# FACTORIALITY OF COMPLETE INTERSECTIONS IN $\mathbb{P}^{5}$. 

DIMITRA KOSTA


#### Abstract

Let $X$ be a complete intersection of two hypersurfaces $F_{n}$ and $F_{k}$ in $\mathbb{P}^{5}$ of degree $n$ and $k$ respectively with $n \geq k$, such that the singularities of $X$ are nodal and $F_{k}$ is smooth. We prove that if the threefold $X$ has at most $(n+k-2)(n-1)-1$ singular points, then it is factorial.


## 1. Introduction

In this paper we shall extend to the complete intersection setting a recent theorem of Cheltsov [4], in which he obtained a sharp bound for the number of nodes a threefold hypersurface can have and still be factorial.

Suppose that $X$ is the complete intersection of two hypersurfaces $F_{n}$ and $F_{k}$ in $\mathbb{P}^{5}$ of degree $n$ and $k$ respectively with $n \geq k$, such that $X$ is a nodal threefold. We will prove the following.

Theorem 1.1. Suppose that $F_{k}$ is smooth. Then the threefold $X$ is $\mathbb{Q}$-factorial, when

$$
|\operatorname{Sing}(X)| \leq(n+k-2)(n-1)-1 .
$$

The next example of a non-factorial nodal complete intersection threefold suggests that the number of nodes, that a hypersurface can have while being factorial, should be strictly less than $(n+k-2)^{2}$.
Example 1.2. Let $X$ be the complete intersection in $\mathbb{P}^{5}$ of two smooth hypersurfaces
$F=x_{3} f_{1}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)+x_{4} f_{2}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)+x_{5} f_{3}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=0$
$G=x_{3} g_{1}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)+x_{4} g_{2}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)+x_{5} g_{3}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=0$
where $f_{1}, f_{2}, f_{3}$ are general hypersurfaces of degree $n-1$ and $g_{1}, g_{2}, g_{3}$ general hypersurfaces of degree $k-1$. Then the singular locus $\operatorname{Sing}(X)$, which is given by the vanishing of the polynomials

$$
x_{3}=x_{4}=x_{5}=f_{1} g_{2}-f_{2} g_{1}=f_{1} g_{3}-f_{3} g_{1}=0,
$$

consists of exactly $(n+k-2)^{2}$ nodal points and the threefold $X$ is not factorial.
Therefore, we can expect the following stated in [3] to be true.
Conjecture 1.3. Suppose that $F_{k}$ is smooth. Then the threefold $X$ is $\mathbb{Q}$-factorial, when

$$
|\operatorname{Sing}(X)| \leq(n+k-2)(n+k-2)-1 .
$$

The assumption of Theorem 1.1 about the smoothness of $F_{k}$ is essential, as Example 28 in [3] suggests.

In the case of a nodal threefold hypersurface in $\mathbb{P}^{4}$, namely when $k=1$, several attempts where made towards proving Theorem 1.1, as one can see in [5] and [12]. However, a complete proof for $k=1$ was given in [4].

## 2. Preliminaries

Let $\Sigma$ be a finite subset in $\mathbb{P}^{N}$. The points of $\Sigma$ impose independent linear conditions on homogeneous forms in $\mathbb{P}^{N}$ of degree $\xi$, if for every point $P$ of the set $\Sigma$ there is a homogeneous form on $\mathbb{P}^{N}$ of degree $\xi$ that vanishes at every point of the set $\Sigma \backslash P$ and does not vanish at the point $P$.

The following result, which relates the notion of $\mathbb{Q}$-factoriality with that of independent linear conditions, is due to [6] and was stated in the present form in [3].

[^0]Theorem 2.1. The threefold $X$ is $\mathbb{Q}$-factorial in the case when its singular points impose independent linear conditions on the sections of $H^{0}\left(\left.\mathcal{O}_{\mathbb{P}^{5}}(2 n+k-6)\right|_{G}\right)$.

