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1 Introduction

The Bogomolov inequality for semistable vector bundes on smooth complex
projective n-folds X reads

c2(E)An−2 ≥ r − 1
2r

c1(E)2An−2,

where A is an ample divisor and E is an A-semistable vector bundle of rank
r on X. In case E is A-stable with vanishing c1(E), the lower bound of this
inequality c2(E) ≥ 0 is attained if and only if E admits the structure of a flat
hermitian bundle associated with an irreducible unitary representation of the
fundamental group π1(X), thereby establishing the one-to-one Kobayashi-
Hitchin correspondence between the stable bundles with vanishing Chern
classes and the irreducible unitary representation of π1(X) [2]. The Bo-
gomolov inequality is natural enough to have several proofs by completely
different approaches (geometric invariant theory [1]; characteristic p method
[3]; the theory of effective cones on ruled surfaces [8]; Yang-Mills theory of
connections [2]). Because of this naturality, the Bogomolov inequality gen-
eralizes to certain classes of generalized vector bundles, including parabolic
bundles and orbibundles.

Another important class of generalized vector bundles is that of Higgs
bundles (see [9]), and the Bogomolov inequality was as well extended to
this class by Simpson [9] through a modified version of Yang-Mills theory. 1

1In contrast to the aforementioned classes, an algebro-geometric proof of the Bogomolov
inequality is so far not available for Higgs bundles except for very special cases: when
several standard examples listed in Section 1 as Examples 0-1, 1 and 2, and the bundles of
small ranks 2, 3 [7]. For instance, Simpson’s theorem implies that, if X is a ball quotient
surface and n is a positive integer, then Sym3nΩ1

X(−nKX) has no non-zero global section
(see Proposition 2.1 below); this vanishing does not seem to follow from the algebro-
geometric method we have at hand.
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One of the implications of Simpson’s result is that, if a stable Higgs bundle
has trivial Chern classes, then it comes from an irreducible representation
of π1(X) to the special linear group SL(r,C). However, we do not have
many such examples except for some standard ones. In this note, we give a
sequence of examples of stable Higgs bundles with trivial Chern classes or,
equivalently, of stable flat Higgs bundles.

2 Higgs bundles: definition and basic examples

Let E be a vector bundle on a comlex manifold X and θ : E → Ω1
X ⊗ E an

OX -linear mapping. The pair (E , θ) is said to be a Higgs bundle if the natural
composite map θ ∧ θ : E → Ω2

X ⊗ E identically vanishes. Alternatively, E is
a Higgs bundle if an OX -linear action of the sheaf of the local vector fields
ΘX on E is given in such a way such that ξ1(ξ2(e)) = ξ2(ξ1(e)) for arbitrary
ξi ∈ ΘX and e ∈ E . In other words, a Higgs bundle is a vector bundle with
a Sym ΘX -module structure, where

Sym ΘX =
∞⊕

i=0

Symi ΘX

is the symmetric tensor algebra generated by ΘX . Higgs subsheaves are, by
definition, Sym ΘX -submodules.

Given an ample divisor A on X, the notion of A-(semi)stable Higgs
bundles is naturally defined. Namely, a Hiiggs bundle E is A-stable if

c1(S)An−1

rank S <
c1(E)An−1

rank E
for any nontrivial saturated Higgs subsheaf S ⊂ E , S 6= 0, E , where n =
dimX.

Historically Higgs structure was introduced in the study of moduli of
integrable connections [5]. Let E be a vector bundle with an integrabale
connection ∇0 : E → Ω1

X ⊗ E . Given another integrable connection ∇, the
difference θ = ∇−∇0 is a Higgs bundle structure and this correspondence
translates the moduli of the integrable connections on a flat vector bundle
E into the moduli of the Higgs bundle structures.

With the above definition in mind, we give below several standard ex-
amples of Higgs bundles.

Example 0-1. An ordinary vector bundle is viewed as a Higgs bundle with
zero action of ΘX (trivial Higgs structure). In this case, the Higgs stability
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is nothing but the usual stability. Usually a line bundle is thought of as a
Higgs bundle with trivial Higgs structure.

Example 0-2. Starting from given Higgs bundles, we can construct new
Hiiggs bundles by taking tensor products, duals and pull-backs.

