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EXCEPTIONAL SHEAVES ON DEL PEZZO SURFACES

UDC 512.723

S. A. KULESHOV AND D. O. ORLOV

ABSTRACT. In the present paper exceptional sheaves on del Pezzo surfaces are studied,
and a description of rigid bundles on these surfaces is given. It is proved that each
exceptional sheaf can be included in a complete exceptional collection. Furthermore,
it is shown that all such collections can be obtained from each other by means of a
sequence of standard operations called transformations.

INTRODUCTION

The goal of the present paper is to study exceptional sheaves and exceptional
collections of sheaves on del Pezzo surfaces. An exceptional sheaf Ε (or, more
generally, an object of derived category) is a simple sheaf satisfying the conditions
Ext' {E, E) = 0 for i Φ 0, and an exceptional collection is an ordered collection of
exceptional sheaves satisfying the conditions Ext' (Ea , Ε β) = 0 for all a > β and
all i.

The existence of exceptional sheaves and collections imposes heavy restrictions on
the variety. Of special interest are varieties on which there exist complete exceptional
collections, that is, collections generating the derived category of coherent sheaves.
Examples of such varieties are given by the projective space P" , the quadric Ρ1 χ Ρ 1 ,
the Grassmann and flag varieties (cf. [1], [5] and [6]), and the blowups of varieties
carrying a complete exceptional collection at subvarieties having the same property
(cf. [8]).

It is easy to see that each del Pezzo surface carries a complete exceptional collec-
tion. In the present paper we give a description of exceptional sheaves and collections
of sheaves on del Pezzo surfaces. Descriptions of these objects on P 2 and the quadric
Ρ1 χ Ρ1 can be found in [5] and [9], respectively. Our main results are as follows.

In §2 we show that each exceptional object in the derived category of coherent
sheaves on an arbitrary del Pezzo surface is a sheaf and that each exceptional sheaf
either is locally free or is a torsion sheaf of the form Oe(n), where e is a (-1 )-curve.

In §§4 and 5 we consider rigid bundles, that is, bundles satisfying the condition
Ext1 (Ε, Ε) = 0. We show that on del Pezzo surfaces rigid bundles split into a direct
sum of exceptional bundles.

Using these facts, in §6 we prove that each exceptional collection is a part of a
complete exceptional collection; in particular, each exceptional sheaf can be included
in a complete exceptional collection.

The last section is devoted to transformations of exceptional collections. Trans-
formation is an operation allowing to construct exceptional collections starting from
a given one. Its definition is given in § 1. Using transformations we can breed ex-
ceptional collections. Still more important, each complete exceptional collection can
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be obtained in this way starting from a fixed collection. This property, called con-
structibility, is proven in § 7.

The authors are grateful to the participants of seminars run by A. N. Rudakov,
A. N. Tyurin, and A. I. Bondal. Some lemmas from §§3.1, 3.5, and 7.1 have been
previously proven (but not published) by D. Nogin, S. Zube, and A. Gorodentsev.

D. Orlov thanks the French Association "Promathematica", without whose support
it would have been very difficult to work on this paper. S. A. Kuleshov acknowledges
financial support of the Soros Foundation.

§ 1. BASIC NOTIONS AND DEFINITIONS

1.0. Throughout this paper S will denote a smooth projective surface over C. A
surface S is called a del Pezzo surface if its anticanonical sheaf ω*5 is ample.

1.1. The rank of a coherent sheaf F will be denoted by r(F); C\{F) and Ci{F)
will denote the first and second Chern classes of the sheaf F .

Let F be a torsion free sheaf, and let A be a divisor. The rational number
(c\(F)-A)/r(F) is called the slope of F with respect to A and is denoted by / ^ ( F ) .
If A e | - Ks\, then we simply write /*(F).

For arbitrary coherent sheaves Ε and F on S we define χ{Ε, F) as the alter-
nating sum

X(E,F) = ^ ( - l ) ' d i m E x t ' ( £ , F).

This formula defines a bilinear form on the space KQ(S) . According to the Riemann-
Roch theorem,

X(E,F) = r(E)r(F) \ X(0S) + MF) " μ { Ε ) + q{F)

(1-1) ,

{

where q{E) = (c,(is) - 2ci{E))l{2r{E)). The bilinear form χ(Ε, F) can be decom-
posed into a sum of symmetric and antisymmetric parts:

Furthermore, the antisymmetric part is given by the following simple formula:

X-(E,F) = ~r(E)r(F)(M(F) - μ(Ε)).

For convenience, we will denote dim Ext' (E, F) by h'(E, F).

1.2. Definition. A coherent sheaf Ε is called

a) simple if Horn(E,E) = C;
b) rigid if Ext1 (E,E) = 0;
c) superrigid if Ext1 (E, E) = Ext2 (E,E) = 0;
d) exceptional if Horn(E,E) = C and Ext' (E,E) = 0 for all / φ 0.

1.3. Definition. An ordered collection of sheaves (E\, ... , En) is called an excep-
tional collection if all sheaves in this collection are exceptional and for 1 < α < β < η
we have

Ext' (Ep ,Ea) = 0 for all /.

The notions of exceptional objects and collections can also be introduced for
the bounded derived category of coherent sheaves on S, which will be denoted by
9fb{S).
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1.4. Definition. An object X e 2>b(S) is called exceptional if Hom(X, X) = C and
Ext' (X, X) = 0 for all ζ φ 0.

In a similar way one can define exceptional collections of objects of 3Sb(S).

1.5. Definition. An exceptional collection (X\, ... , Xn) of objects of 3b(S) is
called complete if it generates the derived category 3ib(S) (i.e., the minimal com-
plete triangulated subcategory in 2b(S) containing the objects Xi coincides with
3rb{S)).

It is known that there exist complete exceptional collections of sheaves on all
del Pezzo surfaces.

For example, (<@vi, @vi(\), tf¥i(2)) is a complete exceptional collection on P 2 .
If S is obtained by blowing up P2 at d points, and l\, ... , lj are the exceptional
curves, then the collection (<fh(-\), ... , &id{-\), <?s, &s(h), (fs(2h)), where (fs(h)
is the inverse image of the sheaf <frz (1), is exceptional and complete.

We need some definitions and notation from the theory of triangulated categories.
Our main sources here are the papers [2] and [3].

Let s/ be an additive category, and J C J / a full subcategory. The full subcate-
gory 38x c ssf consisting of all objects C such that Horn (B, C) = 0 for all Β e 38
is called the right orthogonal to 38 . In a similar way we define the left orthogonal

. If si is a triangulated category and 38 is a triangulated subcategory, then
and ^-38 also are triangulated subcategories.

1.6. Definition. Let sf be a triangulated category, and J ' C J / a strictly full trian-
gulated subcategory. We call 38 right admissible (resp., left admissible) if for each
l e i there exists a distinguished triangle Β -> X -> C with Β ^ 38, C e ,^-1-
(resp., a distinguished triangle D -> X —• β with £> e - L ^ 1 , 5 e J " ) . A subcategory
is called admissible if it is both right and left admissible (cf. [2], [3]).

1.7. Proposition. Let 38 be a strictly full triangulated subcategory of srf . The fol-
lowing conditions are equivalent:

a) 38 is right admissible (resp., left admissible);
b) the inclusion functor 38 —> sf has a right conjugate (resp., left conjugate);
c) si is generated as a triangulated category by & and 331- (resp., by 38 and

The proof can be found in [2].

1.8. Proposition. Let 38 = (Eo, . . . , En) be a subcategory in stf generated by an
exceptional collection. Then 38 is an admissible subcategory of stf .

The proof can be found in [2].

In what follows we need definitions of transformations and helixes.

1.9. Definition. Let (Ε, F) be an exceptional pair. We define objects called the left
and right transformations of the pair (Ε, F) and denoted by LEF and RFE using
the following distinguished triangles in the derived category Sb(X):

LEF ^ R'Hom(E, F) ® Ε - t f ,

Ε -» R' Horn ( £ , F)* ® F — RFE.

A transformation of an exceptional collection (EQ , ... , En) is defined as a trans-
formation of a pair of neighboring objects in this collection.
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L e t (Eo, ... ,En) b e a n e x c e p t i o n a l c o l l e c t i o n . W e e x t e n d i t t o a n ( i n f i n i t e i n

b o t h d i r e c t i o n s ) s e q u e n c e o f o b j e c t s o f 3Sh(X) p u t t i n g b y i n d u c t i o n

En+i = RHEi.i, E-i = L n E n - M , / > 0 .

1.10. D e f i n i t i o n . A n i n f i n i t e ( i n b o t h d i r e c t i o n s ) s e q u e n c e £ , o f o b j e c t s o f t h e d e -

rived c a t e g o r y 3sb(X) o f c o h e r e n t s h e a v e s o n a v a r i e t y X o f d i m e n s i o n m i s c a l l e d

a helix of period η if
Ej = Ei+n <g> K[m - η + 1]

(here Κ is the canonical class, and the number in brackets measures the shift of an
object in 3fb(X)).

1.11. Definition. An exceptional collection is called a coil of a helix if the corre-
sponding sequence is a helix of period η + 1 .

It turns out that the notion of a coil can be used to find out whether or not the
derived category is generated by an exceptional collection.

1.12. Proposition. Let (Eo, . . . , En) be an exceptional collection on a variety X with
ample anticanonical class. Then the following assertions are equivalent:

1) the collection {£,} generates the derived category 2l'(X);
2) the collection {£,} is a coil of a helix.

For the proof we refer to [2]. We remark that 1) implies 2) for any variety.

§ 2. EXCEPTIONAL SHEAVES

2.0. We recall that a smooth projective surface S is called a del Pezzo surface if
its anticanonical class co*s is ample. This class contains two minimal surfaces, viz.
P 2 and the quadric Ρ1 χ P1 . All other surfaces are obtained by blowing up P2 at d
points in general position, where d does not exceed 8 .

2.1. The main problem dealt with in this section is to give a description of ex-
ceptional sheaves (more generally, exceptional objects in the derived category) on
del Pezzo surfaces. The description we give is neither complete nor constructive, but
it allows us to determine which sheaves cannot be exceptional.

The following lemma proved by Mukai in [7] for surfaces of type K3 can be
restated in a form in which it holds for arbitrary smooth projective surfaces.

2.2. Lemma. Let S be a smooth projective surface.

1) For each coherent torsion-free sheaf Ε on S the following inequality holds:

h\E,E) > h\E**, £**) + 2length{E**/E).

