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DEFORMATION THEORY OF OBJECTS IN HOMOTOPY AND DERIVED

CATEGORIES I: GENERAL THEORY

ALEXANDER I. EFIMOV, VALERY A. LUNTS, AND DMITRI O. ORLOV

Abstract. This is the first paper in a series. We develop a general deformation theory of objects

in homotopy and derived categories of DG categories. Namely, for a DG module E over a DG

category we define four deformation functors Defh(E) , coDefh(E) , Def(E) , coDef(E) .

The first two functors describe the deformations (and co-deformations) of E in the homotopy

category, and the last two - in the derived category. We study their properties and relations.

These functors are defined on the category of artinian (not necessarily commutative) DG algebras.
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1. Introduction

It is well known (see for example [De1], [De2], [Dr2], [G1], [G2], [H]) that for many mathe-

matical objects X (defined over a field of characteristic zero) the formal deformation theory of

X is controlled by a DG Lie algebra g = g(X) of (derived) infinitesimal automorphisms of X .

This is so in case X is an algebra, a compact complex manifold, a principal G -bundle, etc..

Let M(X) denote the base of the universal deformation of X and o ∈M(X) be the point

corresponding to X . Then (under some conditions on g ) the completion of the local ring

ÔM(X),o is naturally isomorphic to the linear dual of the homology space H0(g) . The space

H0(g) is a co-commutative coalgebra, hence its dual is a commutative algebra.

The homology H0(g) is the zero cohomology group of Bg – the bar construction of g , which

is a co-commutative DG coalgebra. It is therefore natural to consider the DG ”formal moduli

space” MDG(X) , so that the corresponding completion ÔMDG(X),o of the ”local ring” is the

linear dual (Bg)∗ , which is a commutative DG algebra. The space MDG(X) is thus the ”true”

universal deformation space of X ; it coincides with M(X) in case H i(Bg) = 0 for i 6= 0 .

In particular, it appears that the primary object is not the DG algebra (Bg)∗ , but rather the

DG coalgebra Bg (this is the point of view in [H]). In any case, the corresponding deformation

functor is naturally defined on the category of commutative artinian DG algebras (see [H]).

Note that the passage from a DG Lie algebra g to the commutative DG algebra (Bg)∗ is

an example of the Koszul duality for operads [GK]. Indeed, the operad of DG Lie algebras is

Koszul dual to that of commutative DG algebras.

Some examples of DG algebraic geometry are discussed in [Ka], [CK1], [CK2].

This paper (and the following papers [ELO2], [ELO3]) is concerned with a general deformation

theory in a slightly different context. Namely, we consider deformations of ”linear” objects E ,

such as objects in a homotopy or a derived category. More precisely, E is a right DG module over

a DG category A . In this case the deformation theory of E is controlled by B = End(E) which
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is a DG algebra (and not a DG Lie algebra). (This works equally well in positive characteristic.)

Then the DG formal deformation space of E is the ”Spec” of the (noncommutative!) DG

algebra (BB)∗ – the linear dual of the bar construction BB which is a DG coalgebra. Again

this is in agreement with the Koszul duality for operads, since the operad of DG algebras is

self-dual. (All this was already anticipated in [Dr2].)

More precisely, let dgart be the category of local artinian (not necessarily commutative) DG

algebras and Gpd be the 2-category of groupoids. For a right DG module E over a DG

category A we define four pseudo-functors

Defh(E), coDefh(E),Def(E), coDef(E) : dgart→ Gpd.

The first two are the homotopy deformation and co-deformation pseudo-functors, i.e. they de-

scribe deformations (and co-deformations) of E in the homotopy category of DG Aop -modules;

and the last two are their derived analogues. We prove that the pseudo-functors Defh(E) ,

coDefh(E) are equivalent and depend only on the quasi-isomorphism class of the DG algebra

End(E) . The derived pseudo-functors Def(E) , coDef(E) need some boundedness conditions

to give the ”right” answer and in that case they are equivalent to Defh(F ) and coDefh(F )

respectively for an appropriately chosen h-projective or h-injective DG module F which is

quasi-isomorphic to E (one also needs to restrict the pseudo-functors to the category dgart−

of negative artinian DG algebras).

This first paper is devoted to the study of general properties of the above four pseudo-functors

and relations between them. Part 1 of the paper is a rather lengthy review of basics of DG

categories and DG modules over them with some minor additions that we did not find in the

literature. The reader who is familiar with basic DG categories is suggested to go directly to

Part 2, except for looking up the definition of the DG functors i∗ and i! .

In the second paper [ELO2] we study the pro-representability of these pseudo-functors. Recall

that ”classically” one defines representability only for functors with values in the category of

sets (since the collection of morphisms between two objects in a category is a set). For example,

given a moduli problem in the form of a pseudo-functor with values in the 2-category of groupoids

one then composes it with the functor π0 to get a set valued functor, which one then tries to

(pro-) represent. This is certainly a loss of information. But in order to represent the original

pseudo-functor one needs the source category to be a bicategory.

It turns out that there is a natural bicategory 2- adgalg of augmented DG algebras. (Actually

we consider two versions of this bicategory, 2- adgalg and 2′- adgalg , but then show that they

are equivalent). We consider its full subcategory 2- dgart− whose objects are negative artinian

DG algebras, and show that the derived deformation functors can be naturally extended to

pseudo-functors

coDEF−(E) : 2- dgart− → Gpd, DEF−(E) : 2′- dgart− → Gpd.
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Then (under some finiteness conditions on the cohomology algebra H(C) of the DG algebra

C = RHom(E,E) ) we prove pro-representability of these pseudo-functors by some local complete

DG algebra described by means of A∞ -structure on H(C) .

This pro-representability appears to be more ”natural” for the pseudo-functor coDEF− ,

because there exists a ”universal co-deformation” of the DG Cop -module C . The pro-

representability of the pseudo-functor DEF− may then be formally deduced from that of

coDEF− .

In the third paper [ELO3] we show how to apply our deformation theory of DG modules

to deformations of complexes over abelian categories. We also discuss examples from algebraic

geometry.

We note that the noncommutative deformations (i.e. over noncommutative artinian rings) of

modules were already considered by Laudal in [Lau]. The basic difference between our work and

[Lau] (besides the fact that our noncommutative artinian algebras are DG algebras) is that we

work in the derived context. That is we only deform the differential in a suitably chosen complex

and keep the module structure constant.

It is our pleasure to thank A.Bondal, P.Deligne, M.Mandell, M.Larsen and P.Bressler for useful

discussions. We especially appreciate the generous help of B.Keller. We also thank W.Goldman

and V.Schechtman for sending us copies of letters [De1] and [Dr2] respectively and W.Lowen

for sending us the preprint [Lo]. We also thank J.Stasheff for his useful comments on the first

version of this paper.

Part 1. Preliminaries on DG categories

2. Artinian DG algebras

We fix a field k . All algebras are assumed to be Z graded k -algebras with unit and all

categories are k -linear. Unless mentioned otherwise ⊗ means ⊗k .

For a homogeneous element a we denote its degree by ā .

A module always means a (left) graded module.

A DG algebra B = (B, dB) is a (graded) algebra with a map d = dB : B → B of degree 1

such that d2 = 0 , d(1) = 0 and

d(ab) = d(a)b + (−1)āad(b).

Given a DG algebra B its opposite is the DG algebra Bop which has the same differential

as B and multiplication

a · b = (−1)āb̄ba,

where ba is the product in B . When there is a danger of confusion of the opposite DG algebra

Bop with the degree zero part of B we will add a comment.

We denote by dgalg the category of DG algebras.
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A (left) DG module over a DG algebra B is called a DG B -module or, simply a B -module.

A right B -module is a DG module over Bop .

If B is a DG algebra and M is a usual (not DG) module over the algebra B , then we say

that Mgr is a Bgr -module.

An augmentation of a DG algebra B is a (surjective) homomorphism of DG algebras B → k .

Its kernel is a DG ideal (i.e. an ideal closed under the differential) of B . Denote by adgalg the

category of augmented DG algebras (morphisms commute with the augmentation).

Definition 2.1. Let R be an algebra. We call R artinian, if it is finite dimensional and has

a (graded) nilpotent two-sided (maximal) ideal m ⊂ R , such that R/m = k .

Definition 2.2. Let R be an augmented DG algebra. We call R artinian if R is artinian

as an algebra and the maximal ideal m ⊂ R is a DG ideal, i.e. the quotient map R → R/m

is an augmentation of the DG algebra R . Note that a homomorphism of artinian DG algebras

automatically commutes with the augmentations. Denote by dgart the category of artinian DG

algebras.

Definition 2.3. An artinian DG algebra R is called positive (resp. negative) if negative (resp.

positive) degree components of R are zero. Denote by dgart+ and dgart− the corresponding

full subcategories of dgart . Let art := dgart− ∩ dgart+ be the full subcategory of dgart con-

sisting of (not necessarily commutative) artinian algebras concentrated in degree zero. Denote by

cart ⊂ art the full subcategory of commutative artinian algebras.

Given a DG algebra B one studies the category B-mod and the corresponding homotopy

and derived categories. A homomorphism of DG algebras induces various functors between

these categories. We will recall these categories and functors in the more general context of DG

categories in the next section.

3. DG categories

In this section we recall some basic facts about DG categories which will be needed in this

paper. Our main references here are [BK], [Dr1], [Ke].

A DG category is a k -linear category A in which the sets Hom(A,B) , A,B ∈ ObA , are pro-

vided with a structure of a Z -graded k -module and a differential d : Hom(A,B)→ Hom(A,B)

of degree 1, so that for every A,B,C ∈ A the composition Hom(A,B) × Hom(B,C) →

Hom(A,C) comes from a morphism of complexes Hom(A,B) ⊗ Hom(B,C) → Hom(A,C) .

The identity morphism 1A ∈ Hom(A,A) is closed of degree zero.

The simplest example of a DG category is the category DG(k) of complexes of k -vector

spaces, or DG k -modules.

Note also that a DG algebra is simply a DG category with one object.

Using the supercommutativity isomorphism S⊗T ≃ T⊗S in the category of DG k -modules

one defines for every DG category A the opposite DG category Aop with ObAop = ObA ,
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HomAop(A,B) = HomA(B,A) . We denote by Agr the graded category which is obtained from

A by forgetting the differentials on Hom ’s.

The tensor product of DG-categories A and B is defined as follows:

(i) Ob(A ⊗ B) := ObA × ObB ; for A ∈ ObA and B ∈ ObB the corresponding object is

denoted by A⊗B ;

(ii) Hom(A⊗B,A′ ⊗B′) := Hom(A,A′)⊗Hom(B,B′) and the composition map is defined

by (f1 ⊗ g1)(f2 ⊗ g2) := (−1)ḡ1f̄2f1f2 ⊗ g1g2.

Note that the DG categories A ⊗ B and B ⊗ A are canonically isomorphic. In the above

notation the isomorphism DG functor φ is

φ(A⊗B) = (B ⊗A), φ(f ⊗ g) = (−1)f̄ ḡ(g ⊗ f).

Given a DG category A one defines the graded category Ho•(A) with ObHo•(A) = ObA

by replacing each Hom complex by the direct sum of its cohomology groups. We call Ho•(A)

the graded homotopy category of A . Restricting ourselves to the 0-th cohomology of the Hom

complexes we get the homotopy category Ho(A) .

Two objects A,B ∈ ObA are called DG isomorphic (or, simply, isomorphic) if there exists an

invertible degree zero morphism f ∈ Hom(A,B) . We say that A,B are homotopy equivalent

if they are isomorphic in Ho(A) .

A DG-functor between DG-categories F : A → B is said to be a quasi-equivalence if Ho•(F ) :

Ho•(A) → Ho•(B) is an equivalence of graded categories. We say that F is a DG equivalence

if it is fully faithful and every object of B is DG isomorphic to an object of F (A) . Certainly,

a DG equivalence is a quasi-equivalence. DG categories C and D are called quasi-equivalent if

there exist DG categories A1, ...,An and a chain of quasi-equivalences

C ← A1 → ...← An → D.

Given DG categories A and B the collection of covariant DG functors A → B is itself

the collection of objects of a DG category, which we denote by FunDG(A,B) . Namely, let Φ

and Ψ be two DG functors. Put Homk(Φ,Ψ) equal to the set of natural transformations

t : Φgr → Ψgr[k] of graded functors from Agr to Bgr . This means that for any morphism

f ∈ Homs
A(A,B) one has

Ψ(f) · t(A) = (−1)kst(B) · Φ(f).

On each A ∈ A the differential of the transformation t is equal to d(t(A)) (one easily checks

that this is well defined). Thus, the closed transformations of degree 0 are the DG transformations

of DG functors. A similar definition gives us the DG-category consisting of the contravariant

DG functors FunDG(Aop,B) = FunDG(A,Bop) from A to B .

3.1. DG modules over DG categories. We denote the DG category FunDG(A,DG(k)) by

A-mod and call it the category of DG A -modules. There is a natural covariant DG functor

h : A → Aop-mod (the Yoneda embedding) defined by hA(B) := HomA(B,A) . As in the



DEFORMATION THEORY OF OBJECTS IN HOMOTOPY AND DERIVED CATEGORIES I 7

”classical” case one verifies that the functor h is fully faithful, i.e. there is a natural isomorphism

of complexes

HomA(A,A′) = HomAop-mod(h
A, hA

′

).

Moreover, for any M ∈ Aop-mod , A ∈ A

HomAop-mod(h
A,M) = M(A).

The DG Aop -modules hA , A ∈ A are called free.

For A ∈ A one may consider also the covariant DG functor hA(B) := HomA(A,B) and the

contravariant DG functor h∗A(B) := Homk(hA(B), k) . For any M ∈ Aop-mod we have

HomAop-mod(M,h∗A) = Homk(M(A), k).

A DG Aop -module M is called acyclic, if the complex M(A) is acyclic for all A ∈ A . Let

D(Aop) denote the derived category of DG Aop -modules, i.e. D(Aop) is the Verdier quotient

of the homotopy category Ho(Aop-mod) by the subcategory of acyclic DG-modules. This is a

triangulated category.