Given two Higgs bundles E1, E2, the tensor bundle E1 ⊗ E2 is a Higgs
bundle by defining ξ(e1 ⊗ e2) = ξ(e1)⊗ e2 + e1 ⊗ ξ(e2) for ξ ∈ ΘX .

The dual bundle E∨ of a Higgs bundle is again a Higgs bundle by
〈e|ξ(e∨)〉 = −〈ξ(e)|e∨〉, where e ∈ E , e∨ ∈ E∨, ξ ∈ ΘX . The canonical
coupling E ⊗ E∨ → OX is a Higgs bundle homomorphism.

If g : X → Y is a morphism between complex manifolds and E is a Higgs
bundle on Y , then the pull-back g∗E is naturally a Sym g∗ΘY -module. Then
the natural OX -algebra homomorphism Sym ΘX → Sym g∗ΘY defines a
canonical Higgs bundle structure of g∗E in an obvious manner.

Thanks to Simpson’s theorem, the tensor product of two stable Higgs
bundle is semi-stable and a direct sum of stable Higgs bundles.

Example 1. Let X be a complex manifold. The symmetric tensor algebra
E∞0 (X) = Sym ΘX is naturally a Higgs bundle of infinite rank and so are its

ideals. In particular, the graded ideal E∞l+1(X) =
∞⊕

i=l+1

Symi ΘX is a Higgs

subbundle of infinite rank. Given l ≥ k ≥ 0, the subquotient El
k(X) =

E∞k (X)/E∞l+1(X) is a coherent Higgs bundle isomorphic to
l⊕

i=k

Symi ΘX .

The action of ΘX on El
k(X) is given by zero on Syml ΘX and by the standard

multiplication Θ⊗ Symi ΘX → Symi+1 ΘX on the other components.
If KXAn−1 > 0 and ΘX is A-semistable as an ordinary vector bundle

[resp. If KXAn−1 ≥ 0 and ΘX is A-semistable], then E1
0(X) = OX ⊕ΘX is

A-stable [resp. A-semistable]. After some easy arguments, this implies that
El

0(X) = Syml(E1
0) is also an A-stable [resp. A-semistable] Higgs bundle. If

KX is ample and A = KX , then the Yau inequality [10]

c2(X)Kn−2
X ≥ dimX − 1

2 dim X
Kn

X

yields the Bogomolov inequality for El
k(X).

When X is a two-dimensional compact ball quotient, then the Hirze-
bruch proportionality theorem yields c2

1(X) = 3c2(X), so that E1
0(X) has

c1 = −KX , c2 =
1
3
K2

X ; namely E1
0(X) attains the equality of the Bogomolov

inequality. In particular, E3l
0 (lKX) has trivial Chern classes (OX(lKX) is
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viewed as a trivial Higgs bundle) and, by Simpson’s theorem, it carries
an integrable connection ∇. More precisely, there is a C-vector space V

of dimension
(

3l + 2
2

)
such that V = V ⊗C OX has a filtration 0 =

V3l+1 ⊂ V3l ⊂ · · · ⊂ V0 = V with the p-th graded quotient Grp is isomor-
phic to Sym3l−pΘX(lKX). Furthermore, the Higgs action of ξ ∈ ΘX on
Sym3l−pΘX(lKX) is identified with the OX -linear map (Kodaira-Spencer
map) Grp → Grp−1 induced by the natural derivation ∇ξ of V ⊗ OX by ξ.
Thus E3l

0 looks very like a variation of Hodge structure (VHS) of weight 3l.
However, it does not have the Hodge symmetry (the ranks of the successive
quotients are 3l+1, 3l, 3l−1, . . . , 1), and the underlying vector space V may
not have a Q-vector space structure.