2) a) For each exact triple

0 - + G 2 - + £ - + G i - > 0

of coherent sheaves on S such that Hom(G;2, G\) = Ext2 {Gi, Gi) = 0 the
following inequality holds:

h\E, E) > h\G{, G,) + h\G2, G2).

b) If moreover Ε is a rigid sheaf i.e., hx(E,E) = 0, then the following
equalities hold:

h°(E, E) = h°(Gi , G,) + h°(G2 , G2) + X(Gi, G2),

h\E, E) = h\G, , G,) + h\G2, G2) + X(G2 , G,).
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Proof. Here we do not prove 1). A proof can be found in [7, Proposition 2.14].
2) Consider the exact triple 0 —> G2 —> Ε -> G\ —» 0. It can be interpreted as a

filtration of the sheaf Ε with quotients G\ and (?2 .
There is a spectral sequence for the filtered object with E\ term

j

converging to Extp + 9 (Ε, Ε).
Taking into consideration that Horn(G2, G\) = Ext2 {G\, G2) = 0, we see that in

our case the E\ term of the spectral sequence has the following form:

V

0 * 0 0

0 * * 0 ^

0 0 * 0

— 0 — 0 — * — * >
I p

0 0 0 *

The differential acts horizontally. The sequence degenerates at the E2 term,
i.e., Εψ = Ε™. Furthermore, £°· = Ε^ , from which it follows that
dim Ext1 (E,E), that is,

h\E, E)>h\Gx, G,) + h\G2, G2),

as required.
Now, if hl(E, E) = 0, then the map d\: E^° —> E\° is surjective, and therefore

dim Ext0 (E,E) = d i m £ 0 0 - d i m ^ 1 0 + dim£·,' - 1

= h°{Gi ,Gi) + h°(G2, G2) - h\Gx, G2) + h°{Gx, G2)

= h°(G!, GO + h°(G2, G2) + x{Gx, G2).

The second equality is proved in a similar way.

2.3. Corollary. A rigid torsion-free sheaf on a smooth projective surface is locally free.

This follows immediately from assertion 1) of the preceding lemma.
The inequalities in the following lemma were first proved in [4] under more re-

strictive assumptions.

2.4. Lemma. Let S be a surface whose anticanonical class a>*s is generated by global
sections.

a) The following inequality holds for arbitrary two sheaves F and G:

ho(F,G)>h2(G,F).

b) If, moreover, a>*s is ample and dimsuppF > 0, then one has the following
strict inequality:

h°(F, F) > h2(F,F).
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Proof, a) Consider the exact sequence

corresponding to a section φ e H°(S, ω£). Applying to this sequence the functor
of local %cm. with G as the second argument, we get the following sequence:

0 —> ̂ m{(jfs\D ,G)-^G®ws^G^ & / 1 {to%\D, G) —> 0.

We denote the torsion subsheaf of G by TG, and the torsion-free quotient sheaf by
Gl. Thus, G is included in the exact sequence

Ο -» TG -> G -> G1 -> O.

From this sequence it follows that

The sheaf TG fits into the exact sequence

0 -+ T°G ^ 7X7 ^ TXG -> 0,

in which Γο(7 is the torsion subsheaf with zero-dimensional support, and TlG is
the quotient sheaf without the subsheaf with zero-dimensional support. The support
of TlG is a divisor, and if D does not contain components of this divisor, then
%em(a)*s\D, TlG) = 0. If, moreover, D does not intersect the support of T°G, then
%%tm(o)*s\D, T°G) = 0. It is easy to reduce to this situation since ω£ is generated by
global sections, and therefore its set of base points is empty. Hence one can choose
a section φ e H°(S, euj) such that

In this case we obtain the following exact sequence:

O ^ G ^ W i ^ G ^ ϋ / 1 {(o*s\D, G) -> 0.

Applying the functor H o m ( F , ·) to this exact sequence, we obtain an inclusion

Horn (F, G ® (os) ^ Horn (F, G).

Now the inequality
ho(F,G)>h2(G,F)

follows from the Serre duality.
b) We observe that iW'(<y£|D, G) ~ G®d?D , and, replacing G by F and arguing

as above, for some φ e H°(S, <yj) we obtain an exact sequence of the form

0 -> F <g> ω8 -> F -> F Θ ifD -> 0.

By assumption, dim supp F > 0 and the sheaf ω£ is ample. Hence, by the ampleness
criterion,

Z)nsuppF Φ 0.

Thus F®OD is a nontrivial sheaf. From this it follows that the identity map F —» F

does not factor through F ®a>s . Therefore we obtain the strict inequality

h°(F,F)> h2{F,F).

The lemma is proved.

2.5. Remark. It is worthwhile to note that all del Pezzo surfaces with the exception of
the blowup of the plane at eight points satisfy the conditions of the preceding lemma.
In the exceptional case the anticanonical linear system has a single fundamental point.
But it is not hard to see that the assertion is also true in this case provided that
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2.6. Corollary. Let G be a sheaf on a del Pezzo surface such that T°G = 0. Then

a) ho(G,G)>h2(G,G);and
b) an arbitrary sheaf F satisfies the inequality

ho(F,G)>h2(G,F).

2.7. Corollary. Let S be a del Pezzo surface, and let G be a rigid sheaf. Then the
torsion subsheaf TG and the torsion-free quotient sheaf G' are rigid sheaves, and the
sheaf T°G is trivial.

Proof. Consider the exact triple

0 -» TG -> G -+ G' -» 0.

We know that H o m ( r G , G') = 0 . By Corollary 2.6,

h\G', TG)<h°(TG,G') = 0.

Hence by Lemma 2.2

h\G,G)>h\TG, TG) + hl{G',G').

But hl(G, G) = 0 , and therefore TG and G' are rigid sheaves. The sheaf TG fits
into the exact sequence

0 _> T°G -> TG -> TlG -> 0.

As above, it is easy to see that h°( T°G, Tl G) = 0 , and, by virtue of the inequality of
Lemma 2.4a), h2{TlG, T°G) = 0 . Hence the sheaves T°G and TlG are also rigid.
But the sheaf T°G cannot be rigid since

h\T°G, T°G) = 21ength(r°(7).

The corollary is proved.

We proceed to a description of exceptional sheaves on del Pezzo surfaces. Excep-
tional sheaves are rigid and simple (the converse is also true on del Pezzo surfaces).
Hence, as we have already shown, torsion-free exceptional sheaves are locally free
(cf. Corollary 2.3). Now we consider exceptional torsion sheaves. They admit a very
simple description.

2.8. Lemma. Let F be an exceptional torsion sheaf on a del Pezzo surface S. Then
F has the form (fc(D), where C is a (-l)-curve and d is an integer.

Proof. First we compute x{F, F). By formula (1.1) we have

X(F, F) = r2 + (r - l)c2 - 2rc2.

Taking into consideration that F is an exceptional sheaf of rank zero, we conclude
that

cj = -l.

The support of the sheaf F lies in the curve C. Furthermore, since F is rigid, it
does not have zero-dimensional torsion subsheaves (cf. Corollary 2.7). Suppose that
the curve C is not irreducible. Consider its irreducible component Co and the exact
sequence

given by restriction to Co (here supp Fo = Q , supp F\ = C \ Co, and F\ and
FQ do not have zero-dimensional torsion subsheaves). From this it follows that
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Horn (Ft, Fo) = 0, and by the above inequality Ext2 (Fo, F\) also vanishes. Applying
Lemma 2.2 b), we get the equalities

h°(F, F) = h°(F0, Fo) + h°{Fx ,F0 + X(FO, F,),

h2(F, F) = h2(F0,F0) + h2(Fl, Frf + xiFi, Fo).

Since F is an exceptional sheaf, h°{F, F) - h2(F, F) = 1. On the other hand,

h°(F, F) - h2(F, F) = h°(F0, Fo) - h2(F0, Fo) + h°{F{, Fx)

>2 + X(F0,Fl)-x(Fl,F0) = 2.

The last equality follows from the equalities

X(FQ, F{) - x{Fx, Fo) = (r(*b)ci(Fi) - r (F,)c i (F 0 ) ) (-^) = 0
(we used that r(F0) = r(F\) = 0). Thus the support of the sheaf F is an irreducible
curve C with C2 - -I, and therefore F is a locally free sheaf of rank 1 on some
(—l)-curve C. The lemma is proved.

We end our description of exceptional sheaves on del Pezzo surfaces with the
following claim.

2.9. Proposition. Let F be an exceptional sheaf on a del Pezzo surface S. Then F
is either locally free or is a torsion sheaf of the form &c(d), where C is a (-l)-curve.
Proof. Assume the contrary. Then by Lemma 2.8 F is not a torsion sheaf and there
exists an exact sequence

where TF is the torsion subsheaf and F' is the torsion-free quotient sheaf. Since
F is rigid, Corollary 2.7 shows that TF and F' also have this property. By
Lemma 2.2 b) we have the following equalities:

h°(F, F) = h°(TF, TF) + h°(F', F') + X(F', TF),

h2{F, F) = h2(TF, TF) + h2(F', F') + X(TF, F').

As in the proof of the preceding lemma, we see that, since F is exceptional,

1 = h°(F , F) - h2(F ,F)>2 + x(F', TF) - x(TF, F')

= 2+{r{F')-cl{TF)-r{TF)-cx{F')).{-Ks)

= 2 + r(F').Cl(TF)-(-Ks).

But the linear system | — AT̂ j is ample, and C\{TF) is an effective divisor. Hence
{-Ks) · Ci(TF) > 0 , which yields a contradiction. Thus, if F is not a torsion
sheaf, then it is torsion free, and Corollary 2.3 shows that then it is locally free. The
proposition is proved.

In conclusion of this section we prove a result concerning description of excep-
tional objects in the bounded derived category of coherent sheaves on a del Pezzo
surface S. This category will be denoted by 3ib{S). By exceptional object we mean
an object X in 2lb{S) satisfying the following conditions:

a) Horn 0 (X, X) = C;
b) Ext' (X, X) = 0 for i φ 0.

This is a natural generalization of the notion of exceptional sheaf to arbitrary
objects of the category 2$b{S). It is clear that any exceptional sheaf is an exceptional
object. It turns out that on the del Pezzo surface the converse is also true, that is, all
exceptional objects are sheaves. This last assertion is wrong for many other surfaces.
The simplest example is given by the scroll F 2 . More precisely, the following is true.
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2 . 1 0 . P r o p o s i t i o n . An object A of the derived category 2>b(S) is exceptional if and

only if it is isomorphic to SE[i] for some exceptional sheaf Ε on S (here δ is the
canonical inclusion of the category of coherent sheaves in the derived category).

Remark. In other words, in this case A is a complex with only one nontrivial coho-
mology sheaf, and this sheaf is isomorphic to an exceptional sheaf Ε.

Proof. We need to verify that only one cohomology sheaf is nontrivial. Put H' =
H'(A). Consider the spectral sequence converging to Hom p + 9 (A, A) whose E\
term is

Ei" = {Η1,

ι

(cf. [ 3 ] , [ 4 ] ) . I n o u r c a s e t h e n o n z e r o t e r m s o f t h e spectra l s e q u e n c e l ie i n t h e str ip

0<2p + q <2:

*

0

0

*

* (

* >

0

— 0 — .

(

a

)

It

t —

)

0

0

*

*

d

— 0

0

0

S i n c e A i s a rigid object, f r o m t h i s it is c lear that 2s{" = E™ = 0 . T h e r e f o r e , all t h e

s h e a v e s H' are rigid, i.e.,

h\Hi,Hi) = 0.

S i n c e Hl are rigid, b y 2 . 6 a n d 2 .7 w e h a v e t h e f o l l o w i n g i n e q u a l i t i e s :

h2(Hi+l, W) < h°(H', Hi+l), Η°(Η', //') > Λ2(//<, Η').

