FACTORIALITY OF COMPLETE INTERSECTIONS IN \mathbb{P}^5 .

DIMITRA KOSTA

ABSTRACT. Let X be a complete intersection of two hypersurfaces F_n and F_k in \mathbb{P}^5 of degree n and k respectively with $n \geq k$, such that the singularities of X are nodal and F_k is smooth. We prove that if the threefold X has at most (n+k-2)(n-1)-1 singular points, then it is factorial.

1. Introduction

In this paper we shall extend to the complete intersection setting a recent theorem of Cheltsov [4], in which he obtained a sharp bound for the number of nodes a threefold hypersurface can have and still be factorial.

Suppose that X is the complete intersection of two hypersurfaces F_n and F_k in \mathbb{P}^5 of degree n and k respectively with $n \geq k$, such that X is a nodal threefold. We will prove the following.

Theorem 1.1. Suppose that F_k is smooth. Then the threefold X is \mathbb{Q} -factorial, when

$$|Sing(X)| \le (n+k-2)(n-1)-1$$
.

The next example of a non-factorial nodal complete intersection threefold suggests that the number of nodes, that a hypersurface can have while being factorial, should be strictly less than $(n + k - 2)^2$.

Example 1.2. Let X be the complete intersection in \mathbb{P}^5 of two smooth hypersurfaces

$$F = x_3 f_1(x_0, x_1, x_2, x_3, x_4, x_5) + x_4 f_2(x_0, x_1, x_2, x_3, x_4, x_5) + x_5 f_3(x_0, x_1, x_2, x_3, x_4, x_5) = 0$$

$$G = x_3 g_1(x_0, x_1, x_2, x_3, x_4, x_5) + x_4 g_2(x_0, x_1, x_2, x_3, x_4, x_5) + x_5 g_3(x_0, x_1, x_2, x_3, x_4, x_5) = 0$$

where f_1, f_2, f_3 are general hypersurfaces of degree n-1 and g_1, g_2, g_3 general hypersurfaces of degree k-1. Then the singular locus Sing(X), which is given by the vanishing of the polynomials

$$x_3 = x_4 = x_5 = f_1 g_2 - f_2 g_1 = f_1 g_3 - f_3 g_1 = 0$$
,

consists of exactly $(n+k-2)^2$ nodal points and the threefold X is not factorial.

Therefore, we can expect the following stated in [3] to be true.

Conjecture 1.3. Suppose that F_k is smooth. Then the threefold X is \mathbb{Q} -factorial, when

$$|Sing(X)| \le (n+k-2)(n+k-2)-1$$
.

The assumption of Theorem 1.1 about the smoothness of F_k is essential, as Example 28 in [3] suggests.

In the case of a nodal threefold hypersurface in \mathbb{P}^4 , namely when k=1, several attempts where made towards proving Theorem 1.1, as one can see in [5] and [12]. However, a complete proof for k=1 was given in [4].

2. Preliminaries

Let Σ be a finite subset in \mathbb{P}^N . The points of Σ impose independent linear conditions on homogeneous forms in \mathbb{P}^N of degree ξ , if for every point P of the set Σ there is a homogeneous form on \mathbb{P}^N of degree ξ that vanishes at every point of the set $\Sigma \setminus P$ and does not vanish at the point P.

The following result, which relates the notion of Q-factoriality with that of independent linear conditions, is due to [6] and was stated in the present form in [3].

I would like to thank Ivan Cheltsov for suggesting the problem to me and for useful comments.

Theorem 2.1. The threefold X is \mathbb{Q} -factorial in the case when its singular points impose independent linear conditions on the sections of $H^0(\mathcal{O}_{\mathbb{P}^5}(2n+k-6)|_G)$.

The following result was proved in [11] and follows from a result of J.Edmonds [9].

Theorem 2.2. The points of Σ impose independent linear conditions on homogeneous forms of degree $\xi \geq 2$ if at most $\xi k + 1$ points of Σ lie in a k-dimensional linear subspace of \mathbb{P}^N .

By [1] and [7] we also know the following.

