
DERIVED CATEGORIES OF FANO THREEFOLDS

ALEXANDER KUZNETSOV

To V.A. Iskovskikh on the occasion of his 70th birthday

Abstract. We consider the structure of the derived categories of coherent sheaves on Fano threefolds

with Picard number 1 and describe a strange relation between derived categories of different threefolds.

In the Appendix we discuss how the ring of algebraic cycles of a smooth projective variety is related to

the Grothendieck group of its derived category.

1. Introduction

A smooth proper connected algebraic variety V is a Fano variety if the anticanonical class −KV on V

is ample. In dimension 1 the only Fano variety is the projective line P1. In dimension 2 the Fano
varieties are known under the name of del Pezzo surfaces. There are 10 deformation classes of these —
the projective plane with up to 8 blown up points (in generic position) and the quadric.

An ambitious program of classification of Fano threefolds was initiated by G. Fano in the beginning of
20-th century and was mostly accomplished by V. Iskovskikh in 1979 [Is]. The final stroke of brush was
added by Mukai and Umemura in 1983 [MU]. In higher dimensions only some pieces of the classification
are known.

There are many interconnections between Fano varieties, which help in the classification problems.
For example, a hyperplane section of a Fano n-fold V is a Fano variety of dimension n − 1 if the
anticanonical class of V is sufficiently large. This is most helpful for classification of Fano varieties with
large anticanonical class. On the other hand, there are many birational transformations between different
Fano varieties of the same dimension. This also is very useful. For example, the original approach of
Fano developed by Iskovskikh was based on these kind of interconnections (the double projection from a
line is one of the most important).

The goal of the present paper is to indicate that there are interconnections between some Fano three-
folds on a higher level, the level of derived categories. On one side we consider a Fano threefold of index 2
and of degree d, an on the other side a Fano threefold of index 1 and degree 4d + 2. Then we find in
both derived categories an exceptional pair of vector bundles and consider the arising semiorthogonal
decompositions. The crucial observation is that the nontrivial components of these decompositions are
equivalent.

Actually, this is a very rough formulation. It is well known that in general Fano varieties have nontrivial
moduli spaces, so the components of the derived categories which we consider in general vary. So, to
be more precise one should say that there is a correspondence in the product of the moduli spaces of
both types of Fano threefolds, points of which correspond to Fano threefolds with equivalent nontrivial
components of derived categories. Investigation of the structure of this correspondence is an interesting
question. We conjecture that this correspondece is dominant over the both moduli spaces and give some
speculations about its structure.
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Although it is not so easy to prove that this relation holds (actually, we can check this only for
d = 3, 4, 5, while the cases d = 1, 2 are still under the question), it is much more difficult to understand
why such a relation takes place. We believe that any progress in this direction will be very useful for
understanding of the structure of Fano varieties and for the classification in higher dimensions.

2. Classification of Fano threefolds

An excellent modern survey of the classification of Fano varieties is given in [IP]. Let us briefly remind
those parts of the classification which are the most important for us. We will work over an algebraically
closed field k of zero characteristic.

The most important discrete invariant of a Fano variety is its Picard lattice PicV which comes with
the intersection form and with a distinguished element (the canonical class). In this paper we will be
mostly concerned with the (most important) case PicV = Z. In this case the distinguished element is
represented by a positive integer iV such that

KV = −iV H,

where H is the positive generator of PicV , and the intersection form is completely determined by a
positive integer

dV = Hdim V .

These invariants are known as the index and the degree of V respectively.
The most general result concerning the index is the following

Theorem 2.1 ([Fu]). If V is a Fano variety of index iV then iV ≤ dimV + 1. Moreover
• if iV = dim V + 1 then V = Pn;
• if iV = dim V then V = Qn ⊂ Pn+1.

In particular, for threefolds we have

Corollary 2.2. If V is a Fano threefold then iV ≤ 4. Moreover
• if iV = 4 then V = P3;
• if iV = 3 then V = Q3 ⊂ P4.

Fano threefolds of index 2 are also known as del Pezzo threefolds (since their hyperplane sections are
del Pezzo surfaces).

Theorem 2.3. Let V be a Fano threefold with PicV = Z of index iV = 2 and of degree dV . Then

1 ≤ dV ≤ 5

and for each 1 ≤ d ≤ 5 there exists a unique deformation class of Fano threefolds Yd with PicYd = Z of
index 2 and of degree d. They have the following explicit description:

• Y5 = Gr(2, 5) ∩ P6 ⊂ P9 is a linear section of codimension 3 of the Grassmannian Gr(2, 5) in the
Plücker embedding;

• Y4 = Q ∩Q′ ⊂ P5 is an intersection of two 4-dimensional quadrics;
• Y3 ⊂ P4 is a cubic hypersurface;
• Y2 → P3 is a double covering ramified in a quartic;
• Y1 is a hypersurface of degree 6 in the weighted projective space P(3, 2, 1, 1, 1).