A DG Aop -module P is called h-projective if for any acyclic DG Aop -module N the

complex Hom(P,N) is acyclic. A free DG module is h-projective. Denote by P(Aop) the full

DG subcategory of Aop-mod consisting of h-projective DG modules.

Similarly, a DG Aop -module I is called h-injective if for any acyclic DG Aop -module N

the complex Hom(N, I) is acyclic. For any A ∈ A the DG Aop -module h∗A is h-injective.

Denote by I(Aop) the full DG subcategory of Aop-mod consisting of h-injective DG modules.

For any DG category A the DG categories Aop-mod , P(Aop) , I(Aop) are (strongly)

pre-triangulated ([Dr1, BK], also see subsection 3.5 below). Hence the homotopy categories

Ho(Aop-mod) , Ho(P(Aop)) , Ho(I(Aop)) are triangulated.

The following theorem was proved in [Ke].

Theorem 3.1. The inclusion functors P(Aop) →֒ Aop-mod , I(Aop) →֒ Aop-mod induce equiv-

alences of triangulated categories Ho(P(Aop)) ≃ D(Aop) and Ho(I(Aop)) ≃ D(Aop) .

Actually, it will be convenient for us to use some more precise results from [Ke]. Let us recall

the relevant definitions.

Definition 3.2. A DG Aop -module M is called relatively projective if M is a direct summand

of a direct sum of DG Aop -modules of the form hA[n] , A ∈ A , n ∈ Z . A DG Aop -module

P is said to have property (P) if it admits a filtration

0 = F−1 ⊂ F0 ⊂ F1 ⊂ ...P

such that

(F1) ∪iFi = P ;

(F2) the inclusion Fi →֒ Fi+1 splits as a morphism of graded modules;

(F3) each quotient Fi+1/Fi is a relatively projective DG Aop -module.
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Definition 3.3. A DG Aop -module M is called relatively injective if M is a direct summand

of a direct product of DG Aop -modules of the form h∗A[n] , A ∈ A , n ∈ Z . A DG Aop -module

I is said to have property (I) if it admits a filtration

I = F0 ⊃ F1 ⊃ ...

such that

(F1’) the canonical morphism

I → lim
←
I/Fi

is an isomorphism;

(F2’) the inclusion Fi+1 →֒ Fi splits as a morphism of graded modules;

(F3’) each quotient Fi/Fi+1 is a relatively injective DG Aop -module.

Theorem 3.4. ([Ke]) a) A DG Aop -module with property (P) is h -projective.

b) For any M ∈ Aop-mod there exists a quasi-isomorphism P → M , such that the DG

Aop -module P has property (P).

c) A DG Aop -module with property (I) is h -injective.

d) For any M ∈ Aop-mod there exists a quasi-isomorphism M → I , such that the DG

Aop -module I has property (I).

Remark 3.5. a) Assume that a DG Aop -module M has an increasing filtration M1 ⊂M2 ⊂ ...

such that ∪Mi = M , each inclusion Mi →֒Mi+1 splits as a morphism of graded modules, and

each subquotient Mi+1/Mi is h -projective. Then M is h-projective. b) Assume that a DG

Aop -module N has a decreasing filtration N = N1 ⊃ N2 ⊃ ... such that ∩Ni = 0 , each

inclusion Ni+1 →֒ Ni splits as a morphism of graded modules, each subquotient Ni/Ni+1 is

h-injective (hence N/Ni is h-injective for each i ) and the natural map

N → lim
←
N/Ni

is an isomorphism. Then N is h-injective.

3.2. Some DG functors. Let B be a small DG category. The complex

AlgB :=
⊕

A,B∈ObB

Hom(A,B)

has a natural structure of a DG algebra possibly without a unit. It has the following property:

every finite subset of AlgB is contained in eAlgB e for some idempotent e such that de = 0

and ē = 0 . We say that a DG module M over AlgB is quasi-unital if every element of M

belongs to eM for some idempotent e ∈ AlgB (which may be assumed closed of degree 0

without loss of generality). If Φ is a DG B -module then

MΦ := ⊕A∈ObBΦ(A)
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is a quasi-unital DG module over AlgB . This way we get a DG equivalence between DG category

of DG B -modules and that of quasi-unital DG modules over AlgB .

Recall that a homomorphism of (unital) DG algebras φ : A → B induces functors

φ∗ : Bop-mod→ Aop-mod,

φ∗ : Aop-mod→ Bop-mod

φ! : Aop-mod→ Bop-mod

where φ∗ is the restriction of scalars, φ∗(M) = M ⊗A B and φ!(M) = HomAop(B,M) . The

DG functors (φ∗, φ∗) and (φ∗, φ
!) are adjoint: for M ∈ Aop-mod and N ∈ Bop-mod there

exist functorial isomorphisms of complexes

Hom(φ∗M,N) = Hom(M,φ∗N), Hom(φ∗N,M) = Hom(N,φ!M).

This generalizes to a DG functor F : A → B between DG categories. We obtain DG functors

F∗ : Bop-mod→ Aop-mod,

F ∗ : Aop-mod→ Bop-mod.

F ! : Aop-mod→ Bop-mod.

Namely, the DG functor F induces a homomorphism of DG algebras F : AlgA → AlgB and

hence defines functors F∗ , F ∗ between quasi-unital DG modules as above. (These functors F∗

and F ∗ are denoted in [Dr1] by ResF and IndF respectively.) The functor F ! is defined as

follows: for a quasi-unital AlgopA -module M put

F !(M) = HomAlgop

A
(AlgB,M)qu,

where Nqu ⊂ N is the quasi-unital part of a AlgopB -module N defined by

Nqu := Im(N ⊗k AlgB → N).

The DG functors (F ∗, F∗) and (F∗, F
!) are adjoint.

Lemma 3.6. Let F : A → B be a DG functor. Then

a) F∗ preserves acyclic DG modules;

b) F ∗ preserves h-projective DG modules;

c) F ! preserves h-injective DG modules.

Proof. The first assertion is obvious and the other two follow by adjunction. �

By Theorem 3.1 above the DG subcategories P(Aop) and I(Aop) of Aop-mod allow us to

define (left and right) derived functors of DG functors G : Aop-mod → Bop-mod in the usual

way. Namely for a DG Aop -module M choose quasi-isomorphisms P →M and M → I with

P ∈ P(Aop) and I ∈ I(Aop) . Put

LG(M) := G(P ), RG(M) := G(I).
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In particular for a DG functor F : A → B we will consider derived functors LF ∗ : D(Aop) →

D(Bop) , RF ! : D(Aop) → D(Bop) . We also have the obvious functor F∗ : D(Bop) → D(Aop) .

The functors (LF ∗, F∗) and (F∗,RF
!) are adjoint.

Proposition 3.7. Assume that the DG functor F : A → B is a quasi-equivalence. Then

a) F ∗ : P(Aop)→ P(Bop) is a quasi-equivalence;

b) LF ∗ : D(Aop)→ D(Bop) is an equivalence;

c) F∗ : D(Bop)→ D(Aop) is an equivalence.

d) RF ! : D(Aop)→ D(Bop) is an equivalence.

e) F ! : I(Aop)→ I(Bop) is a quasi-equivalence.

Proof. a) is proved in [Ke] and it implies b) by Theorem 3.1. c) (resp. d)) follows from b) (resp.

c) by adjunction. Finally, e) follows from d) by Theorem 3.1. �

Given DG Aop -modules M,N we denote by Extn(M,N) the group of morphisms

Homn
D(A)(M,N) .

3.3. DG category AR . Let R be a DG algebra. We may and will consider R as a DG

category with one object whose endomorphism DG algebra is R . We denote this DG category

again by R . Note that the DG category Rop-mod is just the category of right DG modules

over the DG algebra R .

For a DG category A we denote the DG category A⊗R by AR . Note that the collections

of objects of A and AR are naturally identified. A homomorphism of DG algebras φ : R→ Q

induces the obvious DG functor φ = id⊗φ : AR → AQ (which is the identity on objects),

whence the DG functors φ∗ , φ∗ , φ! between the DG categories AopR -mod and AopQ -mod . For

M ∈ AopR -mod we have

φ∗(M) = M ⊗R Q.

In case Qgr is a finitely generated Rgr -module we have

φ!(M) = HomRop(Q,M).

In particular, if R is augmented then the canonical homomorphisms of DG algebras p : k →

R and i : R → k induce functors

p : A → AR, i : AR → A,

such that i · p = IdA . So for S ∈ Aop-mod and T ∈ AopR -mod we have

p∗(S) = S ⊗k R, i∗(T ) = T ⊗R k, i!(T ) = HomRop(k, T ).

For an artinian DG algebra R we denote by R∗ the DG Rop -module Homk(R, k) . This

is a left R -module by the formula

rf(q) := (−1)(f̄+q̄)r̄f(qr)
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and a right R -module by the formula

fr(p) := f(rp)

for r, p ∈ R and f ∈ R∗ . The augmentation map R → k defines the canonical (left and

right) R -submodule k ⊂ R∗ . Moreover, the embedding k →֒ R∗ induces an isomorphism

k → HomR(k,R∗) .

Definition 3.8. Let R be an artinian DG algebra. A DG AopR -module M is called graded R -

free (resp. graded R -cofree) if there exists a DG Aop -module K such that Mgr ≃ (K ⊗R)gr

(resp. Mgr ≃ (K⊗R∗)gr ). Note that for such M one may take K = i∗M (resp. K = i!M ).

Lemma 3.9. Let R be an artinian DG algebra.

a) The full DG subcategories of DG AopR -modules consisting of graded R -free (resp. graded

R -cofree) modules are DG isomorphic. Namely, if M ∈ AopR -mod is graded R -free (resp.

graded R -cofree) then M ⊗R R
∗ (resp. HomRop(R∗,M) ) is graded R -cofree (resp. graded

R -free).

b) Let M be a graded R -free module. There is a natural isomorphism of DG Aop -modules

i∗M
∼
→ i!(M ⊗R R

∗).

Proof. a) If M is graded R -free, then obviously M ⊗RR
∗ is graded R -cofree. Assume that

N is graded R -cofree, i.e. Ngr = (K ⊗R∗)gr . Then

(HomRop(R∗, N))gr = (K ⊗HomRop(R∗,R∗))gr,

since dimkR <∞ . On the other hand

HomRop(R∗,R∗) = HomRop(R∗,Homk(R, k)) = Homk(R
∗ ⊗R R, k) = R,

so (HomRop(R∗, N))gr = (K ⊗R)gr .

b) For an arbitrary DG AopR -module M we have a natural (closed degree zero) morphism of

DG Aop -modules

i∗M → i!(M ⊗R R
∗), m⊗ 1 7→ (1 7→ m⊗ i),

where i : R→ k is the augmentation map. If M is graded R -free this map is an isomorphism.

�

Proposition 3.10. Let R be an artinian DG algebra. Assume that a DG AopR -module M

satisfies property (P) (resp. property (I)). Then M is graded R -free (resp. graded R -cofree).

Proof. Notice that the collection of graded R -free objects in AopR -mod is closed under taking

direct sums, direct summands (since the maximal ideal m ⊂ R is nilpotent) and direct products

(since R is finite dimensional). Similarly for graded R -cofree objects since the DG functors

in Lemma 3.9 a) preserve direct sums and products. Also notice that for any A ∈ AR the DG

AopR -module hA (resp. h∗A ) is graded R -free (resp. graded R -cofree). Now the proposition
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follows since a DG AopR -module P (resp. I ) with property (P) (resp. property (I)) as a graded

module is a direct sum of relatively projective DG modules (resp. a direct product of relatively

injective DG modules). �

Corollary 3.11. Let R be an artinian DG algebra. Then for any DG AopR -module M there

exist quasi-isomorphisms P → M and M → I such that P ∈ P(AopR ) , I ∈ I(AopR ) and P

is graded R -free, I is graded R -cofree.

Proof. Indeed, this follows from Theorem 3.4 and Proposition 3.10 above. �

Proposition 3.12. Let R be an artinian DG algebra and S, T ∈ AopR -mod be graded R -free

(resp. graded R -cofree).

a) There is an isomorphism of graded vector spaces Hom(S, T ) = Hom(i∗S, i∗T )⊗R , (resp.

Hom(S, T ) = Hom(i!S, i!T )⊗R ), which is an isomorphism of algebras if S = T. In particular,

the map i∗ : Hom(S, T )→ Hom(i∗S, i∗T ) (resp. i! : Hom(S, T )→ Hom(i!S, i!T ) ) is surjective.

b) The DG module S has a finite filtration with subquotients isomorphic to i∗S as DG

Aop -modules (resp. to i!S as DG Aop -modules).

c) The DG algebra End(S) has a finite filtration by DG ideals with subquotients isomorphic

to End(i∗S) (resp. End(i!S) ).

d) If f ∈ Hom(S, T ) is a closed morphism of degree zero such that i∗f (resp. i!f ) is an

isomorphism or a homotopy equivalence or a quasi-isomorphism, then f is also such.

Proof. Because of Lemma 3.9 above it suffices to prove the proposition for graded R -free mod-

ules. So assume that S , T are graded R -free.

a) This holds because R is finite dimensional.

b) We can refine the filtration of R by powers of the maximal ideal to get a filtration FiR by

ideals with 1-dimensional subquotients (and zero differential). Then the filtration FiS := S ·FiR

satisfies the desired properties.

c) Again the filtration Fi End(S) := End(S) · FiR has the desired properties.

d) If i∗f is an isomorphism, then f is surjective by the Nakayama lemma for R . Also f

is injective since T is graded R -free.

Assume that i∗f is a homotopy equivalence. Let C(f) ∈ AopR -mod be the cone of f . (It is

also graded R -free.) Then i∗C(f) ∈ Aop-mod is the cone C(i∗f) of the morphism i∗f . By

assumption the DG algebra End(C(i∗f)) is acyclic. But by part c) the complex End(C(f)) has

a finite filtration with subquotients isomorphic to the complex End(C(i∗f)) . Hence End(C(f))

is also acyclic, i.e. the DG module C(f) is null-homotopic, i.e. f is a homotopy equivalence.

