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Abstract: Recently N. Nekrasov and A. Schwarz proposed a modification of the ADHM
construction of instantons which produces instantons on a noncommutative deformation
of R%. Inthis paper we study the relation between their construction and algebraic bundles
on noncommutative projective spaces. We exhibit one-to-one correspondences between
three classes of objects: framed bundles on a noncommuf&tjeertain complexes of
sheaves on a noncommutati#, and the modified ADHM data. The modified ADHM
construction itself is interpreted in terms of a noncommutative version of the twistor
transform. We also prove that the moduli space of framed bundles on the noncommutative
P2 has a natural hyperkahler metric and is isomorphic as a hyperkéhler manifold to the
moduli space of framed torsion free sheaves on the commuB#iVée natural complex
structures on the two moduli spaces do not coincide but are related by(@8nrs@tion.
Finally, we propose a construction of instantons on a more general noncommutative
than the one considered by Nekrasov and SchwagzdeformedR?).

1. Physical Motivation

In this section we explain the physical motivation for studying instantons on a noncom-
mutativeR*. Readers uninterested in the motivation may skip most of this section and
proceed directly to Subsect. 1.5. Likewise, readers familiar with the way noncommuta-
tive instantons arise in string theory may start with Subsect. 1.5.

1.1. Instantonequations. Let E be avector bundle with structure groGpn an oriented
Riemannian 4-manifold(, and letA be a connection o. The instanton equation is
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the equation
Ff =0, (€H)

whereF, is the curvature of, andFAF denotes the self-dual (SD) part Bf. Solutions
of this equation are called instantons, or anti-self-dual (ASD) connections. The second
Chern class of is known in the physics literature as the instanton number. Instantons au-
tomatically satisfy the Yang—Mills equatiah (xF) = 0, whered, : QP QEnd(E) —
QP+l @ End(E) is the covariant differential, and : Q? — Q47 is the Hodge star
operator.

There are several physical reasons to be interested in instantons. If one is study-
ing quantum gauge theory on a Riemannian 3-maniMl@space), then instantons on
X = M x R describe quantum-mechanical tunneling between different classical vacua.
The possibility of such tunneling has drastic physical effects, some of which can be
experimentally observed. If one is studying classical gauge theory on a 5-dimensional
space-timeX x R, then instantons oK can be interpreted as solitons, i.e. as static solu-
tions of the Yang—Mills equations of motion. In fact, instantons are the absolute minima
of the Yang—Mills energy function of the 5-dimensional theory (with fixed second Chern
class).

Both interpretations arise in string theory, but to explain this we need to make a
digression and discuss D-branes.

1.2. D-branes. It has been discovered in the last few years that string theory describes,
besides strings, extended objects (branes) of various dimensions. These extended objects
should be regarded as static solutions of (as yet poorly understood) stringy equations
of motion. D-branes are a particularly manageable class of branes. Recall that ordinary
closed oriented superstrings, known as Type Il strings, are described by maps from a Rie-
mann surfac& (“worldsheet”) to a 10-dimensional manifoltl(“target”). The physical
definition of a D-brane is “a submanifold & on which strings can end”. This means

that if a D-brane is present, then one needs to consider maps from a Riemann surface
with boundaries taZ such that the boundaries are mapped to a certain submanifold
X C Z. In this case one says that there is a D-brane wrappexi.dhX is connected

and has dimensiop + 1, then one says that one is dealing with a Dp-brane. In general,

X can have several components with different dimensions, and then each component
corresponds to a D-brane.

In perturbative string theory, the role of equations of motion is played by the condition
that a certain auxiliary quantum field theory on the Riemann surfaseconformally
invariant. When D-branes are presexithas boundaries, and the auxiliary theory must
be supplemented with boundary conditions. The requirement that the boundary condi-
tions preserve conformal invariance imposes constraints on the submaxiféliese
constraints should be regarded as equations of motion for D-branes. For example, if
we consider a DO-brane wrapped on a 1-dimensional submarifpttien conformal
invariance requires th&f be a geodesic iZ. This is the usual equation of motion for a
relativistic particle moving irZ.

Animportant subtlety is that to specify fully the boundary conditions for the auxiliary
theory onX it is not sufficient to specifyX; one should also specify a unitary vector
bundle E on X and a connection on it. In the simplest case this bundle has rank 1,
but one can also have “multiple” D-branes, described by bundles ofranid.. Such
bundles describe coincident D-branes wrapped on the same submaniXoltsing
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the requirement of conformal invariance of the auxiliary two-dimensional quantum field
theory, one can derive equations of motion for the Yang—Mills connectiafi.dn the
low-energy approximation, the equations of motion are the usual Yang—Mills equations
d4(xF4) = 0.In particular, instantons are solutions of these equations.

1.3. Instantons and D-branes. Let Z be R10 with a flat metric, and le&X < Z be

R® = R4 x R linearly embedded itZ. We regardR* as space ang as time. Consider

r D4-branes wrapped oK. This physical system is described by the Yang—Mills action
onR® = R* x R. If one is looking for static solutions of the equations of motion, one
needs to consider the minima of the Yang—Mills energy function

WiAl =/ TAR
R4

whereF, is the curvature of & (r) connectiond, and||F4||2 = —Tr (Fa A %F,4). The
instanton number oA is defined by

Cc2 4TT(FA/\FA). (2)

_87'[2 R

If the Yang—Mills energy evaluated ohis finite, then the bundI& and the connection
A extend tdS*, the one-point compactification &* (see [4] for details). In this case
is the second Chern class Bfand is therefore an integer.