Now let V be a Fano threefold of index 1. Its general anticanonical section S ⊂ V is a K3-surface,
which comes with a polarization HS = H|S . It follows that

dV = H3 = H2
S = 2gV − 2

for some integer gV ≥ 2 which is known as the genus of V .
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Theorem 2.4. Let V be a Fano threefold with PicV = Z of index iV = 1 and of genus gV . Then

2 ≤ gV ≤ 12, gV 6= 11

and for each g in this range there exists a unique deformation class of Fano threefolds X2g−2 with
PicX2g−2 = Z of index 1 and of genus g. They have the following explicit description:

• X22 ⊂ P13 is the zero locus of a global section of the vector bundle Λ2U∗ ⊕ Λ2U∗ ⊕ Λ2U∗ on the
Grassmannian Gr(3, 7), where U denotes the tautological rank 3 bundle;

• X18 = G2Gr(2, 7) ∩ P11 ⊂ P13, where G2Gr(2, 7) is the minimal compact homogeneous space for
the simple algebraic group of type G2, which can be realized as the zero locus of a global section
of the vector bundle U⊥(1) on the Grassmannian Gr(2, 7);

• X16 = P10 ∩ SGr(3, 6) ⊂ P13 is a linear section of codimension 3 of the symplectic Lagrangian
Grassmannian SGr(3, 6) in the Plücker embedding;

• X14 = P9 ∩ Gr(2, 6) ⊂ P14 is a linear section of codimension 5 of the Grassmannian Gr(2, 6) in
the Plücker embedding;

• X12 = P8 ∩OGr+(5, 10) ⊂ P15 is a linear section of codimension 7 of the connected component of
the orthogonal Lagrangian Grassmannian OGr+(5, 10) in the half-spinor embedding;

• X10 = P7 ∩ Q ∩ Gr(2, 5) ⊂ P9 is a quadric section of a linear section of codimension 2 of the
Grassmannian Gr(2, 5) in the Plücker embedding; or X10 → Y5 is a twofold covering ramified in
a quadric;

• X8 = Q ∩Q′ ∩Q′′ ⊂ P6 is an intersection of three 5-dimensional quadrics;
• X6 = Q ∩ F3 ⊂ P5 is an intersection of a quadric and a cubic;
• X4 ⊂ P4 is a quartic; or X4 → Q is a double cover of a quadric Q ⊂ P4 ramified in the intersection

of Q with a quartic;
• X2 → P3 is a double covering ramified in a sextic.

We will also need the following result of S. Mukai.

Theorem 2.5 ([M]). Assume that the genus g of a Fano threefold X2g−2 can be represented as a product
g = r · s of two integers. Then on X2g−2 there exists a unique stable vector bundle Er of rank r with
c1(Er) = −H and c2(Er) = 1

2H2 + (r − s)L, where L is the class of a line on X2g−2. Moreover, Er is
exceptional and H•(X, Er) = 0.

The definition of exceptional bundles is given below (see Definition 3.2).

Remark 2.6. When applied to the Fano threefolds X2g−2 with g ≥ 6 this Theorem gives the vector bundles
which are the restrictions of the dual tautological bundles from the corresponding Grassmannians.

3. Relation of derived categories

For an algebraic variety V we denote by Db(V ) the bounded derived category of coherent sheaves on V .
Recall that Db(V ) is triangulated. We will always assume that V is smooth and projective.

Definition 3.1 ([BK, BO1]). A semiorthogonal decomposition of a triangulated category T is a sequence
of full triangulated subcategories C1, . . . , Cn in T such that HomT (Ci, Cj) = 0 for i > j and for every object
T ∈ T there exists a chain of morphisms 0 = Tn → Tn−1 → · · · → T1 → T0 = T such that the cone of
the morphism Tk → Tk−1 is contained in Ck for each k = 1, 2, . . . , n.

We will write T = 〈C1, C2, . . . , Cn〉 for a semiorthogonal decomposition of a triangulated category T
with components C1, C2, . . . , Cn.
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Definition 3.2 ([B]). An object F ∈ T is called exceptional if Hom(F, F ) = k and Extp(F, F ) = 0 for
all p 6= 0. A collection of exceptional objects (F1, . . . , Fm) is called exceptional if Extp(Fl, Fk) = 0 for all
l > k and all p ∈ Z.

Proposition 3.3 ([BO1]). Any exceptional collection F1, . . . , Fm in Db(V ) gives a semiorthogonal de-
composition

Db(V ) = 〈C, F1, . . . , Fm〉
where C = 〈F1, . . . , Fm〉⊥ = {F ∈ Db(V ) | Ext•(Fk, F ) = 0 for all 1 ≤ k ≤ m} and all the other compo-
nents are the subcategories of Db(V ) generated by Fk (each of these is equivalent to Db(k), the derived
category of k-vector spaces).

