
MULTIPLE FIBERS OF DEL PEZZO FIBRATIONS
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Abstract. We prove that a terminal three-dimensional del Pezzo fibra-
tion has no fibers of multiplicity ≥ 6. We also obtain a rough classifica-
tion possible configurations of singular points on multiple fibers and give
some examples.

1. Introduction

Throughout this paper a weak del Pezzo fibration is a projective morphism
f : X → Z with connected fibers from a threefold X with terminal singular-
ities to a smooth curve Z such that −KX is f -nef and f -big near a general
fiber. If additionally −KX is f -ample, we say that f : X → Z is a del Pezzo
bundle. (We do not assume that X is Q-factorial nor ρ(X/Z) = 1). The
main reason to study del Pezzo fibrations comes from the three-dimensional
birational geometry, namely the class of del Pezzo bundles with Q-factorial
singularities and relative Picard number one is one of three possible outcomes
of the minimal model program for threefolds of negative Kodaira dimension.

Our main result is the following.

Theorem 1.1. Let f : X → Z be a weak del Pezzo fibration and let f ∗(o) =
moFo be a special fiber of multiplicity mo. Then mo ≤ 6. Moreover, all the
cases 1 ≤ mo ≤ 6 occur. Furthermore, let B(Fo) = (r1, . . . , rn) be the basket
of singular points of X at which Fo is not Cartier. Then, in the case mo ≥ 2,
there are only the following possibilities:

(i) mo = 2, B(Fo) = (8), (2, 6), (4, 4), (2, 2, 4), or (2, 2, 2, 2),
(ii) mo = 3, B(Fo) = (9), (3, 3, 3), or (3, 6),
(iii) mo = 4, B(Fo) = (2, 4, 4),
(iv) mo = 5, B(Fo) = (5, 5),
(v) mo = 6, B(Fo) = (2, 3, 6).

The possible types of singularities in B(Fo), the local behavior of Fo near
singular points, and the possible types of a general fiber are collected in Table
1.

1991 Mathematics Subject Classification. 14J30, 14E35, 14E30.
The research of the first author was supported by JSPS Grant-in-Aid for Scientific Re-

search (B)(2), Nos. 16340004 and 20340005. The second author was partially supported
by RFBR, Nos. 08-01-00395-a and 06-01-72017-MHTI-a.

1



Warning. In the statement of Theorem 1.1 and Table 1 we do not assert
that the basket B(Fo) contains all the singularities along Fo. It is possible
that Fo is Cartier at some non-Gorenstein points (see Example 5.6).

Table 1

type mo B(Fo) = (b1, . . . , bn) qi K2
Fg

(r1, . . . , rn)

I2,3,6 6 (2, 3, 6) (1,±1,±1) qi ≡ −1 6

I5,5 5 (5, 5) b21 + b22 ≡ 0 qi ≡ −1 5

I2,4,4 4 (2, 4, 4) (1,±1,±1) qi ≡ −1 4, 8

I3,3,3 3 (3, 3, 3) (±1,±1,±1) qi ≡ −1 3, 6, 9

I2,2,2,2 2 (2, 2, 2, 2) (1, 1, 1, 1) qi ≡ 1 even

I3,6 3 (3, 6) (±1,±1) qi ≡ 4 3, 6, 9

I9 3 (9) b1 = ±2q1/3 q1 = 3 or 6 ≡ q1/3 mod 3

I2,2,4 2 (2, 2, 4) (1, 1,±1) qi ≡ ri/2 odd

I4,4 2 (4, 4) (±1,±1) qi ≡ ri/2 even

I2,6 2 (2, 6) (1,±1) qi ≡ ri/2 even

I8 2 (8) (±1) or (±3) qi ≡ ri/2 odd

The idea of the proof is easy. In fact, it is sufficient to compute dimen-
sions of linear systems dim |lFo| by using the orbifold Riemann-Roch formula
[Rei87]. The main theorem is proved in §§3 – 4. In §5 we give some exam-
ples. In fact, it will be shown that all cases in Table 1 except possibly for
cases I2,6 and I8 occur. Finally, in §6 we discuss fibers of multiplicity 5 and
6.

Notation in Table 1. The number bk in the fourth column is the weight
which appears in a singularity 1

rk
(1,−1, bk) ∈ B(Fo), qk in the fifth column

is an integer such that Fo ∼ qkKX near Pk ∈ B(Fo). Fg in the final column
denotes a general fiber of f . We say that the fiber f ∗(o) = moFo is of type
Ir1,...,rn if B(Fo) = (r1, . . . , rn).

We also say that the fiber Fo is regular if it is of type I2,3,6, I5,5, I2,4,4,
I3,3,3, or I2,2,2,2. Otherwise, Fo is said to be irregular.
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2. Preliminaries

2.1. Terminal singularities [Mor85], [Rei87]. Let (X,P ) be a three-
dimensional terminal singularity of index r and let D be a Weil Q-Cartier
divisor on X.

Lemma 2.2 ([Kaw88, Corollary 5.2]). In the above notation, there is an
integer i such that D ∼ iKX near P . In particular, rD is Cartier.

2.3. Notation as above. There is a deformation Xλ of X such that Xλ has
only cyclic quotient singularities (Xλ, Pλ,k) ' 1

rk
(1,−1, bk), 0 < bk < rk,

gcd(bk, rk) = 1. Thus, to every theefold X with terminal singularities, one
can associate a collection B = ((rP,k, bP,k)), where Pλ,k ∈ Xλ,k is a singularity
of type 1

rP,k
(1,−1, bP,k). This collection is called the basket of singularities

of X. By abuse of notation, we also will write B = (rP,k) instead of B =
((rP,k, bP,k)). The index of (X,P ) is the least common multiple of indices
of points Pλ,k. For any Weil divisor D, B(D) ⊂ B denotes the collection of
points where D is not Cartier.

Deforming D with (X,P ) we obtain Weil divisors Dλ on Xλ. Thus we
have a collection of numbers qk such that 0 ≤ qk < rk and Dλ ∼ qkKXλ

near
Pλ,k.