Assume that i∗f is a quasi-isomorphism. Then in the above notation C(i∗f) is acyclic.

Since by part b) C(f) has a finite filtration with subquotients isomorphic to C(i∗f) , it is also

acyclic. Thus f is a quasi-isomorphism. �
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3.4. More DG functors. So far we considered DG functors F∗ , F ∗ , F ! between the DG

categories Aop -mod and Bop -mod which came from a DG functor F : A → B . We will also

need to consider a different type of DG functors.

Example 3.13. For an artinian DG algebra R and a small DG category A we will consider

two types of ”restriction of scalars” DG functors π∗, π! : AopR -mod → Rop-mod . Namely, for

M ∈ AopR -mod put

π∗M :=
∏

A∈ObAR

M(A), π!M :=
⊕

A∈ObAR

M(A).

We will also consider the two ”extension of scalars” functors π∗, π! : Rop-mod → AopR -mod

defined by

π∗(N)(A) := N ⊗
⊕

B∈ObA

HomA(A,B), π!(N)(A) := Homk(
⊕

B∈ObA

HomA(B,A), N)

for A ∈ ObAR . Notice that the DG functors (π∗, π∗) and (π!, π
!) are adjoint, that is for

M ∈ AopR -mod and N ∈ Rop-mod there is a functorial isomorphism of complexes

Hom(π∗N,M) = Hom(N,π∗M), Hom(π!M,N) = Hom(M,π!N).

The DG functors π∗, π! preserve acyclic DG modules, hence π∗ preserves h-injectives and

π! preserves h-projectives.

We have the following commutative functorial diagrams

AopR -mod
i∗
−→ Aop-mod

π! ↓ π! ↓

Rop-mod
i∗
−→ DG(k),

AopR -mod
i!
−→ Aop-mod

π∗ ↓ π∗ ↓

Rop-mod
i!
−→ DG(k).

Example 3.14. Fix E ∈ Aop-mod and put B = End(E) . Consider the DG functor

Σ = ΣE : Bop-mod→ Aop-mod

defined by Σ(M) = M ⊗B E . Clearly, Σ(B) = E . This DG functor gives rise to the functor

LΣ : D(Bop)→ D(Aop), LΣ(M) = M
L

⊗B E.
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3.5. Pre-triangulated DG categories. For any DG category A there exists a DG category

Apre−tr and a canonical full and faithful DG functor F : A → Apre-tr (see [BK, Dr1]). The

homotopy category Ho(Apre-tr) is canonically triangulated. The DG category A is called

pre-triangulated if the DG functor F is a quasi-equivalence. The DG category Apre-tr is pre-

triangulated.

Let B be another DG category and G : A → B be a quasi-equivalence. Then Gpre-tr :

Apre-tr → Bpre-tr is also a quasi-equivalence.

The DG functor F induces a DG isomorphism of DG categories F∗ : (Apre-tr)op-mod →

Aop-mod . Hence the functors F∗ : D((Apre-tr)op) → D(Aop) and LF ∗ : D(Aop) →

D((Apre-tr)op) are equivalences. We obtain the following corollary.

Corollary 3.15. Assume that a DG functor G1 : A → B induces a quasi-equivalence Gpre-tr
1 :

Apre-tr → Bpre-tr . Let C be another DG category and consider the DG functor G := G1 ⊗ id :

A⊗C → B⊗C . Then the functors G∗,LG
∗,RG! between the derived categories D((A⊗C)op)

and D((B ⊗ C)op) are equivalences.

Proof. The DG functor G induces the quasi-equivalence Gpre-tr : (A⊗ C)pre-tr → (B ⊗ C)pre-tr .

Hence the corollary follows from the above discussion and Proposition 3.6. �

Example 3.16. Suppose B is a pre-triangulated DG category. Let G1 : A →֒ B be an em-

bedding of a full DG subcategory so that the triangulated category Ho(B) is generated by the

collection of objects G1(ObA) . Then the assumptions of the previous corollary hold.

3.6. A few lemmas.

Lemma 3.17. Let R , Q be DG algebras and M be a DG Q⊗Rop -module.

a) For any DG modules N , S over the DG algebras Qop and Rop respectively there is a

natural isomorphism of complexes

HomRop(N ⊗QM,S)
∼
→ HomQop(N,HomRop(M,S)).

b) There is a natural quasi-isomorphism of complexes

RHomRop(N
L

⊗Q M,S)
∼
→ RHomQop(N,RHomRop(M,S)).

Proof. a) Indeed, for f ∈ HomRop(N ⊗Q M,S) define α(f) ∈ HomQ(N,HomRop(M,S)) by

the formula α(f)(n)(m) = f(n ⊗ m) . Conversely, for g ∈ HomQ(N,HomRop(M,S)) define

β(g) ∈ HomRop(N ⊗Q M,S) by the formula β(g)(n ⊗ m) = g(n)(m) . Then α and β are

mutually inverse isomorphisms of complexes.

b) Choose quasi-isomorphisms P → N and S → I , where P ∈ P(Qop) and I ∈ I(Rop)

and apply a). �

Lemma 3.18. Let R be an artinian DG algebra. Then in the DG category Rop-mod a direct

sum of copies of R∗ is h-injective.
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Proof. Let V be a graded vector space, M = V ⊗ R∗ ∈ Rop-mod and C an acyclic DG

Rop -module. Notice that M = Homk(R, V ) since dimR <∞ . Hence the complex

HomRop(C,M) = HomRop(C,Homk(R, V )) = Homk(C ⊗R R, V ) = Homk(C, V )

is acyclic. �

Lemma 3.19. Let B be a DG algebra, such that Bi = 0 for i > 0 . Then the category D(Bop)

has truncation functors: for any DG B -module M there exists a short exact sequence in the

abelian category Z0(B-mod)

τ<0M →M → τ≥0M,

where H i(τ<0M) = 0 if i ≥ 0 and H i(τ≥0M) = 0 for i < 0 .

Proof. Indeed, put τ<0M := ⊕i<0M
i ⊕ d(M−1) . �

Lemma 3.20. Let B be a DG algebra, s.t. Bi = 0 for i > 0 and dimBi <∞ for all i . Let

N be a DG B -module with finite dimensional cohomology. Then there exists an h-projective DG

B -module P and a quasi-isomorphism P → N , where P in addition satisfies the following

conditions

a) P i = 0 for i >> 0 ,

b) dimP i <∞ for all i .

Proof. First assume that N is concentrated in one degree, say N i = 0 for i 6= 0 . Consider

N as a k -module and put P0 := B⊗N . We have a natural surjective map of DG B -modules

ǫ : P0 → N which is also surjective on the cohomology. Let K := Ker ǫ . Then Ki = 0 for

i > 0 and dimKi < ∞ for all i . Consider K as a DG k -module and put P−1 := B ⊗K .

Again we have a surjective map of DG B -modules P−1 → K which is surjective and surjective

on cohomology. And so on. This way we obtain an exact sequence of DG B -modules

...→ P−1 → P0
ǫ
→ N → 0,

where P i−j = 0 for i > 0 and dimP i−j < ∞ for all j . Let P := ⊕jP−j [j] be the ”total”

DG B -module of the complex ...→ P−1 → P0 → 0 . Then ǫ : P → N is a quasi-isomorphism.

Since each DG B -module P−j has the property (P), the module P is h-projective by Remark

3.5a). Also P i = 0 for i > 0 and dimP i <∞ for all i .

How consider the general case. Let Hs(N) = 0 and H i(N) = 0 for all i < s . Replacing

N by τ≥sN (Lemma 3.19) we may and will assume that N i = 0 for i < s . Then M :=

(Ker dN ) ∩ N s is a DG B -submodule of N which is not zero. If the embedding M →֒ N

is a quasi-isomorphism, then we may replace N by M and so we are done by the previous

argument. Otherwise we have a short exact sequence of DG B -modules

o→M → N → N/M → 0
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with dimH(M),dimH(N/M) < dimH(N) . By the induction on dimH(N) we may assume

that the lemma holds for M and N/M . But then it also holds for N . �

Corollary 3.21. Let B be a DG algebra, s.t. Bi = 0 for i > 0 , dimBi < ∞ for all i and

the algebra H0(B) is local. Let N be a DG B -module with finite dimensional cohomology.

Then N is quasi-isomorphic to a finite dimensional DG B -module.

Proof. By Lemma 3.20 there exists a bounded above and locally finite DG B -module P which

is quasi-isomorphic to N . It remains to apply the appropriate truncation functor to P (Lemma

3.19). �

Corollary 3.22. Let B be an augmented DG algebra, s.t. Bi = 0 for i > 0 , dimBi < ∞

for all i and the algebra H0(B) is local. Denote by 〈k〉 ⊂ D(B) the triangulated envelope of

the DG B -module k . Let N be a DG B -module with finite dimensional cohomology. Then

N ∈ 〈k〉 .

Proof. By the previous corollary we may assume that N is finite dimensional. But then an easy

applying of the Nakayama lemma for H0(B) shows that N has a filtration by DG B -modules

with subquotients isomorphic to k . �

Lemma 3.23. Let B and C be DG algebras. Consider the DG algebra B⊗C and a homomor-

phism of DG algebras F : B → B⊗C , F (b) = b⊗1 . Let N be an h-projective (resp. h-injective)

DG B ⊗ C -module. Then the DG B -module F∗N is also h-projective (resp. h-injective).

Proof. The assertions follow from the fact that the DG functor F∗ : B ⊗ C-mod → B-mod has

a left adjoint DG functor F ∗ (resp. right adjoint DG functor F ! ) which preserves acyclic DG

modules. Indeed,

F ∗(M) = C ⊗kM, F !(M) = Homk(C,M).

�

Part 2. Deformation functors

4. The homotopy deformation and co-deformation pseudo-functors

Denote by Gpd the 2-category of groupoids.

Let E be a category and F,G : E → Gpd two pseudo-functors. A morphism ǫ : F → G is

called full and faithful (resp. an equivalence) if for every X ∈ ObE the functor ǫX : F (X) →

G(X) is full and faithful (resp. an equivalence). We call F and G equivalent if there exists

an equivalence F → G .

It the rest of this paper we will usually denote by A a fixed DG category and by E a DG

Aop -module.
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Let us define the homotopy deformation pseudo-functor Defh(E) : dgart → Gpd . This

functor describes ”infinitesimal” (i.e. along artinian DG algebras) deformations of E in the

homotopy category of DG Aop -modules.

Definition 4.1. Let R be an artinian DG algebra. An object in the groupoid DefhR(E) is a pair

(S, σ) , where S ∈ AopR -mod and σ : i∗S → E is an isomorphism of DG Aop -modules such that

the following holds: there exists an isomorphism of graded AopR -modules η : (E ⊗ R)gr → Sgr

so that the composition

E = i∗(E ⊗R)
i∗(η)
→ i∗S

σ
→ E

is the identity.

Given objects (S, σ), (S′, σ′) ∈ DefhR(E) a map f : (S, σ) → (S′, σ′) is an isomorphism

f : S → S′ such that σ′ · i∗f = σ . An allowable homotopy between maps f, g is a homotopy

h : f → g such that i∗(h) = 0 . We define morphisms in DefhR(E) to be classes of maps modulo

allowable homotopies.

Note that a homomorphism of artinian DG algebras φ : R → Q induces the functor φ∗ :

DefhR(E)→ DefhQ(E) . This defines the pseudo-functor

Def h(E) : dgart→ Gpd.

We refer to objects of DefhR(E) as homotopy R -deformations of E .

The term ”homotopy” in the above definition is used to distinguish the pseudo-functor Defh

from the pseudo-functor Def of derived deformations (Definition 10.1). It may be justified by

the fact that Defh(E) depends (up to equivalence) only on the isomorphism class of E in

Ho(Aop-mod) (Corollary 8.4 a)).

Example 4.2. We call (p∗E, id) ∈ DefhR(E) the trivial R -deformation of E .

Definition 4.3. Denote by Defh+(E) , Defh−(E) , Defh0(E) , Defhcl(E) the restrictions of the

pseudo-functor Defh(E) to subcategories dgart+ , dgart− , art , cart respectively.

Let us give an alternative description of the same deformation problem. We will define the

homotopy co-deformation pseudo-functor coDefh(E) and show that it is equivalent to Defh(E) .

The point is that in practice one should use Defh(E) for a h-projective E and coDefh(E) for

a h-injective E (see Section 11).

For an artinian DG algebra R recall the Rop -module R∗ = Homk(R, k) .

Definition 4.4. Let R be an artinian DG algebra. An object in the groupoid coDefh
R(E) is

a pair (T, τ) , where T is a DG AopR -module and τ : E → i!T is an isomorphism of DG

Aop -modules so that the following holds: there exists an isomorphism of graded AopR -modules

δ : T gr → (E ⊗R∗)gr such that the composition

E
τ
→ i!T

i!(δ)
→ i!(E ⊗R∗) = E
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is the identity.

Given objects (T, τ) and (T ′, τ ′) ∈ coDefhR(E) a map g : (T, τ) → (T ′, τ ′) is an isomor-

phism f : T → T ′ such that i!f · τ = τ ′ . An allowable homotopy between maps f, g is a

homotopy h : f → g such that i!(h) = 0 . We define morphisms in coDefhR(E) to be classes

of maps modulo allowable homotopies.

Note that a homomorphism of DG algebras φ : R→ Q induces the functor φ! : coDefh
R(E)→

coDefh
Q(E) . This defines the pseudo-functor

coDefh(E) : dgart→ Gpd.

We refer to objects of coDefh
R(E) as homotopy R -co-deformations of E .

Example 4.5. For example we can take T = E ⊗R∗ with the differential dE,R∗ := dE ⊗ 1 +

1⊗ dR∗ (and τ = id ). This we consider as the trivial R -co-deformation of E .

Definition 4.6. Denote by coDefh+(E) , coDefh−(E) , coDefh
0(E) , coDefhcl(E) the restrictions

of the pseudo-functor coDefh(E) to subcategories dgart+ , dgart− , art , cart respectively.

Proposition 4.7. There exists a natural equivalence of pseudo-functors

δ = δE : Defh(E)→ coDefh(E).