Now let V be a Fano variety of index i = iV . The following result is well known.

Lemma 3.4. Let V be a Fano variety of index i = iV . Then the collection OV ,OV (H), . . . ,OV ((i−1)H)
in Db(V ) is exceptional.

Proof: We note that Hp(V,OV (−kH)) = 0 for 1 ≤ k ≤ i− 1 and all p by the Kodaira vanishing theorem,
hence Ext•(OV (lH),OV (kH)) = 0 for 0 ≤ k < l ≤ i − 1. Similarly, Hp(V,OV ) = 0 for all p > 0 by the
Kodaira vanishing theorem, while H0(V,OV ) = k since V is connected. Therefore all line bundles on V

are exceptional. ¤

Corollary 3.5. For any Fano variety V we have the following semiorthogonal decomposition

Db(V ) = 〈BV ,OV ,OV (H), . . . ,OV ((i− 1)H)〉,
where i = iV is the index of V and BV = {F ∈ Db(V ) | H•(V, F (−kH)) = 0 for all 0 ≤ k ≤ i− 1}.

In particular, for Fano threefolds Yd of index 2 we obtain a semiorthogonal decomposition

Db(Yd) = 〈BYd
,OV ,OV (H)〉.

For Fano threefolds X2g−2 of index 1 and even genus g = 2t we consider the vector bundle E2 of rank 2
provided by Theorem 2.5. Applying this Theorem we deduce the following

Lemma 3.6. Let X = X2g−2 be a Fano threefolds of index 1 and even genus g = 2t. Let E = E2 be the
vector bundle of rank 2 on X constructed in Theorem 2.5. Then (E ,OX) is an exceptional pair on X and
we have a semiorthogonal decomposition

Db(X2g−2) = 〈AX2g−2 , E ,OX2g−2〉,
where AX2g−2 = {F ∈ Db(X2g−2) | H•(X2g−2, F ) = Ext•(E , F ) = 0}.

Now we can formulate the Conjecture.

Conjecture 3.7. Let MF i
d be the moduli spaces of Fano threefolds of index i and degree d. Then there

is a correspondence Zd ⊂ MF2
d ×MF1

4d+2 which is dominant over each factor and such that for any
point (Yd, X4d+2) ∈ Zd there is an equivalence of categories

AX4d+2
∼= BYd

.

The main support for this conjecture is provided by the following results.

Theorem 3.8. Conjecture 3.7 is true for d = 3, 4, 5.
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A proof of Theorem 3.8 will be given in the next section. It consists of a case-by-case analysis, see
Corollaries 4.3, 4.6 and 4.9. And now we are going to compare the numerical Grothendieck groups of
categories AX4d+2

and BYd
.

For a triangulated category T we denote by K0(T ) its Grothendieck group. It comes with a bilinear
Euler form

χ([F ], [G]) =
∑

p

(−1)p dimExtp(F, G).

The numerical Grothendieck group K0(T )num is defined as the quotient K0(T )num := K0(T )/′Kerχ. If
T = Db(V ) we write K0(V ) and K0(V )num instead of K0(Db(V )) and K0(Db(V ))num for brevity.

Proposition 3.9. For all 1 ≤ d ≤ 5 there is an isomorphism of numerical Grothendieck groups

K0(AX4d+2
)num

∼= K0(BYd
)num

compatible with the Euler bilinear forms.

Proof: A computation based on the Riemann–Roch Theorem.
Note that by 5.8 the Chern character map ch : K0(X2g−2)num → ⊕3

p=0H
2p(X2g−2,Q) identifies the

numerical Grothendieck group K0(X2g−2)num with the lattice generated by elements

ch(OX2g−2) = 1, ch(OH) = H − (g − 1)L +
g − 1

3
P, ch(OL) = L +

1
2
P, ch(OP ) = P,

where P is the class of a point, and by Riemann–Roch the Euler form can be expressed as

χ(u, v) = χ0(u∗ ∩ v),

where u 7→ u∗ is the involution of ⊕3
p=0H

2p(X2g−2,Q) given by (−1)p-multiplication on H2p(X2g−2,Q),
and χ0 is given by the formula

χ0(x + yH + zL + wP ) = x +
g + 11

6
y +

1
2
z + w.

On the other hand, we have ch(OX2g−2) = 1, and using Theorem 2.5 it is easy to compute

ch(E) = 2−H +
g − 4

2
L− g − 10

12
P.

It follows that

K0(AX2g−2)num =
〈

1, 2−H +
g − 4

2
L− g − 10

12
P

〉⊥
=

〈
1− g

2
L +

g − 4
4

P,H − 3g − 6
2

L +
7g − 40

12
P

〉
.