2.4. Orbifold Riemann-Roch formula [Rei87]. Let X be a threefold
with terminal singularities and let D be a Weil Q-Cartier divisor on X.
Then

(2.5) χ(D) =
1

12
D · (D −KX) · (2D −KX)+

+
1

12
D · c2(X) + χ(OX) +

∑
P∈B

cP (D),

where

(2.6) cP (D) = −qP r
2
P − 1

12rP

+

qP−1∑
j=1

bP j(rP − bP j)

2rP

,

qP is such as in 2.3, and denotes the smallest residue mod rP .
Assume that D2 ≡ 0. Then

(2.7) χ(D) =
1

12
D ·K2

X +
1

12
D · c2(X) + χ(OX) +

∑
cP (D).
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We have (see, e. g., [Ale94, proof of 2.13])

(2.8) cP (−K) =
r2
P − 1

12rP

− bP (rP − bP )

2rP

, cP (K) = −r
2
P − 1

12rP

.

Construction 2.9 (Base change). Let f : X → Z be a weak del Pezzo
fibration and let f ∗(o) = moFo be a special fiber of multiplicity mo. Regard
f : X → (Z, o) as a germ. Let (C, 0) ' (Z ′, o′) → (Z, o) ' (C, 0) is given
by t 7→ tmo and let X ′ be the normalization of X ×Z Z ′. We obtain the
following commutative diagram:

(2.10) X ′ π //

f ′
²²

X

f

²²
Z ′ // Z

Here f ′ is a weak del Pezzo fibration with special fiber F ′o = f ′∗o′ = π∗Fo

of multiplicity 1 and π is a µmo
-cover which is étale outside of the set M of

points where Fo is not Cartier. Hence there is a µmo
-action on X ′ such that

X = X ′/µmo
and the action is free outside of M .

Conversely, let f ′ : X ′ → Z ′ 3 o′ be a weak del Pezzo fibration with central
fiber of multiplicity 1. Assume that f equipped with an equivariant µmo

-
action such that the action on X ′ is étale in codimension two. If the quotient
X ′/µmo

has only terminal singularities, then X ′/µmo
→ Z ′/µmo

is a weak
del Pezzo fibration with special fiber of multiplicity mo.

Proposition 2.11. Let f : X → Z be a weak del Pezzo fibration. Let f ∗(o) =
moFo be a special fiber of multiplicity mo. There is a point P ∈ Fo such that
the index of Fo at P is divisible by mo.

Proof. Regard f : X → (Z, o) as a germ and apply Construction 2.9. It is
sufficient to show that µmo

has a fixed point on F ′o (see Lemma 2.2).
First we consider the case of del Pezzo bundle, i.e., the case where −KX

is ample. Let γ be the log canonical threshold of (X ′, F ′o) and let W ′ ⊂ X ′

be a minimal center of log canonical singularities of (X ′, γF ′o) (see [Kaw97a,
§1]).

Assume that dimW ′ ≤ 1. Let H be a general hyperplane section of
X passing through π(W ′) and let H ′ := π∗H. For 0 < ε ¿ 1, the pair
(X ′, γF ′o + εH ′) is not LC along π−1π(W ′) and LC outside. Therefore for
some 0 < δ ¿ ε the pair (X ′, (γ−δ)F ′o+εH ′) is not KLT along π−1π(W ′) and
KLT outside. Moreover, W ′ is a minimal LC center for (X ′, (γ−δ)F ′o+εH ′).
Recall that any irreducible component of the intersection of two LC centers is
also an LC center [Kaw97a, Proposition 1.5]. Hence W ′ is the only LC center
in its neighborhood. Since the boundary (γ − δ)F ′o + εH ′ is µmo

-invariant,
all the gW ′ for g ∈ µmo

are also centers of log canonical singularities for
the pair (X ′, (γ − δ)F ′o + εH ′). On the other hand, the locus µmo

W ′ of log
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canonical singularities for the pair (X ′, (γ − δ)F ′o + εH ′) is connected, see
[Sho93, §5], [Kol92, 17.4]. Hence µmo

W ′ is irreducible and so W ′ is µmo
-

invariant. If W ′ is a point, we are done. Otherwise W ′ is a smooth rational
curve [Kaw97a, Th. 1.6], [Kaw97b]. But any cyclic group acting on P1 has
a fixed points.

Assume that dimW ′ = 2, that is, W ′ = bγF ′oc and the pair (X ′, γF ′o) is
PLT. By the inversion of adjunction [Sho93, 3.3], [Kol92, 17.6] and Con-
nectedness Lemma [Sho93, §5], [Kol92, 17.4] the surface W ′ is irreducible,
normal and has only KLT singularities. Hence W ′ is a KLT log del Pezzo
surface. In particular, W ′ is rational. Then the assertion follows by Lemma
2.12 below.

Now we consider the general case. We apply µmo
-equivariant MMP in the

category µmo
-threefolds (i.e., threefolds with terminal singularities and such

that every µmo
-invariant Weil divisor is Q-Cartier, see e.g. [Mor88, 0.3.14]).

Let X1 → X ′ be a µmo
-equivariant Q-factorialization. Run µmo

-equivariant
MMP over Z ′:

X1 99K X2 99K · · · 99K XN .

These maps induce a sequence maps

X1/µmo
99K X2/µmo

99K · · · 99K XN/µmo
.

where each step is either K-negative divisorial contraction or a flip (both are
not neseccarily extremal). Hence, on each step the quotient Xi/µmo

has only
terminal singularities and the action of µmo

on Xi is free in codimension two.
On the last stepXN is either a del Pezzo bundle over Z ′ with ρµmo (XN/Z

′) =
1 or a Q-conic bundle over a surface S and S/Z ′ is a rational curve fibration.
In both cases µmo

has a fixed point on XN . We prove the existence of fixed
point on Xi by a descending induction on i. So we assume that Xi+1 has
a fixed point, say P . If ψi : Xi 99K Xi+1 is a flip, we may assume that P
is contained in the flipped curve Ci+1 ⊂ Xi+1. In this case µmo

acts on a
connected closed subset of the flipping curve Ci ⊂ Xi. Since Ci is a tree of
rational curves, µmo

has a fixed point on Ci. Similar argument works in the
case where ψi : Xi → Xi+1 is a contraction of a µmo

-invariant divisor to a
curve. Thus we may assume that ψi : Xi → Xi+1 is a divisorial contraction
that contracts a µmo

-invariant divisor E ⊂ Xi to P . Let γ be the log
canonical threshold of (Xi, E) and let Wi ⊂ Xi be a minimal center of log
canonical singularities of (Xi, γE). As in the del Pezzo bundle case above,
considering the action of µmo

on Wi we find a fixed point. This proves our
proposition. ¤
Lemma 2.12. Let S be a rational surface. Then any action of a finite cyclic
group on S has a fixed point.