Taking into consideration that the spectral sequence degenerates at the term Ει, i.e.,
Ει = £Όο , and that A is an exceptional object, we conclude that the differential

d~1'2: φ Horn {W , Hi+l) -+ 0 Ext2 {W, W)

is an isomorphism and the differential

d°'°: φ Horn (//',//') Ext2 (Hi+l, //')

is an epimorphism whose kernel is at most one-dimensional. But these conditions are
compatible with the inequalities only if at most one H' is nontrivial. This completes
the proof of the proposition.
2.11. Corollary. If (Ε, F) is an exceptional pair of sheaves on a del Pezzo surface
S, then at most one of the spaces Ext' (Ε, F) is nontrivial; furthermore, for this space
i / 2 .
Proof. Since the pair (E, F) is exceptional, we have h°(F, E) = 0. On the other
hand, we know that h°{F, E) > h2(E, F); hence only h°{E, F) and hl(E,F) can
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be nontrivial. Then the left transformation in the derived category is given by the
following five-term sequence:

0 -» k%F -» Horn {E,F)®E^F -> XEF -> Ext1 (E, F) ® £ -> 0.

By the above proposition, only one of the sheaves XEF is nontrivial. If XEF = 0,
then Ext1 (E, F) = 0 and everything is proved.

Suppose that XEF — 0. We split the above sequence into two triples

0 -+ Horn ( £ , - F ) < g > £ ^ F - » Q - » 0 ,

0 -» Q -» L £ F - Ext1 ( £ , F) ® £ -+ 0.

We apply the functor Horn (F, *) to the first of these triples. Since Ext'(F, E) is
trivial, we get

0 for ζ > 1.

Next we apply the functor H o m ( £ ' , *) to the second triple. Then we get

{ 0 for i = 0,

Ext1 {E, F) for i = l ,

0 for i = 2.
Finally, applying the functor Horn (*, Q) to the first triple and using the above
equalities, we see that

( C for i = 0,

0 for i = l ,

Ext1 (E,F)® Horn(E, F) for / = 2.
But, as we already know, h°(Q, Q) > h2(Q, Q), and if both H o m ( F , F) and
Ext1 (Ε, F) are not trivial, we arrive at a contradiction. This completes the proof
of the corollary.

§ 3. RESTRICTION OF EXCEPTIONAL SHEAVES

TO RATIONAL AND ELLIPTIC CURVES

3.0. In this section we prove technical lemmas on restrictions of exceptional bundles
on del Pezzo surfaces to rational and elliptic curves. These lemmas are used in the
proof of our main results.

It is known [4] that an exceptional bundle on an arbitrary del Pezzo surface S is
stable with respect to | — AT̂ | in the sense of Mumford-Takemoto. Let μ(Ε) denote
the slope of the bundle Ε,

3.1. Lemma. Let R be a rational curve on a del Pezzo surface S satisfying the
inequality —R · Κ < K2 {e.g., a (— \)-curve), and let Ε be an exceptional bundle on
S. Then the restriction of the bundle Ε to R has the form

E' = E\R = n&R(s) θ m0R{s + 1).

Proof. Consider the tensor product of the restriction sequence with Ε* ® Ε:

0 -^ E* <g> E(-R) -> Ε* ® Ε -> Ε* ® E\R -> 0.
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Corresponding to it is the long exact cohomology sequence

• Ext1 (2s, 2s) ̂  Ext1 (Ε',Ε1) - Ext2 (Ε, E{-R)) - » · · · .

The group Ext1 (E, E) vanishes since Ε is an exceptional bundle. By the Serre
duality,

Ext2 (E, E(-R))* s Horn (E, %{R + K)).

Furthermore,

Κ)) = μ(Ε) -R-K-K2< μ(Ε)

by the hypothesis of the lemma. If μ(Ε^ + Κ)) < μ(Ε), then Horn (Ε, E(R + Κ))
is trivial since the exceptional bundle Ε is stable.

Suppose that /i(2s(2? + Κ)) = μ(Ε) and there exists a nonzero map φ: Ε —»
E(R + Κ). Then, since Ε is locally free, the stability and equality of slopes imply
that φ is an isomorphism, which is clearly impossible.

Thus we have shown that

Ext1 (E', E') = Ext2 (E, E{-R)) = 0.

Hence the restriction of our exceptional bundle to the curve R is rigid. On the
other hand, by the Grothendieck theorem, each bundle on a rational curve is a direct
sum of line bundles, viz. E' = 0 («,<^j(i,)· Since E' is rigid, we conclude that
\Si - Sj\ < 1. The lemma is proved.

3.2. Corollary. Let e be a (-1)-curve on a del Pezzo surface S, and let S' be
the surface obtained by blowing down this curve (S-^S1). Let Ε be an exceptional
bundle on S such that C\ (2s) · e = 0. Then there exists an exceptional bundle F on
the surface S' such that Ε = a*F.

Proof. From the preceding lemma and the equality c\ (E) · e = 0 it follows that the
restriction of the bundle Ε to the curve e is trivial. Hence there exists a bundle F
on S' such that Ε = a*F . The fact that F is exceptional follows from the equality
Ext'' (F,F) = Ext'' (a*F , a*F).

Next we determine the nature of splitting of bundles making up an exceptional
pair under the restriction to a (—l)-curve.

3.3. Lemma. Let (2s, F) be an exceptional pair of bundles on S whose slopes satisfy
the inequalities

μ(Ε) - Κ2 < μ(Ε) < /z(F),

and let e be a (-l)-curve. Then there exists an integer s such that

E®F\e = nx(9e(s) θ n2&e(s + 1) θ n3(fe{s + 2)

and

E\e = nii(fe(s) θ m2&e{s + 1),

where «; and nij are nonnegative integers.

Proof. Denote by 2s' and F' the restrictions to the curve e of the bundles 2s and
F , respectively. We recall that, since the pair (2s, F) is exceptional, the inequalities
for the slopes show that the groups Ext' (F, E), i = 0, 1, 2 , and Ext7 (E, F),
j = 1, 2 , are trivial and Horn (2s, F) φ 0.
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We claim that Ext1 (£",F') = 0 and Ext1 (F'(-l), E') = 0. The sequence

0 -» E* ® F(-i>) - E* ® F - £* ® F | e -» 0

yields the following exact sequence:

Ext1 {E,F)^ Ext1 (£" , F') -> Ext2 ( £ , F{-e)).

Here Ext1 (2s, F) = 0 by our assumptions. By Serre's duality, we have

Ext2(E,F(-e))* ^ Horn (F,E(e + K)).

But μ(Ε(β + Κ)) = μ(Ε) - e · Κ - Κ2 < /t(F). Hence, by stability of exceptional
bundles, Horn (F, E(e + K)) = 0. Therefore

Ext1 (E', F') = 0.

Using the Serre duality it is easy to show that the pair (F(K), E) is also exceptional.
Moreover, the slopes of bundles in this pair satisfy the inequalities from the statement
of the lemma. Hence

Ext1 (F'(-l), E') = Ext1 (F(K)\e, E\e) = 0.

Since by Lemma 3.1 we know how exceptional bundles split under the restriction to
the curve e, the assertion of the lemma follows immediately.

3.4. Lemma. Let (Ε, F) be an exceptional null-pair on a del Pezzo surface, that is,
μ{Ε) - /£(F) and Ext' (E, F) = Ext' (F, E) = 0 for i = 0 , 1 , 2 , and let e be a
(-l)-curve. Then either

E' ®F' = (E®F)\e = nx&e{s) Θ n2&e(s + 1)

or

(E,F) = (<?{D), &(D + Κ + <?))

for some divisor D.

Proof. We start with computing Ext2 {E, F(—e)). By the Serre duality

Ext2 (E, F(-e))* s Horn (F, E(e + K)).

Since μ{Ε{ε + Κ)) = μ{Ε)-Κ2 + \ </i(F), we have Ext2 (E, F(-e)) = 0 if K2 > 1
or K2 = 1 but F^E{e + K).

In a similar way one can verify that under these conditions Ext2 (F, E{-e)) = 0.
Arguing as in Lemma 3.3, we deduce from the adjunction sequences

0 -+ E* ® F(-e) -• E* ® F — Ε* ο F\e -• 0,

0 -> F* ® £ ( - e ) -> F* ® £· -* F* ® £ | e -* 0

that
Ext1 (£", F') = Ext1 (F',E') = 0,

i.e.,
E'®F' = ni^e{s) θ M2^(J + 1)·

Suppose now that K2 = 1 and F = E(e + Κ), so that the pair (Ε, F) coincides
with the pair (F, E(e + K)). By the Riemann-Roch theorem we have

= y (ΐ+μ{Ε(β + Κ))-μ(Ε)

\cx{E) cx{E) + r · (e + K)
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where r = r(E). Furthermore, since K2 = 1, we have μ(Ε(β + Κ)) = μ(Ε). Hence

χ {Ε, E(e + Κ)) = 1 + r- (e + Κ)2 = 1 - r2.

On the other hand, by our assumption χ(Ε, E(e + K)) = 0, i.e., r(E) — 1 and
(E,F) = {(f(D), (f(D + e + K)) for some divisor D. The lemma is proved.

We remark that the order in an exceptional null-pair can be chosen arbitrarily. In
what follows we will always put the pair {(f(D), (f(D + e + K)) in the reverse order,
viz.

3.5. Corollary. Let (E, F) be an exceptional pair on a del Pezzo surface S whose
slopes satisfy the inequalities

/i(F) - Κ2 <μ(Ε)< μ(Ε).

Then either
E®F\e = nx@e{s) Θ n2(?e(s

or
Ε φ F(K)\e = mi(fe(s) Θ m2(fe(s + 1).

Proof. If μ(Ε) < /z(F), then this is an immediate consequence of Lemma 3.3.
If μ{Ε) = μ(Ε) and (Ε, F) = ((f (D + e + K), 0{D)), then (F(K),e) =
((f(D + K), tf(D + e + K)) has the required restriction to the curve.

The last two lemmas of the present section deal with restrictions of exceptional
bundles on a del Pezzo surface S to elliptic curves from the linear series | - K$\ •

3.6. Lemma. Let C e \ — K$\, and let Ε be an exceptional bundle on S. Then
E' = E\c is a simple bundle, i.e.,

Hom(E',E') = C.

Proof. Consider the exact sequence

0 -f E* <8> E{K) ^E* ®E^ Ε* ® £ | c -> 0.

The corresponding long exact cohomology sequence has the form

0 - > H o m ( £ , ^(A:)) - ^ H o m ^ , E) -^Hom(£", E') -> Ext1 (E,E(K)).

Since all exceptional bundles on S are stable, we have Horn (E, E(K)) = 0. Fur-
thermore, from the definition of exceptional bundles it follows that

Horn (£,£·) = C, Ext1 (E, E(K))* s Ext1 {Ε, Ε) = 0.

Therefore, Horn(E1 ,E') = C.

3.7. Lemma. If the slopes of exceptional bundles E\ and E2 on a surface S satisfy
the inequality μ{Ε2) > μ{Ε\) and Ext1 (E2, E\) is trivial, then

Ext1 (Ει, E2) = 0.