Solutions of instanton equations @®f are precisely the absolute minima of the
Yang—Mills energy function. These solutions should be regarded as composed of iden-
tical particle-like objects (instantons) df their number being,. Since the energy of
the instanton is proportional t@, all “particles” have the same mass. Since the solution
is static, the particles neither repel nor attract. This is actually a consequence of super-
symmetry: Type Il string theory is supersymmetric, and D4-branes with instantons on
them leave part of supersymmetry unbroken.

In string theory one may also considerDO-branes present simultaneously with
r D4-branes. More specifically, we will consider DO-branes which are at rest, i.e. the
corresponding one-dimensional manifolds are straight lines parallel to the time axis. Such
a configuration of branes is also supersymmetric, and consequently there are no forces
between any of the branes. The positions of DO-branes are not constrained by anything,
so their moduli space i€R%)¥. More precisely, since DO-branes are indistinguishable,
the moduli space is SyhaR?).

It turns out that an instanton with instanton numbendk DO-branes are related:
they can be deformed into each other without any cost in energy. A convenient point
of view is the following. In the presence of D4-branes wrappe&Xdhe moduli space
of DO-branes has two branches: a branch where their positions are unconstrained and
DO-branes are point-like (this branch is isomorphic to $¢&¥)), and the branch where
they are constrained to lie aXi. The latter branch is isomorphic to the moduli space
M, of U(r) instantons orX = R* with ¢ = k.

The dimension of\, x is known to be 4k for r > 1 (see for example [4]). For= 1
instantons do not exist. The translation groufdfacts freely onM,. ;, and the quotient
space describes the relative positions and sizes of instantons. Thus DO-branes are point-
like objects when they are away from D4-branes, but when they bind to D4-branes they
can acquire finite size.
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The “instanton” branch touches the “point-like” branch at submanifolds where some
or all of the instantons shrink to zero size. These are the submanifolds where the instanton
moduli space is singular. At these submanifolds the point-like instantons can detach from
D4-branes and start a new life as DO-branes. This lowers the second Chern class of the
bundle on D4-branes. Thus from the string theory perspective itis natural to glue together
the moduli spaces of instantons with different Chern classes along singular submanifolds.

1.4. Noncommutative geometry and D-branes. Instanton equations (and, more gener-
ally, Yang—Mills equations) arise in the low-energy limit of string theory, or equivalently
for large string tension. Recently, another kind of low-energy limit of string theory was
discussed in the literature [32]. Consider a trivi&lr)-bundle onX = R* with a con-
nectionA whose curvaturé’, is of the form 1® f where 1 is the unit section of Eqa),
and f is a constant nondegenerate 2-form. For srfiahe D4-branes are described by
the ordinary Yang—Mills action, but for largg, the stringy equations of motion get
complicated. It turns out that the equations of motion simplify again in the limit when
both F4 and the string tension are taken to infinity, with a certain combination of the
two kept fixed (one also has to scale the metric appropriately, see [32]). We will call
this limit the Seiberg—Witten limit. In this limit the D4-branes are described by Yang—
Mills equations on a certain noncommutative deformatioR‘bfsee [32] and references
therein).

There is another description of the Seiberg—Witten limit, which is gauge-equivalent
to the previous one. Type Il string theory reduces at low energies to Type |l supergravity
in 10 dimensions. The bosonic fields of this low-energy theory include a symmetric rank-
two tensor (metric) and a 2-forla. R1° with a flat Lorenzian metric and a constaht
is a solution of supergravity equations of motion, as well as full stringy equations of
motion. A constanB can be gauged away, so this is not a very interesting solution. Life
gets more interesting if there are D-branes present. For example, consmiacident
flat D4-branes embedded R*° with a constanB-field. It turns out that one can gauge
away a constanB-field only at the expense of introducing a constaptof the form
1® f,wheref is equal to the pull-back a8 to the worldvolume of the D4-branes. Thus
the solution with zerd"4 and nonzera is equivalent to the solution with nonzef
and zeroB. Therefore the Seiberg—Witten limit can be described as the limit in which
both theB-field and the string tension become infinite.

The idea that D-branes in a nonzero B-field are described Yang—Mills theory on a
noncommutative space was first put forward in [13] for the case of D-branes wrapped
on tori.

1.5. Instanton equations on a noncommutative R*. The deformedR* that one obtains

in the Seiberg—Witten limit is completely characterized by its algebra of functions
It is a noncommutative algebra whose underlying space is a certain subsp@ée of
functions orR?*. The product is the so-called Wigner—Moyal product formally given by

2

: 1
(f »g)(x) = lim exp<§h9 - ) VACOR{G)2 3)

i ax,-ayj
Hered is a purely imaginary matrix, andis a real parameter (“Planck constant”) which

is introduced to emphasize that the Wigner—Moyal product is a deformation of the usual
product. In the string theory conteiiis proportional tof ~1.
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Of course, to make sense of this definition we must specify a subspace in the space of
C*° functions which is closed under the Wigner—Moyal product. Leaving this question
aside for amomenitpne can define the exterior differential calculus adeDifferential
geometry of noncommutative spaces has been developed by A. Connes [12]. In our
situation Connes’ general theory is greatly simplified. For example, the sheaf of 1-forms
QL(A) is simply a bimodule4®* (the relation of this definition with the general theory
is explained in Subsect. 8.11). The element®bfA) will be denoted), fi(x)dx;, or
simply fi(x)dx;. The exterior differentiadl is a vector space morphism

d:A— Q'), f— :;—fdxi.