Proof. Let µm be the cyclic group acting on S. Replacing S with its nor-
malization and the minimal resolution, we may assume that S is smooth.
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Since S is rational, H i(S,C) = 0 if i is odd. Then the assertion follows by
the Lefschetz fixed point formula. ¤

3. Preparations

Notation 3.1. Let f : X → Z be a weak del Pezzo fibration. Compactify
X and Z and resolve X only above the added points of Z. Thus we may
assume that both X and Z are projective. Let Fg be a general fiber and let
f ∗(o) = moFo be a special fiber of multiplicity mo. Write mo = mα, where m
and α are positive integers and put D := αFo. Then moFo = mD = f ∗(o).

3.2. By a variant of J. Kollár’s Higher Direct Images Theorem (see [KMM87,
1-2-7], [Nak86]), one has that Rif∗OX(KX−jD) is torsion free for all i. But
its restriction to the general fiber Fg is zero for i 6= 2 because −KFg is nef
and big. Hence Rif∗O(KX − jD) = 0 for i 6= 2. Further, the Leray spectral
sequence yields

Hq(X,KX − jD) = Hq−2(Z,R2f∗O(KX − jD)) = 0

for q − 2 6= 1 and j À 0 because R2f∗O(KX − jD) is very negative. By
Serre duality

H3−q(X, jD) ' Hq(X,KX − jD)∨ = 0

for q 6= 3 and j À 0.
Finally, H i(X, jD) = 0 for all i > 0, j > j0 À 0. We also have

H0(X, jf ∗(o) + lD) ' H0(X, jf ∗(o))

for l = 0, . . . ,m− 1. Put j1 := bj0/mc and

Θl :=
1

mj1
h0(X, j1f

∗(o))− 1

mj1 + l
h0(X, j1f

∗(o) + lD).

Thus for l = 0, . . . ,m− 1 we have

(3.3) Θl =
l

mj1(mj1 + l)
h0(X, j1f

∗(o)) =
l(j1 − pa + 1)

mj1(mj1 + l)
,

where pa is the genus of Z. On the other hand, by (2.7)

(3.4) Θl = − 1

mj1 + l

∑
P∈B

cP (lD) +
l

mj1(mj1 + l)
χ(OX).

Comparing (3.3) and (3.4) we get

(3.5) m
∑
P∈B

cP (lD) = −l, l = 0, . . . ,m− 1.

3.6. Denote

∆a := χ(OX(−K − aFo))− χ(OX(−K − (a+ 1)Fo)),

δa :=
∑

P∈B

cP (−K − aFo)−
∑

P∈B

cP (−K − (a+ 1)Fo).
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As above, for a = 0, . . . ,mo − 2, the following equality holds

∆a =
13

12
K2 · Fo +

1

12
Fo · c2(X) +

∑
P∈B

cP (−K − aFo)−

−
∑
P∈B

cP (−K − (a+ 1)Fo) =
13

12mo

K2 · Fg +
1

12mo

Fg · c2(X) + δa.

Since K2 · Fg = K2
Fg

and Fg · c2(X) = c2(Fg) = 12−K2
Fg

, we have

(3.7) ∆a =
K2

Fg
+ 1

mo

+ δa.

3.8. Some computations. Let (X,P ) be a cyclic quotient singularity of
type 1

r
(a,−a, 1), let D be a Weil divisor on X, and let m be a natural

number. We have D ∼ qKX for some 0 ≤ q < r. Denote

(3.9) ΞP,m :=
m−1∑

l=1

cP (lD).

We also will write ΞP or Ξ instead of ΞP,m if no confusion is likely. By
definition

(3.10) ΞP,m =
m−1∑

l=1


−ql r

2 − 1

12r
+

ql−1∑
j=1

bj(r − bj)

2r


 .

We compute Ξ in some special situation:

Lemma 3.11. Let s := gcd(r, q). Write r = sm and q = sk for some
s, k ∈ Z>0 (so that gcd(m, k) = 1). Then

(3.12) ΞP,m = −m
2 − 1

24m
r.

Proof. By our assumption gcd(m, k) = 1 the parameter ql = skl runs
through all the values sl, l = 1, . . . ,m− 1. Hence,

Ξ = −
m−1∑

l=1

sl
r2 − 1

12r
+

m−1∑

l=1

sl−1∑
j=1

bj(r − bj)

2r
.

Since bj(r − bj) = bj′(r − bj′) for j + j′ = r, we have

sl−1∑
j=1

bj(r − bj)

2r
=

r−1∑

j=r−sl+1

bj(r − bj)

2r
.
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Therefore,

Ξ = −m(m− 1)s

2

r2 − 1

12r
+
m− 1

2

r−1∑
j=1

bj(r − bj)

2r
− 1

2

m−1∑

l=1

bsl(r − bsl)

2r
=

− (m− 1)r

2

r2 − 1

12r
+
m− 1

2

r−1∑
j=1

bj(r − bj)

2r
−1

2

m−1∑

l=1

sl(r − sl)

2r
=
m− 1

2
cP (rK)

− s

4

m−1∑

l=1

l +
s2

4r

m−1∑

l=1

l2 = −sm(m− 1)

8
+

s2

24r
(m− 1)m(2m− 1) =

= −m− 1

8

(
r − s

3
(2m− 1)

)
= −m− 1

24

(
r +

r

m

)
.

(We used sm = r and cP (rK) = 0.) This proves our lemma. ¤
Lemma 3.13. If m = m1m2, where m1D is Cartier, then

ΞP,m = m2ΞP,m1 .

Proof. Follows by (3.9) because cP (tD) is r-periodic. ¤

4. Proof of Theorem 1.1

Notation as in 3.1. Near each singular point P ∈ X of index rP we write

D ∼ qPKX .

Then mqPKX ∼ mD is Cartier near P . Hence,

(4.1) mqP ≡ 0 mod rP .

From (3.5) we have

(4.2)
∑
P∈B

ΞP,m = −
m−1∑

l=1

l

m
= −m− 1

2
.