The following result was proved in [11] and follows from a result of J.Edmonds [9].
Theorem 2.2. The points of $\Sigma$ impose independent linear conditions on homogeneous forms of degree $\xi \geq 2$ if at most $\xi k+1$ points of $\Sigma$ lie in a $k$-dimensional linear subspace of $\mathbb{P}^{N}$.

By [1] and [7] we also know the following.
Theorem 2.3. Let $\pi: Y \rightarrow \mathbb{P}^{2}$ be a blow up of distinct points $P_{1}, \ldots, P_{\delta}$ on $\mathbb{P}^{2}$. Then the linear system $\left|\pi^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(\xi)\right)-\sum_{i=1}^{\delta} E_{i}\right|$ is base-point-free for all $\delta \leq \max \left(m(\xi+3-m)-1, m^{2}\right)$, where $E_{i}=\pi^{-1}\left(P_{i}\right), \xi \geq 3$, and $m=\left\lfloor\frac{\xi+3}{2}\right\rfloor$, if at most $k(\xi+3-k)-2$ points of the set $P_{1}, P_{2}, \ldots, P_{\delta}$ lie on a possibly reducible curve of degree $1 \leq k \leq m$.

What is next is an application, as stated in [12], of the modern Cayley-Bacharach theorem (see [10] or [8]).
Theorem 2.4. Let $\Sigma$ be a subset of a zero-dimensional complete intersection of the hypersurfaces $X_{1}, X_{2}, \ldots, X_{N}$ in $\mathbb{P}^{N}$ of degrees $d_{1}, \ldots, d_{N}$ respectively. Then the points of $\Sigma$ impose dependent linear conditions on homogeneous forms of degree $\sum_{i=1}^{N} \operatorname{deg}\left(X_{i}\right)-N-1$ if and only if the equality $|\Sigma|=\prod_{i=1}^{N} d_{i}$ holds.

Again due to [4] we have the following.
Theorem 2.5. Let $\Lambda \subseteq \Sigma$ be a subset, let $\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{m}$ be a general projection and let

$$
\mathcal{M} \subset\left|\mathcal{O}_{\mathbb{P}^{n}}(t)\right|
$$

be a linear subsystem that contains all hypersurfaces of degree $t$ that pass through $\Lambda$. Suppose that

- the inequality $|\Lambda| \geq(n+k-2) t+1$ holds,
- the set $\phi(\Lambda)$ is contained in an irreducible reduced curve of degree $t$, where $r>m \geq 2$. Then $\mathcal{M}$ has no base curves and either $m=2$ or $t>n+k-2$.

Finally, next is one of our basic tools, a proof of which can be found in [2].
Theorem 2.6. Let $\Sigma$ be a finite subset in $\mathbb{P}^{N}$ that is a disjoint union of finite subsets $\Lambda$ and $\Delta$, and $P$ be a point in $\Sigma$. Suppose that there is a hypersurface in $\mathbb{P}^{N}$ of degree $\alpha \geq 1$ that contains all points of the set $\Lambda \backslash P$ and does not contain $P$, and for every point $Q$ in the set $\Delta$ there is a hypersurface in $\mathbb{P}^{N}$ of degree $\beta \geq 1$ that contains all points of the set $\Sigma \backslash Q$ and does not contain the point $Q$. Then there is a hypersurface in $\mathbb{P}^{N}$ of degree $\gamma$ that contains the set $\Sigma \backslash P$ and does not contain the point $P$, where $\gamma$ is a natural number such that $\gamma \geq \max (\alpha, \beta)$.

## 3. Proof of Theorem 1.1

Let us consider the complete intersection $X$ of two hypersurfaces $F_{n}$ and $F_{k}$ in $\mathbb{P}^{5}$ of degrees $n$ and $k$ respectively, with $n \geq k$, such that $X$ is a nodal threefold. Suppose, furthermore, that $F_{k}$ is smooth and $X$ has at most $(n+k-2)(n-1)-1$ singular points. We denote now by $\Sigma \subset \mathbb{P}^{5}$ the set of singular points of $X$.