Theorem 2.3. Let $\pi: Y \to \mathbb{P}^2$ be a blow up of distinct points $P_1, ..., P_{\delta}$ on \mathbb{P}^2 . Then the linear system $|\pi^*(\mathcal{O}_{\mathbb{P}^2}(\xi)) - \sum_{i=1}^{\delta} E_i|$ is base-point-free for all $\delta \leq \max(m(\xi+3-m)-1, m^2)$, where $E_i = \pi^{-1}(P_i)$, $\xi \geq 3$, and $m = \lfloor \frac{\xi+3}{2} \rfloor$, if at most $k(\xi+3-k)-2$ points of the set $P_1, P_2, ..., P_{\delta}$ lie on a possibly reducible curve of degree $1 \leq k \leq m$.

What is next is an application, as stated in [12], of the modern Cayley-Bacharach theorem (see [10] or [8]).

Theorem 2.4. Let Σ be a subset of a zero-dimensional complete intersection of the hypersurfaces $X_1, X_2, ..., X_N$ in \mathbb{P}^N of degrees $d_1, ..., d_N$ respectively. Then the points of Σ impose dependent linear conditions on homogeneous forms of degree $\sum_{i=1}^N \deg(X_i) - N - 1$ if and only if the equality $|\Sigma| = \prod_{i=1}^N d_i$ holds.

Again due to [4] we have the following.

Theorem 2.5. Let $\Lambda \subseteq \Sigma$ be a subset, let $\phi : \mathbb{P}^r \dashrightarrow \mathbb{P}^m$ be a general projection and let

$$\mathcal{M} \subset |\mathcal{O}_{\mathbb{P}^n}(t)|$$

be a linear subsystem that contains all hypersurfaces of degree t that pass through Λ . Suppose that

- the inequality $|\Lambda| \ge (n+k-2)t+1$ holds,
- the set $\phi(\Lambda)$ is contained in an irreducible reduced curve of degree t,

where $r > m \ge 2$. Then \mathcal{M} has no base curves and either m = 2 or t > n + k - 2.

Finally, next is one of our basic tools, a proof of which can be found in [2].

Theorem 2.6. Let Σ be a finite subset in \mathbb{P}^N that is a disjoint union of finite subsets Λ and Δ , and P be a point in Σ . Suppose that there is a hypersurface in \mathbb{P}^N of degree $\alpha \geq 1$ that contains all points of the set $\Lambda \backslash P$ and does not contain P, and for every point Q in the set Δ there is a hypersurface in \mathbb{P}^N of degree $\beta \geq 1$ that contains all points of the set $\Sigma \backslash Q$ and does not contain the point Q. Then there is a hypersurface in \mathbb{P}^N of degree γ that contains the set $\Sigma \backslash P$ and does not contain the point P, where γ is a natural number such that $\gamma \geq \max(\alpha, \beta)$.

3. Proof of Theorem 1.1

Let us consider the complete intersection X of two hypersurfaces F_n and F_k in \mathbb{P}^5 of degrees n and k respectively, with $n \geq k$, such that X is a nodal threefold. Suppose, furthermore, that F_k is smooth and X has at most (n+k-2)(n-1)-1 singular points. We denote now by $\Sigma \subset \mathbb{P}^5$ the set of singular points of X.

Definition 3.1. We say that the points of a subset $\Gamma \subset \mathbb{P}^r$ have property \star if at most t(n+k-2) points of the set Γ lie on a curve in \mathbb{P}^r of degree $t \in \mathbb{N}$.

For a proof of the following we refer the reader to [3].

Lemma 3.2. The points of the set $\Sigma \subset \mathbb{P}^5$ have property \star .

According to Theorem 2.1, for any point $P \in \Sigma$ we need to prove that there is a hypersurface of degree 2n + k - 6, that passes through all the points of the set $\Sigma \backslash P$, but not through the point P.

Remark 3.3. As we mentioned, the claim of Theorem 1.1 is true, when k=1 and thus we need only consider the case $k \geq 2$. Furthermore, taking into account the following Lemma, we can assume that $n \geq 5$.