Proof. Suppose first that μ{Ε2) > μ(Ε{). The sequence

0 -> El ® Ex (AT) -> E*2 <8> E\ -> E\ <g> Ex \c -+ 0

gives rise to a sequence

- Horn (E'2 ,£{)-> Ext1 (E2 , Ey (AT)) - Ext1 (E2 , £ , ) ,

where, as usual, E\ denotes the restriction of Ej to the curve C .
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By our assumption Ext1 (E2, Ex) = 0. We compute the slopes of E2 and E[.
Since r(E'f) = r(Et) and deg(£,') = Ci(£,·) · C, we have

By our hypothesis μ (£2) > μ{Ε[) • From the preceding lemma it follows that the
bundles E\ are simple, and simple bundles on elliptic curves are stable. Hence
Horn(E'2,E[) = 0. Therefore,

Ext1 [E], E2) s Ext1 (E2, Ei{K))* = 0.

Suppose now that μ(Ε2) = μ(Εχ) .ΙϊΕ2 = Εχ, then it is clear that Ext1 (Ex, E2)
is trivial. Suppose that E\ ψ Ε2. Then, since these bundles are stable and their
slopes are equal, we have

Horn(Ex, E2) = Horn (E2, Ex) = 0,

0 = Ext2 (Ει, E2) = Ext2 (E2,EX),

so that
l E l ) = 0, χ(Εχ, ,E2) = -h\Ex,E2).

On the other hand, since μ{Εχ) = μ(Ε2), from the Riemann-Roch theorem it follows
that the Euler characteristic is symmetric, that is,

χ(Εχ,Ε2) = χ(Ε2,Εχ).

The lemma is proved.

§ 4. DESTABILIZING FILTRATIONS

4.0. In this section we recall two destabilizing filtrations of sheaves. The first is a
filtration of semistable sheaves with isotypic quotients, and the second is the canonical
filtration of Harder-Narasimhan.

By stability in this section we understand stability in the sense of Gieseker. In this
case the slope of a sheaf Ε is a polynomial in the positive integral variable η

y(F 6Z> (co* )®n\
(4.1) γ(Ε, η) = A ^ ^ ' = ax(S)n2 + (a2(S) + μ(Ε))η + a3(S, Ε),

where ax(S) and a2(S) are constants depending only on the surface S.
We write γ(Ε, η) > y(F, η) if this inequality is satisfied for all sufficiently large

η . Furthermore, for the sake of brevity we write γ(Ε) instead of γ(Ε, η).

4.1. Remark. From formula (4.1) it follows that the inequality γ(Ε) > y(F) is
possible when μ(Ε) > μ(Ρ) as well as when μ(Ε) = μ(Ξ). If the Gieseker slopes of
the sheaves Ε and F coincide, then their Mumford-Takemoto slopes are also equal.
Moreover, from the same formula it follows that stability in the sense of Mumford-
Takemoto implies stability in the sense of Gieseker, and semistability in the sense of
Gieseker implies semistability in the sense of Mumford-Takemoto.

It is more convenient for us to use stability in the sense of Gieseker in view of the
following simple result.

4.2. Lemma. If there exists a nontrivial map φ: F —> Ε, where Ε and F are two
sheaves with equal slopes that are semistable in the sense of Gieseker, and Ε is stable,
then φ is an epimorphism.
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We remark that if one considers stability in the sense of Takemoto-Mumford, then
one can only claim that φ is surjective at a general point.

We list some more standard properties of those sheaves on a del Pezzo surface S
that are semistable in the sense of Gieseker.

4.3. Lemma. 1) Let

0 -> F' -+ F -> F" -> 0

be an exact sequence of coherent sheaves on S. Then

y(F') > y(F) if and only if y(F) > y(F"),

y(F') < y(F) if and only if y{F) < y{F"),

7(F') = y(F) if and only if y{F) = y(F").

2) If the slopes of {semi)stable sheaves Ε and F on S satisfy the inequality y(E) >
y(F), then Hom(E,F) = 0.

ί) If the slopes of (semi) stable sheaves Ε and F on S satisfy the inequality y(E) <
y(F), then Ext2 ( £ , F) = 0.

4) Any stable sheaf F is simple, that is, Horn (F, F) = C.
5) Two stable sheaves with the same slopes are either isomorphic or do not have

nontrivial maps to each other.

Next we show that semistable sheaves have nitrations with isotypic quotients.

4.4. Proposition. For each semistable sheaf & there exists a filtration

0 = &n+l c9r

nc---d9r

2<z9rx=9r

such that the quotients G, = &i/&i+l are semistable, their slopes satisfy the equalities
y{Gi) = γ(9ϊ) = y(9r), i = 1, . . . , η, and Horn {9i+i, G,·) = 0 for all i.

In turn, each quotient Gj has a filtration with stable quotients isomorphic to E,.

Proof. If the sheaf 9~ is stable, then the filtration is trivial. Otherwise there exists a
surjection &~ —>-> Ε, where the rank of Ε is smaller than that of &~ and y{&~) —
y(E). Let E{ be such a quotient sheaf with the smallest possible rank. It is clear
that E\ is stable. We denote the kernel of the epimorphism & —·-+ Ex by &^ .

Since an arbitrary subsheaf of the sheaf &^ is a subsheaf of 9~ and the slopes
of &2 and & coincide (cf. Lemma 4.3,1)), the sheaf ^ x% semistable.

Suppose that there exists a nontrivial map φ: &~^ —> E\. By Lemma 4.2, this map
is an epimorphism. We denote by ^ 2 the kernel of φ . We proceed in the same
way until we construct a sheaf S^1 = 9^ from which there are no nontrivial maps
to E\. We remark that the sheaf ^ may be trivial.

If the sheaf î > is nontrivial, then we apply to it the same procedure as to &" = &[.
Thus we obtain a sheaf ^ . We proceed like that until we get &~n+\ = 0.

We show that the resulting filtration has the desired properties.
The semistability of the quotients and the equalities y(G,-) = y{&i) = y(SF) follow

from the semistability of the elements of the filtration, the equalities γ(&ί) = y{&~),
and the exact sequences

Taking the quotient sheaf G\ = &\l&i. as an example, we show that all (7, have
nitrations with stable quotients isomorphic to £ , .
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P u t Qj = &\l&j . T h e n for each j there is a c o m m u t a t i v e d iagram

0

Τ
Εχ

1

Qj+x

0

with exact rows a n d c o l u m n s . H e n c e t h e sheaves Qj fit in to exact sequences

0 -> Ex - Qj+l -> Qj -» 0.

N e x t we observe t h a t Q\ = E\ a n d Qkl = G\ . H e n c e for each j we get t h e

following c o m m u t a t i v e d iagram with exact rows a n d columns:

0

i

Ο • G{+2 > Gx > QJ+l > 0

I

Ex

1

0

From this it is clear that the sheaves G\ form a filtration of the sheaf G\ such

that GjJG{+x s Εχ.
It remains to verify that Horn (&ί+χ, Gt) = 0.
By the construction of our filtration, Horn (&ί+\, E{) = 0 for all i. Applying the

functor H o m ( ^ + i , *) consecutively to the exact triples

0 -» Ei -»· Gf'"1 -• Et••-> 0,

we conclude that Horn (&ί+ι, G,) = 0.
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In a similar way we construct a canonical Harder-Narasimhan filtration for an
arbitrary torsion-free sheaf. We shall not go into boring details but only give the
statement of the corresponding result.

4.5. Proposition. An arbitrary torsion-free sheaf SF has a canonical filtration

with semistable quotients (7, = &ί/&ί+\ whose slopes satisfy the inequalities

γ(^)>γ(5η), and γ{&) > y(G;) > y(Gj) for i > j .

Furthermore, for this filtration

Horn {&[, Gj) = 0 = Ext2 {G}, 9[).

§ 5. RIGID BUNDLES ON A DEL PEZZO SURFACE

5.0. The goal of this section is to show that an arbitrary torsion-free rigid sheaf on
a del Pezzo surface (such a sheaf is necessarily locally free, so one can speak about
rigid bundles) splits into a direct sum of exceptional sheaves.

The idea of the proof is to show that a rigid bundle is a direct sum of quotients of a
destabilizing nitration. To this end, we compute the groups Ext1 for these quotients
and apply the following result.

5.1. Lemma. If a sheaf !F has a filtration

whose quotients Qi = &i/&i+\ satisfy the condition Ext1 ((?,, Qj) = 0 for i < j , then

We leave the proof of this lemma to the reader as an easy exercise.
In what follows by stability we mean stability in the sense of Gieseker.

5.2. Theorem. An arbitrary rigid bundle &~ on a del Pezzo surface splits into a direct
sum of exceptional bundles.

Proof. We consider three cases:

1) SF is a rigid semistable bundle possessing a filtration with stable quotients
isomorphic to each other;

2) & is a rigid semistable bundle;
3) !F is an arbitrary rigid bundle.

5.2.1. Case 1). Suppose that the quotients Gt of a rigid sheaf are isomorphic to a
stable sheaf Ε. We show that Ε is an exceptional sheaf and &~ = Ε Θ · · · θ Ε.

Consider the spectral sequence associated with the filtration, with E\ -term

which sequence converges to Extp + ? (&, &~). Since all Gt = Ε are stable,
Ext2(G,, Gj) = 0 for all / and j . Hence, the .ΕΊ-term of the spectral sequence
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has the form

0 * * 0

— 0 — 0 — * — * — 0
Ρ

*

It is easy to see that

E\~n'" = El^n'" c Ext1 (9~,&') = 0.

Hence

Ext1 (G n ,G,) = Ext1 ( £ , £ ) = 0.

Therefore, Ext1 ((?,·, Gj) = 0 Vi, j . From this it follows that Ε is rigid and y =
Ε θ · · · θ Ε. Moreover, since E is stable, it is simple. That means that Ε is an
exceptional sheaf.

5.2.2. Case 2). Let &~ be a semistable rigid sheaf. Consider the filtration from
Proposition 4.4.

Step 1. The members and quotients of this filtration are rigid sheaves.

Proof. Consider the exact sequences

By Proposition 4.4 we have H o m ( ^ + 1 , G,·) = 0. Furthermore, since the sheaves
&j+i and Gi are semistable and y{&i+\) = y(G,·), from Lemma 4.3,3) it follows that
the group Ext2 (G,, &l+\) is also trivial. Hence one can apply Lemma 2.2,2), from
which it follows that

Moreover, since 9[ = SF is a rigid sheaf, the sheaves y and G, are also rigid for
all i.

Step 2. The quotients of the filtration split into a direct sum of exceptional sheaves
isomorphic to each other.

In fact, at the preceding step we have shown that the sheaves G, are rigid. More-
over, by Proposition 4.4 these sheaves have the same filtration as in Case 1).

Step 3. Ext1 (Gn , G\) = 0, where η is the number of quotients in the filtration of the
rigid semistable sheaf 9".



EXCEPTIONAL SHEAVES ON DEL PEZZO SURFACES 497

Proof. Consider the spectral sequence associated with the filtration of the rigid sheaf
&~, with .Ei-term

Since the sheaves (J, are semistable and their slopes coincide, Ext2 ((?,, Gj) = 0 for
any pair of indices / and j , i.e., the is ι-term of the spectral sequence has the same
form as in Case 1). Hence, as above,

Extl(Gn,Gl) = 0.