1

The exterior differentiall satisfies the Leibniz rule

d(fix fo) =dfi* fo+ fixdfo.

This makes sense becau3&(A) is a bimodule.

The sheaf of 2-forms oved is a bimoduleQ?(A) = .A%6 (see Subsect. 8.11). The
definition of the exterior differential can be extended¥t(A) in an obvious manner.

Complex conjugation acts as an anti-linear anti-nomomorphisa 0&. (f x g) =
g » f.Thus A has a natural structure oftaalgebra. We will denote the-conjugate of
feAby fT.

A trivial bundle over the noncommutatiie* is defined as a fregl-module E. A
trivial unitary bundle over the noncommutatié is defined as a free module®c A,
whereV is a Hermitian vector space. A connection on a trivial buridis defined as a
map

V: E— E®aQYA),
which is a vector space morphism satisfying the Leibniz rule
Vi f)=V(m)x f +mxdf.

This formula makes use of the bimodule structur&BiA).
The curvatureFy = [V, V] is a morphism of4-modules

Fv:E — E®4 Q°(A).

As in the commutative case, a connection on a trivial budt&n be written in terms
of a connection 1-form € Ends(E) ® 4 Q1(A):

V(m) =dm+ A xm.

This formula uses the bimodule structuremnlf E is a unitary bundle, and we have
AT = —A, then we say tha is a unitary connection.
The curvature is given in terms df by the usual formula

Fyv:=Fs=dA+ANA.
Here it is understood that
fldx; A gjdxj = flxg/ dx; Adx;.

1 String theory considerations do not shed light on this problem.
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The instanton equation aA is again given by (1), and the instanton number is defined
by (2).

The most obvious choice of the space of functions closed under the Wigner—Moyal
product is the space of polynomial functions. However, this choice is not suitable for
our purposes because it precludes the decreasg af infinity which is necessary for
the instanton action to converge. In the commutative case, components of an instanton
connection are rational functions [4], so we would like our class of functions to include
rational functions ofiR?. A possible choice for the underlying set.dfis the set ofC>®
functions onR* all of whose derivatives are polynomially bounded. Then we face the
question of the convergence of the series (3). To avoid dealing with this issue, we modify
our definition of the Wigner—Moyal product (see the Appendix for details). The modified
product makes the space 6f° functions all of whose derivatives are polynomially
bounded into an algebra ov€r and agrees with (3) on polynomial functions.

Polynomial functions form a subalgebra.df This subalgebra is isomorphic to the
algebra generated by four variablgsi = 1, 2, 3, 4 with relations

[xi, xj] = ho;;.

This algebra is usually called the Weyl algebra.

To summarize, there is a limit of string theory in which D4 branes are described by
Yang—Mills equations on the noncommutati®(= .4). DO-branes bound to D4-branes
are described in this limit by the instanton equations on the noncommukdti@ne can
show that, unlike in the commutative case, instantons cannot be deformed to point-like
DO-branes without a cost in energy. Thus it is natural to suspect that the moduli space
of instantons on the noncommutati®é is metrically complete.

2. Review of the ADHM Construction and Summary

All instantons on the commutativ&®* arise from the so-called ADHM construction. Re-
cently N. Nekrasov and A. Schwarz [29] introduced a modification of this construction
which produces instantons on the noncommutaiife In the commutative case the
completeness of the ADHM construction can be proved using the twistor transform of
R. Penrose, so one could hope that the same approach could work in the noncommutative
case. In this paper we show that the deformed ADHM data of [29] describe holomor-
phic bundles on certain noncommutative algebraic varieties and interpret the deformed
ADHM construction in terms of noncommutative twistor transform. In this subsection
we review both ordinary and deformed ADHM constructions and make a summary of
our results.

2.1. Review of the ADHM construction of instantons. First let us outline the ADHM
construction ot (r) instantons on the commutati® following [15]. We assume that
the constant metric¢ onRR* has been brought to the standard fara= diag(1, 1, 1, 1)
by a linear change of basis. To construdf &) instanton withco = k one starts with
two Hermitian vector spaceg ~ C* andW ~ C’. The ADHM data consist of four
linear mapsB1, B» € Hom(V, V), I € Hom(W, V), J € Hom(V, W) which satisfy
the following two conditions:

2 As in the commutative case, one may consider different classes of functions on the noncommutative
R*: polynomial, C*® functions rapidly decreasing at infinitg;> functions all of whose derivatives are
polynomially bounded, etc. Our class of functions differs somewhat from that adopted in [29].
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() pe=1[B1.Bal+1J =0, p, =[By Bjl+ (B2 Byl+11T— I =0.
(i) Foranyt = (&, &) € C2 = R* the linear maD; € Hom(V @ Vo W,V @ V)
defined by

B1—& —Bx+& I
D = . i 4
5 (B;—sz Bl - & J*> @

is surjective.