Definition 3.1. We say that the points of a subset $\Gamma \subset \mathbb{P}^{r}$ have property $\star$ if at most $t(n+k-2)$ points of the set $\Gamma$ lie on a curve in $\mathbb{P}^{r}$ of degree $t \in \mathbb{N}$.

For a proof of the following we refer the reader to [3].
Lemma 3.2. The points of the set $\Sigma \subset \mathbb{P}^{5}$ have property $\star$.
According to Theorem 2.1, for any point $P \in \Sigma$ we need to prove that there is a hypersurface of degree $2 n+k-6$, that passes through all the points of the set $\Sigma \backslash P$, but not through the point $P$.

Remark 3.3. As we mentioned, the claim of Theorem 1.1 is true, when $k=1$ and thus we need only consider the case $k \geq 2$. Furthermore, taking into account the following Lemma, we can assume that $n \geq 5$.

Lemma 3.4. The threefold $X$ is $\mathbb{Q}$-factorial, when

$$
|\operatorname{Sing}(X)| \leq(n+k-2)(n-1)-1 \text { and } k \leq n \leq 4
$$

Proof. Indeed, we consider the projection

$$
\psi: \mathbb{P}^{5} \rightarrow \Pi \cong \mathbb{P}^{2}
$$

from a general plane $\Gamma$ of $\mathbb{P}^{5}$ to another general plane $\Pi \cong \mathbb{P}^{2}$, that sends the set $\Sigma$ to $\psi(\Sigma)=\Sigma^{\prime}$. Choose a point $P \in \Sigma$ and put $P^{\prime}=\psi(P)$. We have the following cases.

- If $2=n \geq k=2$, then $|\Sigma| \leq 1$ and the result holds according to Theorem 2.1.
- If $3=n \geq k=2$, then $|\Sigma| \leq 5$ and it imposes independent linear conditions on forms of degree 2 .
- If $3=n \geq k=3$, then $|\Sigma| \leq 7$ and it imposes independent linear conditions on forms of degree 3 .
- If $4=n \geq k=2$, then $|\Sigma| \leq 11$ and at most $4 t$ points lie on a curve in $\mathbb{P}^{5}$ of degree $t$. So, the 11 points of $\Sigma$ impose independent linear conditions on forms of degree 4 .
- If $4=n \geq k=3$, then $|\Sigma| \leq 14$ and at most $5 t$ points lie on a curve in $\mathbb{P}^{5}$ of degree $t$.

If the points of $\Sigma^{\prime} \subset \Pi$ satisfy property $\star$, then the set $\Sigma^{\prime} \backslash P^{\prime}$ satisfies the requirements of Theorem 2.3 for $\xi=5$ and this implies that the set $\Sigma$ imposes independent linear conditions on forms of degree 5 .

Suppose on the contrary that the points $\Sigma^{\prime}$ do not satisfy Theorem 2.3 for $\xi=5$. In this case there is a curve $C_{2}$ of degree 2 in $\Pi$ that passes through at least 11 points of $\Sigma^{\prime}$. If we take the cone over $C_{2}$ with vertex $\Gamma$, we obtain a hypersurface $f_{2}$ in $\mathbb{P}^{5}$. Denote by $\Lambda_{2}$ the points of $\Sigma$ that lie on $f_{2}$. From Theorem 2.4 it follows that the points of $\Lambda_{2}$ impose independent linear conditions on homogeneous forms of degree $5(2-1)-1=4$, since $\Lambda_{2}$ is a subset of the complete intersection of hypersurfaces of degree 2 in $\mathbb{P}^{5}$. The set $\left|\Sigma \backslash \Lambda_{2}\right| \leq 3$ imposes independent linear conditions on forms of degree 2 and, by applying Theorem 2.6 to the two disjoint sets $\Lambda_{2}$ and $\Sigma \backslash \Lambda_{2}$, we get that the points of $\Sigma$ impose independent linear conditions on forms of degree 5 .

- $4=n \geq k=4$. Then $|\Sigma| \leq 17$ and at most $6 t$ points lie on a curve $C_{t} \in \mathbb{P}^{5}$ of degree $t$.