Step 4. Ext1 (d, Gn) = 0.

Proof. By Step 2, we have the following decompositions:

Gn=En®---®EH = sEn,

Gx =EX Θ---Θ-ΕΊ =kEx.

Since Ext1 (Gn, Gi) = 0, we have Ext1 (En, E\) = 0. As was proved above, En

and Ει are exceptional sheaves and their Gieseker slopes are the same. From this
it follows that μ(Εη) = μ(Εχ). Now from Lemma 3.7 it follows that the space
Ext1 (Ει, En) is trivial, and therefore Ext1 (G{, Gn) = 0.

Step 5. 9~ is a direct sum of exceptional sheaves.

Proof. We prove the claim by induction on rank. The first induction step is obvious.
As was shown in Step 1, the sheaf S?i (the second term of the filtration) is rigid and
r(Sl2) < r(SF). By the induction hypothesis, this sheaf splits into a direct sum of
exceptional sheaves. It is easy to see that the quotients Gn, ... , G\ of the filtration
are its direct summands, i.e.,

&i = G2®---®Gn.

Consider the exact sequence

O-*^^^ -*Gt -> 0.

Since Ext1 (Gi, Gn) = 0, the sheaf Gn is a direct summand of &, that is, 9~ =
Gn θ 9~', where SF' is again a rigid semistable sheaf whose rank is less than that of
&. Applying the induction hypothesis to the sheaf &', we see that this sheaf, and
therefore the sheaf &~, is a direct sum of exceptional sheaves.

5.2.3. Case 3). &~ is an arbitrary rigid sheaf on a del Pezzo surface.

Proof. Consider the canonical destabilizing filtration of the sheaf & constructed
in Proposition 4.5. The slopes of its semistable quotients G, = &ί/&ί+1 satisfy the
inequalities

By Lemma 4.3, the sheaves Gi satisfy the conditions

Hom(G (, Gj) = 0 f o r / > ; ,

Ext2 (d ,Gj) = 0 for / < j .

Hence the £Vterm of the spectral sequence associated with this filtration has the
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0

— 0

From this it follows that

and

Since the spectral sequence converges to the groups Ext' {&',&') of the rigid sheaf
9", for each index we get the equalities

Ext1(G,-,(7 /_i) = 0, Ext1 (G,:, d) = 0.

This means that the sheaves G, are rigid, and since they are semistable, they can be
represented as a direct sum of exceptional bundles, viz. G, = ®3Ε* (cf. Case 2)).
Using the first equality, we get:

0 = Ext1 (G,, G/_i) = Ext1 ( φ E \ , 0 £ ? _ , ) .
\ s k )

Therefore, Ext1 {E\, Ε^_λ) = 0. Furthermore,

Hence the Mumford-Takemoto slopes of these sheaves satisfy the inequality

Now one can apply Lemma 3.7 to the exceptional sheaves E? and 2s£_, to show that

the space Ext1 (E^_l, Ef) is trivial. Hence

Ext1 (G/_,, d) = 0.

Now we proceed by induction on rank, as in the second case. From Proposition 4.5
it follows in particular that the sheaves &{ = 9~ and G\ fit into an exact sequence

Since G\ is semistable, from §4.5 and the inequalities for slopes it follows that the

groups Ext2 {G\, &{) and H o m ( ^ , G i ) are trivial. By Lemma 2.2,2), rigidity of
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the sheaf y implies rigidity of the sheaf SF2. By the induction hypothesis, y> is a
direct sum of exceptional sheaves. In particular, y> = Gn Θ · · · Θ G2.

On the other hand, we have already shown that the group Ext1 (G\, G2) is trivial.
Hence y = y θ G2, where y is also a rigid torsion-free sheaf, which, by the
induction hypothesis, splits into a direct sum of exceptional sheaves. This completes
the proof of the theorem.

§ 6. EXCEPTIONAL COLLECTIONS

6.0. In this section we show that each exceptional collection on a del Pezzo surface
is a part of a complete exceptional collection. For the projective plane P2 and the
quadric Ρ1 χ Ρ1 this was shown in [5] and [9], respectively. Therefore, we will assume
that our del Pezzo surface S is the blowup of P2 at d points, where d < 8. We
will prove this assertion by induction on d, starting with P 2 and Ρ1 χ Ρ 1 .

Consider an exceptional collection σ = (Ει, ... , Ek), where Et are exceptional
sheaves on the surface S. We note that if the collection σ is a part of a complete
exceptional collection, then each collection a' obtained from σ by a sequence of
transformations also is a part of a complete exceptional collection.

6.1. Definition. Two exceptional collections a and a' of the same length are called
constructively equivalent if they are obtained from each other by a sequence of trans-
formations.

It is easy to check that this is actually an equivalence relation.
Moreover, it is clear that if a collection σ is a part of a complete collection, then

each collection σ(Η) = (Ει(Η), ... , Ek(H)) obtained by twisting by an invertible
sheaf (?s(H) also is a P a r t of a complete collection.

The third type of operations to be considered is the following.
From a collection σ = (Ει, ... , Ek) we construct the collections

La=(Ek(K),Ei,...,Ek_x) and Ra = (E2 , . . . , Ek , Ex(-K)).

These collections are also exceptional. Moreover, if a is a part of a complete ex-
ceptional collection, then La and Ra also have this property. The last assertion
follows from the fact that if σ is a complete collection, then La is obtained from
σ by a sequence of transformations, viz. by shifting Ek through all Et (cf. [2]).

6.2. Definition. Two collections σ and a' are called equivalent if they are obtained
from each other by a sequence of operations of the three types described above.

Consider an exceptional collection σ = (Ει, ... , Ek). If some E, is a torsion
sheaf, then there exists a collection σ', equivalent to a, such that E[ = (fe(-\),
where e is a (-l)-curve. In this case all the sheaves E\ (/ > 1) are lifted from the
surface 5" obtained by blowing down the curve e, and we can proceed by induction.
Hence in what follows we will assume that all the sheaves in the collection a are
bundles, so that the slopes μ(Ει) are well defined for all Et.

Denote by μο(α) and μι(σ) the minimum and maximum value of the slopes
μ(Εί), viz.

μο(σ) = {τηιημ(Εί) | Et e a),

μι(σ) = {πΐΆχμ(Εί) \ Ε, e σ}.

We recall that if (Ε, F) is an exceptional pair of bundles on a del Pezzo surface
S, then there are three possibilities:

a) μ(Ε) < μ(Ξ), and so (Ε, F) is a pair of type Horn ;
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b) μ(Ε) > μ{Ρ), and so (Ε, F) is a pair of type Ext;
c) μ(Ε) = μ(Ε), and so (Ε, F) is a totally orthogonal pair, i.e., the pair

(F, E) is also exceptional (in what follows we will assume that this pair also
has type Horn).

6.3. Lemma. Let {E, F) be an exceptional pair of type Ext. Then (LEF , E) is a
pair of type Horn and

ju(F) < M W ) < μ(Ε),

where LEF is the exceptional bundle obtained by transforming F with the help of
Ε, that is, we have an exact sequence

0 -> F -» LEF -• Ext1 (E,F)®E-*0.

Proof. The above exact sequence is the definition of a transformation for the pair
(E, F). The inequalities for the slopes are verified by an elementary computation,
which we leave to the reader.

6.4. Lemma. Let σ be an exceptional collection of bundles. Then there exists a col-
lection σ' of type Horn which is constructively equivalent to σ and has the following
properties:

μο(σ) <μο{σ'), μ\(ρ') < μ\{σ).

Reminder. A collection σ is called a collection of type Horn if each pair (£,-, Ej)
is a pair of type Horn.

Proof. We prove the lemma by induction on the length of a collection. The first in-
duction step is given by Lemma 6.3. Consider the subcollection τ = (E\, ... , Ek_\).
By the induction hypothesis there exists a subcollection τ' = (E\, ... , E'k_x) of type
Horn that is constructively equivalent to τ . Then the collection σ = (E[, ... ,
E'k_i, Eic) is constructively equivalent to σ , and by the induction hypothesis

μο(σ)<μο(σ), μ{{σ) < μχ{σ).

Furthermore, the slopes μ{Ε\) satisfy the inequalities

If μ{Ε)ί) > μ{Ε'Ι(_ι), then we take σ' to be σ , and if μ(Ειι) < μ{Ε'Ιί_χ), then we
consider the transformation of E^ with the help of E'kl . Then (L£< Ek, E'k_{)
is a pair of type Horn and

μο(σ) < μ{ΕΙ() < μ^ε^Ε^ < μ{Ε'Ιζ_ι) = μ,(σ).

We continue shifting Ek to the left in this way until we get a collection σ' =
{E[, ... ,E't, F, E'i+l, ... , E'k_x) such that (Ε[, F) is a pair of type Horn. Then

μ{Ε\) <

and we get a collection σ' of type Horn satisfying the conditions

μο(σ) <μο(σ'), H\{<*') < μ\{σ).

The lemma is proved.

The following result shows that it is possible to find an equivalent collection of
type Horn whose slopes are sufficiently close to each other.
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6.5. Claim. For each exceptional collection of bundles σ there exists an equivalent
collection σ of type Horn such that

μ,(σ) - Κ2 < μο(σ).

Proof. By Lemma 6.4 we can reduce σ to a collection of type Horn without in-
creasing the difference μι (σ) - μο(σ). Suppose that σ itself is a collection of type
Horn. Then we have

μο(σ) = μ(Ει) <•••< μ(Ε/,) = μ ι ( σ ) .

If μι(σ)-μ ο (σ) > Κ2 , then we consider the collection La = (Ek(K),E\, ... ,Ek_{).
For this collection

= μο(σ) = μ(£Ί),

There exists a number / such that

μ(Εί) < M(Ek) -K2 = M(Ek{K)) < μ(ΕΜ).

If μι(ί,σ) - μο(Ι,σ) > Κ2, then we consider the collection L{La) and proceed like
that until either the difference (μι - μο) becomes less than K2 or we get a collection
<Ti = (Ei+l {K),...,Ek{K),Ex,..., Ei) for which

μο(σ,) = μο(σ) = μ(Ε{), μχ{σ{) = μ(Ε^Κ)) = μχ(σ)-Κ2.

In the last case we get a collection σ\ for which the difference μι (σι) - μο{σ\) is
equal to μι (σ) - μο(σ) - Κ2. By Lemma 6.4, one can construct a collection σ[
of type Horn that is constructively equivalent to σ\ . Repeating this procedure a
sufficient number of times, we finally get a collection σ of type Horn such that

μι (σ) - Κ2 < μο(σ),

which completes the proof of our claim.

6.6. Claim. For each exceptional collection of bundles σ there exists an equivalent
collection σ' of type Horn such that for a given (-l)-curve e one has

{E[ ®---®E'k)\e = nt?e(-l)

where η and m are nonnegative integers.