The equationg,. = u, = 0 are called the ADHM equations. They are invariant with
respect to the action of the group of unitary transformation¥ oSolutions of these
equations are called ADHM data. The space of ADHM data modulg) transforma-
tions has dimensionr4 and carries a natural hyperkahler metric. ADHM construction
identifies this moduli space with the moduli spacd/af) instantons withc, = k and
fixed trivialization at infinity. The role of the condition (ii) above is to remove subman-
ifolds in this moduli space where the hyperkahler metric becomes singular (these are
point-like instanton singularities mentioned in Subsect. 1.3). As a result the moduli space
of the ADHM data is metrically incomplete.

The instanton connection can be reconstructed from the ADHM data as follows. The
condition (i) implies that the famil)Ker D¢ forms a trivial subbundle oV & V & W
of rankr. Let v(&¢) be its trivialization, i.e. a linearmapé) : C" - Vo VO W
smoothly depending of such thatD v(£) = O for all &, andp(§) = v(E)TvE)isan
isomorphism for alk. We set

AE) = p@& E " dv®).

The matrix-valued one-form is a connection on a trivial unitary bundle of rankOne
can show that its curvatur, is ASD (see [4]). However, it does not satisfy = —A,
because we are not using a unitary gauge. Instesatisfies

ATE) = (0 AEPE) T+ p@E)dpE) ™.

To go to a unitary gauge, we must make a gauge transformation

A = g AE)gE) ™+ g®)dg )L,

whereg (&) is a function taking values in Hermitian< » matrices and satisfying(£)? =
p(&).

We now explain, following [29], how to modify the ADHM construction so that it
produces rank instantons on the noncommutati®é defined in the previous section.
It proves convenient to apply an orthogonal transformation which brings the riatrix
in (3) to the standard form

0 a 00
40 0 O
o=yv-1|“
0 0 0 b
0 0 —b O
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We will assume that + b # 0.Sincef enters only in the combinatiord, we can set
a + b = 1 without loss of generality. The relation between the affine coordi§atés
on C2 and affine coordinates, xo, x3, x4 onR* is chosen as follows:

E1=xa—+—1x3, & =—x2++/—1x1.
Thenéy, &, &1, & obey the Weyl algebra relations
[§1, 611 = 2hb, 152, €21 = 2ha,  [1, 2] = [€1, &2] = [61, &2] = [51, 2] = O.
The modified ADHM data consist of the same four maps which now satisfy
e =0, u, = =21+ b) - Lixk.

The instanton connection is given by essentially the same formulas as in the commutative
case. The operatdp is given by the same formula &%, but is now regarded as an
element of

Homa (Ve Ve W)ec A (Ve V)ec A.

The moduleKer D is a projective module over. Following [10], we assume that
it is isomorphic to a free module of rank andv is the corresponding isomorphism
v: A®" — Ker D. We further assume [10] that the morphism

A=DD' e Enda(V@V)® A

is an isomorphism. Then it is easy to see that = vTv € Endq(C” ® A) is an
isomorphism too. We set

A=p Wt av. (5)

(The multiplication here and below is understood to be the Wigner—Moyal multiplica-
tion.) This formula defines a connection 1-form on a trivial unitary bundld ofirankr.
The curvature of this connection is given by

Fp = ,o_ldvT AL- v,o_lvT)dv.

A short computation (essentially the same as in the commutative case) shows that the
curvature can be written in the form

Fa= ,0_1vJr dD" A=Y A dDw.

Furthermore, sinc® and D' are linear in;, &, their exterior derivatives have a very
simple form:

—d&1 —d&
ap— (795 482 0\ dEy  —df
—d& —d& 0 0 0

3 One can show that the latter assumption is always valid provided 0. As for the former one, it is
not known what constraints should be imposed on the deformed ADHM data to ensuketiatis a free
A-module of rank-. Forr = 1 Ker D is never free [16].
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Note also that by virtue of the deformed ADHM equati@nkas a block-diagonal form:

5 0
A= ,

wheres € Ends(V ® A) is an isomorphism. Using this fact, one can easily seefhat
is proportional to the 2-forms

dé1 A déL+dEx NdEy,  dELAdEy,  dEp A dEn,

which are anti-self-dual.
As in the commutative case, the connectibdoes not satisiAT = —A. Togoto a
unitary gauge one has to perform a gauge transformation

Al=gxAxg L4 grdgt.
Hereg € Aut4(C” ® A) should be found from the conditiord = g, g+ ¢ = p. The
existence of sucl is an additional assumption.

2.2. Summary of results. In the commutative case there is a one-to-one correspondence
between the following four classes of objects:

A. Rankr holomorphic bundles oR? with ¢, = k and a fixed trivialization on the line
at infinity.

B. The set of ADHM data modulo the natural actionlofk).

C. Rankr holomorphic bundles oi#® with ¢c» = , a trivialization on a fixed line,
vanishingH'(E (—2)), and satisfying a certain reality condition.

