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Abstract. In the first section of this note we show that the Theorem 1.8.1 of
Bayer–Manin ([BaMa]) can be strengthened in the following way: if the even quan-
tum cohomology of a projective algebraic manifold V is generically semi–simple,
then V has no odd cohomology and is of Hodge–Tate type. In particular, this ad-
dressess a question in [Ci].

In the second section, we prove that an analytic (or formal) supermanifold M
with a given supercommutative associative OM–bilinear multiplication on its tangent
sheaf TM is an F–manifold in the sense of [HeMa], iff its spectral cover as an
analytic subspace of the cotangent bundle T ∗M is coisotropic of maximal dimension.
This answers a question of V. Ginzburg.

Finally, we discuss these results in the context of mirror symmetry and Landau–
Ginzburg models for Fano varieties.

§0. Introduction

0.1. Contents of the paper. Semisimple Frobenius manifolds have many
nice properties: see e. g. [Du], [Ma], [Te], [Go1], [Go2], and references therein.
It is important to understand as precisely as possible, which projective algebraic
manifolds V have (generically) semi–simple quantum cohomology. In this case
the quantum cohomology is determined by initial conditions at one point, a finite
amount of numbers, and a mirror (Landau–Ginzburg model) can in many cases be
described explicitly.

If V has non–trivial odd cohomology, its full quantum cohomology cannot be
semi–simple, but its even part is a closed Frobenius subspace, and in principle it
can be semisimple. In [BaMa], Theorem 1.8.1, it was proved that if Hev

quant(V ) is
generically semisimple, then hp,q(V ) = 0 for p + q ≡ 0 mod 2, p 6= q. In the first
section of this note we show that in this case hp,q(V ) = 0 for p + q ≡ 1 mod 2 as
well.

Thus, the Theorem 1.8.1 of Bayer–Manin ([BaMa]) can be strengthened in the
following way: if the even quantum cohomology of a projective algebraic manifold
V is generically semi–simple, then V has no odd cohomology and is of Hodge–Tate
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type. In particular, for the 47 families of Fano threefolds (classified by V. A. Iskovskih,
Sh. Mori and Sh. Mukai) with b3(V ) > 0, pure even quantum cohomology cannot
be semi–simple. This answers a question discussed in [Ci], p. 826.

The second section is dedicated to a strengthening of a previously unpublished
result of C. Hertling (letter dated March 09, 2005, where it was stated for the pure
even case). It shows that an analytic (or formal) supermanifold M with a given
supercommutative associative OM–bilinear multiplication on its tangent sheaf TM
is an F–(super)manifold in the sense of [HeMa], iff its spectral cover as an analytic
subspace of the cotangent bundle T ∗M is coisotropic of maximal dimension.

This answered a question posed to Yu. Manin by V. Ginzburg.

Acknowledgement. We are grateful to Arend Bayer for illuminating comments
on the Proposition 1.2 and for sharing with us his version of Dubrovin’s conjecture.

§1. Semisimple quantum cohomology
and Dubrovin’s conjecture

1.1. Notation. Let V be a projective manifold over C. We denote byHev
quant(V )

its even quantum cohomology ring. As in [BaMa] and [Ba], it is a topological
commutative algebra. Multiplication in it (the classical cup product plus “quantum
corections”) is denoted ◦. The space Hev(V ) is embedded in it as a field of flat
vector fields on the respective formal Frobenius manifold.

1.2. Proposition. If Hev
quant(V ) is generically reduced, i.e. has no nilpotents

at (the local ring of) the generic point, then Hodd(V ) = 0.
Proof. Assume that Hodd(V ) 6= 0. Let ∆ be a non–zero class of an odd

dimension.
First, we have ∆ ◦ ∆ = 0. In fact, ∆ ∪ ∆ = 0, because the cup produt is

supercommutative. The quantum corrections vanish, because the correlators 〈...〉
are also supercommutative in their arguments, so 〈∆∆∆′...〉 = 0. This follows
from the fact that the quantum correlators come from the Sn–covariant maps
H∗(V )⊗n → H∗(M0,n), induced by algebraic correspondences (push–forwards of
virtual fundamental classes). Covariance holds with respect to the action of Sn on
the tensor power permuting factors and introducing signs as usual in Z2-graded
setting. On the target it renumbers points and hence leaves the fundamental class
invariant.