Lemma 3.4. The threefold X is \mathbb{Q} -factorial, when

$$|Sing(X)| \le (n+k-2)(n-1)-1 \text{ and } k \le n \le 4.$$

Proof. Indeed, we consider the projection

$$\psi: \mathbb{P}^5 \dashrightarrow \Pi \cong \mathbb{P}^2$$
,

from a general plane Γ of \mathbb{P}^5 to another general plane $\Pi \cong \mathbb{P}^2$, that sends the set Σ to $\psi(\Sigma) = \Sigma'$. Choose a point $P \in \Sigma$ and put $P' = \psi(P)$. We have the following cases.

- If $2 = n \ge k = 2$, then $|\Sigma| \le 1$ and the result holds according to Theorem 2.1.
- If $3 = n \ge k = 2$, then $|\Sigma| \le 5$ and it imposes independent linear conditions on forms of degree 2.
- If $3 = n \ge k = 3$, then $|\Sigma| \le 7$ and it imposes independent linear conditions on forms of degree 3.
- If $4 = n \ge k = 2$, then $|\Sigma| \le 11$ and at most 4t points lie on a curve in \mathbb{P}^5 of degree t. So, the 11 points of Σ impose independent linear conditions on forms of degree 4.
- If $4 = n \ge k = 3$, then $|\Sigma| \le 14$ and at most 5t points lie on a curve in \mathbb{P}^5 of degree t. If the points of $\Sigma' \subset \Pi$ satisfy property \star , then the set $\Sigma' \setminus P'$ satisfies the requirements of Theorem 2.3 for $\xi = 5$ and this implies that the set Σ imposes independent linear conditions on forms of degree 5.

Suppose on the contrary that the points Σ' do not satisfy Theorem 2.3 for $\xi = 5$. In this case there is a curve C_2 of degree 2 in Π that passes through at least 11 points of Σ' . If we take the cone over C_2 with vertex Γ , we obtain a hypersurface f_2 in \mathbb{P}^5 . Denote by Λ_2 the points of Σ that lie on f_2 . From Theorem 2.4 it follows that the points of Λ_2 impose independent linear conditions on homogeneous forms of degree 5(2-1)-1=4, since Λ_2 is a subset of the complete intersection of hypersurfaces of degree 2 in \mathbb{P}^5 . The set $|\Sigma \setminus \Lambda_2| \leq 3$ imposes independent linear conditions on forms of degree 2 and, by applying Theorem 2.6 to the two disjoint sets Λ_2 and $\Sigma \setminus \Lambda_2$, we get that the points of Σ impose independent linear conditions on forms of degree 5.

• $4 = n \ge k = 4$. Then $|\Sigma| \le 17$ and at most 6t points lie on a curve $C_t \in \mathbb{P}^5$ of degree t. If the points of $\Sigma' \subset \Pi$ satisfy property \star , then the set $\Sigma' \setminus P'$ satisfies the requirements of Theorem 2.3 for $\xi = 6$ and this implies that the set Σ imposes independent linear conditions on forms of degree 6.

Suppose on the contrary that the points Σ' do not satisfy Theorem 2.3 for $\xi = 6$. In this case there is a curve C_2 of degree 2 in Π that passes through at least 13 points of Σ' . If we take the cone over C_2 with vertex Γ , we obtain a hypersurface f_2 in \mathbb{P}^5 . Denote by Λ_2 the points of Σ that lie on f_2 . From Theorem 2.4 it follows that the points of Λ_2 impose independent linear conditions on homogeneous forms of degree 5(2-1)-1=4, since Λ_2 is a subset of the complete intersection of hypersurfaces of degree 2 in \mathbb{P}^5 . The set $|\Sigma \setminus \Lambda_2| \leq 4$ imposes independent linear conditions on forms of degree 2 and, by applying Theorem 2.6 to the two disjoint sets Λ_2 and $\Sigma \setminus \Lambda_2$, we get that the points of Σ impose independent linear conditions on forms of degree 6.

As we saw above, for $3 \le n \le 5$ the points of Σ impose independent linear conditions on forms of degree 2n + k - 6, and thus, by Theorem 2.1, the threefold X is \mathbb{Q} -factorial.