D. U(r) instantons ofR* with ¢5 = k.

The correspondence betwe€rand D is a particular instance of twistor transform [6].
The correspondence betweBnand C has been proved by Atiyah, Hitchin, Drinfeld,
and Manin [5,4]. Together these two results imply that all instantorig‘barise from
the ADHM construction. The correspondence betwdeand B has been proved by
Donaldson [15]. One can also prove the correspondence betvaed D directly [7,
11,18].

The goal of this paper is to extend some of these results to the noncommutative case.
We show that there is a natural one-to-one correspondence between the isomorphism
classes of the following objects:

A’. Algebraic bundles on a noncommutative deformatiof%fvith ¢c; = k and a fixed
trivialization on the line at infinity.

B’. Deformed ADHM data of Nekrasov and Schwarz modulo the nafuifa) action.

C’. Certain complexes of sheaves on a noncommutative deformatiBh sxtisfying
reality conditions.

The moduli space of the deformed ADHM data has a natural hyperkahler metric, and
the other two moduli spaces inherit this metric.

Furthermore, we reinterpret the deformed ADHM construction of Nekrasov and
Schwarz in terms of a noncommutative deformation of the twistor transform.

Itis interesting to note that H. Nakajima [27] studied the same linear algebra data as
Nekrasov and Schwarz and showed that their moduli space coincides with the moduli



394 A. Kapustin, A. Kuznetsov, D. Orlov

space of torsion free sheaves on a commutdtfeith a trivialization on a fixed line.
On the other hand, we show that the same data describe algebraic bundles on a noncom-
mutativelP2. As shown below, the interpretation in terms of complexes of sheaves on a
noncommutativé®® provides a geometric reason for this “coincidence”. We prove that
the two moduli spaces are isomorphic as hyperkahler manifolds, but the natural complex
structures on them differ by an $8) rotation.

The rest of the paper is organized as follows. In Sect. 3 we define honcommuta-
tive deformations of certain commutative projective varieti®s P2, and a quadric in
IP%). Section 4 is an algebraic preparation for the study of bundles on noncommutative
projective spaces. In Sect. 5 we study the cohomological properties of sheaves on non-
commutativeP? andP3 and define locally free sheaves (i.e. bundles). In Sect. 6 we show
that any bundle on a noncommutat®&trivial on the commutative line at infinity arises
as a cohomology of a monad. In Sect. 7 we exhibit bijections betwéesi, andC’ and
explain the relation with Nakajima'’s results. In Sect. 8 we construct a noncommutative
deformation of Grassmannians and flag manifolds and describe a noncommutative ver-
sion of the twistor transform. We also describe a nice class of noncommutative projective
varieties associated with a Yang—Baxter operator and define differential forms on these
varieties. In Sect. 9 we consider a more general deformatidf ¢ ¢- deformedR*)
whose physical significance is obscure at present. We propose an ADHM-like construc-
tion of instantons on this space and outline its relation to honcommutative algebraic
geometry. In the Appendix we define the Wigner—Moyal product on the spa€é&°of
functions onR” all of whose derivatives are polynomially bounded, and prove that the
Wigner—Moyal product provides this space with a structure of an algebralover

Note added in proof. After this paper was submitted to the electronic archive, we
learned that coherent sheaves on the noncommutative projective plane and their moduli
spaces have been studied by L. Le Bruyn [21].

3. Geometry of Noncommutative Varieties

3.1. Algebraic preliminaries. Letk be a base field (we will be dealing only wikh= C
ork = R in this paper). LetA be an algebra ovdy. It is called right (left) noetherian if
every right (left) ideal is finitely generated, and it is called noetherian if it is both right
and left noetherian.

LetA = _690 A; be a graded noetherian algebra. We denote by(spthe category

of finitely generated rightt-modules, by g¢A) the category of finitely generated graded
right A-modules, and by tofd) the full subcategory of gri) which consists of finite
dimensional graded-modules.

Animportant role will be played by the quotient category@or= gr(A)/tors(A). It
has the following explicit description. The objects of ¢y are the objects of gA) (we
denote byM the object in ggfA) which corresponds to a modulé). The morphisms
in qgr(A) are given by

Homqgr(]VI, N) = lim Homg (M', N),
M/
whereM’ runs over submodules @f such thatM /M’ is finite dimensional.

On the category gr) there is a shift functor: for a given graded module =
@i>0 M; the shifted moduleM (r) is defined byM(r), = M,+, The induced shift

functor on the quotient category qgr) sendsM to M(r) = M(r)
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Similarly, we can consider the category (@) of all graded rightA-modules. It
contains the subcategory Tos of torsion modules. Recall that a modweis called
torsion if for any element € M one hasA>; = 0 for somes, whered>, = @ A;.We

i>s
denote by QGfA) the quotient category GA)/Tors(A). The category QGr) contains
ggr(A) as a full subcategory. Sometimes it is convenient to work in @@ginstead of
qar(A).

Henceforth, all graded algebras will be noetherian algebras generated by the first
componentd; with Ag = k.

Sometimes we use subscrigtsor L for categories grd), qgr(A), etc., to specify
whether right or left modules are considered. If the subscript is omitted, the modules
are taken to be right modules. For the same reason fdrlaimoduleM we sometimes
write M 4 or 4 M to specify whether the right or left module structure is considered.

