimal, its derivative P ′ satisfies P ′(x) 6= 0. There-
fore vi(y′) = 1, and we are done: Ami

is generated over A0 by x + πi. �

Lemma 2.2. Every derivation ξ0 : A0 → A0 of the algebra A0 extends to a
derivation of the algebra A.

Proof. Consider the formal power series algebra B = A[[t]] in one indeterminate
t. Since A is finite over A0, its fraction field

Frac(B) ⊂ Frac(A)((t)) = Frac(A0)((t))

coincides with Frac(A0[[t]]). Moreover, B a regular local algebra, in particular,
it is integrally closed (see, for example, [AC, Prop. 14]). Therefore it is the
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integral closure of the power series algebra B0 = A0[[t]]. By functoriality, every
automorphism of the algebra B0 extends to an automorphism of its integral
closure B. Consider the automorphism σ0 : B0 → B0 given by

σ0(t) = t σ0(a) = exp(tξ)(a) for a ∈ A0 ⊂ B0.

Extend it to an automorphism σ : B → B of the algebra B. Setting

ξ(a) =
∂

∂t
σ(a) mod t

gives a derivation ξ : A → A = B/tB extending the given derivation ξ0. �

Remark 2.3. Apparently, this result was first proved by A. Seidenberg [S] back
in 1966 (moreover, he did not need the assumption of excellence). However, it
seems that this is not universally known. In particular, and I am grateful to
M. Lehn and D. van Straten for bringing this to my attentuon, the result also
appears as Lemma 2.33 on page 36 of SGA7.2 (with essentially the same proof
as here).

Lemma 2.4. Assume that the algebra A0 is equipped with a Poisson bracket
{−,−}. Then this bracket extends uniquely to the algebra A.

Proof. Extend the bracket to the fraction field Frac A. We have to prove that
{f, g} ∈ A for every f, g ∈ A. By (2.1), it suffices to prove it for each of the
Ami instead of A. Let x ∈ Ami be the generator provided by Lemma 2.1. It
suffices to prove that {x, x} ∈ Ami and {x, f} ∈ Ami for every f ∈ A0. But
{x, x} = 0 tautologically, and {x, f} ∈ Ami

by Lemma 2.2 (define ξ0 : A0 → A0

by ξ0(a) = {a, f}, and note that any derivation ξ : A → A preserves all the
localizations Ami

⊂ Frac(A)). �

3 Proof of the Theorem.

We can now prove Theorem 1.5. It is more convenient to approach it in the geo-
metric form of the Corollary 1.6. Thus, let X0 be a Noetherian integral scheme,
and let X be its normalization. By Lemma 2.2 and Lemma 2.4, Corollary 1.6
holds for the open complement U ⊂ X to a subscheme Z ⊂ X of codimension
codim Z ≥ 2. Therefore we have a derivation and/or a Poisson bracket on the
structure sheaf OU . This induces a derivation and/or a Poisson bracket on the
sheaf j∗OU , where j : U ↪→ X is the embedding. Since codim Z ≥ 2, and X is
normal, we have OX

∼= j∗OU . �
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