Lemma 3.5. Suppose that all the singularities of X lie on a plane $\Pi \subset \mathbb{P}^5$. Then for any point $P \in \Sigma$ there is hypersurface of degree (2n + k - 6) that contains $\Sigma \backslash P$, but does not contain the point P.

Proof. By Remark 3.3, we can see that $\xi = 2n + k - 6 \ge 6$. Also, we have

$$|\Sigma \backslash P| \le \max \left\{ \lfloor \frac{2n+k-3}{2} \rfloor (2n+k-3-\lfloor \frac{2n+k-3}{2} \rfloor) - 1, \lfloor \frac{2n+k-3}{2} \rfloor^2 \right\} ,$$

for $k \geq 2$ and $n \geq 5$. In order to show that at most t(2n+k-3-t)-2 points of Σ lie on a curve of degree t in Π , it is enough to show that

$$t(2n+k-3-t)-2 \ge t(n+k-2) \iff t(n-t-1) \ge 2$$
, for all $t \le \frac{2n+k-3}{2}$.

For t=1 the inequality holds, since $n \geq 5$, and we can assume that $t \geq 2$. It remains to show that t < n-1. Suppose on the contrary that $t \geq n-1$. The quantity t(2n+k-3-t)-2 rises for all $n-1 \leq t \leq \lfloor \frac{2n+k-3}{2} \rfloor$ and we have

$$|\Sigma \backslash P| \le (n-1)(n+k-2) - 2 \le t(2n+k-3-t) - 2$$
.

Therefore we see that the requirement of Theorem 2.3, that at most t(2n+k-3-t)-2 points of Σ lie on a curve of degree t in Π is satisfied by the set $\Sigma \backslash P$ for all $t \leq \frac{2n+k-3}{2}$. So there is a hypersurface of degree (2n+k-6) that contains $\Sigma \backslash P$, but does not contain point P.

Taking into account Theorem 2.5, we can reduce to the case Σ is a finite set in \mathbb{P}^3 , such that at most (n+k-2)t of its points are contained in a curve in \mathbb{P}^3 of degree $t \in \mathbb{N}$. Now fix a general plane $\Pi \in \mathbb{P}^3$ and let

$$\phi: \mathbb{P}^3 \dashrightarrow \Pi \cong \mathbb{P}^2$$

be a projection from a sufficiently general point $O \in \mathbb{P}^3$. Denote by $\Sigma' = \phi(\Sigma)$ and $P' = \phi(P)$.

Lemma 3.6. Suppose that the points of $\Sigma' \subseteq \Pi$ have the property \star . Then there is a hypersurface of degree 2n + k - 6 that contains $\Sigma \backslash P$ and does not contain P.

Proof. The points of the set Σ' satisfy the requirements of Theorem 2.3, following the proof of Lemma 3.5. Thus, there is a curve C in Π of degree 2n + k - 6, that passes through all the points of the the set $\Sigma' \setminus P'$, but not through the point P'. By taking the cone in \mathbb{P}^3 over the curve C with vertex O, we obtain the required hypersurface.

We may assume then, that the points of the set $\Sigma' \subseteq \Pi$ do not have property \star . Then there is a subset $\Lambda_r^1 \subseteq \Sigma$ with $|\Lambda_r^1| > r(n+k-2)$, but after projection the points

$$\phi(\Lambda_r^1) \subseteq \Sigma' \subset \Pi \cong \mathbb{P}^2$$

are contained in a curve $C_r \subseteq \Pi$ of degree r. Moreover, we may assume that r is the smallest natural number, such that at least (n+k-2)r+1 points of Σ' lie on a curve of degree r, which implies that the curve C_r is irreducible and reduced.