Proof. By Claim 6.5 we can find an exceptional collection σ of type Horn that
is equivalent to σ and satisfies the inequality μι (σ) - Κ2 < μο(σ). Twisting this
collection, if necessary, we get a collection τ whose restriction to the curve e satisfies
an additional condition. To wit, let τ = (F\, ... , Fk). Then

(F, θ · · · θ Fk)\e = nx&e{-\) θ n2ffe θ «3^(1), «ι Φ Ο-

Since each pair (F,, Fj) with i < j satisfies the assumptions of either Lemma 3.3
or Lemma 3.5, there exists an i such that the restriction of F\ φ • · · φ/7,- to the curve
e has the form

OF, Φ · · · θ Ft)\e = n'&e{-\) φ m'&e

and the restriction of Fi+\ φ · · · φ Fk to e has the form

(Fi+i Φ · · • Φ Fk)\e= n"ffe Φ m"<fe(l).

(We remark that / may be equal to k, and then the collection τ itself is the re-
quired collection; moreover, the number i satisfying the above conditions may not
be unique.)
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Now the collection σ' is obtained from τ by shifting Fk, ... , Fi+l to the left,
i.e.,

It is clear that the restriction of this collection to e satisfies the above condition.
Furthermore, since the slopes satisfy the inequality

M{Fk{K)) = Ai(i)t) - K2 = μχ{τ) - Κ2 < μο(τ) = M{FX),

σ' is a collection of type Horn. This completes the proof of our claim.

6.7. It will be convenient to introduce the following definitions.

Definition. A sheaf F is called superrigid if Ext' (F, F) = 0 for all i > 0.

We remark that a superrigid sheaf is different from an exceptional sheaf in that
we do not require it to be simple. For example, a sum of sheaves of an exceptional
collection of type Horn is a superrigid sheaf. From the preceding section it follows
that the converse is also true on del Pezzo surfaces.

One can also introduce the notion of superrigidity for objects in the derived cate-
gory.

6.8. Definition. An object A is called superrigid if Horn' (A, A) = 0 for each ι' Φ 0.

It is convenient to formulate the following lemmas using the language of derived
categories.

6.9. Lemma. Suppose that two superrigid objects A and Β in the derived category
satisfy the following conditions:

a) Horn' (A, B) = 0 for ίφΟ;
b) Horn' (B, A) = 0 for ίφ\.

Consider the following distinguished triangle in the derived category:

A -» Horn0 {A, Β)* ® Β -> C.

Then Β ®C is a superrigid object. Moreover, Horn1 (C, B) = 0 for all i if Β is a
simple object.

Proof. 1) Consider the functor Horn (*, B) and apply it to the triangle

A -> Horn0 {A , Β)* ® Β -> C.

We get a long exact sequence

0 -• Horn 0 (C, B) -• Horn 0(A,B)® Horn0{Β, Β)

-+ Horn 0 (A,B)-* Horn1 (C, B) -» 0.

From this it follows that Horn1 (C, B) = 0, and if Β is simple, i.e., Horn0 (Β, Β) =
C t h e n H o m ' ( C , 5 ) = 0.

2) If we consider the functor Horn (B, * ) , then from the long exact sequence it
follows that Horn' (B, C) for i φ 0.

3) Now, applying the functor Horn (*, A) to our triangle, we immediately see that
H o m ' ( C , ^ ) = 0 for ίφ\.

By the above, considering the functor Horn (C, * ) , we get a long exact sequence

- Horn0 {A, B)* ® Horn' (C, B) -* Horn' {C, C)-^ Hom'+ 1 (C, A) -*.

From this it follows that H'(C, C) — 0 for ι'. Φ 0, and therefore C is a superrigid
object. Combining these three results, we see that Β θ C is also superrigid. The
lemma is proved.



504 S. A. KULESHOV AND D. O. ORLOV

is a direct sum of exceptional bundles that together with @e(-1) form an exceptional
collection, i.e.,

Β =

and (<?e(-l), G\, ... , Gj) is an exceptional collection.
All the bundles Gj are obtained by lifting exceptional bundles from the surface

S' obtained by blowing down the line e on S. By the induction hypothesis, this
collection is a part of a complete collection on 5", and so (<fe(-\), G\, ... , Gn) is
a complete exceptional collection on S.

Consider the collection τ = (F\, ... , F,,, E\, ... , F*. , Gj+i, ... , Gn).
1) We prove that this collection is exceptional. In fact, we know that the collection

(Fi, ... , Fj, Ei, ... , Ek) is exceptional. Consider the bundle Ga , j + 1 < a < η .
Since Υίοτη'(Οα,Β) = 0 and Horn'(Ga,&e(-l)) = 0 for all i, from the exact
sequence

0 -» Β -» A -» Horn (A, <£(-l))* ® <$.(-l) -+ 0

it follows that Horn' (Ga, A) = 0. Furthermore, considering the sequence

0 - t C - . Hom(A,(fe(-l)) ®A-> <£(-l) -• 0

and using the same argument, we see that Horn' {Ga, C) = 0. Hence the collection
τ is exceptional.

2) To show that the collection τ is complete, we recall that the subcategory gener-
ated by an exceptional collection is admissible, i.e., this subcategory and its orthog-
onal generate the derived category. Hence to show that our collection is complete
it suffices to verify that the left orthogonal to the subcategory 21 generated by the
collection τ is trivial.

Consider an object X from the left orthogonal to 2! . Then Horn' (X, A ® C) = 0
for all i. Therefore, Horn' (X,&e(-\)) = 0 for all i. This follows from the first
exact sequence.

From the second exact sequence it follows that Horn' (X, B) = 0 for all i. Hence
X lies in the left orthogonal to the collection (<fe(-l), Gi, ... , GH). Since this
collection is complete, it follows that X is equal to zero. This completes the proof
of the theorem.

6.12. Remark. The first induction step in our proof of the theorem is furnished by
the plane P 2 and the quadric Ρ1 χ Ρ1 . We would like to point out that it suffices to
consider only the projective plane P 2 . In fact, if our exceptional collection consists
only of torsion sheaves, then there is no problem to supplement it to a complete ex-
ceptional collection. If our exceptional collection is not a collection of either bundles
or torsion sheaves, we can apply transformations to replace it by a constructively
equivalent collection consisting only of bundles. Next we fix a blowing down of our
surface S to P 2 and proceed by induction on the number of blown up points on S,
starting with P 2 .

Moreover, in the same way one can show that an arbitrary collection on Ρ1 χ Ρ1

is a part of a complete collection. To this end, it suffices to blow up Ρ1 χ Ρ1 at a
single point and to lift everything to the del Pezzo surface X2 obtained by blowing
up P 2 at two points. On Χι we consider the collection consisting of the collection
lifted from Ρ1 χ Ρ1 and the torsion sheaf tfe , where e is the (-l)-line obtained by
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Now we formulate another lemma. Since its proof is similar to that of the preced-
ing lemma, we omit it.

6.10. Lemma. Suppose that A and Β are superrigid objects satisfying the following
conditions:

a) Horn' (A,B) = 0 for ίφΟ;

b) Horn' (B, A) = 0 for ι: φ Ι.

Consider the distinguished triangle

C -* Horn0 {A, B) <8> A -> B.

Then the object Α θ C is also superrigid, and if in addition A is simple, then
Horn' (A,C) = 0 for all i.

We now turn to the proof of the fact that each exceptional collection is a part of
a complete exceptional collection.

6.11. Theorem. On an arbitrary del Pezzo surface each exceptional collection is a part
of a complete exceptional collection.

Proof. As we already pointed out above, by the induction hypothesis we may assume
that our collection consists of bundles. Furthermore, applying Claim 6.6 to a given
exceptional curve e, we can find an equivalent exceptional collection of bundles
σ = (E\, ... , Ek) such that

(Ει ®---®Ek)\e = n<$e(-\)®m@e-

Denote Ex θ · · · θ Ek by A . Then A is a superrigid bundle and

a) Horn' (A, &e{-1)) = 0 for ίφΟ;

b) Horn' (<fe(-l), A) = 0 for ίφ\.
Consider the canonical short exact sequence

0 ^ C ^ Horn (A, (?e(-l)) ® A -+ /fe(-l) -+ 0.

Then by Lemma 6.10 the bundle Α Θ C is also superrigid. Hence from Theorem 5.2
it follows that this bundle is a sum of exceptional bundles, viz.

Α θ C — n\Fi θ · · · Θ njFj θ m\E\ θ · · · Θ m^E^.

Since Α φ C is not only rigid, but also superrigid, the collection

(F\, .. • , Fi, Ει, ... , Ek)

is exceptional (here we ordered the exceptional bundles in the decomposition of A®C
by their slopes).

Consider now the canonical map

A -^ Horn (A, (?e(-l))* ® (fe(-l).

This map is surjective since it factors through the restriction of A to the line e and
the map

A\e ^Hom(A,(fe(~\))* ®(fe(-\)

is surjective. Hence there is a short exact sequence

0 ^ Β ^ A -^ Horn (A, (?e(-l))* ® &e(-l) -> 0.

By Lemma 6.9, Β is a superrigid bundle, and since ^ ( - 1 ) is an exceptional sheaf, by
the same lemma Horn' (B, (fe(-l)) = 0 for all /. (We note that here Β corresponds
to B[-l] in the statement of the lemma.) Arguing as above, we see that the bundle Β
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blowing up Ρ1 χ Ρ1 . Next we transform this collection into a collection of bundles
and supplement it as above using only the results for P 2 . It is easy to see that,
proceeding in this way, we prove the claim for the quadric Ρ1 χ Ρ 1 .

§ 7. CONSTRUCTIBILITY OF HELIXES

7.0. In this last section of our paper we show that an arbitrary complete excep-
tional collection of sheaves on a del Pezzo surface is equivalent to the collection
{(fei (-1), ... , <?ed(-1), (?s, <?s( 1), ^s(2)). From this and Theorem 6.11 it follows
that each exceptional sheaf is obtained by transformations from invertible sheaves
and exceptional torsion sheaves.

As we have shown above, for an arbitrary exceptional and, in particular, complete
collection there exists an equivalent collection (F\, ... , Fn) such that the sheaf SF =
Θ"=ι Fi fits into an exact sequence

(7.1) 0 -* X2E2 • θ ΧηΕη

a n d (&e(-\), E2, ... , En) i s a n e x c e p t i o n a l c o l l e c t i o n . F u r t h e r m o r e , (E2, ... , En)

i s a n e x c e p t i o n a l c o l l e c t i o n o f t y p e H o r n c o m p o s e d o f s h e a v e s l i f ted f r o m a sur face

5 " u n d e r t h e m a p S —> S' b l o w i n g d o w n a n e x c e p t i o n a l c u r v e e t o a p o i n t .

M o r e o v e r , u s i n g i n d u c t i o n o n t h e n u m b e r o f b l o w n u p p o i n t s , o n e c a n a s s u m e that

t h e s h e a v e s Ft are loca l l y free (cf. 6 .1 ) . T h e n t h e s h e a v e s £", are a l s o loca l l y free.

S i n c e t h e c o l l e c t i o n {F\, ... , Fn) i s c o m p l e t e o n S, t h e c o l l e c t i o n (E2, ... , En)

i s c o m p l e t e o n S'.