Proof. We use Lemma 3.9 above. Namely, let S be an R -deformation of E . Then S ⊗R R
∗

is an R -co-deformation of E . Conversely, given an R -co-deformation T of E the DG AopR -

module HomRop(R∗, T ) is an R -deformation of E . This defines mutually inverse equivalences

δR and δ−1
R between the groupoids DefhR(E) and coDefh

R(E) , which extend to morphisms

between pseudo-functors Defh(E) and coDefh(E) . Let us be a little more explicit.

Let φ : R→ Q be a homomorphism of artinian DG algebras and S ∈ Defh(E) . Then

δQ · φ
∗(S) = S ⊗R Q⊗Q Q

∗ = S ⊗R Q
∗, φ! · δR(S) = HomRop(Q, S ⊗R R

∗).

The isomorphism αφ of these DG AopQ -modules is defined by αφ(s ⊗ f)(q)(r) := sf(qφ(r))

for s ∈ S , f ∈ Q∗ , q ∈ Q , r ∈ R . Given another homomorphism ψ : Q → Q′ of DG

algebras one checks the cocycle condition αψφ = ψ!(αφ) · αψ (under the natural isomorphisms

(ψφ)∗ = ψ∗φ∗ , (ψφ)! = ψ!φ! ). �

5. Maurer-Cartan pseudo-functor

Definition 5.1. For a DG algebra C with the differential d consider the (inhomogeneous)

quadratic map

Q : C1 → C2; Q(α) = dα+ α2.

We denote by MC(C) the (usual) Maurer-Cartan cone

MC(C) = {α ∈ C1|Q(α) = 0}.
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Note that α ∈MC(C) is equivalent to the operator d+α : C → C having square zero. Thus

the set MC(C) describes the space of ”internal” deformations of the differential in the complex

C .

Definition 5.2. Let B be a DG algebra with the differential d and a nilpotent DG ideal

I ⊂ B . We define the Maurer-Cartan groupoid MC(B,I) as follows. The set of objects of

MC(B,I) is the cone MC(I) . Maps between objects are defined by means of the gauge group

G(B,I) := 1+I0 ( I0 is the degree zero component of I ) acting on MC(B,I) by the formula

g : α 7→ gαg−1 + gd(g−1),

where g ∈ G(B,I) , α ∈ MC(I) . (This comes from the conjugation action on the space of

differentials g : d + α 7→ g(d + α)g−1 .) So if g(α) = β , we call g a map from α to β .

Denote by G(α, β) the collection of such maps. We define the set Hom(α, β) in the category

MC(B,I) to consist of homotopy classes of maps, where the homotopy relation is defined as

follows. There is an action of the group I−1 on the set G(α, β) :

h : g 7→ g + d(h) + βh+ hα,

for h ∈ I−1, g ∈ G(α, β) . We call two maps homotopic, if they lie in the same I−1 -orbit.

To make the category MC(B,I) well defined we need to prove a lemma.

Lemma 5.3. Let α1, α2, α3, α4 ∈ MC(I) and g1 ∈ G(α1, α2) , g1, g3 ∈ G(α2, α3) , g4 ∈

G(α3, α4) . If g2 and g3 are homotopic, then so are g2g1 and g3g1 (resp. g4g2 and g4g3 ).

Proof. Omit. �

Let C be another DG algebra with a nilpotent DG ideal J ⊂ C . A homomorphism of DG

algebras ψ : B → C such that ψ(I) ⊂ J induces the functor

ψ∗ :MC(B,I)→MC(C,J ).

Definition 5.4. Let B be a DG algebra and R be an artinian DG algebra with the maximal

ideal m ⊂ R . Denote by MCR(B) the Maurer-Cartan groupoid MC(B ⊗ R,B ⊗ m) . A

homomorphism of artinian DG algebras φ : R → Q induces the functor φ∗ : MCR(B) →

MCQ(B) . Thus we obtain the Maurer-Cartan pseudo-functor

MC(B) : dgart→ Gpd.

We denote by MC+(B) , MC−(B) , MC0(B) , MCcl(B) the restrictions of the pseudo-functor

MC(B) to subcategories dgart+ , dgart− , art , cart .

Remark 5.5. A homomorphism of DG algebras ψ : C → B induces a morphism of pseudo-

functors

ψ∗ :MC(C)→MC(B).
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6. Description of pseudo-functors Defh(E) and coDefh(E)

We are going to give a description of the pseudo-functor Defh and hence also of the pseudo-

functor coDefh via the Maurer-Cartan pseudo-functor MC .

Proposition 6.1. Let A be a DG category and E ∈ Aop-mod . Denote by B the DG algebra

End(E) . Then there exists an equivalence of pseudo-functors θ = θE : MC(B) → Defh(E) .

(Hence also MC(B) and coDefh(E) are equivalent.)

Proof. Fix an artinian DG algebra R with the maximal ideal m . Let us define an equivalence

of groupoids

θR :MCR(B)→ DefhR(E).

Denote by S0 = p∗E ∈ AopR -mod the trivial R -deformation of E with the differential

dE,R = dE ⊗ 1 + 1⊗ dR . There is a natural isomorphism of DG algebras End(S0) = B ⊗R .

Let α ∈MC(B ⊗m) =MCR(B) . Then in particular α ∈ End1(S0) . Hence dα := dE,R +α

is an endomorphism of degree 1 of the graded module Sgr
0 . The Maurer-Cartan condition on α

is equivalent to d2
α = 0 . Thus we obtain an object Sα ∈ A

op
R -mod . Clearly i∗Sα = E , so that

θR(α) := (Sα, id) ∈ DefhR(E).

One checks directly that this map on objects extends naturally to a functor θR :MCR(B)→

DefhR(E) . Indeed, maps between Maurer-Cartan objects induce isomorphisms of the correspond-

ing deformations; also homotopies between such maps become allowable homotopies between the

corresponding isomorphisms.

It is clear that the functors θR are compatible with the functors φ∗ induced by morphisms

of DG algebras φ : R→ Q . So we obtain a morphism of pseudo-functors

θ :MC(B)→ Defh(E).

It suffices to prove that θR is an equivalence for each R .

Surjective. Let (T, τ) ∈ DefhR(E) . We may and will assume that T gr = Sgr0 and τ = id .

Then αT := dT − dR,E ∈ End1(S0) = (B ⊗R)1 is an element in MC(B ⊗R) . Since i∗αT = 0

it follows that αT ∈MCR(B) . Thus (T, τ) = θR(αT ) .

Full. Let α, β ∈ MCR(B) . An isomorphism between the corresponding objects θR(α) and

θR(β) is defined by an element f ∈ End(S0) = (B⊗R) of degree zero. The condition i∗f = idZ

means that f ∈ 1 + (B ⊗m)0 . Thus f ∈ G(α, β) .

Faithful. Let α, β ∈ MCR(B) and f, g ∈ G(α, β) . One checks directly that f and g are

homotopic (i.e. define the same morphism in MCR(B) ) if and only if there exists an allowable

homotopy between θR(f) and θR(g) . This proves the proposition. �

Corollary 6.2. For E ∈ Aop-mod the pseudo-functors Defh(E) and coDefh(E) depend (up

to equivalence) only on the DG algebra End(E) .
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We will prove a stronger result in Corollary 8.2 below.

Example 6.3. Let E ∈ Aop-mod and denote B = End(E) . Consider B as a (free) right B -

module, i.e. B ∈ Bop-mod . Then Defh(B) ≃ Defh(E) ( ≃ coDefh(B) ≃ coDefh(E) ) because

End(B) = End(E) = B . We will describe this equivalence directly in Section 9 below.

7. Obstruction Theory

It is convenient to describe the obstruction theory for our (equivalent) deformation pseudo-

functors Defh and coDefh using the Maurer-Cartan pseudo-functor MC(B) for a fixed DG

algebra B .

Let R be an artinian DG algebra with a maximal ideal m , such that mn+1 = 0 . Put

I = mn , R = R/I and π : R → R the projection morphism. We have mI = Im = 0 .

Note that the kernel of the homomorphism 1⊗ π : B⊗R → B⊗R is the (DG) ideal B⊗ I .

The next proposition describes the obstruction theory for lifting objects and morphisms along

the functor

π∗ :MCR(B)→MCR(B).

It is close to [GM]. Note however a difference in part 3) and part 4) since we do not assume that

out DG algebras live in nonnegative dimensions (and of course we work with DG algebras and

not with DG Lie algebras).

Proposition 7.1. 1). There exists a map o2 : ObMCR(B) → H2(B ⊗ I) such that α ∈

ObMCR(B) is in the image of π∗ if and only if o2(α) = 0 . Furthermore if α, β ∈ ObMCR(B)

are isomorphic, then o2(α) = 0 if and only if o2(β) = 0 .

2). Let ξ ∈ ObMCR(B) . Assume that the fiber (π∗)−1(ξ) is not empty. Then there exists

a simply transitive action of the group Z1(B ⊗ I) on the set Ob(π∗)−1(ξ) . Moreover the

composition of the difference map

Ob(π∗)−1(ξ)×Ob(π∗)−1(ξ)→ Z1(B ⊗ I)

with the projection

Z1(B ⊗ I)→ H1(B ⊗ I)

which we denote by

o1 : Ob(π∗)−1(ξ)×Ob(π∗)−1(ξ)→ H1(B ⊗ I)

has the following property: for α, β ∈ Ob(π∗)−1(ξ) there exists a morphism γ : α → β s.t.

π∗(γ) = idξ if and only if o1(α, β) = 0 .

3). Let α̃, β̃ ∈ ObMCR(B) be isomorphic objects and let f : α → β be a morphism from

α = π∗(α̃) to β = π∗(β̃) . Then there is a transitive action of the group H0(B ⊗ I) on the set

(π∗)−1(f) of morphisms f̃ : α̃→ β̃ such that π∗(f̃) = f .
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4). In the notation of 3) suppose that the fiber (π∗)−1(f) is non-empty. Then the kernel of

the above action coincides with the kernel of the map

(7.1) H0(B ⊗ I)→ H0(B ⊗m,dα,β),

where dα,β is a differential on the graded vector space B ⊗m given by the formula

dα,β(x) = dx+ βx− (−1)x̄xα.

In particular the difference map

o0 : (π∗)−1(f)× (π∗)−1(f)→ Im(H0(B ⊗ I)→ H0(B ⊗m,dα,β))

has the property: if f̃ , f̃ ′ ∈ (π∗)−1(f) , then f̃ = f̃ ′ if and only if o0(f̃ , f̃
′) = 0 .

Proof. 1) Let α ∈ ObMCR(B) = MC(B⊗ (m/I)) . Choose α̃ ∈ (B⊗m)1 such that π(α̃) = α .

Consider the element

Q(α̃) = dα̃+ α̃2 ∈ (B ⊗m)2.

Since Q(α) = 0 we have Q(α̃) ∈ (B ⊗ I)2 . We claim that dQ(α̃) = 0 . Indeed,

dQ(α̃) = d(α̃2) = d(α̃)α̃− α̃d(α̃).

We have d(α̃) ≡ α̃2(mod(B ⊗ I)). Hence dQ(α̃) = −α̃3 + α̃3 = 0 (since I ·m = 0 ).

Furthermore suppose that α̃′ ∈ (B ⊗m)1 is another lift of α , i.e. α̃′ − α̃ ∈ (B ⊗ I)1 . Then

Q(α̃′)−Q(α̃) = d(α̃′ − α̃) + (α̃′ − α̃)(α̃′ + α̃) = d(α̃′ − α̃).

Thus the cohomology class of the cocycle Q(α̃) is independent of the lift α̃ . We denote this

class by o2(α) ∈ H2(B ⊗ I) .

If α = π∗(α̃) for some α̃ ∈ ObMCR(B) , then clearly o2(α) = 0 . Conversely, suppose

o2(α) = 0 and let α̃ be as above. Then dQ(α̃) = dτ for some τ ∈ (B⊗ I)1 . Put α̃′ = α̃− τ .

Then

Q(α̃′) = dα̃− dτ + α̃2 − α̃τ − τα̃+ τ2 = Q(α̃)− dτ = 0.

Let us prove the last assertion in 1). Assume that π∗(α̃) = α and β = g(α) for some

g ∈ 1 + (B ⊗ m/I)0 . Choose a lift g̃ ∈ 1 + (B ⊗ m)0 of g and put β̃ := g̃(α̃) . Then

π∗(β̃) = β . This proves 1).

2). Let α ∈ Ob(π∗)−1(ξ) and η ∈ Z1(B ⊗ I) . Then

Q(α+ η) = dα+ dη + α2 + αη + ηα+ η2 = Q(α) + dη = 0.

So α+η ∈ Ob(π∗)−1(ξ) . This defines the action of the group Z1(B⊗I) on the set Ob(π∗)−1(ξ) .

Let α, β ∈ Ob(π∗)−1(ξ) . Then α− β ∈ (B ⊗ I)1 and

d(α− β) = dα− dβ + β(α − β) + (α− β)β + (α− β)2 = Q(α)−Q(β) = 0.
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Thus Z1(B ⊗ I) acts simply transitively on Ob(π∗)−1(ξ) . Now let o1(α, β) ∈ H1(B ⊗ I) be

the cohomology class of α−β . We claim that there exists a morphism γ : α→ β covering idξ

if and only if o1(α, β) = 0 .

Indeed, let γ be such a morphism. Then by definition the morphisms π∗(γ) and idξ are

homotopic. That is there exists h ∈ (B ⊗ (m/I))−1 such that

idξ = π∗(γ) + d(h) + ξh+ hξ.

Choose a lifting h̃ ∈ (B ⊗m)−1 on h and replace the morphism γ by the homotopical one

δ = γ + d(h̃) + βh̃+ h̃α.

Thus δ = 1 + u , where u ∈ (B ⊗ I)0 . But then

β = δαδ−1 + δd(δ−1) = α− du,

so that o1(α, β) = 0 .

Conversely, let α− β = du for some u ∈ (B ⊗ I)0 . Then δ = 1 + u is a morphism from α

to β and π∗(δ) = idξ . This proves 2).