If the points of $\Sigma^{\prime} \subset \Pi$ satisfy property $\star$, then the set $\Sigma^{\prime} \backslash P^{\prime}$ satisfies the requirements of Theorem 2.3 for $\xi=6$ and this implies that the set $\Sigma$ imposes independent linear conditions on forms of degree 6 .

Suppose on the contrary that the points $\Sigma^{\prime}$ do not satisfy Theorem 2.3 for $\xi=6$. In this case there is a curve $C_{2}$ of degree 2 in $\Pi$ that passes through at least 13 points of $\Sigma^{\prime}$. If we take the cone over $C_{2}$ with vertex $\Gamma$, we obtain a hypersurface $f_{2}$ in $\mathbb{P}^{5}$. Denote by $\Lambda_{2}$ the points of $\Sigma$ that lie on $f_{2}$. From Theorem 2.4 it follows that the points of $\Lambda_{2}$ impose independent linear conditions on homogeneous forms of degree $5(2-1)-1=4$, since $\Lambda_{2}$ is a subset of the complete intersection of hypersurfaces of degree 2 in $\mathbb{P}^{5}$. The set $\left|\Sigma \backslash \Lambda_{2}\right| \leq 4$ imposes independent linear conditions on forms of degree 2 and, by applying Theorem 2.6 to the two disjoint sets $\Lambda_{2}$ and $\Sigma \backslash \Lambda_{2}$, we get that the points of $\Sigma$ impose independent linear conditions on forms of degree 6 .
As we saw above, for $3 \leq n \leq 5$ the points of $\Sigma$ impose independent linear conditions on forms of degree $2 n+k-6$, and thus, by Theorem 2.1 , the threefold $X$ is $\mathbb{Q}$-factorial.

Lemma 3.5. Suppose that all the singularities of $X$ lie on a plane $\Pi \subset \mathbb{P}^{5}$. Then for any point $P \in \Sigma$ there is hypersurface of degree $(2 n+k-6)$ that contains $\Sigma \backslash P$, but does not contain the point $P$.

Proof. By Remark 3.3, we can see that $\xi=2 n+k-6 \geq 6$. Also, we have

$$
|\Sigma \backslash P| \leq \max \left\{\left\lfloor\frac{2 n+k-3}{2}\right\rfloor\left(2 n+k-3-\left\lfloor\frac{2 n+k-3}{2}\right\rfloor\right)-1,\left\lfloor\frac{2 n+k-3}{2}\right\rfloor^{2}\right\}
$$

for $k \geq 2$ and $n \geq 5$. In order to show that at most $t(2 n+k-3-t)-2$ points of $\Sigma$ lie on a curve of degree $t$ in $\Pi$, it is enough to show that

$$
t(2 n+k-3-t)-2 \geq t(n+k-2) \Longleftrightarrow t(n-t-1) \geq 2, \text { for all } t \leq \frac{2 n+k-3}{2}
$$

For $t=1$ the inequality holds, since $n \geq 5$, and we can assume that $t \geq 2$. It remains to show that $t<n-1$. Suppose on the contrary that $t \geq n-1$. The quantity $t(2 n+k-3-t)-2$ rises for all $n-1 \leq t \leq\left\lfloor\frac{2 n+k-3}{2}\right\rfloor$ and we have

$$
|\Sigma \backslash P| \leq(n-1)(n+k-2)-2 \leq t(2 n+k-3-t)-2
$$

Therefore we see that the requirement of Theorem 2.3, that at most $t(2 n+k-3-t)-2$ points of $\Sigma$ lie on a curve of degree $t$ in $\Pi$ is satisfied by the set $\Sigma \backslash P$ for all $t \leq \frac{2 n+k-3}{2}$. So there is a hypersurface of degree $(2 n+k-6)$ that contains $\Sigma \backslash P$, but does not contain point $P$.