Computing the form χ on the base vectors we conclude that

K0(AX2g−2)num
∼= Z2, χA =

(
1− g/2 −g/2
3− g 1− g

)
.

as a lattice with a bilinear form.
Similarly, by 5.8 the Chern character map ch : K0(Yd)num → ⊕3

p=0H
2p(Yd,Q) identifies K0(Yd)num

with the lattice generated by elements

ch(OYd
) = 1, ch(OH) = H − d

2
L +

d

6
P, ch(OL) = L, ch(OP ) = P,

and it is easy to see that χ0 is given by the formula

χ0(x + yH + zL + wP ) = x +
d + 3

3
y + z + w.
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On the other hand, we have ch(OYd
) = 1, ch(OYd

(H)) = 1 + H + d
2L + d

6P , so it follows that

K0(BYd
)num =

〈
1, 1 + H +

d

2
L +

d

6
P

〉⊥
=

〈
1− L,H − d

2
L +

d− 6
6

P

〉
.

Computing the form χ on the base vectors we conclude that

K0(BYd
)num

∼= Z2, χB =
( −1 −1

1− d −d

)
.

as a lattice with the bilinear form.
A direct check shows that for the map Z2 → Z2 given by the matrix

A =
(

0 1
−1 −2

)

we have

AT · χB ·A =
( −d −1− d

1− 2d −1− 2d

)

which for g = 2d + 2 coincides with the matrix of χA. Thus the map A gives a required isomorphism
K0(BYd

)num
∼= K0(AX4d+2

)num compatible with the Euler forms. ¤

4. Cases d ≥ 3

In this section we prove Theorem 3.8 by a case-by-case analysis.

4.1. The case d = 5. Recall that the del Pezzo threefold Y5 of degree 5 is rigid, so that the moduli space
MF2

5 is a point. On the contrary, Fano threefolds X22 of genus 12 have a 6-dimensional moduli space
MF1

22. We will show that the correspondence Z5 ⊂ MF2
5 ×MF1

22 is the whole product. In the other
words, we are going to show that for any X22 and for the unique Y5 there is an equivalence AX22

∼= BY5 .
For this we give an explicit description of both categories in question.

For the X22 the description is based on the following result. Let E2 and E3 be the vector bundles of
rank 2 and 3 on X = X22 provided by Theorem 2.5 for the factorizations gX = 12 = 2 · 6 = 3 · 4. Let
W = H0(X, E∗3 )∗ ∼= k7, so that X ⊂ Gr(3,W ).

Theorem 4.1 ([K1, K2]). The bundles W/E3 ⊗ OX(−1), E∗3 ⊗ OX(−1), E2,OX form a full exceptional
collection, so that

Db(X22) = 〈W/E3 ⊗OX(−1), E∗3 ⊗OX(−1), E2,OX〉.
Moreover, Hom(W/E3⊗OX(−1), E∗3 ⊗OX(−1)) = k3, Ext6=0(W/E3⊗OX(−1), E∗3 ⊗OX(−1)) = 0, so that

AX22
∼= Db(Q3),

where Q3 =
(• //////•

)
is the Kronecker quiver with 3 arrows.

On the other hand, for the Y5 a description of the derived category was given by Orlov. Let U
be the restriction to Y = Y5 of the tautological bundle from the Grassmannian Gr(2, 5) to Y . Let
W ′ = H0(Y,U∗)∗ ∼= k5, so that Y ⊂ Gr(2,W ′).

Theorem 4.2 ([Or]). The bundles W ′/U ⊗ OY (−1),U ,OY ,OY (1) form a full exceptional collection, so
that

Db(Y5) = 〈W ′/U ⊗OY (−1),U ,OY ,OY (1)〉.
Moreover, Hom(W ′/U ⊗OY (−1),U) = k3, Ext6=0(W ′/U ⊗OY (−1),U) = 0, so that BY5

∼= Db(Q3).

From these two results we immediately deduce the required equivalence.
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Corollary 4.3. For any Fano threefold X22 of genus 12 and for the unique del Pezzo threefold Y5 of
degree 5 there is an equivalence of categories AX22

∼= Db(Q3) ∼= BY5.

4.2. The case d = 4. Recall that the moduli space MF2
4 of del Pezzo threefolds Y4 of degree 4 is

isomorphic to the moduli space M2 of curves of genus 2. The isomorphism is constructed as follows.
Let Y = Y4 = Q ∩ Q′ ⊂ P5. Consider the pencil of quadrics {Qλ}λ∈P1 generated by Q and Q′. If Y is
smooth then the generic Qλ is smooth and there are precisely 6 distinct points λ1, . . . , λ6 ∈ P1 for which
the quadric Qλ is degenerate. Consider the twofold covering C(Y ) → P1 ramified at the points λi. Then
C(Y ) is a smooth curve of genus 2.