Example 2. Given integers l ≥ k ≥ 0, we define the Higgs bundle Fk
l (X)

as the vector bundle
l⊕

i=k

Symi Ω1
X with the ΘX -action defined by 0 on

Symk Ω1
X and by (−1) times the standard contraction map ΘX⊗Symi Ω1

X →
Symi−1 ΩX . Fk

l (X) is the dual E∞0 (X)-module HomE∞0 (X)(El
k(X),OX) of

El
k(X), where OX is viewed as a Higgs bundle with trivial ΘX -action. For

l ≥ m ≥ k, Fk
m(X) is naturally a Higgs subbundle of Fk

l (X) with the quo-
tient Fk

l (X)/Fk
m(X) isomorphic to Fm+1

l (X). The stability condition and
the Bogomolov inequality for Fk

l are similar as for El
k.

Let p : X → Y be a surjective morphism between smooth projective
surfaces. Assume that KY is ample and that p∗KY is divisible by 3 in
Pic(X). Then the normalized Higgs bundle

F̃0
1(Y ) =

(OX ⊕ p∗Ω1
Y

) (
−π∗KY

3

)

is a Higgs bundle ⊂ F0
1(X)(−p∗KY /3) on X with trivial first Chern class.

Its l-th symmetric power F̃0
l (Y ) is also a Higgs bundle ⊂ F0

l (X)(−lp∗KY /3).
By easy computation, we get

c2(F̃0
1(Y )) = p∗

(
c2(Y )− K2

Y

3

)
.

For simplicity, we consider only two dimensional cases from now on;
a complex manifold X will be a smooth projective surface unless otherwise
mentioned.

Example 3. Let Y be a smooth projective surface and p : X → Y a
surjective morphism such that p∗KY is divisible by 3. If L be a line bundle
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contained in
(
Syml+1π∗Ω1

Y

)(
− lπ∗KY

3

)
, then L⊕ F̃ 0

l (Y ) is a Higgs bundle

contained in
(
Syml+1π∗Ω1

Y

)(
− lπ∗KY

3

)
⊕ F̃0

l (Y ) = F̃0
l+1(Y )⊗OX

(
π ∗KY

3

)
.

Its Chern classes are: c1 = c1(L), c2 = c2(F̃0
l (Y )). This bundle is A-

semistable if and only if 3c1(L)A ≥ 0, and under this semistability condition
we get c1(L)2 ≤ c2(F̃0

l (A)).
When Y is a ball quotient and A = π∗KY , we have c1(L)2 ≤ 0 whenever

c1(L)π∗KY ≥ 0. In particular, a line bundle which is numerically equivalent
to OX((l + 1)π∗KY /3) cannot be contained in π∗Syml+1Ω1

Y . Hence

Proposition 2.1. Let Y be a compact ball quotient surface and 1 be the
tautological divisor on the projective bundle π : P(Ω1

Y ) → Y . Then the
numerical equivalence class of 1− (1/3)π∗KY is not effective in the rational
Néron-Severi group NS(P(ΩY ) ⊗Q. (On the other hand, 1 − (1/3)π∗KY

is known to be pseudo-effective, i.e. a limit of effective classes.)

An algebro-geometric proof of the proposition above is not known.

Example 4. Let m ≥ l ≥ 0 be integers. We define a Higgs bundle structure
on (

l⊕

i=0

Symi Ω1
X

)
⊕

(
0⊕

i=m−l

Symi ΘX ⊗ Symm+1 Ω1
X

)

by defining the action of ξ ∈ ΘX as follows:

— For α ∈ Symi Ω1
X , l ≥ i ≥ 0, ξ(α) is the (−1)× the natural contraction

∈ Symi−1 Ω1
X .

— For α ∈ Syml−m ΘX ⊗ Symm+1 Ω1
X , ξ(α) is defined by the composi-

tion of the natural product ξα ∈ Symm−l+1 ΘX ⊗ Symm+1 ΩX and
(−1)m−l+1 times the contraction map Symm−l+1 ΘX ⊗Symm+1 ΩX →
Syml Ω1

X .

— For α ∈ Symi ΘX⊗Symm+1 Ω1
X , i < m− l, ξ(α) is the natural product

ξα ∈ Symi+1 ΘX ⊗ Symm+1.

This Higgs bundle is an extension of Em−l
0 (X)⊗ Symm+1 Ω1

X by F0
l (X).