Proposition 4.3. Notation as above. If m is prime, then we have one of
the following possibilities:

(4.3.1) m = 2, B(D) = (8),
(4.3.2) m = 2, B(D) = (2, 6),
(4.3.3) m = 2, B(D) = (4, 4),
(4.3.4) m = 2, B(D) = (2, 2, 4),
(4.3.5) m = 2, B(D) = (2, 2, 2, 2),
(4.3.6) m = 3, B(D) = (9),
(4.3.7) m = 3, B(D) = (3, 3, 3),
(4.3.8) m = 3, B(D) = (3, 6),
(4.3.9) m = 5, B(D) = (5, 5),

(4.3.10) m = 5, B(D) = (10),
(4.3.11) m = 11, B(D) = (11).
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.

Proof. By (4.1) we have mqP ≡ 0 mod rP and rP ≡ 0 mod m for all
P ∈ B(D) (otherwise qP ≡ 0 mod rP and P /∈ B(D)). Put sP := rP/m.
Then qP = sPkP for some kP ∈ Z>0. Since gcd(kP , qP ) = 1, the assumption
of Lemma 3.11 holds for each point P ∈ B(D). Combining (3.12) with (4.2)
we obtain

(m+ 1)
∑
P∈B

rP = 12m.

Hence, m ∈ {2, 3, 5, 11}. Using the fact rP ≡ 0 mod m we get the state-
ment. ¤
Proposition 4.4. Cases (4.3.10) and (4.3.11) do not occur. In particular,
the assertion of Theorem 1.1 holds if mo is prime.

Proof. Consider the case (4.3.11). Since gcd(q,m) = 1, there is 0 < l < r =
m such that ql ≡ 1 mod m. Then by (3.5) and (2.8) we have

− l

11
= cP (lD) = cP (K) = −r

2 − 1

12r
= −10

11
,

so l = q = 10. Then again by (3.5) and (2.8)

− 1

11
= cP (D) = cP (−K) =

r2 − 1

12r
− b(r − b)

2r
=

10

11
− b(11− b)

22
.

Hence, b(11− b) = 22 and b cannot be coprime to 11, a contradiction.
Consider the case (4.3.10). Since mq = 5q ≡ 0 mod r = 10, q is even.

There is 0 < l < 5 such that ql ≡ 2 mod r. Then by (3.5) we have

− l
5

= cP (lD) = cP (2K) = −2(r2 − 1)

12r
+
b(r − b)

2r
=
b(10− b)− 33

20
.

Thus b(10− b) + 4l = 33, b ∈ {3, 7}, l = 3, and q = 4. Again by (3.5)

−1

5
= cP (D) = −4(r2 − 1)

12r
+

3∑
j=1

bj(r − bj)

2r
= −33

10
+

3∑
j=1

3j(10− 3j)

20
= −3

5
,

a contradiction. This proves our lemma. ¤
Corollary 4.5. For every prime divisor d of mo we have d ∈ {2, 3, 5}.
Proof. Apply Propositions 4.3 and 4.4 with D = mo

d
Fo. ¤

Let Pi be points of B(Fo). Let P = P1 be a point in B(Fo) whose index
rP1 is divisible by mo (see Proposition 2.11). For short, below we will write
ri, bi, qi, etc instead of rPi

, bPi
, qPi

, respectively.

Corollary 4.6. mo is not divisible by m ∈ {16, 27, 25, 10, 15, 12, 18}.
Proof. Let d = 2, 3 or 5 be a prime divisor of mo and let D = mo

d
Fo. Then

dD = f ∗(o) and D is not Cartier at P1. In this case, by Propositions 4.3
and 4.4 the index of (X,P1) is at most 9, a contradiction. ¤
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Corollary 4.7. If mo is not prime, then mo ∈ {4, 6, 8, 9}.
Lemma 4.8. If mo = 6, then B(Fo) = (2, 3, 6). Moreover, gcd(rP , qP ) = 1
for all P ∈ B(Fo).

Proof. Take D = 3Fo. Then 2D ∼ f ∗(o) but D is not Cartier at P1. Hence
(X,P1) is of index 6 and for D we are in the case (4.3.2), that is, B(3F0) =
(2, 6). At all points Pi /∈ B(3F0) the divisor 3Fo is Cartier. Similarly, take
D′ = 2Fo. Then for D we get the case (4.3.8), that is, B(2Fo) = (3, 6).
Hence B(Fo) contains three points P1, P2, P3 of indices 6, 2, 3, respectively,
and in all other points both D′ = 2Fo and D = 3Fo are Cartier. Hence
Fo = D −D′ is Cartier outside of P1, P2, P3 and B(Fo) = (2, 3, 6). ¤

Lemma 4.9. If mo = 4, then B(Fo) = (2, 4, 4). Moreover, gcd(rP , qP ) = 1
for all P ∈ B(Fo).

Proof. Clearly, 2Fo is Cartier at all points of index 2. Hence B(2Fo) contains
no such points and for B(2Fo) we are in the case (4.3.1) or (4.3.3). For all
points Pi /∈ B(2Fo) the divisor 2Fo is Cartier at Pi. Hence, qi = ri/2.

Assume that B(2Fo) = (8). Let P ∈ B(2Fo). Since 4Fo is Cartier, 4qP ≡ 0
mod 8 (but 2qP 6≡ 0 mod 8). By Lemma 3.11 and 3.13 we have

ΞP1,4 = −5

4
, ΞPj ,8 = 4ΞPj ,2 = −rj

4
, j 6= 1.

Therefore, by (4.2) the following holds
∑

i6=1 ri = 1, a contradiction.

Hence B(2Fo) = (4, 4). At both points Pi ∈ B(2Fo) we have Fo ∼ ±KX

near Pi. Again by Lemma 3.11 and 3.13

ΞPi,4 = −5

8
, i = 1, 2 ΞPj ,4 = 2ΞPj ,2 = −rj

8
, j 6= 1, 2.

Therefore, by (4.2) we have
∑

i6=1, 2

ri = 2 and there is only one solution

B(Fo) = (4, 4, 2). ¤

Corollary 4.10. mo 6= 8

Proof. Indeed, if mo = 8, then for B(2Fo) there is only one possibility from
Lemma 4.9. This contradicts Proposition 2.11. ¤

Lemma 4.11. mo 6= 9.