Theorem 4.4 ([BO1, K6]). The map MF2
4 →M2, Y 7→ C(Y ) is an isomorphism. Moreover, there is

an equivalence BY4
∼= Db(C(Y4)).

Our goal is to show that X18 threefolds behave in a similar fashion. Indeed, recall that by definition
any X = X18 is a linear section of codimension 2 in G2Gr(2, 7). Let {Xλ}λ∈P1 be the pencil of hyperplane
sections of G2Gr(2, 7) passing through X. Since the projective dual of G2Gr(2, 7) is a hypersurface of
degree 6, it follows that there are precisely 6 distinct points λ1, . . . , λ6 ∈ P1 for which Xλ is singular.
Consider the twofold covering C(X) → P1 ramified at the points λi. Then C(X) is a smooth curve of
genus 2. Thus we obtain a map MF1

18 →M2, X 7→ C(X).

Theorem 4.5 ([K5]). There is an equivalence BX18
∼= Db(C(X18)).

Combining these results we obtain the case d = 4. Let Z4 ⊂ MF2
4 ×MF1

18 be the graph of the
morphism MF1

18 →M2
∼= MF2

4.

Corollary 4.6. For any pair of threefolds (Y4, X18) ∈ Z4 ⊂ MF2
4 ×MF1

18 we have an equivalence of
categories AX18

∼= BY4.

4.3. The case d = 3. While in the previous two cases we were able to describe the categories under the
question explicitly, for d = 3 this is no longer possible. We can only prove an equivalence in this case.

Recall that by definition any X = X14 is a linear section of codimension 5 in Gr(2, 6). Let W be the
six-dimensional vector space, so that Gr(2, 6) = Gr(2,W ) ⊂ P(Λ2W ). Then X can be described by a
5-dimensional subspace A ⊂ Λ2W ∗ or, equivalently, by an injective map α : A → Λ2W , where A is a
fixed vector space of dimension 5. Let us denote the corresponding threefold X14 by X(α).

On the other hand, consider the whole space P(Λ2W ∗), the space of skew-symmetric forms on W .
Consider the hypersurface therein consisting of degenerate skew-forms. It is well known that the equation
of this hypersurface is given by the Pfaffian polynomial. It follows that it is a cubic hypersurface, which
is denoted by Pf(W ) and is called the Pfaffian variety. Certainly, the Pfaffian variety is singular, its
singular locus coincides with the set of all skew-forms of rank 2 on W , that is with the Grassmannian
Gr(2, W ∗) ⊂ Pf(W ) ⊂ P(Λ2W ∗). However, the codimension of the singular locus in P(Λ2W ∗) is 14−8 = 6,
so for generic α the preimage of Pf(W ) in P(A) is a smooth cubic hypersurface, which we denote Y (α).
Further, associating with a degenerate skew-form on W its kernel, defines a rank 2 subbundle K ⊂ W⊗O
on the smooth locus of Pf(W ). Let E(α) = α∗K ⊗OY (α)(1), where in the right-hand-side we consider α

as a map Y (α) → Pf(W ) and OY (α)(1) is the restriction of OP(A)(1).

Theorem 4.7 ([K3, K9]). The map X(α) 7→ (Y (α), E(α)) gives an isomorphism of the moduli space
MF1

14 of Fano threefolds X14 of genus 8 and the moduli space MFI2
3(2) of pairs (Y, E), where Y is

a smooth cubic threefold and E is a stable vector bundle on Y of rank 2, c1(E) = 0, c2(E) = 2L with
H1(Y,E(−1)) = 0. For every α there is an equivalence of categories BX14(α)

∼= AY3(α).

Remark 4.8. The bundles E in the statement of the Theorem are known as instanton bundles of charge 2.
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Let Z3 ⊂MF2
3 ×MF1

14 be the graph of the morphism MF1
14
∼= MFI2

3(2) →MF2
3.

Corollary 4.9. For any pair of threefolds (Y3, X14) ∈ Z3 ⊂ MF2
3 ×MF1

14 we have an equivalence of
categories AX14

∼= BY3.

4.4. Geometrical correspondences. Actually the proof of Theorem 4.7 in [K3] gives more than just
an equivalence of categories. It gives also a geometrical correspondence between X(α) and Y (α).

Let PX(α)(E) be the projectivization of the exceptional rank 2 bundle on X(α). Since E is the restriction
of the tautological bundle from the Grassmannian Gr(2,W ), we have a canonical map PX(α)(E) → P(W ).
On the other hand, one can check that we have an isomorphism H0(Y (α), E(α)∗ ⊗ OY (α)(1)) ∼= W ∗,
hence we have also a canonical map PY (α)(E(α)) → P(W ).