Taking into account Theorem 2.5, we can reduce to the case $\Sigma$ is a finite set in $\mathbb{P}^{3}$, such that at most $(n+k-2) t$ of its points are contained in a curve in $\mathbb{P}^{3}$ of degree $t \in \mathbb{N}$. Now fix a general plane $\Pi \in \mathbb{P}^{3}$ and let

$$
\phi: \mathbb{P}^{3} \rightarrow \Pi \cong \mathbb{P}^{2}
$$

be a projection from a sufficiently general point $O \in \mathbb{P}^{3}$. Denote by $\Sigma^{\prime}=\phi(\Sigma)$ and $P^{\prime}=\phi(P)$.
Lemma 3.6. Suppose that the points of $\Sigma^{\prime} \subseteq \Pi$ have the property $\star$. Then there is a hypersurface of degree $2 n+k-6$ that contains $\Sigma \backslash P$ and does not contain $P$.

Proof. The points of the set $\Sigma^{\prime}$ satisfy the requirements of Theorem 2.3 , following the proof of Lemma 3.5. Thus, there is a curve $C$ in $\Pi$ of degree $2 n+k-6$, that passes through all the points of the the set $\Sigma^{\prime} \backslash P^{\prime}$, but not through the point $P^{\prime}$. By taking the cone in $\mathbb{P}^{3}$ over the curve $C$ with vertex $O$, we obtain the required hypersurface.

We may assume then, that the points of the set $\Sigma^{\prime} \subseteq \Pi$ do not have property $\star$. Then there is a subset $\Lambda_{r}^{1} \subseteq \Sigma$ with $\left|\Lambda_{r}^{1}\right|>r(n+k-2)$, but after projection the points

$$
\phi\left(\Lambda_{r}^{1}\right) \subseteq \Sigma^{\prime} \subset \Pi \cong \mathbb{P}^{2}
$$

are contained in a curve $C_{r} \subseteq \Pi$ of degree $r$. Moreover, we may assume that $r$ is the smallest natural number, such that at least $(n+k-2) r+1$ points of $\Sigma^{\prime}$ lie on a curve of degree $r$, which implies that the curve $C_{r}$ is irreducible and reduced.

By repeating how we constructed $\Lambda_{r}^{1}$, we obtain a non-empty disjoint union of subsets

$$
\Lambda=\bigcup_{j=r}^{l} \bigcup_{i=1}^{c_{j}} \Lambda_{j}^{i} \subseteq \Sigma
$$

such that $\left|\Lambda_{j}^{i}\right|>j(n+k-2)$, the points of the set

$$
\phi\left(\Lambda_{j}^{i}\right) \subseteq \Sigma^{\prime}
$$

are contained in an irreducible curve in $\Pi$ of degree $j$, and the points of the subset

$$
\phi(\Sigma \backslash \Lambda) \subsetneq \Sigma^{\prime} \subset \Pi \cong \mathbb{P}^{2}
$$

have property $\star$, where $c_{j} \geq 0$. Let $\Xi_{j}^{i}$ be the base locus of the linear subsystem in $\left|\mathcal{O}_{\mathbb{P}^{3}}(j)\right|$ of all surfaces of degree $j$ passing through the set $\Lambda_{j}^{i}$. Then according to Theorem 2.5, the base locus $\Xi_{j}^{i}$ is a finite set of points and we have $c_{r}>0$ and

$$
|\Sigma \backslash \Lambda|<(n-1)(n+k-2)-\sum_{i=r}^{l} i(n+k-2) c_{i}=(n+k-2)\left(n-1-\sum_{i=r}^{l} i c_{i}\right)
$$

Corollary 3.7. The inequality $\sum_{i=r}^{l} i c_{i} \leq n-2$ holds.
Put $\Delta=\Sigma \cap\left(\cup_{j=r}^{l} \cup_{i=1}^{c_{j}} \Xi_{j}^{i}\right)$. Then $\Lambda \subseteq \Delta \subseteq \Sigma$.
Lemma 3.8. The points of the set $\Delta$ impose independent linear conditions on forms of degree $2 n+k-6$.