Proof. Assume that mo = 9. Take D := 3Fo. Then 3D ∼ f ∗(o) but D is not
Cartier at P1. Hence, gcd(q1, r1) = 1, (X,P1) is of index 9 and for D we are
in the case (4.3.6), that is, B(D) = (9) ⊂ B(Fo). In all points Pi ∈ B(Fo),
Pi 6= P1 the divisor D = 3Fo is Cartier. Hence by Lemma 3.11 and 3.13 we
have

ΞP1,9 = −10

3
, ΞPi,9 = 3ΞPi,3 = −ri

3
, i 6= 1.

10



Therefore, by (4.2)

−4 =
∑

ΞPi,m = −10

3
− 1

3

∑

i6=1

ri, ri = 2.

This contradicts ri ≡ 0 mod 3. ¤

4.12. The last lemma finishes the proof of Theorem 1.1. It remains to
compute values bk, qk, and K2

Fg
in Table 1.

First we compute the possible values of qi. We may assume that 1 ≤ qi <
ri. In regular cases (I2,3,6, I5,5, I3,3,3, I2,4,4, I2,2,2,2) we have gcd(qi, ri) = 1
(see Lemmas 4.8 and 4.9) and mo ≥ ri for all i. Take 1 ≤ l ≤ mo− 1 so that
qil ≡ 1 mod ri. Then by (2.8) and (3.5) the following equality holds

∑
i

cPi
(lFo) =

∑
i

cPi
(K) = −

∑
i

r2
i − 1

12ri

= − l

mo

.

From this we immediately obtain l ≡ qi ≡ −1 mod ri for all i.
If mo = 2 (cases I4×2, I2,2,4, I4,4, I2,6, I8), then 2Fo is Cartier. Hence

qi = ri/2. It remains to consider only cases I9 and I3,6. In case I9, since 3Fo

is Cartier, we have q := q1 = 3 or 6. If q = 3, then by (3.5) we have

−1 = 3cP (Fo) = 3cP (3K) = −40

6
+
b(9− b)

6
+

2b(9− 2b)

6
.

Hence, 34 = b(9 − b) + 2b(9 − 2b) and 5b2 ≡ 2 mod 9. This immediately
implies b ≡ ±2. Similarly, if q = 6, then b2 ≡ −2 mod 9 and b ≡ ±4.

Finally consider the case I3,6. Then by (2.8) and (2.6)

cP1(Fo) =

{
−2/9 if q1 = 1

−1/9 if q1 = 2
cP2(Fo) =

{
−5/9 if q1 = 2

−1/9 if q1 = 4

The equality cP1(Fo)+cP2(Fo) = −1/3 (see (3.5)) holds only if q1 = 1, q2 = 4.

Corollary 4.13. The fiber Fo is regular if and only if qi ≡ −1 mod ri for
all i. In particular, for regular Fo near each point P ∈ Fo where Fo is not
Cartier we have KX + Fo ∼ 0 .

4.14. Now we find the possible values of bi. In all cases except for I5,5 and
I9 the relations gcd(ri, qi) = 1 is sufficient to get the conclusion. The case I9
was treated above. Consider the case I5,5. Then by (2.8) and (3.5) we have
10 = b1(5− b1) + b2(5− b2). Hence b21 + b22 ≡ 0 mod 5.

4.15. To obtain the possible values for K2
Fg

we use (3.7) with a = 0. Since

∆a is an integer, it is sufficient to compute δ0 = cP (−K) − cP (−K − Fo).
Table 2 gives all values of δ0. For example, if Fo is regular, then qP ≡ −1

11



mod rP for all P and δ0 =
∑
cP (−K) =

∑
cP (Fo). So by (2.8) and (3.5) we

have δ0 = −1/mo. Assume that qP = rP/2 (and all the rp are even). Then

δ0 =
∑
P∈B

(
cP (−K)− cP

(
rP − 2

2
K

))
.

Hence by (2.8) and (2.6)

rP = 2 =⇒ δ0 = cP (−K) = −1/8,
rP = 4 =⇒ δ0 = cP (−K)− cP (K) = 1/4,
rP = 6 =⇒ δ0 = cP (−K)− cP (2K) = 5/8,
rP = 8 =⇒ δ0 = cP (−K) − cP (3K) = 1 or 0 if bP = 1 or 3,
respectively.

This immediately gives the values of δ0 in cases I2,2,4, I4,4, I2,6, and I8. Cases
I3,6 and I9 are similar.

Table 2

regular I3,6 I9 I2,2,4 I4,4 I2,6 I8

δ0 − 1
mo

2
3

6−q1

9
0 1

2
1
2

3−|b1|
2

5. Examples

In this section we construct some examples of del Pezzo bundles with
multiple fibers. We use notation of Construction 2.9. We start with regular
case.

Proposition 5.1. Let f ′ : X ′ → Z ′ 3 o′ be a Gorenstein del Pezzo bundle.
Assume that the central fiber F ′o := f ′−1(o′) has only Du Val singularities.
Assume also that the cyclic group µmo

acts on X ′ and Z ′ so that

(i) the action on Z ′ is free outside of o′,
(ii) f ′ is µmo

-equivariant,
(iii) the action on F ′o is free in codimension one,
(iv) the quotient Fo := F ′o/µmo

has only Du Val singularities.

Then f : X = X ′/µmo
→ Z = Z ′/µmo

is a del Pezzo bundle with regular
central fiber of multiplicity mo and, moreover, Fo ∼ −KX near each point
P ∈ X.

Proof. In notation of Construction 2.9 it is sufficient to show that X has
only terminal singularities. Since X ′ has only terminal singularities and the
action of µmo

is free outside of a finite number of points P ′k lying on F ′o, the
quotient X is smooth outside of π(P ′k) ∈ Fo. By the inversion of adjunction
[Kol92, 17.6] the pair (X,Fo) is PLT near Fo. Since Fo is Gorenstein, the

12



divisor KX + Fo is Cartier. Hence the pair (X,Fo) is canonical near Fo and
so X has only terminal singularities. ¤

Now we apply Proposition 5.1 to construct concrete examples.