Theorem 4.10 ([K3]). The images of PX(α)(E) and PY (α)(E(α)) in P(W ) coincide with a quartic hy-
persurface M ⊂ P(W ) singular along a curve C ⊂ M of genus 26. The maps PX(α)(E) → M and
PY (α)(E(α)) → M are small contractions and induce isomorphisms over the complement of C. More-
over, the induced birational isomorphism PX(α)(E) //___ PY (α)(E(α)) is a flop.

Remark 4.11. The hypersurface M ⊂ P(W ) is known as the da Palatini quartic. The curve C parame-
terizes lines on X(α) and at the same time jumping lines for E(α) on Y (α) (that is lines L ⊂ Y (α) for
which E(α)|L ∼= OL(1)⊕OL(−1)).

We expect that some generalization of this result should hold for other values of d. For example, let
MFB1

4d+2(t) be the moduli space of pairs (X,F ), where X is a Fano threefold of index 1 and degree
4d + 2, and F is a stable vector bundle on X of rank 2 with c1(F ) = −H, c2(F ) = (d + 2 + t)L
(note that for t = 0 by Theorem 2.5 there is only one such bundle, the exceptional bundle E2, hence
MFB1

4d+2(0) = MF1
4d+2). Using the Riemann–Roch (see the proof of Proposition 3.9) one can check

that for any d, any t and any (X, F ) ∈MF1
4d+2(t) we have

dimH0(X, F ∗) = d + 3− t,

so that we have a map PX(F ) → Pd+2−t. Moreover, since c1(F ∗) = H, c2(F ∗) = (d + 2− t)L, it follows
that the degree of the image of PX(F ) in Pd+2−t is

degPX(F ) = c1(F ∗)3 − 2c1(F ∗)c2(F ∗) = H3 − 2(d + 2− t)HL = (4d + 2)− 2(d + 2− t) = 2d− 2 + 2t.

Similarly, let MFI1
d(k) be the moduli space of pairs (Y, E), where Y is a Fano threefold of index 2 and

degree d, and E is an instanton bundle of charge k on Y , that is a stable vector bundle of rank 2 with
c1(E) = 0, c2(E) = kL and H1(Y, E(−1)) = 0 (see [K3]). Using the Riemann–Roch (see the proof of
Proposition 3.9) one can check that for any d, any k and any (Y,E) ∈MFI2

d(k) we have

dimH0(Y, E∗(1)) = 2d− 2k + 4,

so that we have a map PY (E) → P2d−2k+3. Moreover, since c1(E∗(1)) = 2H, c2(E(1)) = H2 + kL, it
follows that the degree of the image of PY (E) in P2d−2k+3 is

degPY (E) = c1(E∗(1))3 − 2c1(E∗(1))c2(E∗(1)) = 8H3 − 4H(H2 + kL) = 8d− 4(d + k) = 4d− 4k.

Note that whenever d + 1 = 2k − t the dimensions and the degrees coincide.

Conjecture 4.12. For each 1 ≤ d ≤ 5 there are integers k, t ≥ 0 satisfying d+1 = 2k− t for which there
is an isomorphism ξ : MFI2

d(k) ∼= MFB1
4d+2(t) such that for (X, F ) = ξ(Y, E) there is an isomorphism

h : H0(Y,E∗(1)) ∼→ H0(X,F ∗) and a birational isomorphism θ : PX(F ) //___ PY (E) such that the
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diagram

PX(F ) θ //__________

²²

PY (E)

²²
P(H0(X, F ∗)∗) h

∼=
// P(H0(Y, E∗(1))∗)

commutes. Moreover, there is an equivalence AX
∼= BY , that is Zd ⊂ MF2

d ×MF1
4d+2 is the image of

the graph of the isomorphism ξ : MF2
d(k) →MFB1

4d+2(t).

Remark 4.13. For d = 3 by Theorem 4.10 we should take k = 2, t = 0. For d = 5 we expect k = 4, t = 2
will work.

5. Appendix. The Grothedieck group and algebraic cycles

Let X be a smooth projective variety of dimension n. Let Ap(X) denote the group of algebraic cycles
on X of codimension p modulo rational equivalence. Let A•(X) = ⊕n

p=0A
p(X) be the Chow ring. Let

K0(X) be the Grothendieck group of the category of coherent sheaves on X (equivalently, of the derived
category Db(X)). Consider the Chern character map ch : K0(X) → A•(X)⊗Q. It is well known that ch

induces an isomorphism of Q-vector spaces K0(X)⊗Q→ A•(X)⊗Q.
On the other hand, consider on both sides the numerical equivalence. Recall that an algebraic cycle

a ∈ Ap(X) is numerically equivalent to zero, if it lies in the kernel of the bilinear intersection form:

A•(X)⊗A•(X) · //A•(X)
pr //An(X)

deg //Z .