Now, find another (odd) class ∆′ such that g(∆,∆′) = 1, where g is the Poincare
form. Then we have 1 = g(∆,∆′) = g(∆◦∆′, e) where e is the identity in quantum
cohomology. Hence ∆ ◦ ∆′ ∈ Hev

quant(V ) must be generically non-zero. But its
square is zero because of the first remark. This contradicts the generic absence of
nilpotents in Hev

quant(V ).
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1.3. Theorem. If the even quantum cohomology of a projective algebraic mani-
fold V is generically semi–simple, then V has no odd cohomology and is of Hodge–
Tate type.

Proof. From the generic semisimplicity and the Proposition 1.2 it follows, that
hp,q(V ) = 0 for p+ q ≡ 1 mod 2.

To prove that hpq(V ) = 0 for p + q ≡ 0 mod 2 and p 6= q, we reproduce a short
reasoning from [BaMa]. It compares the Lie algebra of Euler vector fields in the
semi–simple case and in the quantum cohomology case.

Firstly, in he semisimple case each Euler vector field must be of the form E =
d0

∑
i uiei +

∑
j cjej , where d0 is a constant (weight of E, cf. [Ma1], [Ma2]), and

(ui) are (local) Dubrovin’s canonical coordinates, that is, ei := ∂/∂ui form a com-
plete system of pairwise orthogonal idempotents in H∗quant(V ). Moreover, (cj) are
arbitrary constants.

From this explicit description it follows directly, that if two Euler fields of non–
zero weights commute, they are proportional.

On the other hand, if hp,q(V ) 6= 0 for some p + q ≡ 0 mod 2 and p 6= q, then
H∗quant(V ) admits two commuting and non–proportional Euler vector fields E1, E2

of weight 1. Namely, in the bihomogeneous (with respect to the (p, q)–grading)
basis of flat vector fields ∆a ∈ Hpa,qa(V ), we can take

E1 :=
∑
a

(1− pa)xa∆a +
∑

pb=qb=1

rb∆b,

E2 :=
∑
a

(1− qa)xa∆a +
∑

pb=qb=1

rb∆b.

Here (xa) are dual flat coordinates, and −KV = c1(TV ) =
∑
b rb∆b.

This completes the proof.

1.4. Dubrovin’s conjecture and related insights. In [Du] (p. 321) the
problem of characterization of varieties V with semisimple quantum cohomology
was formulated explicitly. It was also stated there that a necessary condition for
such V is to be Fano. This was disproved by A. Bayer [Ba], who established that
blowing up points on such a variety does not destroy semisimplicity. In particular,
not only del Pezzo surfaces have semisimple quantum cohomology, but arbitrary
blowups of P2 as well.

A. Bayer has later conjectured that the maximal length of a semi–orthogonal
decomposition of Db(V ) must coincide with the generic number of idempotents in
H∗quant(V ).
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Combining the results of [Ba], of this note, and the further part of Dubrovin’s
conjecture stated on p. 322 of [Du] (cf. also [Z]), one can now guess that a nec-
essary and sufficient condition for semisimplicity is that V is of Hodge–Tate type,
whose bounded derived coherent category admits a full exceptional collection (Ei).
Moreover, after adjusting some arbitrary choices, in this case one should be able
to identify the Stokes matrix of its second structure connection with the matrix
(χ(Ei, Ej)).

This last statement is now checked, in particular, for three–dimensional Fano
varieties with minimal cohomology in [Go2]. The reader can find there more de-
tails and explanations about the involvement of the vanishing cycles in the mirror
Landau–Ginzburg model.

All these constructions reflect some facets of Kontsevich’s homological mirror
symmetry program. However, one should keep in mind that in this note we are
concerned almost exclusively with a multiplication on the tangent bundle, i.e. with
the structure of an F–manifold (see below). In order to invoke mirror symmetry,
we need also to take in consideration a compatible flat metric. In quantum coho-
mology, it comes “for free” at the start; it is multiplication that requires a special
construction. In various contexts relevant for mirror symmetry, the metric can be
described implicitly by at least five different kinds of data which we list here for
reader’s convenience.

(a) Values of the diagonal coefficients of the flat metric
∑
i ηi(dui)

2 in canonical
coordinates and values of their first derivatives ηij at a tame semi–simple point.
This is initial data for the second structure connection (cf. [Ma1], II.3).

(b) Monodromy data for the first structure connection and oscillating integrals
for the deformed flat coordinates (cf. [Gi], [Du], [Sa] and the references therein).

(c) Choice of one of K. Saito’s primitive forms.

(d) Choice of a filtration on the cohomology space of the Milnor fiber (M. Saito,
cf. [He2] and the references therein).

(e) Use of the semi–infinite Hodge structure. This is a refinement of (c), described
by S. Barannikov ([Bar1], [Bar2]).