Example 5.2. Let F ′o be a del Pezzo surface of degree d := K2
F ′o

with at
worst Du Val singularities. Assume that the group µmo

, mo ≥ 2 acts on F ′o
freely in codimension one and so that the quotient Fo := F ′o/µmo

has again
only Du Val singularities. Clearly, Fo is del Pezzo surface and moK

2
Fo

= d.
Hence, d ≥ mo ≥ 2. For d = 2, 3, 4, and 8, according to [HW81] there is an
embedding

F ′o ⊂ P := P(1, 1, 1, 2) if d = 2

F ′o ⊂ P := P3 if d = 3

F ′o ⊂ P := P4 if d = 4

F ′o ⊂ P := P3 if d = 8

Moreover, if d = 2, 3, 8, then Fo is a (weighted) hypersurface of degree 4,
3, 2, respectively and if d = 4, then F ′o is an intersection of two quadrics.
The action of µmo

on F ′o induces the action on P. We fix a linearization
of this action and take semi-invariant coordinates xi in P. Now we define
µmo

-equivariant del Pezzo bundle f ′ : X ′ → Z ′. If F ′o is smooth, we can take
X ′ = F ′o × Ct. In general case, X ′ is embedded into P× Ct, Z

′ = Ct and f ′

is the projection, where t is a coordinate in C with wt t = 1. Consider for
example the case d ≤ 3 (case d = 4 is similar). Let φ = φ(x1, x2, x3, x4) be
the defining equation of F ′o and let γk be all monomials of weighted degree
d. For each γk, let nk be the smallest positive integer such that nk ≡ −wt γk

mod mo. Then the polynomial ψ(x1, . . . , x4; t) := φ +
∑
ckt

nkγk, ck ∈ C is
µmo

-semi-invariant. Let X ′ = {ψ = 0} ⊂ P × Ct. By Betrtini’s theorem,
for sufficiently general constants ck, fibers F ′t of f ′ over t 6= 0 are smooth
del Pezzo surfaces. Hence we can apply Proposition 5.1 and get a del Pezzo
bundle with a regular fiber of multiplicity mo.

Note that the map F ′o → Fo is étale outside of SingFo. Hence there is
a surjection π1(Fo \ SingFo) ³ µmo

. Conversely, assume that Fo is a del
Pezzo surface with Du Val singularities such that π1(Fo \ SingFo) ³ µmo

.
Then there is an étale outside of SingFo cyclic µmo

-cover υ : F ′o → Fo. Since
KF ′o = υ∗KFo , F

′
o is also a del Pezzo surface with Du Val singularities. The

fundamental groups of smooth loci of Du Val del Pezzo surfaces are de-
scribed in [MZ88], [MZ93]. For example, from [MZ88] we have the following
examples with ρ(Fo) = 1 (we do not list all the possibilities):

K2
Fo

SingFo mo K2
F ′o

= K2
Fg

ρ(F ′o) F ′o, SingF ′o type

1 A1A2A5 6 6 4 smooth I2,3,6

13



K2
Fo

SingFo mo K2
F ′o

= K2
Fg

ρ(F ′o) F ′o, SingF ′o type

1 2A4 5 5 5 smooth I5,5

2 A12A3 4 8 2 P1 × P1 I2,4,4

1 A3D5 4 4 4 A2 I2,4,4

3 3A2 3 9 1 P2 I3,3,3

2 A2A5 3 6 3 A1 I3,3,3

1 A8 3 3 5 A2 I3,3,3

4 2A1A3 2 8 1 P(1, 1, 2) I2,2,2,2

3 A1A5 2 6 2 A2 I2,2,2,2

2 A7 2 4 3 A3 I2,2,2,2

1 D8 2 2 3 D5 I2,2,2,2

Example 5.3. In some cases we can give more explicit construction. As
was mentioned above, if F ′o is smooth, we can take X ′ = Z ′ × F ′o. Consider
the following cases:

• F ′o = P2, µ3 acts on P2
x,y by x 7→ εx, y 7→ ε−1y (here x, y are non-

homogeneous coordinates on P2 and ε3 = 1). Then P2/µ3 is a toric
del Pezzo surface of degree 3 having three singular points of type
A2. The quotient f : X → Z is a del Pezzo bundle with special fiber
of type I3,3,3.

• F ′o = P1 × P1, µ2 acts on P1
x × P1

y by x 7→ −x, y 7→ −y. Then

P1 × P1/µ2 is a del Pezzo surface of degree 4 having four singular
points of type A1. The quotient f : X → Z is a del Pezzo bundle
with special fiber of type I2,2,2,2.

• F ′o = P1 × P1, µ4 acts by x 7→ y, y 7→ −x. Then P1 × P1/µ4 is a
del Pezzo surface of degree 2 having two points of type A3 and one
point of type A1. The quotient f : X → Z is a del Pezzo bundle
with special fiber of type I2,4,4.

Now we give some examples of irregular multiple fibers.

Example 5.4. Recall that any smooth del Pezzo surface of degree 1 can be
realized as a weighted hypersurface of degree 6 in P = P(1, 1, 2, 3). Let

φ(x1, x2, y, z) = a1x
6
1 + a2x

6
2 + y2(b1x

2
1 + b2x

2
2) + cz2, ai, bj, c ∈ C∗

be a polynomial of weighted degree 6, where x1, x2, y, z are coordinates in
P with wt xi = 1, wt y = 2, wt z = 3. Consider the hypersurface F ′o ⊂ P
given by φ = 0. By Bertini’s theorem, for sufficiently general ai, bj, c, the
surface F ′o is smooth outside of P ′ := (0 : 0 : 1 : 0). Consider the subvariety
X ′ in P× Ct given by φ + ty3 = 0 and let f ′ : X ′ → Z ′ = C be the natural
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projection. Since F ′o is the scheme fiber of the projection f ′ : X ′ → Z ′, the
variety X ′ is smooth outside of P ′. We identify F ′o with the fiber over t = 0.
Then f ′ is a del Pezzo bundle of degree 1 having a unique singular point of
type 1

2
(1, 1, 1) at P ′.