3.2. Noncommutative varieties. A variety in commutative geometry is a topological
space with a sheaf of functions (continuous, smooth, analytic, algebraic, etc.) which
is, obviously, a sheaf of algebras. One of the main objects in geometry (algebraic or
differential) is a bundle or, more generally, a sheaf. To any vaiNetye can associate an
abelian category of sheaves of modules (maybe with some additional properties) over
the sheaf of algebras of functions. Given a sheaf of modulés, ¢ime space of its global
sections is a module over the algebra of global functionstohus the functor of
global sections associates to evénan algebra and a certain category of modules over

it. Under favorable circumstances, much of the information about the geometrysof
contained in this purely algebraic datum. Let us give a few examples.

If X is a compact Hausdorff topological space, then the category of vector bundles
over X is equivalent to the category of finitely generated projective modules over the
algebra of continuous functions dh[34,36]. The equivalence is given by the functor
which maps a vector bundle to the module of its global sections.

Itiswell known thatifA is a commutative noetherian algebra, the category of coherent
sheaves on the noetherian affine scheme @peds equivalent to the category of finitely
generated modules ovar The equivalence is again given by the functor which attaches
to a coherent sheaf the module of its global sections.

In the case of projective varieties the only global functions are constants, so one has
to act somewhat differently. Since a projective varigtis by definition a subvariety of
a projective space, it inherits from it the line bundlg (1) and its tensor powei@x (i).

We can consider a graded algebra

I'(X) = _@OHO(X, Ox (@)

This algebra is called the homogeneous coordinate algebXa Bfirthermore, for
any sheafF we can define a gradettmodule

N'(F) = ® HO(X, F(i)).

It can be checked thatis a functor from the category of coherent sheavek anoh(X) to
gr(C'(X)). Ina brilliant paper [33], J.-P. Serre described the category of coherent sheaves
on a projective schem¥ in terms of graded modules over the graded algéhrs).

He proved that the category ogY) is equivalent to the quotient category ¢gotX)) =
gr(I'(X))/torgI"(X)). The equivalence is given by the composition of the functor
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with the projectionr : gr(A) — qgr(A). On other hand, lef = _eaoA,- be a graded

commutative algebra generated oleoy the first component (which is assumed to be
finite dimensional). We can associate Aoa projective schem& = Proj(A). Serre
proved that the category c@X) is equivalent to the category qay).

The equivalence also holds for the category of quasicoherent sheavesmhthe
category QG(fA) = Gr(A)/Tors(A).

In all of the above examples it turned out that the natural category of sheaves or
bundles on a variety is equivalent to a certain category defined in terms of (graded)
modules over some (graded) algebra. On the other hand, “as A. Grothendieck taught us,
to do geometry you really don’t need a space, all you need is a category of sheaves on
this would-be space” ([25], p. 83).

For this reason, in the realm of algebraic geometry it is natural to regard a noncom-
mutative noetherian algebra as a coordinate algebra of a noncommutative affine variety;
then the category of finitely generated right modules over this algebra is identified with
the category of coherent sheaves on the corresponding variety. Similarly, a noncom-
mutative graded noetherian algebra is regarded as a homogeneous coordinate algebra
of a noncommutative projective variety. The category of finitely generated graded right
modules over this algebra modulo torsion modules is identified with the category of
coherent sheaves on this variety (see [3,25,35]).

A different approach to noncommutative geometry has been pursued by Connes[12].

3.3. Noncommutative deformationsof commutativevarieties. Many importantnoncom-
mutative varieties arise as deformations of commutative ones.

Let X be a commutative variety (affine or projective). Lete the corresponding
commutative (graded) algebra. A noncommutative deformatioki &f a deformation
of the algebra structure of, that is, a deformation of the multiplication law. Usually it
is not easy to write down an explicit formula for the deformed product.

There is a more algebraic way to describe noncommutative deformations of commu-
tative varieties. Assume that the algelrés given in terms of generators and relations.
This means thad is given as a quotiem = T'(V)/(R), whereV is the vector space
spanned by the generatofy,V) is the tensor algebra &f, and(R) is a two-sided ideal
in T (V) generated by a subspace of relatighsc 7 (V). Assume thai®, c T (V)
is a one-parameter deformation of the subsp@c&henA; = T(V)/(Ry) is a one-
parameter deformation df. (If A is graded, then we assume tlRat a graded subspace,
and the deformation preserves the grading).

We denote by the noncommutative variety corresponding to the algelaralrhus
Xy is a noncommutative one-parameter deformatioX of

If X is projective andi is a graded algebra, then we denote by(égh the category
qgr(Az). Furthermore, as in the commutative case, we will weite') for the object
Ap(r).

Now we define honcommutative varieties which are going to be used in this paper.

3.4. Noncommutative C*. Denote byA (C*) the algebra of polynomial functions @f.
Let 9 be a skew-symmetric ¢ 4 matrix.

Let us define the algebr;ﬁ((cﬁ) as an algebra ovét generated by; (i =1, 2, 3, 4)
with relations[x;, x;1 = 76;;:

A(CP) = T(x1, x2, x3, x2)/{[xi, x;1 = h6;;)1<i j<a. (6)
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We will regardA((Cg) as the algebra of polynomial functions on a noncommutative
affine varietyCy.