§2. F–geometry and symplectic geometry

2.1. F–structure and Poisson structure. Manifolds M considered in this
section can be C∞, analytic, or formal, eventually with even and odd coordintes
(supermanifolds). The ground field K of characteristic zero is most often C or R.
Each such manifold, by definition, is endowed with the structure sheaf OM which
is a sheaf of (super)commutative K–algebras, and the tangent sheaf TM which is
a locally free OM–module of (super)rank equal to the (super)dimension of M . TM
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acts on OM by derivations, and is a sheaf of Lie (super)algebras with an intrinsically
defined Lie bracket [ , ].

There is a classical notion of Poisson structure on M which endows OM as well
with a Lie bracket { , } constrained by a well known identity.

Similarly, an F–structure on M endows TM with an extra operation: (super)com-
mutative and associative OM–bilinear multiplication. We denote it always ◦ and
assume that it is endowed with identity: an even vector field e. Then OM is
embedded in TM as a subalgebra: f 7→ fe.

Given such a multiplication on the tangent sheaf, we can define its spectral cover
M̃ which is a closed ringed (super)subspace (generally not a submanifold) in the
cotangent (super)manifold T ∗M . In the Grothendieck language, it is simply the
relative affine spectrum of the sheaf of algebras (TM , ◦) on M .

More precisely, consider SymmOM
(TM ) as the sheaf of algebras of those func-

tions on the cotangent (super)space T ∗M that are polynomial along the fibres of
the projection T ∗M → M . The multiplication in this sheaf will be denoted ·. For
example, for two local vector fields X,Y ∈ TM (U), X · Y denotes their product as
an element of Symm2

OM
(TM ).

Consider the canonical surjective morphism of sheaves of OM–algebras

SymmOM
(TM )→ (TM , ◦)

sending, say, X · Y to X ◦ Y . Denote its kernel by J(M, ◦), and let M̃ be defined
by the sheaf of ideals J(M, ◦).

The spectral cover M̃ →M is flat, because TM is locally free.

Now we will describe the structure identities imposed onto { , } on OM , resp.
◦ on TM . To this end, recall the notion of the Poisson tensor. Let generally A
be a K–linear superspace (or a sheaf of superspaces) endowed with a K–bilinear
multiplication and a K–bilinear Lie bracket [ , ]. Then for any a, b, c ∈ A put

Pa(b, c) := [a, bc]− [a, b]c− (−1)abb[a, c]. (2.1)

(From here on, (−1)ab and similar notation refers to the sign occuring in superal-
gebra when the two neighboring elements get permuted.)

This tensor will be written for A = (OM , ·, { , }) in case of the Poisson structure,
and for A = (TM , ◦, [ , ]) in case of an F–structure.

We will now present parallel lists of basic properties of Poisson, resp. F–
manifolds.
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2.2. Poisson (super)manifolds. (i)P . Structure identity: for all local func-
tions f, g, h on M

Pf (g, h) ≡ 0. (2.2)

(ii)P . Each local function f on M becomes a local vector field Xf (of the same
parity as f) on M via Xf (g) := {f, g}.

This is a reformulation of (2.2).
(iii)P . Maximally nondegenerate case: symplectic structure. There exist local

canonical coordinates (qi, pi) such that for any f, g

{f, g} =
n∑
i=1

(∂qi
f∂pi

g − ∂qi
g∂pi

f).

Thus, locally all symplectic manifolds of the same dimension are isomorphic. The
local group of symplectomorphisms is, however, infinite dimensional.

2.3. F–manifolds. (i)F . Structure identity: for all local vector fields X,Y, Z, U

PX◦Y (Z,U)−X ◦ PY (Z,U)− (−1)XY Y ◦ PX(Z,U) = 0. (2.3)

(ii)F . Each local vector field on M becomes a local function on the spectral cover
M̃ of M .

As we already mentioned, generally M̃ is not a (super)manifold. In the pure even
case this often happens because of nilpotents in OfM and/or singularities. In the
presence of odd coordinates on M nilpotents by themselves are always present, but
typically they cannot form an exterior algebra over functions of even coordinates
because ranks do not match.

A theorem due to Hertling describes certain important cases when M̃ is a man-
ifold.

(iii)F . Maximally nondegenerate case: semisimple F–manifolds. M̃ will be a
manifold and even an unramified covering of M in the appropriate “maximally
nondegenerate case”, namely, when M is pure even, and locally (TM , ◦) is isomor-
phic to (OdM ) as algebra, d = dimM.