T o clari fy t h e i d e a o f t h e p r o o f that h e l i x e s are c o n s t r u c t i v e l y e q u i v a l e n t , w e

consider the tensor product K0(S) ® Q = Κ.
To each exceptional sheaf F on S there corresponds a vector [F] in Κ. It is

clear that the vectors in A" corresponding to an exceptional collection are linearly
independent, and to a complete collection there corresponds a basis. The Euler char-
acteristic χ(Ε, F) of sheaves is a bilinear form on Κ. Since all exceptional sheaves
satisfy the equation χ(Ε, E) = 1 , the corresponding vectors cannot be proportional.
Hence we can pass to the projectivization of Κ. Then vectors corresponding to
sheaves of exceptional collections are projected into vertexes of certain simplexes.

From the exact sequence (7.1) it follows that the vector [JF] lies inside the simplex
with vertexes at the points corresponding to [^(-1)] , [E2], ... , [En]:
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If we project the point \&\ to the edge ( [ ^ ( - 1 ) ] , [E2]), then we get a point
corresponding to a superrigid sheaf that splits into a direct sum of a pair of excep-
tional sheaves (E[, E'2) equivalent to the pair (<^,(-l), E2). Then we project \&~\
to the face {[E2], ... , [En]). The image under this projection also corresponds to a
superrigid sheaf, and so on.

We use induction on the dimension of a category. The first induction step is based
on the following two results.

7.1. Lemma. Let (E\, E2) be an exceptional pair. Consider the {infinite in both
directions) sequence of exceptional sheaves defined by the recurrent formulae

Then for each exceptional sheaf Ε in the subcategory generated by the pair (E\, E2)
there exists a number j e Ζ for which Ε = Ej. In other words, any exceptional
sheaf belonging to the subcategory generated by an exceptional pair is obtained by
transformations of this pair.

Proof. Since any exceptional sheaf on a del Pezzo surface is determined by the cor-
responding vector in Κ, it suffices to prove the lemma in terms of KQ(S) .

Denote by ei the vector corresponding to the exceptional sheaf £ , , and put h, =
/(<?,-, ei+i). Then έ?,_2 = ±(Λέ?,-_ι - et).

Suppose that the sequence of vectors {e,},ez from K0(S) satisfies the conditions

χ(βί, et) = 1, χ{βί, ei+{) = h, x{ei+\, e,) = 0, e,_2 = Λ<?/-ι - et

and that the square of the vector e = X\e\ +y\e2 is equal to one. Then we show that
there exists an index j such that e, = ±e.

Put e = Xjei+yiei+i. We find out the relationship between the coordinates (χ,, y,·)
and (Xi-\, y ,_ i) . It is clear that

Χι-1 = -y,·, Xi = hxi-1 + y/_ ι.

We show that among the coordinates (χ,, y,·) there is a pair ( ± 1 , 0 ) .
Since x(e, e) — 1, the pairs (JC,· , y,·) satisfy the equation

( *) x2 + y2 + hxy - 1 = 0 .

By the Vieta theorem, a pair (x, y) is a solution of this equation if and only
if the pairs (y, -hy - x) and (-hx - y, x) satisfy the same equation. Thus we
get two transformations of a solution of equation (*). We observe that up to sign
these transformations coincide with the formulae for recomputation of coordinates.
Hence it suffices to show that if {XQ , yo) is a solution of equation (*) distinct from
(±1,0) and (0, ±1), then one of the transformations decreases the sum of absolute
values |x| + \y\.

Since xo and x' = -hyo - XQ are two roots of the equation (*) for a fixed yo,
by Viete's theorem we have

= yo - 1 > 0.

Similarly, yoy' = x$ — 1 > 0, from which it follows that Xo and x', as well as
and y ' , have the same sign.

Suppose that the following two inequalities are simultaneously satisfied:

Then x'2 > y2, — 1 and y ' 2 > x2 - 1, which is impossible. The lemma is proved.
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7.2. Corollary. If the bundles making up an exceptional pair (F\, F2) belong to
the category generated by an Ext-pair (E\, E2), then these pairs are constructively
equivalent. If, moreover, the sheaves E, are locally free, then

r(Fl) + r(F2)>r(El) + r(E2),

where equality holds if and only if Ft = £,·.

Proof. Constructive equivalence of these pairs follows from the preceding lemma. To
prove the inequality we pass to Ko(S). Let f\, f2, e\, e2 be the vectors in KQ(S)
corresponding to the sheaves F\, F2, E\, E2. Since (E\, E2) is a pair of type Ext,
χ (Ει, E2) - —h < 0. We claim that the coordinates (JC,· , y,·) of the vectors f with
respect to the basis e\, e2 are nonnegative. In fact, they satisfy the equation

xf + yf - hxiyi = 1,

from which it follows that x, and y, have the same sign. On the other hand,
r(Fi) = Xjr(E\) +yir{E2), and so Xj and y, are nonnegative. The inequality now
follows from the same relation.

Suppose that r(Zs,) > 0. Then the equality r(Fj) = r(Ej) is possible only if
{Xi, yd = (0, 1) or (1 ,0) . This completes the proof of the corollary.

7.3. Lemma. Suppose that the superrigid sheaves from an exact triple

(7.2) o -+ g3 Θ r 4 -> F -+ §Ί ω r 2 -»o

satisfy the following conditions:

1) Ext' (gj ,?k) = 0 for k<j and i = 0,l,2;

2) Ext2 (gj', &k) = 0 for arbitrary j and k.

Then

a) End(g4)~Hom(g4,^);

b) Ext' (gA, &) = 0 for i = 1, 2;
c) E x t 2 ( ^ , r 4 ) = 0;
d) there exists an exact sequence

(7.3) 0 - ^ 4 ^ ^ ^ ^ - + 0 ,

where & is a superrigid sheaf satisfying the condition Ext' (§4, S?) = 0 for
i = 0, 1,2.

We remark that in this case the sheaf %Ί may be trivial.

Proof. Apply the functor Ext (§4, *) to the exact sequence (7.2). By our assump-
tions, Ext1' (WA , g)) = 0 for j = 1, 2, 3 . Moreover, Ext1 (§4 , g*4) = Ext2 (J4, §4) =
0 since the sheaf ^4 is superrigid. Therefore,

Horn (g4, F) ~ End {gA),

Ext' '(^4,^) = 0, / = 1,

Applying the functor Ext(*, §4) to the exact sequence (7.2), we get an exact
sequence

— Ext2 (g\ θ r 2 , g4) - Ext2 ( ^ , g4) -» Ext2 ( r 3 Φ ̂ 4 , r 4 ) -» 0.

Since by our assumption the groups Ext2 (§/, ̂ ) are trivial for all / and j , we have
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The standard inclusion of the sheaf 84 in a direct sum 83 θ Wt, gives rise to a
commutative diagram

0

«3 0

ΐ 1
( 7 . 4 ) o • r 3 Θ r 4 > y » t i Θ

0 r3

with exact rows and columns. The second row in this diagram coincides with the
sequence (7.3). Applying the functor Ext (§4, *) to this sequence, we get a long exact
sequence

0 —• Ext°(84, §4) -2U Ext°(r4, 5*") -+ Ext0 (#4, &)

—• Ext1 (84, r 4 ) -+ Ext1 (§4, 9~) -> Ext1 (84, 5?)

-» Ext2(f4, 84) -> Ext2(g4, ^ ) -+ Ext2(§4, ^ ) -• 0,

from which it follows that the spaces Ext1 (£4,8?) are trivial for « = 0 , 1 , 2 . In
fact, since Ext' (§4, &) = 0 by the above and Ext' (84, £4) = 0 for i = 1, 2 by the
superrigidity of the sheaf 84, this follows immediately from the fact that a is an
isomorphism.

Since the sheaf SF is superrigid and Ext2 {^F, 84) is trivial, from the long exact
sequence

—» Ext1 ( ^ , &) -+ Ext1 ( ^ , 9) —• Ext2 ( ^ , f4)

( , ) ( ^ , ^ ) — 0

i t f o l l o w s t h a t

E x t 1 ( ^ , 9 ) = E x t 2 ( ^ , 5 ? ) = 0 .

A p p l y i n g t h e f u n c t o r E x t ( * , & ) t o t h e s e q u e n c e ( 7 . 3 ) , w e c o n c l u d e t h a t & i s

s u p e r r i g i d s i n c e b y t h e a b o v e E x t ' ( 8 4 , S ? ) = 0 f o r t = 0 , 1 , 2 a n d E x t ' ( ^ , 5 ? ) = 0

f o r i = l , 2 .

7.4. Lemma. /« ί/ie assumptions of Lemma 7.3 we /jave:

a) End (f,) ~ Horn (^",81);
b) Ext' ( ^ , r o = 0 /or i = l , 2 ;
c) Ext2 (g-,, y ) = 0;
d) ί/î re exwis an exaci sequence

(7.5) 0 — ; r - » . y - » £ i - + o ,

where 3? is a superrigid sheaf satisfying the condition Ext' (j%?, 8\) = 0 /or
i = 0 , l , 2 .
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We remark that in this case the sheaf «84 may be trivial.

7.5. Proposition. Consider an exact sequence

(7.6) 0 -> x2E2 θ · · · θ xmEm -> y\Fx Θ · · · θ ymFm -> xxEx -> 0

of locally free sheaves on S, where (F\, ... , Fm) and {E2, ... , Em) are exceptional
collections of type Horn and (Ει, ... , Em) is an exceptional collection. Then

a) the collections (F\, ... , Fm) and (£Ί , . . . , Em) are constructively equivalent;

Proof. Denote the direct sum y\F\ ® · • • ® ymFm by y and prove the proposition
by induction on w (the number of bundles in the collections).

For m = 2 the exact sequence (7.6) has the form

0 -> x2E2 -> y -> x\Ex -> 0.

If Ext1 (Ει, E2) is trivial, then the sequence splits and all our assertions are true.
Otherwise the exceptional bundles F, belong to the subcategory generated by the
Ext-pair (E\, E2) and the assertions of the proposition follow from Corollary 7.2.

The superrigid bundles %\= x\E\, #2 = x2E2, 84 = x3E3 θ · · · θ xmEm and 9~
satisfy the conditions of Lemma 7.3. Hence the bundle fits into an exact sequence

(7.7) 0

and the superrigid sheaf i? is obtained as an extension of X\E\ by means of x2E2 :

(7.8) 0 ^ x2E2-> &-> XiEi -»0.

Since & is a superrigid torsion-free sheaf, it splits into a direct sum of exceptional
bundles, viz.

where (E[, ... , E'£) is an exceptional collection of type Horn. Since the bundles
E\ belong to the category generated by an exceptional pair, we have k < 2. On
the other hand, from Lemma 7.3 it follows that the bundles (E[, E'2', E3, ... , Em)
form an exceptional collection. If k = 1, then all the bundles F1, ... , Fm belong to
the subcategory generated by an exceptional collection consisting of (m - 1) bundles,
which is impossible.

Thus we have shown that 3? = x[E[ θ χ'{Ε2', where (E[, E'{) is a pair of type
Horn. By the induction hypothesis the collection (E[, Ε'{) is constructively equiv-
alent to the collection (E\, E2) and

(7.9) r(E[) +

We rewrite the sequence (7.7) in the form

0 -> x3E3 φ · · · φ xmEm -> y -• x[E[ 0 x'2'E'{ -> 0.