Proof. We have the exact sequence

$$
0 \longrightarrow \mathcal{I}_{\Delta} \otimes \mathcal{O}_{\mathbb{P}^{3}}(2 n+k-6) \longrightarrow \mathcal{O}_{\mathbb{P}^{3}}(2 n+k-6) \longrightarrow \mathcal{O}_{\Delta} \longrightarrow 0,
$$

where $\mathcal{I}_{\Delta}$ is the ideal sheaf of the closed subscheme $\Delta$ of $\mathbb{P}^{3}$. Then the points of $\Delta$ impose independent linear conditions on forms of degree $2 n+k-6$, if and only if

$$
h^{1}\left(\mathcal{I}_{\Delta} \otimes \mathcal{O}_{\mathbb{P}^{3}}(2 n+k-6)\right)=0 .
$$

We assume on the contrary that $h^{1}\left(\mathcal{I}_{\Delta} \otimes \mathcal{O}_{\mathbb{P}^{3}}(2 n+k-6)\right) \neq 0$. Let $\mathcal{M}$ be a linear subsystem in $\left|\mathcal{O}_{\mathbb{P}^{3}}(n-2)\right|$ that contains all surfaces that pass through all points of the set $\Delta$. Then the base locus of $\mathcal{M}$ is zero-dimensional, since $\sum_{i=r}^{l} i c_{i} \leq n-2$ and

$$
\Delta \subseteq \cup_{j=r}^{l} \cup_{i=1}^{c_{j}} \Xi_{j}^{i},
$$

but $\Xi_{j}^{i}$ is a zero-dimensional base locus of a linear subsystem of $\left|\mathcal{O}_{\mathbb{P}^{3}}(j)\right|$. Let $\Gamma$ be the complete intersection

$$
\Gamma=M_{1} \cdot M_{2} \cdot M_{3},
$$

of three general surfaces $M_{1}, M_{2}, M_{3}$ in $\mathcal{M}$. Then $\Gamma$ is zero-dimensional and $\Delta$ is closed subscheme of $\Gamma$. Let

$$
\mathcal{I}_{\Upsilon}=\operatorname{Ann}\left(\mathcal{I}_{\Delta} / \mathcal{I}_{\Gamma}\right) .
$$

Then

$$
0 \neq h^{1}\left(\mathcal{I}_{\Delta} \otimes \mathcal{O}_{\mathbb{P}^{3}}(2 n+k-6)\right)=h^{0}\left(\mathcal{I}_{\Upsilon} \otimes \mathcal{O}_{\mathbb{P}^{3}}(n-k-4)\right)-h^{0}\left(\mathcal{I}_{\Gamma} \otimes \mathcal{O}_{\mathbb{P}^{3}}(n-k-4)\right) .
$$

Therefore $h^{0}\left(\mathcal{I}_{\Gamma} \otimes \mathcal{O}_{\mathbb{P}^{3}}(n-k-4)\right) \neq 0$ and there is a surface $F \in\left|\mathcal{I}_{\Upsilon} \otimes \mathcal{O}_{\mathbb{P}^{3}}(n-k-4)\right|$. We have

$$
(n-k-4)(n-2)^{2}=F \cdot M_{2} \cdot M_{3} \geq h^{0}\left(\mathcal{O}_{\Upsilon}\right)=h^{0}\left(\mathcal{O}_{\Gamma}\right)-h^{0}\left(\mathcal{O}_{\Delta}\right)=(n-2)^{3}-|\Delta|,
$$

which implies $|\Delta| \geq(k+2)(n-2)^{2}$. But $|\Delta| \leq|\Sigma|<(n-1)(n+k-2)$, which is impossible since $k \geq 2$ and $n \geq 5$.