3.5. Noncommutative 4-dimensional quadric. Let G be a 4x 4 symmetric nondegen-
erate matrix. Consider a graded algetia= & Q; overC generated by the elements
i>0

X1, X2, X3, Xa, D, T of degree 1 with the foITowing quadratic relations:
[T, D] =T, Xi] =0,
[Xi, X1 =h6,;T?,
[D, Xi1=2hY_6,G"*XT, )
Ik
> GXiX;=DT.
ij
We denote bx@g the noncommutative projective variety corresponding to the algebra

Q. It is evident thatQ; is a deformation of a 4-dimensional commutative quadric
Q*=1{Y;; GYX;X; = DT} C CP®,

3.6. Embedding C} — Qf. Let ;[T 1] be the localization of the algebi@, with
respect td'. Elements of degree 0 i@,[7 ~1] form a subalgebra which will be denoted
by Q4[T *lo.

Lemma3.l. Themap x; — T~ 1X; (i = 1,2,3,4) induces an isomorphism of the
algebra A(C}) with the algebra Q[T ~o.

Proof. Obvious. O

This means the(t?ﬁ can be identified with the open sub$&t £ 0} in Q;l‘. For this
reasonQ;l" may be regarded as a compactificatiorcéfwhich is compatible with the
bilinear formG. Note also that the complement(@ﬁ in Qﬁ corresponds to the algebra

Qn/(T) = T(X1, X2, X3, Xa, D)/<[x,-, Xj1=1[D,X1=0, ) GYX;X; = 0>.
ij
Since this algebra is commutative, the complement is the usual 3-dimensional commu-

tative quadratic cone. Thus one may say ﬁ@j—,‘ms obtained fromC§ by adding a cone
“at infinity”. This is in complete analogy with the commutative case.

3.7. Nonconmutative]P’% and Pg. Noncommutative deformations of the projective plane
have been classified in [1,2,9]. We will need one of them, namely the one whose homo-
geneous coordinate algebra is a graded algétitg = @OPPhi overC generated by

i>

the elementsv1, wa, w3 of degree 1 with the relations:
[w3, w;]=0 foranyi =1,2,3,
(8)

[wy, wo] = 2hw§.
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We will also need a noncommutative deformation of the 3-dimensional projective
space, whose homogeneous coordinate algebra will be deRSiee @ PSp;. ltisa
i>0

graded algebra ovef generated by S, = U, where the vector spadé is spanned
by elements, z2, z3, z4 obeying the relations
[z3,zi] = [z4,2;]1 =0 foranyi = 1,2 3,4, ©)
[z1, z2] = 2fiz3z4.
The noncommutative projective varieties corresponding®, and P.S; will be
denotedP? andP?, respectively.
Note that fori # O all algebrasP Sy, are isomorphic, and therefore the varielﬁ’és
are the same for all # 0. The same is true fd#2.

3.8. SubvarietiesinP? andP2. If I C PSS, is agraded two-sided ideal, then the quotient

algebraP S /I corresponds to a closed subvari&tyl/) C Pg. Let us describe some of
them.
Let J be the graded two-sided ideal generatedbgndz4. Then

PSi/J =T(z1,22)/({[z1, 22] = 0),

henceX (J) is the commutative projective line.

For each poinp = (1 : ) € P let J, denote the graded two-sided ideal generated
by Azz 4+ pza. If p = (0: 1) orp = (1:0), thenitis easy to see that(J,) is the
commutative projective plane. For all othere P we have

A
PSn/Jp = T(z1, 22, 23)/<[21, z3l = [z2,23]1 = 0, [z1, 22] = —2Fz;z§>,

henceX (J,) is a noncommutative projective plane isomorphi@’fo

We haveJ, C Jforall p e P2, hence all planeX (J,) pass through the lin& (J).
Thus we see th&tg isa pencil of noncommutative projective planes passing through a
fixed commutative projective line.

Similarly, the two-sided ideal generatedy in P P, corresponds to a commutative
projective linel = {ws = 0} C P2.

4. Properties of Algebras P S, and P Py, and the Resolution of the Diagonal

This section is a preparation for the study of sheave@’}‘)rand ]P’,%. We show that
the algebras S, and P P, are regular and Koszul and construct the resolution of the
diagonal, which will enable us to associate monads to certain bundig. on

4.1. Quadratic algebras. A graded algebra = ea A; over afieldk is called quadratic

if it is connected (i.eAq = k), is generated by the first component, and the ideal of
relations is generated by the subspace of quadratic relakigas C A1 ® Aj.
Therefore the algebra can be represented @$A1)/(R(A)), whereT (Ay) is a free
tensor algebra generated by the spage
The algebra® S; and P P; are quadratic algebras. For exampites;, can be repre-
sented as U)/(W), whereU = P S, is a 4-dimensional vector space aitis the
6—dimensional subspace bf® U spanned by the relations (9).
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4.2. Thedual algebra. For any quadratic algebrh= T'(A1)/(R(A)) we can define its
dual algebra which is also quadratic.