Since, as we have already observed, the collection (E[, E'2', E3, ... , Em) is excep-
tional and (E[, E'{) and (E3 , ... , Em) are collections of type Horn, the superrigid
bundles #Ί = x[E[, %2 = x2'E'{, #3 = x3E3 φ •·· ® xmEm and y satisfy the
conditions of Lemma 7.4. Hence the sheaf y fits into an exact sequence

and the superrigid sheaf ^ fits into an exact triple

0 -• x3E3 Θ · · · θ xmEm -> ̂  ->
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Since %? is a superrigid bundle, it splits into a direct sum %? = x'2E'2 φ · · · φ x'mE'm .
Arguing as above, it is easy to show that the collection (E2, ... , E'm) has type
Horn, and by the induction hypothesis it is constructively equivalent to a collection
(E'2',E3, ... , Em), where

r(E'2) + ••• + r(E'm) > r{E'{) + r(E3) + ••• + r(Em).

Moreover, by Lemma 7.4 we have Ext' ( X , E[) = 0 (/ = 0, 1, 2), so that the
collection (E[, E2, ... , E'm) is exceptional. Thus, starting from the sequence (7.6),
we constructed a sequence

0 -» x'2E2 φ · · • e x'mE'm -> & -> x\E\ -* 0

of the same type with

(7.10) r(E[) + ••• + r(E'm) > r{Ex) + ••• + r{Em).

We observe that the sum of the ranks of the bundles Et as well as that of the
bundles E\ is bounded from above by the rank of the bundle &. We transform the
sequences of type (7.6) using the above procedure until the sum of the ranks of the
bundles £,· stops growing. Since this process cannot be infinite, the inequality (7.10)
ultimately becomes an equality.

To avoid new notation, we assume that

r(E[) + --- + r(E'm) = r(El) + ... + r(Em).

Then the inequality (7.9) is also an equality, i.e., the exact sequence (7.8) is written
in the form

0 -> x2E2 -> x{E[ φ x'{E'{ -> ΧιΕι -• 0,

where r{Ex) + r(E2) = r{E[) + r{E'{). By Corollary 7.2, £, = E[ and E2 = E'{ . But
(E[, E2) is an exceptional pair of type Horn, i.e.,

Ext1 (E[, E'{) = Ext1 ( £ , , E2) - 0.

From the exact sequence (7.6) it follows that the bundle E2 splits as a direct sum-
mand in the bundle &, i.e.,

where the superrigid bundle &' = y'2F2' Φ · · · θ y'mF'm fits into an exact sequence

0 -> X3.E3 φ · · · φ XmEm ->«?"'-)· ΧγΕ\ -> 0

and the exceptional collection (F2 , ... , F^) is a subcollection of (F\, ... , Fm). By
the induction hypothesis, the collections (F2, ... , F^) and {Ει, £3, . . . , Em) are
constructively equivalent and

r(F2') + ••• + r{FU) > r{Ex) + r(E,) + ••• + r(Em).

This completes the induction argument and the proof of the proposition.

7.6. Lemma. Suppose that a superrigid sheaf & fits into an exact sequence

(7.11) 0 - » y £ - » S ? - » j « £ ( - l ) - » 0 ,

where e is a (-l)-curve and Ε is an exceptional bundle whose restriction to the curve
e is isomorphic to r@e. Then either %? is a bundle or ^ = 2?' φ x"<fe(—l), where
9' is a superrigid bundle isomorphic to x[E[ for some exceptional bundle E[ from
the category generated by the pair (<fe(—l), E).

Proof. Restricting the bundle Ε to the (-l)-curve e, it is easy to compute the
groups Ext' (E, <fe(— 1)) and Ext' (<t?e(— 1), E). From these computations it follows
that (<̂ >(— 1), E) is an exceptional pair of type Ext.
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Suppose that & has a torsion subsheaf. If the sequence (7.11) splits, then the
assertion of the lemma is obvious. Otherwise, let Τ denote the torsion subsheaf of
the sheaf 9, and put &' = &/T.

Since the sheaf yE is locally free, Horn (Τ, Ε) is trivial and we get a commutative
diagram

0 0 0

0 —

0 -

This commutative

• Τ -

> Τ

ϊ
0 -

diagram

> X&e(-Y)
!

> $
1, vp* yij
t
0yields an exact triple

• C
1

Ϊ
- vF- y1-1

1
0

(7.12) ο-> j>£-•£"-» C-» 0.

The upper row of the commutative diagram gives an exact triple

(7.13) 0 - * r - + J r t ? e ( - l ) - » C - > 0 .

From this it follows that Γ is a subsheaf of a locally free sheaf on the exceptional
curve. Hence Τ is also locally free on this curve, and since the curve is rational, we
have T = ®i0e(dI).

Since each sheaf on a curve is a sum of a locally free sheaf and a torsion sheaf, C
can be represented in the form C Θ γ, where γ is a sheaf with support at points.

On surfaces, Ext1 from a sheaf with support at points to a locally free sheaf is
trivial. Hence γ splits as a direct summand in *§' (cf. (7.12)). But the sheaf S?' is
torsion-free by construction. Hence γ = 0 and C is locally free, i.e.,

F r o m t h e short exact sequence (7.13) it follows that s, > - 1 . Us ing t h e sequence

(7.12), we show t h a t s, < - 1 .

We observe that for all j , we have Ext1 (^(s,), Ε) Φ 0. Otherwise the torsion
sheaf <9e{Si) would split as a direct summand of the torsion-free sheaf S?'. By Serre's
duality,

Ext1 (&e{Si), E)* s Ext1 (E, 0e(Si) ® KS) = Ext1 (E\e , <£fo - 1)).

The last equality follows from the fact that the intersection number of the (—1)-
curve e with the canonical class of the surface S is equal to - 1 . By assumption,
E\e= r@e ; hence\e

t 1
i F ιΨ it- — \\\ — F x t 1 (rff /f (V — 11*1
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Since Ext1
 ( ^ ( J , · ) , Ε) φ 0, we have s,•- 1 < - 2 , i.e., j,• < - 1 .

Thus we have shown that C = x'<fe(-l), and therefore Τ = x"<fe(-l). Applying
the functor Ext(*, &e{-\)) to the exact sequence (7.12), we get the exact sequence

- Ext1 (x'(fe(-l), ^ ( - 1 ) ) - Ext1 ^', 0e(-l)) - Ext1

Since the pair (<%(-l), £) is exceptional, we have Ext1
 ( J C ' ^ ( - I ) , ^ e ( - l ) ) = 0

and Ext1 {yE,<fe{-l)) = 0, and therefore Ext1 {&',&e{-\)) = 0. Hence the exact
sequence 0 - > Γ - + 3 ? - > 3 ? ' ^ 0 splits, i.e.,

The fact that the sheaf 2?' is superrigid and therefore locally free easily follows from
the last equality.

We decompose 2?' into a direct sum of exceptional bundles, viz. 2f' = x[E[ θ
X2E'2. The exceptional collection {<?e{-1), E[, E'2) belongs to the category generated
by the pair (<fe(—l), E). Hence x'2 = 0 and 2f' = x[E[ . The lemma is proved.

7.7. Theorem. All exceptional sheaves and helixes on del Pezzo surfaces are con-
structible.

Proof. This theorem was proved in the case of the plane P 2 and the quadric P 'xP 1

in [5] and [9], respectively. Hence it suffices to verify it for the plane with d blown
up points (d < 8).

As was already proved in this paper, each exceptional collection, and in particular
each exceptional sheaf can be included in a coil of a helix (a complete exceptional col-
lection) (F\, ... , Fn). Hence constructibility of sheaves follows from constructibil-
ity of helixes.

We can assume that all the sheaves i7, are locally free, since this can be achieved
by transformations of torsion sheaves using locally free sheaves, which are always
present in a complete collection.

Moreover, passing if necessary to constructively equivalent collections, we can
assume that the bundle ^ = F\®- • -®Fn is superrigid and fits into an exact sequence

(7.14) 0 -• x2E2 Φ · · · Θ xnEn - > ^ '

where the bundles E2, ... , En are the inverse images of the bundles from the com-
plete exceptional collection (E2, ... , En) on 5" under the blowing up S -?-> S'.

Furthermore, the direct sum x2E2 φ · · · φ χηΕη is a superrigid sheaf, and the collec-
tion ((fe(-l), E2, ... , En) is a loop of a helix on S.

We recall that by the induction hypothesis the complete exceptional collection
(£2, ••• , En), and therefore (&e(-\), E2, ... , En) are constructive.

As the transitional induction step we prove the following claim (by induction on
n).

Suppose that a superrigid bundle 9~ = y\Fx θ · · · Θ ynFn fits into an exact se-
quence (7.14), where the sheaves (fe(—\), E2, ... , En satisfy the above conditions.
Then the collection (F\, ... , Fn) is equivalent to {<fe{-\), E2, . . . , En). The first
induction step (the case η = 2) follows from Corollary 7.2. Using Lemma 7.3, we
construct a superrigid sheaf 2? fitting into the exact sequences

0 -> X3.E3 θ · · · Θ χηΕη - » F ^ f - . O ,

0 -* x2E2 -+ 3? -f * ! < £ ( - 1 ) -f 0

and satisfying the condition Ext' (Ek,2?) = 0 ( i - 0, 1, 2; k > 3 ). By Lemma 7.6,
2? = x[E[ θ x'2'(?e{-\). By Corollary 7.2, the pair (E[, &e{-\)) is constructively
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equivalent to the pair ( ^ , ( - 1 ) , E2). Hence the collections {(fe(-\), E2, . . . , En)

and (E[, &e(-l), E3, ... , En) are constructively equivalent, and the sheaf E[ is

locally free.

Applying once more Lemma 7.4, we construct a superrigid sheaf %? fitting into

the exact sequences

(7.15) o - » ; r - > . ? " - > * ' , £ { - > o ,

(7.16) 0 -+ x3E3 Θ · · · Θ xnEn -» X -> x " ^ ( - l ) -» 0

and satisfying the condition Ext' ( ^ , £() = 0 for i — 0, 1,2.
The sheaf ^ is superrigid, and therefore %f = x'2E'2 θ · · · Θ x'nE'n , where

(<fe(—\), E'2, ... , E'n) is an exceptional collection. Furthermore, all the sheaves E\
are locally free. In view of the exact sequence (7.15), this follows from the fact that
the sheaves & and E[ are locally free.

Using the induction hypothesis and the exact sequence (7.16), we conclude that
the exceptional collections (<?e(-l), E$, ... , En) and (E'2, ... , E'n), and therefore
(E[, i^-(-l), E-s, ... , En) and {E[, E2, ... , E'n) are constructively equivalent.

Thus, starting with the sequence (7.14), we obtain a sequence (7.15) of locally free
sheaves, which can be rewritten in the form

0 -> x'2E'2 Θ · · · Θ χ'ηΕ'η -> & -» x[E[ -> 0.

Furthermore, the bundles E\ and 9~ satisfy the conditions of Proposition 7.5.
Hence the collections (E[, ... , E'n) and {F\, ... , Fn) are constructively equivalent.
The theorem is proved.
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