3). Let us define the action of the group Z0(B ⊗ I) on the set (π∗)−1(f) . Let f̃ : α̃ → β̃

be a lift of f , and v ∈ Z0(B ⊗ I) . Then f̃ + v also belongs to (π∗)−1(f) . If v = du for

u ∈ (B ⊗ I)−1 , then

f̃ + v = f̃ + du+ β̃u+ uα̃

and hence morphisms f̃ and f̃ + v are homotopic. This induces the action of H0(B ⊗ I) on

the set (π∗)−1(f) .

To show that this action is transitive let f̃ ′ : α̃ → β̃ be another morphism in (π∗)−1(f) .

This means by definition that there exists h ∈ (B ⊗ (m/I))−1 such that

f = π∗(f̃ ′) + dh+ βh+ hα.

Choose a lifting h̃ ∈ (B ⊗m)−1 of h and replace f̃ ′ by the homotopical morphism

g̃ = f̃ ′ + dh̃+ β̃h̃+ h̃α̃.

Then g̃ = f̃ + v for v ∈ (B⊗ I)0 . Since f̃ , g̃ : α̃→ β̃ we must have that v ∈ Z0(B⊗ I) . This

shows the transitivity and proves 3).

4). Suppose that for some v ∈ Z0(B⊗I) and for some f̃ ∈ (π∗)−1(f) we have that f̃+v = f̃ .

This means, by definition, that there exists an element h ∈ (B ⊗m)−1 such that dα,β(h) = v .

In other words, the class [v] ∈ H0(B⊗ I) lies in the kernel of the map (7.1). This proves 4). �



24 ALEXANDER I. EFIMOV, VALERY A. LUNTS, AND DMITRI O. ORLOV

8. Invariance theorem and its implications

Theorem 8.1. Let φ : B → C be a quasi-isomorphism of DG algebras. Then the induced

morphism of pseudo-functors

φ∗ :MC(B)→MC(C)

is an equivalence.

Proof. The proof is almost the same as that of Theorem 2.4 in [GM]. We present it for reader’s

convenience and also because of the slight difference in language: in [GM] they work with DG

Lie algebras as opposed to DG algebras.

Fix an artinian DG algebra R with the maximal ideal m ⊂ R , such that mn+1 = 0 . We

prove that

φ∗ :MCR(B)→MCR(C)

is an equivalence by induction on n . If n = o , then both groupoids contain one object and one

morphism, so are equivalent. Let n > 0 . Put I = mn with the projection π : R→ R/I = R .

We have the commutative functorial diagram

MCR(B)
φ∗

→ MCR(C)

π∗ ↓ ↓ π∗

MCR(B)
φ∗

→ MCR(C).

By induction we may assume that the bottom functor is an equivalence. To prove the same

about the top one we need to analyze the fibers of the functor π∗ . This has been done by the

obstruction theory.

We will prove that the functor

φ∗ :MCR(B)→MCR(C)

is surjective on the isomorphism classes of objects, is full and is faithful.

Surjective on isomorphism classes. Let β ∈ ObMCR(C) . Then π∗β ∈ ObMCR(C) . By

the induction hypothesis there exists α′ ∈ ObMCR(C) and an isomorphism g : φ∗α′ → π∗β .

Now

H2(φ)o2(α
′) = o2(φ

∗α′) = o2(π
∗β) = 0.

Hence o2(α
′) = 0 , so there exists α̃ ∈ ObMCR(B) such that π∗α̃ = α′ , and hence

φ∗π∗α̃ = π∗φ∗α̃ = φ∗α′.

Choose a lift g̃ ∈ 1 + (C ⊗m)0 of g and put β̃ = g̃−1(β) . Then

π∗(β̃) = π∗(g̃−1(β)) = g−1π∗β = φ∗α′.
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The obstruction to the existence of an isomorphism φ∗α̃→ β̃ covering idπ∗(α′) is an element

o1(φ
∗(α̃), β̃) ∈ H1(C ⊗ I) . Since H1(φ) is surjective there exists a cocycle u ∈ Z1(B⊗ I) such

that H1(φ)[u] = o1(φ
∗(α̃), β̃) . Put α = α̃− u ∈ ObMCR(B) . Then

o1(φ
∗α, β̃) = o1(φ

∗α, φ∗α̃) + o1(φ
∗α̃, β̃)

= H1(φ)o1(α, α̃) + o1(φ
∗α̃, β̃)

= −H1(φ)[u] + o1(φ
∗α̃, β) = 0

This proves the surjectivity of φ∗ on isomorphism classes.

Full. Let f : φ∗α1 → φ∗α2 be a morphism in MCR(C) . Then π∗f is a morphism in MCR(C) :

π∗(f) : φ∗π∗α1 → φ∗π∗α2.

By induction hypothesis there exists g : π∗α1 → π∗α2 such that φ∗(g) = π∗(f) . Let

g̃ ∈ 1 + (C ⊗m)0 be any lift of g . Then π∗(g̃α1) = π∗α2 . The obstruction to the existence

of a morphism γ : g̃α1 → α2 covering idπ∗α2
is an element o1(g̃α1, α2) ∈ H1(B ⊗ I) . By

assumption H1(φ) is an isomorphism and we know that

H1(φ)(o1(g̃α1, α2)) = o1(φ
∗g̃α1, φ

∗α2) = 0,

since the morphism f ·(φ∗g̃)−1 is covering the identity morphism idπ∗φ∗α2
. Thus o1(g̃α1, α2) =

0 and γ exists. Then γ · g̃ : α1 → α2 is covering g : π∗α1 → π∗α2 . Hence both morphisms

φ∗(γ · g̃) and f are covering π∗(f) . The obstruction to their equality is an element o0(φ
∗(γ ·

g̃), f) ∈ Im(H0(C⊗I)→ H0(C⊗m)) . Let v ∈ H0(C⊗I) be a representative of this element and

u ∈ Z0(B⊗I) be a representative of the inverse image of v under H0(φ) . Then φ∗(γ · g̃+u) =

f .

Faithful. Let γ1, γ2 : α1 → α2 be morphisms in MCR(B) with φ∗γ1 = φ∗γ2 . Then φ∗π∗γ1 =

φ∗π∗γ2 . By the induction hypothesis π∗γ1 = π∗γ2 , so the obstruction o0(γ1, γ2) ∈ Im(H0(B ⊗

I)→ H0(B ⊗m,dα1,α2)) is defined. Now the image of o0(γ1, γ2) under the map

(8.1) Im(H0(B ⊗ I)→ H0(B ⊗m,dα1,α2))→ Im(H0(C ⊗ I)→ H0(C ⊗m,dφ
∗α1,φ

∗α2))

equals to o0(φ
∗γ1, φ

∗γ2) = 0 . So it remains to prove that the map (8.1) is an isomorphism.

Clearly, it is sufficient to prove that the morphism of complexes

φα1,α2

R : (B ⊗m,dα1,α2))→ (C ⊗m,dφ
∗α1,φ

∗α2))

is a quasi-isomorphism. Note that these complexes have finite filtrations by subcomplexes B⊗mi

and C ⊗mi respectively. The morphism φα1,α2

R is compatible with these filtrations and induces

quasi-isomorphisms on the subquotients. Hence φα1,α2

R is a quasi-isomorphism. This proves the

theorem. �

Corollary 8.2. The homotopy (co-) deformation pseudo-functor of E ∈ Aop-mod depends (up

to equivalence) only on the quasi-isomorphism class of the DG algebra End(E) .
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Proof. This follows from Theorem 8.1 and Proposition 6.1. �

The next proposition provides two examples of this situation. It was communicated to us by

Bernhard Keller.

Proposition 8.3. (Keller) a) Assume that E′ ∈ Aop-mod is homotopy equivalent to E . Then

the DG algebras End(E) and End(E′) are canonically quasi-isomorphic.

b) Let P ∈ P(Aop) and I ∈ I(Aop) be quasi-isomorphic. Then the DG algebras End(P )

and End(I) are canonically quasi-isomorphic.

Proof. a) Let g : E → E′ be a homotopy equivalence. Consider its cone C(g) ∈ Aop-mod .

Let C ⊂ End(C(g)) be the DG subalgebra consisting of endomorphisms which leave E′ stable.

There are natural projections p : C → End(E′) and q : C → End(E) . We claim that p and

q are quasi-isomorphisms. Indeed, Ker(p) (resp. Ker(q) ) is the complex Hom(E[1], C(g))

(resp. Hom(C(g), E′) ). These complexes are acyclic, since g is a homotopy equivalence.

b) The proof is similar. Let f : P → I be a quasi-isomorphism. Then the cone C(f)

is acyclic. We consider the DG subalgebra D ⊂ End(C(f)) which leaves I stable. Then

D is quasi-isomorphic to End(I) and End(P ) because the complexes Hom(P [1], C(f)) and

Hom(C(f), I) are acyclic. �

Corollary 8.4. a) If DG Aop -modules E and E′ are homotopy equivalent then the pseudo-

functors Defh(E) , coDefh(E) , Defh(E′) , coDefh(E′) are canonically equivalent.

b) Let P → I be a quasi-isomorphism between P ∈ P(Aop) and I ∈ I(Aop) . Then the

pseudo-functors Defh(P ) , coDefh(P ) , Defh(I) , coDefh(I) are canonically equivalent.

Proof. Indeed, this follows from Proposition 8.3 and Corollary 8.2. �

Actually, one can prove a more precise statement.

Proposition 8.5. Fix an artinian DG algebra R .

a) Let g : E → E′ be a homotopy equivalence of DG Aop -modules. Assume that (V, id) ∈

DefhR(E) and (V ′, id) ∈ DefhR(E′) are objects that correspond to each other via the equivalence

DefhR(E) ≃ DefhR(E′) of Corollary 8.4. Then there exists a homotopy equivalence g̃ : V → V ′

which extends g , i.e. i∗g̃ = g . Similarly for the objects of coDefh
R with i! instead of i∗ .

b) Let f : P → I be a quasi-isomorphism with P ∈ P(Aop) , I ∈ I(Aop) . Assume that

(S, id) ∈ DefhR(P ) and (T, id) ∈ DefhR(I) are objects that correspond to each other via the

equivalence DefhR(P ) ≃ DefhR(I) of Corollary 8.4. Then there exists a quasi-isomorphism f̃ :

S → T which extends f , i.e. i∗f̃ = f . Similarly for the objects of coDefh
R with i! instead

of i∗ .

Proof. a) Consider the DG algebra

C ⊂ End(C(g))
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as in the proof of Proposition 8.3. We proved there that the natural projections End(E) ←

C → End(E′) are quasi-isomorphisms. Hence the induced functors between groupoids

MCR(End(E)) ←MCR(C) →MCR(End(E′)) are equivalences by Theorem 8.1. Using Propo-

sition 6.1 we may and will assume that deformations (V, id) , (V ′, id) correspond to elements

αE ∈MCR(End(E)) , αE′ ∈MCR(End(E′)) which come from the same element α ∈MCR(C) .

Consider the DG modules E ⊗ R , E′ ⊗ R with the differentials dE ⊗ 1 + 1 ⊗ dR and

dE′ ⊗ 1 + 1⊗ dR respectively and the morphism g ⊗ 1 : E ⊗R → E′ ⊗R . Then

C ⊗R =

(

End(E′ ⊗R) Hom(E[1]⊗R, E′ ⊗R)

0 End(E ⊗R)

)

⊂ End(C(g ⊗ 1)),

and

α =

(

αE′ t

0 αE

)

.

Recall that the differential in the DG module C(g⊗1) is of the form (dE′⊗1, dE [1]⊗1+g[1]⊗

1) . The element α defines a new differential dα on C(g⊗1) which is (dE′⊗1+αE′ , (dE [1]⊗

1 + αE) + (g[1] ⊗ 1 + t)) . The fact that d2
α = 0 implies that g̃ := g ⊗ 1 + t[−1] : V → V ′ is a

closed morphism of degree zero and hence the DG module C(g⊗ 1) with the differential dα is

the cone C(g̃) of this morphism.

Clearly, i∗g̃ = g and it remains to prove that g̃ is a homotopy equivalence. This in turn

is equivalent to the acyclicity of the DG algebra End(C(g̃)) . But recall that the differential in

End(C(g̃)) is an ” R -deformation” of the differential in the DG algebra End(C(g)) which is

acyclic, since g is a homotopy equivalence. Therefore End(C(g̃)) is also acyclic. This proves the

first statement in a). The last statement follows by the equivalence of groupoids DefhR ≃ coDefh
R

(Proposition 4.7).

The proof of b) is similar: exactly in the same way we construct a closed morphism of degree

zero f̃ : S → T which extends f . Then f̃ is a quasi-isomorphism, because f is such. �

Corollary 8.6. Fix an artinian DG algebra R .

a) Let g : E → E′ be a homotopy equivalence as in Proposition 8.5a). Let (V, id) ∈

DefhR(E) and (V ′, id) ∈ DefhR(E′) be objects corresponding to each other under the equiva-

lence DefhR(E) ≃ DefhR(E′) . Then i∗V = Li∗V if and only if i∗V ′ = Li∗V ′ . Similarly for the

objects of coDefh
R with i! and Ri! instead of i∗ and Li∗ .

b) Let f : P → I be a quasi-isomorphism as in Proposition 8.5b). Let (S, id) ∈ DefhR(P ) and

(T, id) ∈ DefhR(I) be objects which correspond to each other under the equivalence DefhR(P ) ≃

DefhR(I). Then i∗S = Li∗S if and only if i∗T = Li∗T . Similarly for the objects of coDefh
R

with i! and Ri! instead of i∗ and Li∗ .

Proof. This follows immediately from Proposition 8.5. �
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Proposition 8.7. Let F : A → C be a DG functor which induces an equivalence of derived

categories LF ∗ : D(Aop) → D(Cop) . (For example, this is the case if F induces a quasi-

equivalence F pre-tr : Apre-tr → Cpre-tr (Corollary 3.15)).

a) Let P ∈ P(Aop) . Then the map of DG algebras F ∗ : End(P )→ End(F ∗(P )) is a quasi-

isomorphism. Hence the deformation pseudo-functors Defh and coDefh of P and F ∗(P ) are

equivalent.

b) Let I ∈ I(Aop) . Then the map of DG algebras F ! : End(I) → End(F !(I)) is a quasi-

isomorphism. Hence the deformation pseudo-functors Defh and coDefh of I and F !(I) are

equivalent.