In this case there exist local canonical coordinates (ua) (Dubrovin’s coordinates)
such that the respective vector fields ∂a := ∂/∂a are orthogonal idempotents:

∂a ◦ ∂a = δab∂a.

Thus, locally all semisimple F–manifolds of the same dimension are isomorphic.
Local automorphisms of an F–semisimple structure are generated by renumberings
and shifts of canonical coordinates:

ua 7→ uσ(a) + ca
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so that this structure is more rigid than the symplectic one.

2.4. Spectral cover as a subspace in symplectic supermanifold. There
is a structure of sheaf of Lie algebras on SymmOM

(TM ). It is given by the Poisson
brackets { , } with respect to the canonical (super)symplectic structure on T ∗M .

It is easy to check that the ideal J = J(M, ◦) ⊂ SymmOM
(TM ) defining M̃ in

this sheaf of supercommutative algebras is generated by all expressions:

e− 1, X ◦ Y −X · Y, X, Y ∈ TM . (2.4)

2.5. Theorem. The multiplication ◦ satisfies the structure identity of F–
manifolds (2.3), iff the ideal J(M, ◦) is stable with respect to the Poisson brackets.

Proof. From (2.2), one easily infers that stability of an ideal in a Poisson algebra
with respect to the brackets can be checked on any system of generators of this ideal.
In our case we choose (2.4).

Clearly, {e− 1, e− 1} = 0.
If X,Y are local vector fields, then {X,Y } = [X,Y ]
We will establish by a direct computation that for all X,Y, Z,W as above,

{X ◦ Y −X · Y, Z ◦W − Z ·W} ≡

PX◦Y (Z,W )−X ◦ PY (Z,W )− (−1)XY Y ◦ PX(Z,W ) mod J(M, ◦) (2.5)

and
{e− 1, X ◦ Y −X · Y } = [e,X ◦ Y ]−X · [e, Y ]− [e,X] · Y. (2.6)

Assume that this is done. From (2.5) and (2.6) it follows that if (2.3) holds,
then J(M, ◦) is stable with respect to the Poisson brackets. For (2.6), one uses the
identity [e,X ◦ Y ] = X ◦ [e, Y ] + [e,X] ◦ Y which follows from (2.3) by choosing
X = Y = e and renaming Z,U .

Conversely, if J(M, ◦) is stable with respect to the brackets, then the right–
hand side of (2.5) must belong to J(M, ◦). But it lies in the degree 1 part of the
symmetric algebra of TM , which projects onto TM . Hence it must vanish, and as a
result, the right hand side of (2.6) must belong to J(M, ◦) as well.

It remains to check (2.5) and (2.6). We will briefly indicate how to do it, re-
stricting ourselves to the clumsier case (2.5).

First of all, the right hand side of (2.5) can be rewritten as follows:

PX◦Y (Z,W )−X ◦ PY (Z,W )− (−1)XY Y ◦ PX(Z,W ) =
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[X ◦ Y,Z ◦W ]− [X ◦ Y,Z] ◦W − (−1)(X+Y )ZZ ◦ [X ◦ Y,W ]

−X ◦ [Y,Z ◦W ]− (−1)XY Y ◦ [X,Z ◦W ] +X ◦ [Y, Z] ◦W + (−1)Y ZX ◦Z ◦ [Y,W ]

+(−1)XY Y ◦ [X,Z] ◦W + (−1)X(Y+Z)Y ◦ Z ◦ [X,W ]. (2.7)

It turns out that (2.7) is in fact a tensor, that is OM–polylinear in X,Y, Z,W . See
[Me1], [Me2] for a discussion and operadic generalizations of the condition of its
vanishing.

In our context, this formula is convenient, because a straightforward decompo-
sition of the left hand side of (2.5) into Poisson monomials (constructed using two
operations) gives exactly the same list of monomials as in (2.7) modulo J(M, ◦),
with the same signs.

Here are samples of calculations.
The first term {X ◦ Y, Z ◦W} at the left hand side of (2.5) coincides with the

first term in (2.7).
Using the Poisson identity (2.2), we find further:

−{X ◦ Y,Z ·W} = −{X ◦ Y,Z} ·W − (−1)(X+Y )ZZ · {X ◦ Y,W}.

Modulo J(M, ◦), this can be replaced by

−[X ◦ Y,Z] ◦W − (−1)(X+Y )ZZ ◦ [X ◦ Y,W ]

which corresponds to the second and third terms of (2.7).
We leave the rest as an exercise to the reader.