We see that $\Delta \subsetneq \Sigma$. Put $\Gamma=\Sigma \backslash \Delta$ and $d=2 n+k-6-\sum_{i=r}^{l} i c_{i}$.
Lemma 3.9. The inequality $d \geq 3$ holds.
Proof. Suppose that $d \leq 2$. Since $\sum_{i=r}^{l} i c_{i} \leq n-2$ due to Corollary 3.7, we have

$$
2 \geq d=2 n+k-6-\sum_{i=r}^{l} i c_{i} \geq 2 n+k-6-(n-2)=n+k-4 \geq 3,
$$

which is impossible.
For the number of points of the set $\Gamma^{\prime}$ we have

$$
\left|\Gamma^{\prime}\right|=|\Gamma| \leq|\Sigma \backslash \Lambda| \leq(n+k-2)\left(n-1-\sum_{i=r}^{l} i c_{i}\right)-2,
$$

and for $d=2 n+k-6-\sum_{i=r}^{l} i c_{i}$, since $n \geq 5$ and $k \geq 2$, we get

$$
\left|\Gamma^{\prime}\right| \leq(n+k-2)\left(n-1-\sum_{i=r}^{l} i c_{i}\right)-2 \leq \max \left\{\left\lfloor\frac{d+3}{2}\right\rfloor\left(d+3-\left\lfloor\frac{d+3}{2}\right\rfloor\right)-1,\left\lfloor\frac{d+3}{2}\right\rfloor^{2}\right\} .
$$

Lemma 3.10. If the points of the set $\Gamma$ impose dependent linear conditions on forms of degree $d$, then at most $d$ points of the set $\Gamma^{\prime}$ lie on a line in $\Pi \cong \mathbb{P}^{2}$.

Proof. Let us assume on the contrary that there is a line that contains at least $d+1$ points of $\Gamma$. Since the points of $\Gamma$ satisfy property $\star$, at most $n+k-2$ of its points lie on a line, thus

$$
n+k-2 \geq d+1=2 n+k-6-\sum_{i=r}^{l} i c_{i}+1
$$

which along with Corollary 3.7 implies that

$$
n-3 \leq \sum_{i=r}^{l} i c_{i} \leq n-2
$$

If $\sum_{i=r}^{l} i c_{i}=n-2$, then $|\Gamma| \leq n+k-4$ and we get a contradiction as no more than $n+k-4<d+1$ points can lie on a line. If $\sum_{i=r}^{l} i c_{i}=n-3$, then $|\Gamma| \leq 2(n+k-3)$ and according to Theorem 2.2 the points of $\Gamma$ impose independent linear conditions on forms of degree $d=n+k-3$, which contradicts our assumption. By Theorem 2.5 the number of points of $\Gamma^{\prime}$ that can lie on a line $\Pi \cong \mathbb{P}^{2}$ is at most $d$.

Lemma 3.11. At most

$$
t(d+3-t)-2
$$

points of the set $\Gamma^{\prime}$ lie on a curve in $\Pi \cong \mathbb{P}^{2}$ of degree $t$, for every $t \leq \frac{d+3}{2}$.
Proof. We need to check the condition that at most $t(d+3-t)-2$ points of $\Gamma^{\prime}$ lie on a curve of degree $t$ only for $2 \leq t \leq \frac{d+3}{2}$, such that

$$
t(d+3-t)-2<\left|\Gamma^{\prime}\right|
$$

Because the set $\Gamma^{\prime}$ satisfies property $\star$, at most $(n+k-2) t$ of its points can lie on a curve of degree $t$ and therefore it is enough to prove that

$$
t(d+3-t)-2 \geq(n+k-2) t \Longleftrightarrow t\left(n-1-\sum_{i=r}^{l} i c_{i}-t\right) \geq 2, \text { for all } 2 \leq t \leq \frac{d+3}{2}
$$

As we saw Lemma 3.10 implies that $t \geq 2$ and we only need to show that $t<n-1-\sum_{i=r}^{l} i c_{i}$. Suppose that

$$
n-1-\sum_{i=r}^{l} i c_{i} \leq t \leq \frac{d+3}{2}
$$

then
$\left(n-1-\sum_{i=r}^{l} i c_{i}\right)(n+k-2)=\left(n-1-\sum_{i=r}^{l} i c_{i}\right)\left(d+3-\left(n-1-\sum_{i=r}^{l} i c_{i}\right)\right)-2 \leq t(d+3-t)-2$,
since the quantity $t(d+3-t)-2$ increases, as $t \leq \frac{d+3}{2}$ increases. But then

$$
\left(n-1-\sum_{i=r}^{l} i c_{i}\right)(n+k-2)-2 \leq t(d+3-t)-2<\left|\Gamma^{\prime}\right| \leq\left(n-1-\sum_{i=r}^{l} i c_{i}\right)(n+k-2)-2
$$

which is a contradiction.
Lemma 3.12. The points of the set $\Sigma$ impose independent linear conditions on homogeneous forms of degree $2 n+k-6$.