Proof. a) By Lemma 3.6 we have F ∗(P ) ∈ P(Cop) . Hence the assertion follows from Theorems

3.1 and 8.1.

b) The functor RF ! : D(Aop) → D(Cop) is also an equivalence because of adjunctions

(F∗,RF
!), (LF ∗, F∗) . Also F !(I) ∈ I(Cop) (Lemma 3.6). Hence the assertion follows from

Theorems 3.1 and 8.1. �

9. Direct relation between pseudo-functors Defh(F ) and Defh(B) ( coDefh(F )

and coDefh(B) )

9.1. DG functor Σ . Let F ∈ Aop-mod and put B = End(F ) . Recall the DG functor from

Example 3.14

Σ = ΣF : Bop-mod→ Aop-mod, Σ(M) = M ⊗B F.

For each artinian DG algebra R we obtain the corresponding DG functor

ΣR : (B ⊗R)op-mod→ AopR -mod, ΣR(M) = M ⊗B F.

Lemma 9.1. The DG functors ΣR have the following properties.

a) If a DG (B ⊗R)op -module M is graded R -free (resp. graded R -cofree), then so is the

DG AopR -module ΣR(M) .

b) Let φ : R → Q be a homomorphism of artinian DG algebras. Then there are natural

isomorphisms of DG functors

ΣQ · φ
∗ = φ∗ · ΣR, ΣR · φ∗ = φ∗ · ΣQ.

In particular,

Σ · i∗ = i∗ · ΣR.

c) There is a natural isomorphism of DG functors

ΣQ · φ
! = φ! · ΣR

on the full DG subcategory of DG (B ⊗ R)op -modules M such that Mgr ≃ Mgr
1 ⊗M

gr
2 for

a Bop -module M1 and an Rop -module M2 . (This subcategory includes in particular graded
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R -cofree modules.) Therefore

Σ · i! = i! · ΣR

on this subcategory.

d) For a graded R -free DG (B ⊗R)op -module M there is a functorial isomorphism

ΣR(M ⊗R R
∗) = ΣR(M) ⊗R R

∗

Proof. The only nontrivial assertion is c). For any DG (B⊗R)op -module M there is a natural

closed morphism of degree zero of DG AopQ -modules

γM : HomRop(Q,M) ⊗B F → HomRop(Q,M ⊗B F ), γ(g ⊗ f)(q) = (−1)f̄ q̄g(q)⊗ f.

Since Q is a finite Rop -module γM is an isomorphism if Mgr ≃Mgr
1 ⊗M

gr
2 for a Bop -module

M1 and an Rop -module M2 . �

Proposition 9.2. a) For each artinian DG algebra R the DG functor ΣR induces functors

between groupoids

Defh(ΣR) : DefhR(B)→ DefhR(F ),

coDefh(ΣR) : coDefh
R(B)→ coDefhR(F ),

b) The collection of DG functors {ΣR}R defines morphisms of pseudo-functors

Defh(Σ) : Defh(B)→ Defh(F ),

coDefh(Σ) : Defh(B)→ Defh(F ).

c) The morphism Defh(Σ) is compatible with the equivalence θ of Proposition 6.1. That is

the functorial diagram

MC(B) = MC(B)

θB ↓ ↓ θF

Defh(B)
Defh(Σ)
→ Defh(F )

is commutative.

d) The morphisms Defh(Σ) and coDefh(Σ) are compatible with the equivalence δ of Propo-

sition 4.7. That is the functorial diagram

Defh(B)
Defh(Σ)
→ Defh(F )

δB ↓ ↓ δF

coDefh(B)
coDefh(Σ)
→ coDefh(F )

is commutative.

e) The morphisms Defh(Σ) and coDefh(Σ) are equivalences, i.e. for each R the functors

Defh(ΣR) and coDefh(ΣR) are equivalences.

Proof. a) and b) follow from parts a),b),c) of Lemma 9.1; c) is obvious; d) follows from part d)

of Lemma 9.1; e) follows from c) and d). �
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9.2. DG functor ψ∗ . Let ψ : C → B be a homomorphism of DG algebras. Recall the

corresponding DG functor

ψ∗ : Cop-mod→ Bop-mod, ψ∗(M) = M ⊗C B.

For each artinian DG algebra R we obtain a similar DG functor

ψ∗R : (C ⊗R)op-mod→ (B ⊗R)op-mod, ψ∗(M) = M ⊗C B.

The next lemma and proposition are complete analogues of Lemma 9.1 and Proposition 9.2.

Lemma 9.3. The DG functors ψ∗R have the following properties.

a) If a DG (C ⊗R)op -module M is graded R -free (resp. graded R -cofree), then so is the

DG (B ⊗R)op -module ψ∗R(M) .

b) Let φ : R → Q be a homomorphism of artinian DG algebras. Then there are natural

isomorphisms of DG functors

ψ∗Q · φ
∗ = φ∗ · ψ∗R, ψ∗R · φ∗ = φ∗ · ψ

∗
Q.

In particular,

ψ∗ · i∗ = i∗ · ψ∗R.

c) There is a natural isomorphism of DG functors

ψ∗Q · φ
! = φ! · ψ∗R

on the full DG subcategory of DG (C ⊗ R)op -modules M such that Mgr ≃ Mgr
1 ⊗M

gr
2 for

a Cop -module M1 and an Rop -module M2 . (This subcategory includes in particular graded

R -cofree modules.) Therefore

ψ∗ · i! = i! · ψ∗R

on this subcategory.

d) For a graded R -free DG (C ⊗R)op -module M there is a functorial isomorphism

ψ∗R(M ⊗R R
∗) = ψ∗R(M)⊗R R

∗

Proof. As in Lemma 9.1, the only nontrivial assertion is c). For any DG (C ⊗R)op -module M

there is a natural closed morphism of degree zero of DG AopQ -modules

ηM : HomRop(Q,M)⊗C B → HomRop(Q,M ⊗C B), γ(g ⊗ f)(q) = (−1)f̄ q̄g(q) ⊗ f.

Since Q is a finite Rop -module ηM is an isomorphism if Mgr ≃Mgr
1 ⊗M

gr
2 for a Bop -module

M1 and an Rop -module M2 . �

Proposition 9.4. a) For each artinian DG algebra R the DG functor ψ∗R induces functors

between groupoids

Defh(ψ∗R) : DefhR(C)→ DefhR(B),

coDefh(ψ∗R) : coDefh
R(C)→ coDefh

R(B),
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b) The collection of DG functors {ψ∗R}R defines morphisms

Defh(ψ∗) : Defh(C)→ Defh(B),

coDefh(ψ∗) : Defh(C)→ Defh(B).

c) The morphism Defh(ψ∗) is compatible with the equivalence θ of Proposition 6.1. That is

the functorial diagram

MC(C)
ψ∗

→ MC(B)

θC ↓ ↓ θB

Defh(C)
Defh(ψ∗)
→ Defh(B)

is commutative.

d) The morphisms Defh(ψ∗) and coDefh(ψ∗) are compatible with the equivalence δ of

Proposition 4.7. That is the functorial diagram

Defh(C)
Defh(ψ∗)
→ Defh(B)

δC ↓ ↓ δB

coDefh(C)
coDefh(ψ∗)
→ coDefh(B)

is commutative.

e) Assume that ψ is a quasi-isomorphism. Then the morphisms Defh(ψ∗) and coDefh(ψ∗)

are equivalences, i.e. for each R the functors Defh(ψ∗R) and coDefh(ψ∗R) are equivalences.

Proof. a) and b) follow from parts a),b),c) of Lemma 9.3; c) is obvious; d) follows from part d)

of Lemma 9.3; e) follows from c),d) and Theorem 8.1. �

Later we will be especially interested in the following example.

Lemma 9.5. (Keller). a) Assume that the DG algebra B satisfies the following conditions:

H i(B) = 0 for i < 0 , H0(B) = k (resp. H0(B) = k ). Then there exists a DG subalgebra

C ⊂ B with the properties: Ci = 0 for i < 0 , C0 = k , and the embedding ψ : C →֒ B is

a quasi-isomorphism (resp. the induced map H i(ψ) : H i(C) → H i(B) is an isomorphism for

i ≥ 0 ).

Proof. Indeed, put C0 = k , C1 = K ⊕ L , where d(K) = 0 and K projects isomorphically to

H1(B) , and d : L
∼
→ d(B1) ⊂ B2 . Then take Ci = Bi for i ≥ 2 and Ci = 0 for i < 0 . �

10. The derived deformation and co-deformation pseudo-functors

10.1. The pseudo-functor Def(E) . Fix a DG category A and an object E ∈ Aop-mod .

We are going to define a pseudo-functor Def(E) from the category dgart to the category

Gpd of groupoids. This pseudo-functor assigns to a DG algebra R the groupoid DefR(E) of

R -deformations of E in the derived category D(Aop) .
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Definition 10.1. Fix an artinian DG algebra R . An object of the groupoid DefR(E) is a pair

(S, σ) , where S ∈ D(AopR ) and σ is an isomorphism (in D(Aop) )

σ : Li∗S → E.

A morphism f : (S, σ) → (T, τ) between two R -deformations of E is an isomorphism (in

D(AopR ) ) f : S → T , such that

τ · Li∗(f) = σ.

This defines the groupoid DefR(E) . A homomorphism of artinian DG algebras φ : R → Q

induces the functor

Lφ∗ : DefR(E)→ DefQ(E).

Thus we obtain a pseudo-functor

Def(E) : dgart→ Gpd.

We call Def(E) the pseudo-functor of derived deformations of E .

Remark 10.2. A quasi-isomorphism φ : R → Q of artinian DG algebras induces an equivalence

of groupoids

Lφ∗ : DefR(E)→ DefQ(E).

Indeed, Lφ∗ : D(AopR ) → D(AopQ ) is an equivalence of categories (Proposition 3.7) which com-

mutes with the functor Li∗ .

Remark 10.3. A quasi-isomorphism δ : E1 → E2 of DG Aop -modules induces an equivalence

of pseudo-functors

δ∗ : Def(E1)→ Def(E2)

by the formula δ∗(S, σ) = (S, δ · σ) .

Proposition 10.4. Let F : A → A′ be a DG functor which induces a quasi-equivalence F pre-tr :

Apre-tr → A′pre-tr (this happens for example if F is a quasi-equivalence). Then for any E ∈

D(Aop) the deformation pseudo-functors Def(E) and Def(LF ∗(E)) are canonically equivalent.

(Hence also Def(F∗(E
′)) and Def(E′) are equivalent for any E′ ∈ D(A′0) ).

Proof. For any artinian DG algebra R the functor F induces a commutative functorial diagram

D(AopR )
L(F⊗id)∗
−→ D(A′0R)

↓ Li∗ ↓ Li∗

D(Aop)
LF ∗

−→ D(A′0)

where LF ∗ and L(F ⊗ id)∗ are equivalences by Corollary 3.15. The horizontal arrows define

a functor F ∗R : DefR(E) → DefR(LF ∗(E)) . Moreover these functors are compatible with the

functors Lφ∗ : DefR → DefQ induced by morphisms φ : R → Q of artinian DG algebras. So

we get the morphism F ∗ : Def(E)→ Def(LF ∗(E)) of pseudo-functors. It is clear that for each

R the functor F ∗R is an equivalence. Thus F ∗ is also such. �
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Example 10.5. Suppose that A′ is a pre-triangulated DG category (so that the homotopy

category Ho(A′) is triangulated). Let F : A →֒ A′ be an embedding of a full DG subcategory so

that the triangulated category Ho(A′) is generated by the collection of objects F (ObA) . Then

the assumption of the previous proposition holds.

Remark 10.6. In the definition of the pseudo-functor Def(E) we could work with the homotopy

category of h-projective DG modules instead of the derived category. Indeed, the functors i∗ and

φ∗ preserve h-projective DG modules.

Definition 10.7. Denote by Def+(E) , Def−(E) , Def0(E) , Defcl(E) the restrictions of the

pseudo-functor Def(E) to subcategories dgart+ , dgart− , art , cart respectively.

10.2. The pseudo-functor coDef(E) . Now we define the pseudo-functor coDef(E) of derived

co-deformations in a similar way replacing everywhere the functors (·)∗ by (·)! .

Definition 10.8. Fix an artinian DG algebra R . An object of the groupoid coDefR(E) is a

pair (S, σ) , where S ∈ D(AopR ) and σ is an isomorphism (in D(Aop) )

σ : E → Ri!S.

A morphism f : (S, σ) → (T, τ) between two R -deformations of E is an isomorphism (in

D(AopR ) ) f : S → T , such that

Ri!(f) · σ = τ.

This defines the groupoid coDefR(E) . A homomorphism of artinian DG algebras φ : R → Q

induces the functor

Rφ! : coDefR(E)→ coDefQ(E).

Thus we obtain a pseudo-functor

coDef(E) : dgart→ Gpd.

We call coDef(E) the functor of derived co-deformations of E .

Remark 10.9. A quasi-isomorphism φ : R → Q of artinian DG algebras induces an equivalence

of groupoids

Rφ! : coDefR(E)→ coDefQ(E).

Indeed, Rφ! : D(AopR ) → D(AopQ ) is an equivalence of categories (Proposition 3.7) which com-

mutes with the functor Ri! .

Remark 10.10. A quasi-isomorphism δ : E1 → E2 of A -DG-modules induces an equivalence

of pseudo-functors

δ∗ : coDef(E2)→ coDef(E1)

by the formula δ∗(S, σ) = (S, σ · δ) .
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Proposition 10.11. Let F : A → A′ be a DG functor as in Proposition 10.4 above. Consider

the induced equivalence of derived categories RF ! : D(Aop) → D(A′0) (Corollary 3.15). Then

for any E ∈ D(Aop) the deformation pseudo-functors coDef(E) and coDef(RF !(E)) are

canonically equivalent. (Hence also coDef(F∗(E
′)) and coDef(E′) are equivalent for any E′ ∈

D(A′0) ).