By repeating how we constructed Λ_r^1 , we obtain a non-empty disjoint union of subsets

$$\Lambda = \bigcup_{j=r}^{l} \bigcup_{i=1}^{c_j} \Lambda_j^i \subseteq \Sigma ,$$

such that $|\Lambda_i^i| > j(n+k-2)$, the points of the set

$$\phi(\Lambda_j^i) \subseteq \Sigma'$$

are contained in an irreducible curve in Π of degree j, and the points of the subset

$$\phi(\Sigma \backslash \Lambda) \subsetneq \Sigma' \subset \Pi \cong \mathbb{P}^2$$

have property \star , where $c_j \geq 0$. Let Ξ_j^i be the base locus of the linear subsystem in $|\mathcal{O}_{\mathbb{P}^3}(j)|$ of all surfaces of degree j passing through the set Λ_j^i . Then according to Theorem 2.5, the base locus Ξ_j^i is a finite set of points and we have $c_r > 0$ and

$$|\Sigma \setminus \Lambda| < (n-1)(n+k-2) - \sum_{i=r}^{l} i(n+k-2)c_i = (n+k-2)\left(n-1 - \sum_{i=r}^{l} ic_i\right)$$
.

Corollary 3.7. The inequality $\sum_{i=r}^{l} ic_i \leq n-2$ holds.

Put
$$\Delta = \Sigma \cap (\bigcup_{j=r}^{l} \bigcup_{i=1}^{c_j} \Xi_j^i)$$
. Then $\Lambda \subseteq \Delta \subseteq \Sigma$.

Lemma 3.8. The points of the set Δ impose independent linear conditions on forms of degree 2n + k - 6.

Proof. We have the exact sequence

$$0 \longrightarrow \mathcal{I}_{\Delta} \otimes \mathcal{O}_{\mathbb{P}^3}(2n+k-6) \longrightarrow \mathcal{O}_{\mathbb{P}^3}(2n+k-6) \longrightarrow \mathcal{O}_{\Delta} \longrightarrow 0,$$

where \mathcal{I}_{Δ} is the ideal sheaf of the closed subscheme Δ of \mathbb{P}^3 . Then the points of Δ impose independent linear conditions on forms of degree 2n + k - 6, if and only if

$$h^1 (\mathcal{I}_{\Delta} \otimes \mathcal{O}_{\mathbb{P}^3}(2n+k-6)) = 0$$
.

We assume on the contrary that $h^1(\mathcal{I}_{\Delta} \otimes \mathcal{O}_{\mathbb{P}^3}(2n+k-6)) \neq 0$. Let \mathcal{M} be a linear subsystem in $|\mathcal{O}_{\mathbb{P}^3}(n-2)|$ that contains all surfaces that pass through all points of the set Δ . Then the base locus of \mathcal{M} is zero-dimensional, since $\sum_{i=r}^{l} ic_i \leq n-2$ and

$$\Delta \subseteq \cup_{j=r}^l \cup_{i=1}^{c_j} \Xi_j^i ,$$

but Ξ_j^i is a zero-dimensional base locus of a linear subsystem of $|\mathcal{O}_{\mathbb{P}^3}(j)|$. Let Γ be the complete intersection

$$\Gamma = M_1 \cdot M_2 \cdot M_3 ,$$

of three general surfaces M_1, M_2, M_3 in \mathcal{M} . Then Γ is zero-dimensional and Δ is closed subscheme of Γ . Let

$$\mathcal{I}_{\Upsilon} = \operatorname{Ann}\left(\mathcal{I}_{\Delta}/\mathcal{I}_{\Gamma}\right)$$
.

Then

$$0 \neq h^1\left(\mathcal{I}_{\Delta} \otimes \mathcal{O}_{\mathbb{P}^3}(2n+k-6)\right) = h^0\left(\mathcal{I}_{\Upsilon} \otimes \mathcal{O}_{\mathbb{P}^3}(n-k-4)\right) - h^0\left(\mathcal{I}_{\Gamma} \otimes \mathcal{O}_{\mathbb{P}^3}(n-k-4)\right) .$$

Therefore $h^0(\mathcal{I}_{\Gamma}\otimes\mathcal{O}_{\mathbb{P}^3}(n-k-4))\neq 0$ and there is a surface $F\in |\mathcal{I}_{\Upsilon}\otimes\mathcal{O}_{\mathbb{P}^3}(n-k-4)|$. We have

$$(n-k-4)(n-2)^2 = F \cdot M_2 \cdot M_3 \ge h^0(\mathcal{O}_{\Upsilon}) = h^0(\mathcal{O}_{\Gamma}) - h^0(\mathcal{O}_{\Delta}) = (n-2)^3 - |\Delta|$$

which implies $|\Delta| \ge (k+2)(n-2)^2$. But $|\Delta| \le |\Sigma| < (n-1)(n+k-2)$, which is impossible since $k \ge 2$ and $n \ge 5$.