Example 5. Let L be an invertible subsheaf of Ω1
X . Then OX⊕L is a Higgs

subsheaf of F0
1. In this case, the A-stability condition is c1(L)A > 0 and

the Bogomolov inequality is equivalent to the classical de Franchis lemma
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c1(L)2 ≤ 0. Hence we get a stable flat Higgs bundle L−1/2 ⊕ L1/2 once we
have L ⊂ Ω1

X with c1(L)A > 0, L2 = 0. If X has a fibration over a curve C
of genus ≥ 2, the pull back of ωC gives an example of such L. In this case,
our flat Higgs bundle is the pull back of the theta Higgs bundle

ω
−1/2
C ⊕ ω

1/2
C

on C.
If X has several fibrations over curves of genus ≥ 2, then the tensor

product of the pull back of the theta Higgs bundles is again a flat Higgs
bundle.

In the five examples above, flat Higgs bundles on surfaces were produced
via tensor products, duals and pull backs from the following three basic
examples:

(1) Stable vector bundle (of arbitrary rank) with trivial Higgs structure.

(2) Pull back of the theta Higgs bundle of rank two on curves of genus ≥ 2
(which is uniformaized by the upper half plane and has projectively
flat connection).

(3) The 3-bundle F̃0
1(Y ) = F0

1(Y )⊗O
(
−KY

3

)
, where Y is a two-dimensional

ball quotient (again a projectively flat manifold);

In Section 3 and 4, we construct new examples which do not directly derive
from the above basic ones.

3 Hirzebruch’s Kummer covers X(n) attached to
the complete qradrilateral on P2 and construc-
tion of stable Higgs bundles with vanishing Chern
classes

We briefly review Hirzebruch’s construction of Kummer covers of projective
plane branching along a complete quadrilateral [4].

Take general four points P1, . . . , P4 on P2, and let Lij = Lji denote the
line connecting Pi and Pj (i 6= j). The reduced divisor D =

⋃
Lij is the so

called complete quadrilateral consisting of six lines, the Pi being the triple
points of D. D has extra three double points of the form Li1,i2 ∩ Lj1,j2 ,
where {i1, i2, j1, j2} = {1, 2, 3, 4}. Exactly three singlular points of D lies on
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each Lij , two of which are the triple points Pi, Pj and one a double point.
Thus the Euler number of the non-singular locus of D is 6× (2− 3) = −6,
while that of D is −6 + 4 + 3 = 1. Therefore the Euler number of of the
complement of D is given by e(P2 \D) = 3− 1 = 2.

Let µ : X → P2 be the blowing up at the four triple points P1, . . . , P4 and
let Ei ⊂ X denote the exceptional divisor over Pi. X is a Del Pezzo surface
of degree five with very ample anticanonical divisor −KX ∼ 3H − ∑

Ei,
where H stands for the pullback of the hyperplane of P2. The effective
divisor µ∗D is supported by a reduced effective divisor

D̃ ∼ µ∗
∑

Lij − 2
∑

Ei ∼ 6µ∗H − 2
∑

Ei ∼ −2KX .

D̃ has only simple normal crossings as singularities and consists of ten irre-
ducible components: four exceptional curve Ei and six strict transforms L̃ij .
The L̃ij meet each other at the three points lying over the double points of
D, while each Ei contains three singular points of D̃. Hence D̃ has exactly
3+4×3 = 15 double points, so that e(D̃) = 4×(2−3)+6×(2−3)+15 = 5.

Given a positive integer n, there exists a finite Kummer covering π(n) :
X(n) → X of degree n5 branching along D̃ [4]. The function field of X(n)

is simply obtained by adjoining the n-th roots n
√

lij/l12 ({i, j} 6= {1, 2} ∈
{1, 2, 3, 4}) to C(P2), where lij is a linear differential equation of the line
Lij .

X(n) is a smooth projective surface and the local description of X(n)

is quite simple: if D̃ is locally defined by the equation x = 0 or xy = 0,
then π(n)∗ : OX → OX(n) is given by (x, y) 7→ (tn, u) or (x, y) 7→ (tn, un),
where (x, y) and (t, u) are local coordinates of X and X(n). In particular,
the inverse image

(
π(n)

)−1
(p) ⊂ X(n) of a closed point p ∈ X consists of n5

[resp. n4, n3] points when p ∈ X \ D̃ [resp. p ∈ D̃ \ Sing(D̃), p ∈ Sing(D̃)].
The topological Euler number of X̃(n) of X(n) is thus given by

c2(X(n))
n5

=
e(X(n))

n5
= e(X \ D̃) +

e(D̃ \ Sing(D̃)
n

+
e(Sing(D̃)

n2

= 2− 10
n

+
15
n2

.