Proof. For any artinian DG algebra R the functor F induces a commutative functorial diagram

D(AopR )
R((F⊗id)!)
−→ D(A′0R)

↓ Ri! ↓ Ri!

D(Aop)
RF !

−→ D(A′0),

where R(F ⊗ id)! is an equivalence by Corollary 3.15. The horizontal arrows define a functor

F !
R : coDefR(E)→ coDefR(RF !(E)) . Moreover these functors are compatible with the functors

Rφ! : coDefR → coDefQ induced by morphisms φ : R→ Q of artinian DG algebras. So we get

the morphism F ! : coDef(E) → coDef(RF !(E)) . It is clear that for each R the functor F !
R

is an equivalence. Thus F ! is also such. �

Example 10.12. Let F : A′ → A be as in Example 10.5 above. Then the assumption of the

previous proposition holds.

Remark 10.13. In the definition of the pseudo-functor coDef(E) we could work with the ho-

motopy category of h-injective DG modules instead of the derived category. Indeed, the functors

i! and φ! preserve h-injective DG modules.

Definition 10.14. Denote by coDef+(E) , coDef−(E) , coDef0(E) , coDefcl(E) the restric-

tions of the pseudo-functor coDef(E) to subcategories dgart+ , dgart− , art , cart respec-

tively.

Remark 10.15. The pseudo-functors Def(E) and coDef(E) are not always equivalent (unlike

their homotopy counterparts Defh(E) and coDefh(E) ). In fact we expect that pseudo-functors

Def and coDef are the ”right ones” only in case they can be expressed in terms of the pseudo-

functors Defh and coDefh respectively. (See the next section).

11. Relation between pseudo-functors Def and Defh (resp. coDef and coDefh )

The ideal scheme that should relate these deformation pseudo-functors is the following. Let

A be a DG category, E ∈ Aop-mod . Choose quasi-isomorphisms P → E and E → I , where

P ∈ P(Aop) and I ∈ I(Aop) . Then there should exist natural equivalences

Def(E) ≃ Defh(P ), coDef(E) ≃ coDefh(I).

Unfortunately, this does not always work.
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Example 11.1. Let A be just a graded algebra A = k[t] , i.e. A contains a single object with

the endomorphism algebra k[t] , deg(t) = 1 (the differential is zero). Take the artinian DG

algebra R to be R = k[ǫ]/(ǫ2) , deg(ǫ) = 0 . Let E = A and consider a DG AopR -module

M = E ⊗R with the differential dM which is the multiplication by t⊗ ǫ . Clearly, M defines

an object in DefhR(E) which is not isomorphic to the trivial deformation. However, one can

check (Proposition 11.18) that Li∗M is not quasi-isomorphic to E (although i∗M = E ), thus

M does not define an object in DefR(E) . This fact and the next proposition show that the

groupoid DefR(E) is connected (contains only the trivial deformation), so it is not the ”right”

one.

Proposition 11.2. Assume that Ext−1(E,E) = 0 .

1) Fix a quasi-isomorphism P → E , P ∈ P(Aop) . Let R be an artinian DG algebra and

(S, id) ∈ DefhR(P ) . The following conditions are equivalent:

a) S ∈ P(AopR ) ,

b) i∗S = Li∗S ,

c) (S, id) defines an object in the groupoid DefR(E) .

The pseudo-functor Def(E) is equivalent to the full pseudo-subfunctor of Defh(P ) consisting

of objects (S, id) ∈ Defh(P ) , where S satisfies a) (or b)) above.

2) Fix a quasi-isomorphism E → I with I ∈ I(Aop) . Let R be an artinian DG algebra and

(T, id) ∈ coDefh
R(I) . The following conditions are equivalent:

a’) T ∈ I(AopR ) ,

b’) i!T = Ri!T ,

c’) (T, id) defines an object in the groupoid coDefR(E) .

The pseudo-functor coDef(E) is equivalent to the full pseudo-subfunctor of coDefh(I) con-

sisting of objects (T, id) ∈ coDefh(I) , where T satisfies a’) (or b’)) above.

Proof. 1) It is clear that a) implies b) and b) implies c). We will prove that c) implies a). We may

and will replace the pseudo-functor Def(E) by an equivalent pseudo-functor Def(P ) (Remark

10.3).

Since (S, id) defines an object in DefR(P ) there exists a quasi-isomorphism g : S̃ → S

where S̃ has property (P) (hence S̃ ∈ P(AopR ) ), such that i∗g : i∗S̃ → i∗S = P is also a quasi-

isomorphism. Denote Z = i∗S̃ . Then Z ∈ P(Aop) and hence i∗g is a homotopy equivalence.

Since both S̃ and S are graded R -free, the map g is also a homotopy equivalence (Proposition

3.12d)). Thus S ∈ P(AopR ) .

Let us prove the last assertion in 1).

Fix an object (S, τ) ∈ DefR(P ) . Replacing (S, τ) by an isomorphic object we may and

will assume that S satisfies property (P). In particular, S ∈ P(AopR ) and S is graded R -

free. This implies that (S, id) ∈ DefhR(W ) where W = i∗S . We have W ∈ P(Aop) . The

quasi-isomorphism τ : W → P is therefore a homotopy equivalence. By Corollary 8.4a) and
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Proposition 8.5a) there exists an object (S′, id) ∈ DefhR(P ) and a homotopy equivalence τ ′ :

S → S′ such that i∗(τ ′) = τ . This shows that (S, τ) is isomorphic (in DefR(P ) ) to an object

(S′, id) ∈ DefhR(P ) , where S′ ∈ P(AopR ) .

Let (S, id), (S′, id) ∈ DefhR(P ) be two objects such that S, S′ ∈ P(AopR ) . Consider the

obvious map

δ : HomDefh
R

(P )((S, id), (S′, id))→ HomDefR(P )((S, id), (S′, id)).

It suffices to show that δ is bijective.

Let f : (S, id) → (S′, id) be an isomorphism in DefR(P ) . Since S, S′ ∈ P(AopR ) and

P ∈ P(Aop) this isomorphism f is a homotopy equivalence f : S → S′ such that i∗f is

homotopic to idP . Let h : i∗f → id be a homotopy. Since S , S′ are graded R -free the map

i∗ : Hom(S, S′)→ Hom(P,P ) is surjective (Proposition 3.12a)). Choose a lift h̃ : S → S′[1] of

h and replace f by f̃ = f − dh̃ . Then i∗f̃ = id . Since S and S′ are graded R -free f̃ is

an isomorphism (Proposition 3.12d)). This shows that δ is surjective.

Let g1, g2 : S → S′ be two isomorphisms (in AopR -mod ) such that i∗g1 = i∗g2 = idP . That

is g1, g2 represent morphisms in DefhR(P ) . Assume that δ(g1) = δ(g2) , i.e. there exists a

homotopy s : g1 → g2 . Then d(i∗s) = i∗(ds) = 0 . Since by our assumption H−1 Hom(P,P ) =

0 there exists t ∈ Hom−2(P,P ) with dt = i∗s . Choose a lift t̃ ∈ Hom−2(S, S′) of t . Then

s̃ := s− dt̃ is an allowable homotopy between g1 and g2 . This proves that δ is injective and

finishes the proof of 1).

The proof of 2) is very similar, but we present it for completeness. Again it is clear that a’)

implies b’) and b’) implies c’). We will prove that c’) implies a’) We may and will replace the

functor coDef(E) by an equivalent functor coDef(I) (Remark 10.10).

Since (T, id) defines an object in coDefR(I) , there exists a quasi-isomorphism g : T → T̃

where T̃ has property (I) (hence T̃ ∈ I(AopR ) ), such that i!g : I = i!T → i!T̃ is also a

quasi-isomorphism. Denote K = i!T̃ . Then K ∈ I(Aop) and hence i!g is a homotopy

equivalence. Since both T and T̃ are graded R -cofree, the map g is also a homotopy

equivalence (Proposition 3.12d)). Thus T ∈ I(AopR ) .

Let us prove the last assertion in 2).

Fix an object (T , τ) ∈ coDefR(I) . Replacing (T , τ) by an isomorphic object we may and will

assume that T satisfies property (I). In particular, T ∈ I(AopR ) and T is graded R -cofree.

This implies that (T , id) ∈ coDefh
R(L) where L = i!T . We have L ∈ I(Aop) and hence the

quasi-isomorphism τ : I → L is a homotopy equivalence. By Corollary 8.4a) and Proposition

8.5a) there exist an object (T ′, id) ∈ coDefh
R(I) and a homotopy equivalence τ ′ : T ′ → T

such that i!τ ′ = τ . In particular, T ′ ∈ I(AopR ) . This shows that (T , τ) is isomorphic (in

coDefR(I) ) to an object (T ′, id) ∈ coDefh
R(I) where T ′ ∈ I(AopR ) .
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Let (T, id), (T ′, id) ∈ coDefh
R(I) be two objects such that T, T ′ ∈ I(AopR ) . Consider the

obvious map

δ : HomcoDefh
R

(I)((T, id), (T ′, id))→ HomcoDefR(I)((T, id), (T ′, id)).

It suffices to show that δ is bijective.

Let f : (T, id) → (T ′, id) be an isomorphism in coDefR(I) . Since T, T ′ ∈ I(AopR ) and

I ∈ I(Aop) this isomorphism f is a homotopy equivalence f : T → T ′ such that i!f is

homotopic to idI . Let h : i!f → id be a homotopy. Since T , T ′ are graded R -cofree the

map i! : Hom(T, T ′)→ Hom(I, I) is surjective (Proposition 3.12a)). Choose a lift h̃ : T → T ′[1]

of h and replace f by f̃ = f − dh̃ . Then i!f̃ = id . Since T and T ′ are graded R -cofree

f̃ is an isomorphism (Proposition 3.12d)). This shows that δ is surjective.

Let g1, g2 : T → T ′ be two isomorphisms (in AopR -mod ) such that i!g1 = i!g2 = idI . That

is g1, g2 represent morphisms in coDefhR(I) . Assume that δ(g1) = δ(g2) , i.e. there exists a

homotopy s : g1 → g2 . Then d(i!s) = i!(ds) = 0 . Since by our assumption H−1 Hom(I, I) = 0

there exists t ∈ Hom−2(I, I) with dt = i!s . Choose a lift t̃ ∈ Hom−2(T, T ′) of t . Then

s̃ := s− dt̃ is an allowable homotopy between g1 and g2 . This proves that δ is injective. �

Remark 11.3. In the situation of Proposition 11.2 using Corollary 8.4b) also obtain full and

faithful morphisms of pseudo-functors Def(E) , coDef(E) to each of the equivalent pseudo-

functors Defh(P ) , coDefh(P ) , Defh(I) , coDefh(I) .

Corollary 11.4. Assume that Ext−1(E,E) = 0 . Let F ∈ Aop-mod be an h-projective or an

h-injective quasi-isomorphic to E .

a) The pseudo-functor Def(E) ( ≃ Def(F ) ) is equivalent to the full pseudo-subfunctor of

Defh(F ) which consists of objects (S, id) such that i∗S = Li∗S .

b) The pseudo-functor coDef(E) ( ≃ coDef(F )) is equivalent to the full pseudo-subfunctor

of coDefh(F ) which consists of objects (T, id) such that i!T = Ri!T .

Proof. a). In case F is h-projective this is Proposition 11.2 1). Assume that F is h-injective.

Choose a quasi-isomorphism P → F where P is h-projective. Again by Proposition 11.2 1)

the assertion holds for P instead of F . But then it also holds for F by Corollary 8.6 b).

b). In case F is h-injective this is Proposition 11.2 2). Assume that F is h-projective.

Choose a quasi-isomorphism F → I where I is h-injective. Then again by Proposition 11.2 2)

the assertion holds for I instead of F . But then it also holds for F by Corollary 8.6 b). �

The next theorem provides an example when the pseudo-functors Def− and Defh− (resp.

coDef− and coDefh− ) are equivalent.

Definition 11.5. An object M ∈ Aop-mod is called bounded above (resp. below) if there exists

i such that M(A)j = 0 for all A ∈ A and all j ≥ i (resp. j ≤ i ).
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Theorem 11.6. Assume that Ext−1(E,E) = 0 .

a) Suppose that there exists an h-projective or an h-injective P ∈ Aop-mod which is bounded

above and quasi-isomorphic to E . Then the pseudo-functors Def−(E) and Defh−(P ) are

equivalent.

b) Suppose that there exists an h-projective or an h-injective I ∈ Aop-mod which is bounded

below and quasi-isomorphic to E . Then the pseudo-functors coDef−(E) and coDefh−(I) are

equivalent.

Proof. Fix R ∈ dgart− . In both cases it suffices to show that the embedding of groupoids

DefR(E) ≃ DefR(P ) ⊂ DefhR(P ) (resp. coDefR(E) ≃ coDefR(I) ⊂ coDefh
R(I) ) in Corollary

11.4 is essentially surjective.

a) It suffices to prove the following lemma.

Lemma 11.7. Let M ∈ Aop-mod be bounded above and (S, id) ∈ DefhR(M) . The DG AopR -

module S is acyclic for the functor i∗ , i.e. Li∗S = i∗S .

Indeed, in case M = P the lemma implies that S defines an object in DefR(P ) (Corollary

11.4 a)).

Proof. Choose a quasi-isomorphism f : Q→ S where Q ∈ P(AopR ) . We need to prove that i∗f

is a quasi-isomorphism. It suffices to prove that π!i
∗f is a quasi-isomorphism (Example 3.13).

Recall that π!i
∗ = i∗π! . Thus it suffices to prove that π!f is a homotopy equivalence. Clearly

π!f is a quasi-isomorphism. The DG Rop -module π!Q is h-projective (Example 3.13). We

claim that the DG Rop -module π!S is also h-projective. Since the direct sum of h-projective

DG modules is again h-projective, it suffices to prove that for each object A ∈ A the DG Rop -

module S(A) is h-projective. Take some object A ∈ A . We have that S(A) is bounded above

and since R ∈ dgart− this DG Rop -module has an increasing filtration with subquotients being

free DG Rop -modules. Thus S(A) satisfies property (P) and hence is h-projective. It follows

that the quasi-isomorphism π!f : π!Q → π!S is a homotopy equivalence. Hence i∗π!f = π!i
∗f

is also such. �

b) The following lemma implies (by Corollary 11.4 b)) that an object in coDefh
R(I) is also

an object in coDefR(I) , which proves the theorem. �

Lemma 11.8. Let T ∈ AopR -mod be graded cofree and bounded below. Then T is acyclic for

the functor i! , i.e. Ri!T = i!T .