In other words, if its intersection with any cycle in An−p(X) is zero. Let A•(X)num = ⊕Ap(X)num be
the ring of algebraic cycles modulo the numerical equivalence. Note that any torsion class in A•(X) is
numerically trivial, hence A•(X)num is torsion free.

Similarly, a class v ∈ K0(X) is numerically equivalent to zero, if it lies in the kernel of the Euler
bilinear form:

χ : K0(X)⊗K0(X) //Z , χ([F ], [G]) =
∑

i

(−1)i dimExti(F, G).

Let K0(X)num := K0(X)/Ker χ be the numerical Grothendieck group.
The Riemann-Roch formula shows that the kernel of the Euler form coinsides with the preimage under

the Chern character map of the subring of A•(X)⊗Q consisting of numerically trivial algebraic cycles.
It follows that ch descends to a map K0(X)num → A•(X)num ⊗ Q which we denote by ch as well, and
induces an isomorphism of Q-vector spaces K0(X)num ⊗Q ∼= A•(X)num ⊗Q.

For any p-cycle Z =
∑

aiSi we define [OZ ] :=
∑

ai[OSi ] ∈ K0(X). Note that [OZ ] really depends on
the cycle Z, not only on its rational or numerical equivalence class. A little bit later we will show how
one can get rid of this dependance (see Remark 5.3).

Definition 5.1. We will say that a smooth projective n-dimensional variety X is AK-compatible if for
any collection of cycles Zi

p on X, 0 ≤ p ≤ n, 1 ≤ i ≤ mp such that codim Zi
p = p and {Zp

1 , Zp
2 , . . . , Zp

mp}
is a basis in Ap(X)num the classes [OZp

i
], 0 ≤ p ≤ n, 1 ≤ i ≤ mp form a Z-basis in K0(X)num.

If an algebraic variety X is AK-compatible, then one can easily describe its numerical Grothendieck
group by choosing some bases in the groups of algebraic cycles and considering their structure sheaves.
Certainly such a description may be useful in many cases. The goal of this section is to find some easily
verifiable criterion for AK-compatibility.
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We start with some preparations. Consider the following two filtrations on K0(X)num. The first one
is induced by the codimension filtration on A•(X):

F pK0(X)num = ch−1(⊕n
q=pA

q(X)num ⊗Q).

The second one is induced by the codimension of support:

SpK0(X)num = 〈 [G] | codim supp(G) ≥ p 〉,
where 〈 〉 stands for the linear span. We will call the filtration F • the induced filtration, and S• the
support filtration. Let grpF K0(X)num and grpSK0(X)num be the graded factors of these filtrations.

Note that for any G ∈ Db(X) with codim supp(G) ≥ p we have ch(G) ∈ ⊕q≥pA
q(X)num ⊗ Q, hence

SpK0(X)num ⊂ F pK0(X)num and we have the following commutative diagram

SpK0(X)num
� � // F pK0(X)num

ch // ⊕q≥pA
q(X)num ⊗Q

Sp+1K0(X)num
� � //

?�

OO

F p+1K0(X)num
ch //

?�

OO

⊕q≥p+1A
q(X)num ⊗Q?�

OO

Passing to the graded factors we obtain a chain of maps

grpSK0(X)num

ip // grpF K0(X)num

chp // Ap(X)num ⊗Q
Here chp is the p-th coefficient of the Chern character and ip is the map induced by the identity map of
K0(X)num. Note that it follows that chp : grpF K0(X)num ⊗Q→ Ap(X)num ⊗Q is an isomorphism. Let
us show that the inverse map is defined over Z.

Lemma 5.2. There exists a linear map Op : Ap(X)num → grpF K0(X)num, which is inverse to chp.
Moreover, Op(Z) = [OZ ] mod F p+1K0(X)num.

Proof: For each p-cycle Z on X define Op(Z) as the image of the class of its structure sheaf in
grpF K0(X)num. Since

ch(OZ) = Z + terms of degree larger than p, (†)
we have [OZ ] ∈ F pK0(X)num and chp(Op(Z)) = Z. Since chp is injective, it follows that Op is correctly
defined and chp ◦ Op = id. ¤

Remark 5.3. As we see from this Lemma the class of [OZ ] in grpF K0(X)num only depends on the numerical
class of Z.

Further, it is easy to see that for any coherent sheaf G supported in codimension p the p-th coefficient of
the Chern character is integer, chp(G) ∈ Ap(X)num. Indeed, if Z1, . . . , Zm are codimension p components
of suppG and `i is the length of G at generic point of Zi then chp(G) =

∑
`iZi. Moreover, the same

argument shows that the map chp : grpSK0(X)num → Ap(X)num is surjective. It follows that we have the
following commutative diagram

Ap(X)num
� � //
� w

Op

**UUUUUUUUUUUUUUUU
Ap(X)num ⊗Q

grpSK0(X)num

ip //

chp

OOOO

grpF K0(X)num

?�

chp

OO

Proposition 5.4. The following properties for a smooth projective variety X are equivalent:

(i) ∀ 0 ≤ p ≤ n Op is an isomorphism;
(ii) X is AK-compatible;
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(iii) ∀ 0 ≤ p ≤ n SpK0(X)num = F pK0(X)num;
(iv) ∀ 0 ≤ p ≤ n chp(grpF K0(X)num) ⊂ Ap(X)num.