On the other hand we calculate KX(n) by

KX(n) ∼ π(n)∗
(

KX +
(

1− 1
n

)
D̃

)
∼

(
1− 2

n

)
π(n)∗(−KX),

and hence
c1(X(n))2

n5
= 5

(
1− 2

n

)2

.
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X(n) has ample canonical divisor if n ≥ 3 (X(2) is a K3 surface). When
n = 5, we have c1(X(5))2 = 54×9, c2(X(5)) = 54×3, meaning that X(5) is a
surface of general type which attains the upper bound of the Miyaoka-Yau
inequality K ≤ 3c2.

The Del Pezzo surface X carries five linear pencils |2H−∑
Ei|, |H−E1|,

. . . , |H − E4|, defining five surjective morphisms f0, f1, . . . f4 from X onto
P1. Each fi of these morphisms has exactly three fibres contained in D̃,
which are the singular fibres of fi. For f1 associated with |H−E1, L̃1j +Ej ,
j = 2, 3, 4 are such fibres, and so are the three curves L̃12 + L̃34, L̃13 + L̃24,
L̃14 + L̃23 for f0 associated with |2H −∑

Ei|.
Upstairs on X(n), there are thus five morphisms f

(n)
0 , f

(n)
1 , . . . , f

(n)
4 onto

the curve C(n), an n2-sheeted Kummer cover of P1 branching at three points,
0, 1,∞, say. The pullback line bundle L(n)

i = f
(n)∗
i ωC(n) is an invertible

subshef of Ω1
X(n) . We easily check that L(n)

i is saturated in Ω1
X(n) and that

L(n)
0 ∼

(
1− 3

n

)
π(n)∗

(
2H −

4∑

i=1

Ei

)

L(n)
i ∼

(
1− 3

n

)
π(n)∗(H − Ei), i = 1, 2, 3, 4.

Ishida [6] showed that the natural map

4⊕

j=0

f
(n)∗
j H0(C(n),Ω1

C(n)) → H0(X(n), Ω1
X(n))

is an isomorphism. In particular, the irregularity of X(n) is given by

q(X(n)) =
5(n− 2)(n− 1)

2
.

Now let us construct a stable Higgs bundle of rank 12 on X(n) (n ≥ 6).

The tensor product L(n) =
4⊗

i=0

f∗i Ω1
C(n) is an invertible subsheaf of

Sym5 Ω1
X(n) . Easy calculation shows that

c1(L(n)) =
n− 3

n
π(n)∗D̃,

while
KX(n) =

n− 2
2n

π(n)∗D̃.
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Hence
L(n) ≡ 2(n− 3)

n− 2
KX(n) .

This subsheaf ⊂ Sym5Ω induces a rank 12 Higgs subsheaf

E(n) =

(
2⊕

i=0

Symi ΩX(n)

)
⊕

(
0⊕

i=2

Symi ΘX ⊗ L(n)

)

⊂
(

2⊕

i=0

Symi ΩX(n)

)
⊕

(
0⊕

i=2

Symi ΘX ⊗ Sym5 Ω1
X(n)

)

(see Section 2, Examples 4 and 5). We claim:

Proposition 3.1. (1) c2(E(n)) =
11
24

c1(E(n))2.

(2) If n ≥ 5, then E(n) is KX(n)-semistable. If n ≥ 6, then E(n) is
KX(n)-stable.

Proof. The first statement follows from direct computation, which is a little
messy. An alternative proof is the following: c2(E(n))/n5 and c1(E(n))2/n5

are both quadratic polynomials in 1/n. Hence the equality holds for every
n if we check it for three special values of 1/n (1, 1/3, 1/5, for example).