Proof. Denote N = i!T ∈ Aop-mod . Choose a quasi-isomorphism g : T → J where J ∈

I(AopR ) . We need to prove that i!g is a quasi-isomorphism. It suffices to show that π∗i
!g is a

quasi-isomorphism. Recall that π∗i
! = i!π∗ . Thus it suffices to prove that π∗g is a homotopy

equivalence. Clearly it is a quasi-isomorphism.
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Recall that the DG Rop -module π∗J is h-injective (Example 3.13) We claim that π∗T is

also such. Since the direct product of h-injective DG modules is again h-injective, it suffices to

prove that for each object A ∈ A the DG Rop -module T (A) is h-injective. Take some object

A ∈ A . Since R ∈ dgart− the DG Rop -module T (A) has a decreasing filtration

G0 ⊃ G1 ⊃ G2 ⊃ ...,

with

grT (A) = ⊕j(T (A))j ⊗R∗.

A direct sum of shifted copies of the DG Rop -module R∗ is h-injective (Lemma 3.18). Thus

each (T (A))j ⊗R∗ is h-injective and hence each quotient T (A)/Gj is h-injective. Also

T (A) = lim
←
T (A)/Gj .

Therefore T (A) is h-injective by Remark 3.5.

It follows that π∗g is a homotopy equivalence, hence also i!π∗g is such. �

The last theorem allows us to compare the functors Def− and coDef− in some important

special cases. Namely we have the following corollary.

Corollary 11.9. Assume that

a) Ext−1(E,E) = 0 ;

b) there exists an h-projective or an h-injective P ∈ Aop-mod which is bounded above and

quasi-isomorphic to E ;

c) there exists an h-projective or an h-injective I ∈ Aop-mod which is bounded below and

quasi-isomorphic to E ;

Then the pseudo-functors Def−(E) and coDef−(E) are equivalent.

Proof. We have a quasi-isomorphism P → I . Hence by Proposition 8.3 the DG algebras End(P )

and End(I) are quasi-isomoprhic. Therefore, in particular, the pseudo-functors Defh−(P ) and

coDefh
−(I) are equivalent (Corollary 8.4b)). It remains to apply the last theorem. �

In practice in order to find the required bounded resolutions one might need to pass to a

”smaller” DG category. So it is useful to have the following stronger corollary.

Corollary 11.10. Let F : A → A′ be a DG functor which induces a quasi-equivalence F pre-tr :

Apre-tr → A′pre-tr . Consider the corresponding equivalence F∗ : D(A′0) → D(Aop) (Corollary

3.15). Let E ∈ A′0-mod be such that

a) Ext−1(E,E) = 0 ;

b) there exists an h-projective or an h-injective P ∈ Aop-mod which is bounded above and

quasi-isomorphic to F∗(E) ;

c) there exists an h-projective or an h-injective P ∈ Aop-mod which is bounded below and

quasi-isomorphic to F∗(E) ;

Then the pseudo-functors Def−(E) and coDef−(E) are equivalent.
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Proof. By the above corollary the pseudo-functors Def−(F∗(E)) and coDef−(F∗(E)) are equiv-

alent. By Proposition 10.4 the pseudo-functors Def−(E) and Def−(F∗(E)) are equivalent.

Since the functor RF ! : D(Aop)→ D(A′0) is also an equivalence, we conclude that the pseudo-

functors coDef−(E) and coDef−(F∗(E)) are equivalent by Proposition 10.11. �

Example 11.11. If in the above corollary the DG category A′ is pre-triangulated, then one

can take for A a full DG subcategory of A′ such that Ho(A′) is generated as a triangulated

category by the subcategory Ho(A) . One can often choose A to have one object.

Example 11.12. Let C be a bounded DG algebra, i.e. Ci = 0 for |i| >> 0 and also H−1(C) =

0 . Then by Theorem 11.6 and Proposition 4.7

coDef−(C) ≃ coDefh
−(C) ≃ Defh−(C) ≃ Def−(C).

The following theorem makes the equivalence of Corollary 11.9 more explicit. Let us first

introduce some notation.

For an artinian DG algebra R consider the DG functors

ηR, ǫR : AopR -mod→ AopR -mod

defined by

ǫR(M) = M ⊗R R
∗, ηR(N) = HomRop(R∗, N).

They induce the corresponding functors

RηR,LǫR : D(AopR )→ D(AopR ).

Theorem 11.13. Let E ∈ Aop-mod satisfy the assumptions a), b), c) of Corollary 11.9. Fix

R ∈ dgart− . Then the following holds.

1) Let F ∈ Aop-mod be h-projective or h-injective quasi-isomorphic to E .

a) For any (S, σ) ∈ DefhR(F ) we have i∗S = Li∗S .

b) For any (T, τ) ∈ coDefh
R(F ) we have i!T = Ri!T .

2) There are natural equivalences of pseudo-functors Defh−(F ) ≃ Def−(E) , coDefh
−(F ) ≃

coDef−(E) .

3) The functors LǫR and RηR induce mutually inverse equivalences

LǫR : DefR(E)→ coDefR(E),

RηR : coDefR(E)→ DefR(E).

Proof. 1a). We may and will assume that σ = id .

Choose a bounded above h-projective or h-injective P ∈ Aop-mod , which is quasi-isomorphic

to E . Then there exists a quasi-isomorphism P → F (or F → P ). The pseudo-functors

Defh−(P ) and Defh−(F ) are equivalent by Corollary 8.4 (a) or b)). By Theorem 11.6 a)
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Defh−(P ) ≃ Def−(P ) . Hence by Corollary 11.4 a) for each (S′, id) ∈ DefR(P ) we have

i∗S′ = Li∗S′ . Now Corollary 8.6 (a) or b)) implies that i∗S = Li∗S . This proves 1a).

1b). We may and will assume that τ = id .

The proof is similar to that of 1a). Namely, choose a bounded below h-projective or h-

injective I ∈ Aop-mod quasi-isomorphic to E . Then there exists a quasi-isomorphism F → I

(or I → F ). The pseudo-functors coDefh−(I) and coDefh
−(F ) are equivalent and by Corollary

8.4 (a) or b)). By Theorem 11.6 a) coDefh−(I) ≃ coDef−(I) . Hence by Corollary 11.4 b) for

each (T ′, id) ∈ coDefh(I) we have i!T ′ = Ri!T ′ . Now Corollary 8.6 (a) or b)) implies that

i!T = Ri!T .

2) This follows from 1), Corollary 11.4 a), b).

3) This follows from 2) and the fact that ǫR and ηR induce inverse equivalences between

DefhR(F ) and coDefh
R(F ) (Proposition 4.7). �

Proposition 11.14. Let DG algebras B and C be quasi-isomorphic and H−1(B) = 0

( = H−1(C) ). Suppose that the pseudo-functors Def(B) and Defh(B) (resp. coDef(B) and

coDefh(B) ) are equivalent. Then the same is true for C .

Similar results hold for the pseudo-functors Def−,Defh−, coDef−, ... .

Proof. We may and will assume that there exists a morphism of DG algebras ψ : B → C which

is a quasi-isomorphism.

By Proposition 8.6 a) the pseudo-functors Defh(B) and Defh(C) are equivalent.

By Proposition 10.4 the pseudo-functors Def(B) are Def(C) are equivalent.

By Proposition 11.2 a) Def(B) (resp. Def(C) ) is a full pseudo-subfunctor of Defh(B) (resp.

Defh(C) ).

Thus is Def(B) ≃ Defh(B) , then also Def(C) ≃ Defh(C) .

The proof for coDef and coDefh is similar using Proposition 8.6 a), Proposition 10.11 and

Proposition 11.2 b). �

Corollary 11.15. Let B be a DG algebra such that H−1(B) = 0 . Assume that B is quasi-

isomorphic to a DG algebra C such that C is bounded above (resp. bounded below). Then the

pseudo-functors Def−(B) and Defh−(B) are equivalent (resp. coDef−(B) and coDefh
−(B) are

equivalent).

Proof. By Theorem 11.6 a) we have that Def−(C) and Defh−(C) are equivalent (resp.

coDef−(C) and coDefh−(C) are equivalent). It remains to apply Proposition 11.14. �

11.1. Relation between pseudo-functors Def−(E) , coDef−(E) and Def−(C) ,

coDef−(C) . The next proposition follows immediately from our previous results.

Proposition 11.16. Let A be a DG category and E ∈ Aop-mod . Assume that

a) Ext−1(E,E) = 0 ;
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b) there exists a bounded above (resp. bounded below) h-projective or h-injective F ∈ Aop-mod

which is quasi-isomorphic to E ;

c) there exists a bounded above (resp. bounded below) DG algebra C which is quasi-isomorphic

to End(F ) .

Then the pseudo-functors Def−(E) and Def−(C) (resp. coDef−(E) and coDef−(C) ) are

equivalent.

Proof. Assume that F and C are bounded above. Then Def−(E) ≃ Defh−(F ) and Def−(C) ≃

Defh−(C) by Theorem 11.6 a). Also Defh−(F ) ≃ Defh−(C) by Proposition 6.1 and Theorem 8.1.

Assume that F and C are bounded below. Then coDef−(E) ≃ coDefh
−(F ) and

coDef−(C) ≃ coDefh
−(C) by Theorem 11.6 b). Also coDefh−(F ) ≃ coDefh

−(C) by Proposition 6.1

and Theorem 8.1. �

Remark 11.17. The equivalences of pseudo-functors Defh−(C) ≃ Defh−(F ) , coDefh−(C) ≃

coDefh
−(F ) in the proof of last proposition can be made explicit. Put B = End(F ) . Assume,

for example, that ψ : C → B is a homomorphism of DG algebras which is a quasi-isomorphism.

Then the composition of DG functors (Propositions 9.2, 9.4)

ΣF · ψ∗ : Cop-mod→ Aop-mod

induces equivalences of pseudo-functors

Defh(ΣF · ψ∗) : Defh(C) ≃ Defh(F )

coDefh(ΣF · ψ∗) : coDefh(C) ≃ coDefh(F )

by Propositions 9.2e) and 9.4f).

11.2. Pseudo-functors Def(E) , coDef(E) are not determined by the DG algebra

RHom(E,E) . One might expect that the derived deformation and co-deformation pseudo-

functors Def−(E) , coDef−(E) depend only on the (quasi-isomorphism class of the) DG al-

gebra RHom(E,E) . This would be an analogue of Theorem 8.1 for the derived deformation

theory. Unfortunately this is not true as is shown in the next proposition (even for the ”classical”

pseudo-functors Defcl , coDefcl ). This is why all our comparison results for the pseudo-functors

Def− and coDef− such as Theorems 11.6, 11.13, Corollaries 11.9, 11.15, Proposition 11.16 need

some boundedness assumptions.

Consider the DG algebra A = k[x] with the zero differential and deg(x) = 1 . Let A be

the DG category with one object whose endomorphism DG algebra is A . Then Aop-mod is

the DG category of DG modules over the DG algebra Aop = A . Denote by abuse of notation

the unique object of A also by A and consider the DG Aop -modules P = hA and I = h∗A .

The first one is h-projective and bounded below while the second one is h-injective and bounded
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above (they are the graded dual of each other). Note that the DG algebras End(P ) and End(I)

are isomorphic:

End(P ) = A, End(I) = A∗∗ = A.

Let R = k[ǫ]/(ǫ2) be the (commutative) artinian DG algebra with the zero differential and

deg(ǫ) = 0 .

Proposition 11.18. In the above notation the following holds:

a) The groupoid DefR(P ) is connected.

b) The groupoid DefR(I) is not connected.

c) The groupoid coDefR(I) is connected.

d) The groupoid coDefR(P ) is not connected.

Proof. Let (S, id) ∈ DefhR(I) . Then S = I ⊗k R as a graded (A ⊗ R)op -module and the

differential in S is equal to ”multiplication by λ(x ⊗ ǫ) ” for some λ ∈ k . We denote this

differential dλ and the deformation S by Sλ . By Lemma 11.7 each (Sλ, id) is also an object

in the groupoid DefR(I) . Notice that for λ 6= 0 we have H(Sλ) = k and if λ = 0 then

H(Sλ) = A⊗R . This shows for example that (S1, id) and (S0, id) are non-isomorphic objects

in DefR(I) and proves b).

The proof of d) is similar using Lemma 11.8.

Let us prove a). By Proposition 11.2, 1) the groupoid DefR(P ) is equivalent to the full

subcategory of DefhR(P ) consisting of objects (S, id) such that S ∈ P(AopR ) or, equivalently,

i∗S = Li∗S . As in the proof of b) above we have S = P ⊗R as a graded (A ⊗R)op -module

and the differential in S is equal to ”multiplication by λ(x ⊗ ǫ) ” for some λ ∈ k . Again

we denote the corresponding S by Sλ . It is clear that the trivial homotopy deformation S0

is h-projective in AopR -mod , hence it is also an object in DefR(P ) . It remains to prove that

for λ 6= 0 the DG AopR -module Sλ is not h-projective. Since the DG functor π! preserves

h-projectives (Example 3.13) it suffices to show that Sλ considered as a DG R -module is not

h-projective. We have

π!Sλ =
⊕

n≥0

R[−n]

with the differential λǫ : R[−n]→ R[−n− 1] . Consider the DG R -module

N =
∞
⊕

n=−∞

R[−n]

with the same differential λǫ : R[−n]→R[−n− 1]. Note that N is acyclic (since λ 6= 0 ) and

the obvious embedding of DG R -modules π!Sλ →֒ N is not homotopic to zero. Hence π!Sλ

is not h-projective. This proves a).

The proof of c) is similar using Proposition 11.2, 2) and the DG functor π∗ from Example

3.13. �
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