Proof: (i) ⇒ (ii): An evident induction argument shows that {[OZi
q
]}1≤i≤mq

q≥p is a basis in F pK0(X)num.
(ii) ⇒ (iii): Assume that X is AK-compatible. Choose bases in all Ap(X)num as in Definition 5.1 and

assume that v =
∑

ai
q[OZi

q
] ∈ F pK0(X)num for some ai

q ∈ Z. Let q be the minimal integer such that
ai

q 6= 0 for some i and assume that q < p. Then applying chq we see that

0 = chq(v) =
∑

i

ai
qchq([OZi

q
]) =

∑

i

ai
qchq(Oq(Zi

q)) =
∑

i

ai
qZ

i
q

which implies ai
q = 0 for all i. So, it follows that q ≥ p, hence ai

q = 0 for all q < p. But then it is clear
that v ∈ SpK0(X)num. So we see that F pK0(X)num ⊂ SpK0(X)num.

(iii) ⇒ (iv): If SpK0(X)num = F pK0(X)num then grpSK0(X)num = grpF K0(X)num for all p, hence
chp(grpF K0(X)num) = chp(grpSK0(X)num) ⊂ Ap(X)num.

(iv)⇒ (i): Since chp and Op are mutually inverse isomorphisms of grpF K0(X)num⊗Q and Ap(X)num⊗Q
and preserve lattices grpF K0(X)num and Ap(X)num, it follows that they induce isomorphisms of these
lattices. ¤

Our next goal is to give several sufficient conditions for AK-compatibility.

Lemma 5.5. For any smooth projective variety X we have chp(grpF K0(X)num) ⊂ Ap(X)num for p = 0, 1, 2
and p = n.

Proof: Note that ch0(G) is the rank of G and ch1(G) = c1(G), which implies the claim for p = 0 and
p = 1. For p = 2 we have ch2(G) = c1(G)2/2− c2(G), so if c1(G) = ch1(G) = 0, then ch2(G) = −c2(G) ∈
A2(X)num. Finally, if G ∈ FnK0(X)num then by Riemann–Roch we have chn(X) = χ(OX , G) ∈ Z,
where we have identified An(X)num with Z via the degree map. This proves the claim for p = n. ¤

Corollary 5.6. If dimX ≤ 3 then X is AK-compatible.

Another approach to AK-compatibility is given by the following

Lemma 5.7. Assume that the intersection pairing Ap(X)num ⊗ An−p(X)num → Z induces an isomor-
phism Ap(X)num → An−p(X)∗num. Then the map Op : Ap(X)num → grpF K0(X)num is an isomor-
phism. In particular, if the intersection pairing Ap(X)num ⊗An−p(X)num → Z induces an isomorphism
Ap(X)num → An−p(X)∗num for all p then X is AK-compatible.

Proof: Let Z,W ⊂ X be subschemes of codimension p and (n− p) respectively. Then (†) and Riemann–
Roch implie that

Z ·W = (−1)pχ(OZ ,OW ),

hence we have a commutative diagram

Ap(X)num

Op //

·
²²

grpF K0(X)num

(−1)pχ
²²

An−p(X)∗num grn−p
F K0(X)∗num

O∗n−poo

Note that all the maps are finite index embeddings. So, if the left vertical arrow is an isomorphism then
Op is also an isomorphism. ¤

The results of this section allow to describe K0(X)num for all Fano threefolds.



12 ALEXANDER KUZNETSOV

Corollary 5.8. Let V be a Fano threefold with PicV ∼= Z. Let H be the generator of PicV , L a line on
V , and P a point on V . Then K0(X)num = 〈[OV ], [OH ], [OL], [OP ]〉.
Proof: We can argue either by Corollary 5.6 or by Lemma 5.7 that V is AK-compatible. Hence by
definition of AK-compatibility we obtain the required basis. ¤

Remark 5.9. One can combine the results of Lemma 5.5 and Lemma 5.7 for the verification of AK-
compatibility. In other words, if for an algebraic variety X the conditions of Lemma 5.7 are true for all
3 ≤ p ≤ n− 1 then X is AK-compatible. Indeed, it is easy to see from the proof of Proposition 5.4 that
the property (ivp) for each p implies the property (ip).

These considerations apply e.g. for cubic fourfolds. Indeed, for p = 3 the conditions of Lemma 5.7 are
true, hence the cubic fourfold is AK-compatible.
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