We see that $\Delta \subseteq \Sigma$. Put $\Gamma = \Sigma \setminus \Delta$ and $d = 2n + k - 6 - \sum_{i=r}^{l} ic_i$.

Lemma 3.9. The inequality $d \geq 3$ holds.

Proof. Suppose that $d \leq 2$. Since $\sum_{i=r}^{l} ic_i \leq n-2$ due to Corollary 3.7, we have

$$2 \ge d = 2n + k - 6 - \sum_{i=r}^{l} ic_i \ge 2n + k - 6 - (n-2) = n + k - 4 \ge 3$$

which is impossible.

For the number of points of the set Γ' we have

$$|\Gamma'| = |\Gamma| \le |\Sigma \setminus \Lambda| \le (n+k-2) \left(n-1-\sum_{i=r}^{l} ic_i\right) - 2$$

and for $d = 2n + k - 6 - \sum_{i=r}^{l} ic_i$, since $n \ge 5$ and $k \ge 2$, we get

$$|\Gamma'| \le (n+k-2) \left(n-1 - \sum_{i=r}^{l} ic_i\right) - 2 \le \max\left\{ \lfloor \frac{d+3}{2} \rfloor \left(d+3 - \lfloor \frac{d+3}{2} \rfloor\right) - 1, \lfloor \frac{d+3}{2} \rfloor^2 \right\}.$$

Lemma 3.10. If the points of the set Γ impose dependent linear conditions on forms of degree d, then at most d points of the set Γ' lie on a line in $\Pi \cong \mathbb{P}^2$.

Proof. Let us assume on the contrary that there is a line that contains at least d+1 points of Γ . Since the points of Γ satisfy property \star , at most n+k-2 of its points lie on a line, thus

$$n+k-2 \ge d+1 = 2n+k-6 - \sum_{i=r}^{l} ic_i + 1$$
,

which along with Corollary 3.7 implies that

$$n-3 \le \sum_{i=n}^{l} ic_i \le n-2.$$

If $\sum_{i=r}^{l}ic_i=n-2$, then $|\Gamma|\leq n+k-4$ and we get a contradiction as no more than n+k-4< d+1 points can lie on a line. If $\sum_{i=r}^{l}ic_i=n-3$, then $|\Gamma|\leq 2(n+k-3)$ and according to Theorem 2.2 the points of Γ impose independent linear conditions on forms of degree d=n+k-3, which contradicts our assumption. By Theorem 2.5 the number of points of Γ' that can lie on a line $\Pi\cong\mathbb{P}^2$ is at most d.

Lemma 3.11. At most

$$t(d+3-t)-2$$

points of the set Γ' lie on a curve in $\Pi \cong \mathbb{P}^2$ of degree t, for every $t \leq \frac{d+3}{2}$.

Proof. We need to check the condition that at most t(d+3-t)-2 points of Γ' lie on a curve of degree t only for $2 \le t \le \frac{d+3}{2}$, such that

$$t(d+3-t)-2 < |\Gamma'|$$
.

Because the set Γ' satisfies property \star , at most (n+k-2)t of its points can lie on a curve of degree t and therefore it is enough to prove that

$$t(d+3-t)-2 \ge (n+k-2)t \iff t\left(n-1-\sum_{i=r}^{l}ic_i-t\right) \ge 2$$
, for all $2 \le t \le \frac{d+3}{2}$.