Now let µ2 acts on P× C and X ′ by

(x1, x2, y, z; t) 7−→ (x1,−x2,−y,−z;−t).
The locus of fixed points Λ consists of the line L := {x1 = y = t = 0}
and two isolated points P ′ := (0 : 0 : 1 : 0; 0) and P1 := (1 : 0 : 0 : 0; 0).
Then F ′o ∩ Λ = {P ′, Q1, Q2}, where Q1 6= Q2 are points given by x1 = y =
a2x

6
2 + z2 = t = 0. Let f : X = X ′/µ2 → Z = Z ′/µ2 be the quotient of f ′.

Since the action of µ2 on X ′ is free in codimension one, −KX is f -ample and
Fo := F ′o/µ2 is a fiber of multiplicity 2. We show that X has only terminal
singularities. By the above, X is smooth outside of images of P ′, Q1, Q2.
Since the (X ′, Qi) are smooth points, quotients (X ′, Qi)/µ2 are terminal of
type 1

2
(1, 1, 1). Consider the affine chart {y 6= 0} ' C4

x′1,x′2,z′,t/µ2(1, 1, 1, 0)

containing P ′. Here X ′ is given by the equation φ(x′1, x
′
2, 1, z

′) + t = 0 and
the action of µ2 on P induces the following action of µ4:

(x′1, x
′
2, z

′, t) 7−→ (i x′1,− ix′2, i z
′,−t), i =

√−1.

Thus the quotients (X ′, P ′)/µ2 is a terminal cyclic quotient of type
1
4
(1,−1, 1). Therefore, f : X → Z is a del Pezzo bundle with special fiber of

type I2,2,4.

Example 5.5. As above let P = P(1, 1, 2, 3) and let

φ(x1, x2, y, z) = a1x
6
1 + a2x

6
2 + cy3, ai, c ∈ C∗

be a µ2-invariant polynomial of weighted degree 6. Consider the hypersur-
face F ′o ⊂ P given by φ = 0. Again for sufficiently general ai, c, the surface
F ′o is smooth outside of P ′′ := (0 : 0 : 0 : 1). Consider the subvariety X ′ in
P × Ct given by φ + tz2 = 0 and let f ′ : X ′ → Z ′ = C be the natural pro-
jection. Then f ′ is a del Pezzo bundle of degree 1 having a unique singular
point of type 1

3
(1, 1,−1) at P ′′. Now let µ3 acts on P× C and X ′ by

(x1, x2, y, z; t) 7−→ (x1, εx2, εy, εz; εt), ε := exp(2π i /3).

The only fixed point on X ′ is P ′′. As above, one can check that (X ′, P ′′)/µ3

is a terminal point of type 1
9
(−1, 2, 1). Therefore, X/µ3 → Z ′/µ3 is a del

Pezzo bundle with special fiber of type I9.

Example 5.6. Let P := P(1, 1, 1, 2, 2), let x1, x2, x3, y1, y2 be coordinates,
and let X ′ ⊂ P× C be subvariety given by

{
c1y

2
1 + c2y

2
2 = a1x

4
1 + a2x

4
2 + a3x

4
3

ty2 = b1x
2
1 + b2x

2
2 + b3x

2
3,
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where t is a coordinate on C and ai, bj, ck are sufficiently general constants.
By Bertini’s theorem X ′ is smooth outside of {x1 = x2 = x3 = 0} ⊂ SingP.
It is easy to check that X ′ ∩ SingP consists of two points

{P ′1, P ′2} = {t = x1 = x2 = x3 = 0, c1y
2
1 + c2y

2
2 = 0}

and these points are terminal of type 1
2
(1, 1, 1). The projection X ′ → C is a

del Pezzo bundle of degree 2. Define the action of µ2 by

(x1, x2, x3, y1, y2; t) 7−→ (x1, x2,−x3, y1,−y2;−t).
There are four fixed points

{Q′1, . . . , Q′4} = {t = x3 = y2 = 0, c1y
2
1 = a1x

4
1 + a2x

4
2, b1x

2
1 + b2x

2
2 = 0}.

The quotient f : X ′/µ2 → C/µ2 is a del Pezzo bundle of type I2,2,2,2. Note
however that the image P of {P ′1, P ′2} on X ′/µ2 is a point of type 1

2
(1, 1, 1)

and Fo is Cartier at P (i.e., P /∈ B(Fo)).

Example 5.7. In the above notation define another action of µ2:

(x1, x2, x3, y1, y2; t) 7−→ (x1, x2,−x3,−y1,−y2;−t).
Then the quotient f : X ′/µ2 → C/µ2 is a del Pezzo bundle of type I4,4.

Example 5.8. Let P := P(1, 1, 1, 1, 2), let x1, x2, x3, x4, y be coordinates,
and let X ′ ⊂ P× C be subvariety given by{

a1x
2
1 + a2x

2
2 + a3x1x2 + a4x3x4 = ty

b1x
3
1 + b2x

3
2 + b3x

3
3 = x4y

where t is a coordinate on C and ai, bj are sufficiently general constants.
Then the variety X ′ is smooth outside of the point P ′ = {x1 = x2 = x3 =
x4 = 0} and P ′ ∈ X ′ is of type 1

2
(1, 1, 1). The projection X ′ → C is a del

Pezzo bundle of degree 3. Define the action of µ3 by

(x1, x2, x3, x4, y; t) 7−→ (ω−1x1, ω
−1x2, ωx3, x4, y;ωt).

There are two fixed points {t = x1 = x2 = x3 = x4y = 0} and quotients
of these points are of types 1

6
(1, 1,−1) and 1

3
(, 1,−1). Hence the quotient

f : X ′/µ3 → C/µ3 is a del Pezzo bundle of type I3,6.

6. On del Pezzo bundles with fibers of multiplicity ≥ 5.

Notation 6.1. Let f : X → Z 3 o be the germ of a del Pezzo bundle and
let moFo = f ∗(o) be a fiber of multiplicity mo. In this section we assume
that m0 ≥ 5, i.e., Fo is of type I2,3,6 or I5,5.

Conjecture 6.2. In notation of 6.1 f is a quotient of a Gorenstein del
Pezzo bundle by a cyclic group acting free in codimension 2 on X.

Proposition 6.3. Notation as in 6.1. If either
16



(i) B(Fo) = B, that is, each point P ∈ Fo where Fo is Cartier is
Gorenstein on X, or

(ii) a general member S ∈ |−KX | has only Du Val singularities (Reid’s
general elephant conjecture),

then 6.2 holds.