Proof. According to Lemma 3.9 and Lemma 3.11 all the requirements of Theorem 2.3 for $\xi=d$ are satisfied and thus, the points of $\Gamma$ impose independent linear conditions on homogeneous forms of degree $d$. Hence, for any point $Q$ in $\Gamma$, there is a hypersurface $G_{Q}$ of degree $d$, such that $G_{Q}(\Gamma \backslash Q)=0$ and $G_{Q}(Q) \neq 0$.

Furthermore, by the way the set $\Delta$ was constructed, there is a form $F$ of degree $\sum_{i=r}^{l} i c_{i}$ in $\mathbb{P}^{3}$, that vanishes at every point of the set $\Delta$, but does not vanish at any point of the set $\Gamma$.

Therefore, for any point $Q \in \Gamma$ we obtain a hypersurface $F G_{Q}$ of degree $2 n+k-6$, such that

$$
F G_{Q}(\Sigma)=0 \text { and } F G_{Q}(Q) \neq 0
$$

Also, by Lemma 3.8, for any point $R \in \Delta$ there is a hypersurface of degree $2 n+k-6$ that passes through all points of $\Delta \backslash R$, except for the point $R$.

By applying Theorem 2.6 to the two disjoint sets $\Delta$ and $\Gamma$, we prove the Lemma.

## References

[1] E. Bese, On the spannedness and very ampleness of certain line bundles on the blow-ups of $\mathbb{P}_{\mathbb{C}}^{2}$ and $\mathbb{F}_{r}$, Math. Ann. 262 (1983), 225-238.
[2] I. Cheltsov, Points in projective spaces and applications, arXiv:math.AG/0511578 v4 (2005).
[3] I. Cheltsov, Factorial threefolds and Shokurov vanishing, Sbornik: Mathematics 197, no 3 (2006), 87-116.
[4] I. Cheltsov, Factorial threefold hypersurfaces, arxiv:math.AG/0803.3301 (2008).
[5] I. Cheltsov, J. Park, Factorial hypersurfaces in $\mathbb{P}^{4}$ with nodes, Geometriae Dedicata, 121 (2006), 205-219.
[6] S. Cynk, Defect of a nodal hypersurface, Manuscripta Mathematica 104 (2001), 325-331.
[7] E. Davis, A. Geramita, Birational morphisms to $\mathbb{P}^{2}$ : an ideal-theoretic perspective, Math. Ann. 279 (1988), 435-448.
[8] E. Davis, A. Geramita, F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Amer. Math. Soc. 93, no. 4 (1985), 593-597.
[9] J. Edmonds, Minimum partition of a matroid into independent subsets, Journal of Research of the National Bureau of Standards- B. Mathematics and Mathematical Physics, 69B (1965), 67-72.
[10] D. Eisenbud, M. Green, J. Harris, Higher Castelnuovo Theory, Asterisque 218 (1993), 187-202.
[11] D. Eisenbud, J-H. Koh, Remarks on points in a projective space, Commutative Algebra, Berkeley, CA, (1987), MSRI Publications 15, Springer, New York 157-172.
[12] D. Kosta, Factoriality condition of some nodal threefolds in $\mathbb{P}^{4}$, Manuscripta Mathematica (2008), Springer, Berlin/ Heidelberg, (on line).

School of Mathematics
The University of Edinburgh
Kings Buildings, Mayfield Road
Edinburgh EH9 3JZ, UK
D.Kosta@sms.ed.ac.uk


[^0]:    I would like to thank Ivan Cheltsov for suggesting the problem to me and for useful comments.