As we saw Lemma 3.10 implies that $t \ge 2$ and we only need to show that $t < n - 1 - \sum_{i=r}^{l} ic_i$. Suppose that

$$n-1-\sum_{i=r}^{l}ic_{i}\leq t\leq \frac{d+3}{2},$$

then

$$(n-1-\sum_{i=r}^{l}ic_i)(n+k-2)=(n-1-\sum_{i=r}^{l}ic_i)(d+3-(n-1-\sum_{i=r}^{l}ic_i))-2 \le t(d+3-t)-2,$$

since the quantity t(d+3-t)-2 increases, as $t \leq \frac{d+3}{2}$ increases. But then

$$(n-1-\sum_{i=r}^{l}ic_i)(n+k-2)-2 \le t(d+3-t)-2 < |\Gamma'| \le (n-1-\sum_{i=r}^{l}ic_i)(n+k-2)-2 ,$$

which is a contradiction.

Lemma 3.12. The points of the set Σ impose independent linear conditions on homogeneous forms of degree 2n + k - 6.

Proof. According to Lemma 3.9 and Lemma 3.11 all the requirements of Theorem 2.3 for $\xi = d$ are satisfied and thus, the points of Γ impose independent linear conditions on homogeneous forms of degree d. Hence, for any point Q in Γ , there is a hypersurface G_Q of degree d, such that $G_Q(\Gamma \setminus Q) = 0$ and $G_Q(Q) \neq 0$.

Furthermore, by the way the set Δ was constructed, there is a form F of degree $\sum_{i=r}^{l} ic_i$ in \mathbb{P}^3 , that vanishes at every point of the set Δ , but does not vanish at any point of the set Γ .

Therefore, for any point $Q \in \Gamma$ we obtain a hypersurface FG_Q of degree 2n + k - 6, such that

$$FG_O(\Sigma) = 0$$
 and $FG_O(Q) \neq 0$.

Also, by Lemma 3.8, for any point $R \in \Delta$ there is a hypersurface of degree 2n + k - 6 that passes through all points of $\Delta \setminus R$, except for the point R.

By applying Theorem 2.6 to the two disjoint sets Δ and Γ , we prove the Lemma.

References

- [1] E. Bese, On the spannedness and very ampleness of certain line bundles on the blow-ups of $\mathbb{P}^2_{\mathbb{C}}$ and \mathbb{F}_r , Math. Ann. **262** (1983), 225-238.
- [2] I. Cheltsov, Points in projective spaces and applications, arXiv:math.AG/0511578 v4 (2005).
- [3] I. Cheltsov, Factorial threefolds and Shokurov vanishing, Sbornik: Mathematics 197, no 3 (2006), 87-116.
- [4] I. Cheltsov, Factorial threefold hypersurfaces, arxiv:math.AG/0803.3301 (2008).
- [5] I. Cheltsov, J. Park, Factorial hypersurfaces in \mathbb{P}^4 with nodes, Geometriae Dedicata, 121 (2006), 205-219.
- [6] S. Cynk, Defect of a nodal hypersurface, Manuscripta Mathematica 104 (2001), 325-331.
- [7] E. Davis, A. Geramita, Birational morphisms to P²: an ideal-theoretic perspective, Math. Ann. 279 (1988), 435-448.
- [8] E. Davis, A. Geramita, F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Amer. Math. Soc. 93, no. 4 (1985), 593-597.
- [9] J. Edmonds, *Minimum partition of a matroid into independent subsets*, Journal of Research of the National Bureau of Standards- B. Mathematics and Mathematical Physics, **69B** (1965), 67-72.
- [10] D. Eisenbud, M. Green, J. Harris, *Higher Castelnuovo Theory*, Asterisque **218** (1993), 187-202.
- [11] D. Eisenbud, J-H. Koh, Remarks on points in a projective space, Commutative Algebra, Berkeley, CA, (1987), MSRI Publications 15, Springer, New York 157-172.
- [12] D. Kosta, Factoriality condition of some nodal threefolds in \mathbb{P}^4 , Manuscripta Mathematica (2008), Springer, Berlin/Heidelberg, (on line).

School of Mathematics
The University of Edinburgh
Kings Buildings, Mayfield Road
Edinburgh EH9 3JZ, UK

D.Kosta@sms.ed.ac.uk