The Higgs subbundle
⊕2

i=0 Symi ΩX(n) and the quotient Higgs bundle⊕0
i=2 Symi ΘX⊗L(n) are both stable Higgs bundles of rank 6 with first Chern

class 4KX and 6c1(L(n))−4KX , respectively. Hence the semistability of the
bundle is equivalent to the inequality

n− 3
n− 2

≥ 2
3

or, equivalently, n ≥ 5.

Corollary 3.2. If n ≥ 6, then E(n) is projectively flat. The flat bundle

E(n)

(
−n− 3

2n
π(n)∗D̃

)
of rank 12 looks like a variation of Hodge structure

of weight five with Hodge numbers (1, 2, 3, 3, 2, 1).

4 Example of a flat Higgs bundle over a family

In the previous section, we constructed countably many examples of stable
Higgs bundles of rank 12 defined over a dicrete series of surfaces. In this
section, we construct a stable Higgs bundle of rank 6 defined over a one-
parameter family of surfaces.
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Let C be an elliptic curve and ∆ ⊂ C × C the diagonal. Let µ : C → C
be the multiplication by two and define three effective divisors D, F, G on
C × C by

D = (µ, µ)∗∆
F = (µ, µ)∗ ({0} × C)
G = (µ, µ)∗ (C × {0}) .

These three divisors are divisible by two (actually by four) in Pic(C × C)
so that there are double coverings hi : Xi → C × C which branch along
D,F and G, respectively. By forming the fibre product over C × C, we get
a Galois (Z/2Z)⊕3-covering X ′ → C × C. The resulting surface X ′ has 16
ordinary double points over the 2-torsion points 2C × 2C ⊂ C × C.

Proposition 4.1. There exists a double covering g : X → X ′ ramifying
exactly at the 16 double points of X ′ so that X is smooth.

Proof. Let X̃ ′ be the minimal resolution of X ′ and E ⊂ X̃ ′ the sum of the
sixteen (−2)-curves over the double points. We show that E ∈ Pic(X̃ ′) is
divisible by 2.

By construction, h∗G is a non-reduced Weil divisor with multiplicity
two. This means g∗h∗G is of the form 2G̃0 + E, G̃0 denoting the reduced
part of the strict transform of h∗G. On the other hand G is algebraically
equivalent to 4× (a fibre of the first projection C ×C → C) and is divisible
by 4. Hence E ≡ 2G̃0 + E = g∗h∗G ≡ 0 mod 2. ¤
Proposition 4.2. The Chern numbers of X is given by c2

1(X) = 27 × 3,
c2(X) = 24 × 32.

Proof. The projection f = (µ, µ) ◦ h ◦ g : X → C × C has degree 28 with
branch locus B = ∆∪ ({0}×C)∪ (C×{0}). Ecxept at the origin (0, 0), the
branch index of f along B is exactly two, while it is 24 at the origin. The

canonical divisor KX is thus
1
2
f∗B so that K2

X = 26B2 = 26 × 6.

The Euler numbers of B and B\(0, 0) are−2 and−3, so that e (C × C \B) =
2. Hence

c2(X) = e(X) = 28 × 2 + 27 × (−3) + 24 × 1 = 24 × 9,

concluding the proof. ¤
Our surface X has three independent pencils. The two canonical pro-

jections C × C → C induce two fibrations pi : X → C̃, where C̃ is the
double cover of C branching at the four points 2C. The group homomor-
phism C × C → (C × C)/∆ ' C yields a third fibration p3; X → C̃. The
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pull-backs of ωC̃ via the three projections p1, p2, p3 are linearly equivalent to
1
2
f∗({0} × C),

1
2
f∗(C × {0}) and 1

2f∗∆, respectively, so that their product

gives an invertible subsheaf L ' OX(KX) ⊂ Sym3Ω1
X .

Proposition 4.3. The Higgs bundle

OX ⊕ Ω1
X ⊕ (ΘX ⊗ L)⊕ L

is stable and, by tensoring −1
2
KX , we get a stable flat Higgs bundle

OX(−KX

2
)⊕ Ω1

X(−KX

2
)⊕ΘX(

KX

2
)⊕OX(

KX

2
).

The proof is easy.
Since an elliptic curves C has one-dimensional moduli, so does our surface

X. We have thus constructed a stable flat Higgs bundle on a one-parameter
family of surfaces.
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