2.5.1. Reduced spectral cover. Contrary to what might be expected, the
condition

{J(M, ◦), J(M, ◦)} ⊂ J(M, ◦)

does not imply the respective condition for the radical of J(M, ◦) even in the pure
even case. This means that M̃red need not be a Lagrange subvariety, even if it
comes from an F–manifold.

This can be shown on the following explicit examples.
We will construct two families of everywhere indecomposable (see 2.6 below)

F -manifolds in terms of the ideals J , defining (nonreduced) subspaces M̃ ⊂ T ∗M .
In order to give rise to F -manifolds with π : M̃ →M as their spectral cover, they
have to satisfy the following conditions:

(a) The projection M̃ →M is flat of degree n = dimM and the canonical map
TM → π∗(OfM ) is an isomorphism.
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To check this by direct calculations, we will choose (pure even) local coordinates
(t1, . . . , tn) on M in such a way that e = ∂/∂t1. By (y1, . . . , yn) we will denote the
conjugate coordinates along the fibres of T ∗(M).

(b) {J, J} ⊂ J .
We will see that in these examples

{
√
J,
√
J} 6⊂

√
J.

2.5.2. The first family. Here we put

J = (y1 − 1, (yi − ρi)(yj − ρj)),

with ρ1 = 1 and ρi ∈ OM for i ≥ 2 such that ∂1ρi = 0. Clearly, (a) and (b) are
satisfied. The radical of J is

√
J = (y1 − 1; y2 − ρ2, . . . , yn − ρn).

We have {
√
J,
√
J} 6⊂

√
J , if

∂iρj 6= ∂jρi for some i, j ≥ 2 with i 6= j.

The algebra TtM at any point t ∈M is isomorphic to C[x1, ..., xn−1]/(xixj).

2.5.3. The second family. Here we put for any n ≥ 3

J = (y1 − 1, (y2 − ρ2)2, (y2 − ρ2) · y3, yn−1
3 , y4 − y2

3 , y5 − y3
3 , ..., yn − yn−2

3 ),

with

ρ2(y, t) = t3y1 +
n−1∑
k=3

(k − 1)tk+1 · yk.

Now, (a) is rather obvious, but checking (b) requires a calculation which we omit.
The radical of J is

√
J = (y1 − 1, y2 − t3 · y1, y3, y4, y5, ..., yn).

The algebra TtM at any point t ∈M is isomorphic to C[x2, x3]/(x2
2, x2x3, x

n−1
3 ).

We will now explain in which context the considerations of this section can be
related to the problems, arising in the study of semisimple quantum cohomology
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2.6. Hertling’s local decomposition theorem. For any point x of a pure
even F–manifold M , the tangent space TxM is endowed with the structure of a
K–algebra. This K–algebra can be represented as a direct sum of local K–algebras.
The decomposition is unique in the following sense: the set of pairwise orthogonal
idempotent tangent vectors determining it is well defined.

C. Hertling has shown that this decomposition extends to a neighborhood of x.
More precisely, define the sum of two F–manifolds:

(M1, ◦1, e1)⊕ (M2, ◦2, e2) := (M1 ×M2, ◦1 � ◦2, e1 � e2)

A manifold is called indecomposable if it cannot be represented as a sum in a
nontrivial way.

2.6.1. Theorem. Every germ (M,x) of a complex analytic F–manifold decom-
poses into a direct sum of indecomposable germs such that for each summand, the
tangent algebra at x is a local algebra.

This decomposition is unique in the following sense: the set of pairwise orthog-
onal idempotent vector fields determining it is well defined.

For a proof, see [He], Theorem 2.11.
Furthermore, we have ([He], Theorems 5.3 and 5.6):

2.7. Theorem. (i) The spectral cover space M̃ of the F–structure on the germ
of the unfolding space of an isolated hypersurface singularity is smooth.

(ii) Conversely, let M be an irreducible germ of a generically semisimple F–
manifold with the smooth spectral cover M̃. Then it is (isomorphic to) the germ of
the unfolding space of an isolated hypersurface singularity. Moreover, any isomor-
phism of germs of such unfolding spaces compatible with their F–structure comes
from a stable right equivalence of the germs of the respective singularities.

Recall that the stable right equivalence is generated by adding sums of squares
of coordinates and making invertible analytic coordinate changes.

In view of this result, it would be important to understand the following

2.8. Problem. Characterize those varieties V for which the quantum cohomol-
ogy Frobenius spaces H∗quant(V ) have smooth spectral covers.

Theorem 2.7 produces for such manifolds a weak version of Landau–Ginzburg
model, and thus gives a partial solution of the mirror problem for them.
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