Proof. Assume that (i) holds. By Table 1 near each singular point KX+Fo ∼
0. Apply Construction 2.9. Then F ′o = π∗Fo is Cartier. Since π is étale in
codimension one, KX′ + F ′o ∼ 0. Hence, X ′ is Gorenstein.

Now assume that (ii) holds. Then ϕ : S → Z is an elliptic fibration with
Du Val singularities. We have KS = (KX + S)|S ∼ 0. Let µ : S̃ → S be
the minimal resolution. Since S has only Du Val singularities, KS̃ ∼ 0. In

particular, ψ : S̃ → Z is a minimal elliptic fibration. By Kodaira’s canonical
bundle formula ψ has no multiple fibers [Kod64, Th. 12]. Since ψ∗o has a
component of multiplicity ≥ 5, for ψ∗o we have only one possibility Ẽ8 in the
classification of singular fibers [Kod63, Th. 6.2]. More precisely, Supp(ψ∗o)
is a tree of smooth rational curves with self-intersection number −2 and the
dual graph Γ is the following:

1◦ 2◦ 3◦ 4◦ 5◦ 6◦ 4◦ 2◦
◦
3

Further we consider the case mo = 6 (the case mo = 5 is similar). It is
easy to see that the curve S∩Fo is irreducible and correspond to the central
vertex v of Γ. Then Γ \ {v} has three connected components corresponding
to points of types A1, A2 and A5 on S. Therefore, B(Fo) = B. ¤
Proposition 6.4. In notation of 6.1, assume that Fo is irreducible. let
fan : Xan → Zan be the analytic germ near Fo. Then Xan is Q-factorial over
Zan, ρ(Xan/Zan) = 1, and ρ(Fo) = 1.

Warning. Here the Q-factoriality condition of Xan means that every global
Weil divisor of the total germ Xan along Fo is Q-Cartier, not that every
analytic local ring of Xan is Q-factorial.

Proof. Let q : X̂an → Xan be a Q-factorialization over Zan. Run the MMP
over Zan. So, we have the following diagram

X̂an

q

}}{{
{{

{{
{{

!!C
C

C
C

Xan

fan

²²

X̄an

f̄an

²²
Zan Z̄an

ganoo
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Here X̄an is Q-factorial over Z̄an and ρ(X̄an/Z̄an) = 1. Note that X̂an 99K X̄an

is a composition of flips and divisorial contractions that contract divisors to
curves dominating Zan. Let F̄o be the proper transform of Fo on X̄an. There
are two possibilities:

1) Z̄an is a surface. Then gan is a rational curve fibration with ρ(Z̄an/Zan) =
1. Let C := f̄an(F̄o). Since X̄an has only isolated singularities, F̄o = f̄ ∗an(C).
Further, g∗an(o) = nC for some n ∈ Z>0 and f̄ ∗ang

∗
an(o) = nf̄ ∗anC = nF̄o. So,

n = mo. By the main result of [MP08] the surface Z̄an has only Du Val
singularities. Therefore, mo = n ≤ 2, a contradiction.

2) Z̄an is a curve. Then gan is an isomorphism and f̄an : X̄an → Z̄an is a
del Pezzo bundle with central fiber F̄o of multiplicity m̄o = mo ≥ 5. By
Table 1 the degree of the generic fiber of f̄an (and fan) is equal to mo. This
means that degrees of generic fibers of f̄an and fan coincide. In particular,
the MMP X̂an 99K X̄an does not contract any divisors. Hence, ρ(X̂an/Zan) =
ρ(X̄an/Zan) = 1. This implies that q is an isomorphism and ρ(Xan/Zan) = 1.
The last assertion follows from the exponential exact sequence and vanishing
R1fan ∗OXan = 0. ¤
Proposition 6.5. Notation as in 6.1. Conjecture 6.2 holds under the addi-
tional assumption that Fo has only log terminal singularities.

Proof. Assume that Fo has only log terminal singularities. By Table 1 near
each point P ∈ B(Fo) we have KX + Fo ∼ 0. By Adjunction Fo has only
Du Val singularities at these points. In points P /∈ B(Fo) the divisor Fo is
Cartier. Hence Fo has only singularities of type T [KSB88]. By Noether’s
formula [HP, Prop. 3.5]

K2
Fo

+ ρ(Fo) +
∑
P∈Fo

µP = 10.

Since points in B(Fo) correspond to distinct points on X, we have∑
P∈B(Fo) µP ≥ 8. Hence, K2

Fo
= 1, ρ(Fo) = 1, and B(Fo) = B. Now

the assertion folows by Proposition 6.3. ¤

References

[Ale94] V. Alexeev. General elephants of Q-Fano 3-folds. Compositio Math., 91(1):91–
116, 1994.

[HP] P. Hacking and Y. Prokhorov. Degenerations of del Pezzo surfaces, I.
arXiv:math.AG/0509529.

[HW81] F. Hidaka and K. Watanabe. Normal Gorenstein surfaces with ample anti-
canonical divisor. Tokyo J. Math., 4(2):319–330, 1981.

[Kaw88] Y. Kawamata. Crepant blowing-up of 3-dimensional canonical singularities and
its application to degenerations of surfaces. Ann. of Math. (2), 127(1):93–163,
1988.

[Kaw97a] Y. Kawamata. On Fujita’s freeness conjecture for 3-folds and 4-folds. Math.
Ann., 308(3):491–505, 1997.

18



[Kaw97b] Y. Kawamata. Subadjunction of log canonical divisors for a subvariety of codi-
mension 2. In Birational algebraic geometry (Baltimore, MD, 1996), volume
207 of Contemp. Math., pages 79–88. Amer. Math. Soc., Providence, RI, 1997.

[KMM87] Y. Kawamata, K. Matsuda, and K. Matsuki. Introduction to the minimal
model problem. In Algebraic geometry, Sendai, 1985, volume 10 of Adv. Stud.
Pure Math., pages 283–360. North-Holland, Amsterdam, 1987.

[Kod63] K. Kodaira. On compact analytic surfaces. II. Ann. of Math. (2), 77:563–626,
1963.

[Kod64] K. Kodaira. On the structure of compact complex analytic surfaces. I. Amer.
J. Math., 86:751–798, 1964.

[Kol92] J. Kollár, editor. Flips and abundance for algebraic threefolds. Société
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