Let us identifyA} ® A with (A1 ® A1)* by ( ® m)(a ® b) = m(a)l(b). Denote
by R(A)* the annulator oR(A) in Al ® Aj, i.e. the subspace which consists of such
q € (ADH®?thatq(r) = 0 for anyr € R(A).

Definition 4.1 ([25]). The algebra A' = T(A%)/(R(A)*) is called the dual algebra
of A.

Example4.2. Let {z;},i = 1, 2, 3, 4, be the basis oPSh’l = U* which is dual to{z;}.
By definition, P S;' is generated byz; } with defining relations

2=0 foralli=1,...,4
51‘5/ +5j2i =0 foralli <, (i, j) # (3, 4);
2324 + 2423 = h[Z1, 22] = 2hZ1Z0.
In the commutative case the dual algebra of the symmetric algebtd is iso-
morphic to the exterior algebrA (U*). Obviously, the algebra® ;' and P P;' are

deformations of exterior algebras. For example, the vector s@&gj@is spanned by the
elements;;, - - - z;, with i1 < --- < i. In particular, the dimension of the vector space

PSy} is equal to(7). Similarly, the dimension of P, is equal to(}).

Proposition 4.3. Let A be PS;; or P P;, and let n be 4 or 3, respectively. The multipli-
cationmap A} ® A, — A, isanon-degenerate pairing. Hence the dual algebra A'
isa Frobenius algebra, i.e. (A") 51 = (4,1 A)* asright A'-modules.

Proof. The proposition holds for the exterior algebra, and therefore also for the algebra
A', since the latter is a “small” deformation of the exterior algebma.

4.3. TheKoszul complex. Consider righlA-moduIes(A}c)* ® A. The following complex
K.(A) is called the (right) Koszul complex of a quadratic algebra:

D (AD*RA(-3) D (AD*RA(-D) 5 (A)*®A(-D) - (A4 ®A —> 0,
where the mag : (A}{)* RA— (A}(_l)* ® A is a composition of two natural maps:
(AD"®A — (AD*®AI®A1® A — (AD* ® A.

Here the first arrow sends® a t0 @ ® ¢ ® a with ¢ defined as

=) yi®x €A]® A,

1

and{x;} and{y;} being the dual bases d&f; and A’l, respectively. The second map is

determined by the algebra structuresArandA.
It is a well-known fact tha#?> = 0 (see, for example, [25]).
Letk 4 be the trivial rightA-module. The Koszul compleX.(A) possesses a natural

augmentatiork. — k4 —> 0.
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Definition 4.4 (see [31). A quadratic algebra A = _@OA,- iscalled a Koszul algebra if

the augmented Koszul complex K.(A) -5 k4 —> Oisexact.

Inthe same manner one can define the left Koszul complex of a quadratic algebra. Itis
well known that the exactness of the right Koszul complex is equivalent to the exactness
of the left Koszul complex (see, for example, [22]).

Proposition 4.5. The algebras P S;; and P Py, are Koszul algebras.

Proof. For# = 0 this is a well-known fact about the symmetric algeSré/). Since
the augmented Koszul complex is exact for= 0, it is also exact for smalt, and
consequently for alk. O

Since the dual algebraBS;' and P P;' are finite, the Koszul resolutions for the
algebrasPS; and P Py, are finite too and have the same form as the resolutions for
ordinary symmetric algebras. For example, the Koszul resolutioA fer P Py is:

{0 (A)* ® A(=3) —» (A5)* ® A(-2) - (AD* ® A(—-1) — (Ah)* ® A} — C.

4.4. Resolution of the diagonal. Consider a bigraded vector space

K2(A) = @ KZ,(A) with KZ,(A) = A(k) ® (A|_)* ® A(-D).
k,1>0

Consider morphismgg : K7, — KZ,_, andd, : KZ, — KZ_,, given by the
following compositions:

drR:A®A)*®A—> AR A))* ®AL®AIQA > AQ (A, )*®A,
d i A®(A))*®A—> ARAIQRALQ(A)*®A > AR® (A" ®A.
Here the leftmost maps are given by

=) y®xi€Ai®A and ex =) x®y €A1®A],

1 1

where{x;} and{y;} are the dual bases df; andA!l, respectively, while the rightmost
maps are induced by the algebra structured'aind A. It is easy to show that

d2=d?=0 and drd; = dpdg,

hencek2(A) is a bicomplex. It is called thdouble Koszul bicomplex of the quadratic
algebraA.
The topmost part of the bicomplex looks as follows:

L AR AL ®ACL-D) — % AR A ®A-D)  —Es

il l

L A ® (AD* @ A(=1—1) _ A ® (Al_D* ® A(=1) _dr
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Each term of the bicompleX2(A) has an obvious structure of a bigradad
bimodule, and it is clear that the differentials are morphisms of bigradbunodules.
Let
Ki(A) = Kerdy : K§,(A) — Ki,(A).
Thenk.(A) is a complex of bigraded-bimodules (with respect to the differentiét).
Consider a bigraded algebra = P; Ty A;j with A;; = A;4; and with the mul-
tiplication induced fromA. The algebraA is called the diagonal bigraded algebra of

A. Note that the multiplication map induces a surjective morphism-dfimodules
§:AQRA— A.

Lemma 4.6. The map
§:Ko(A)=ARA—> A

gives an augmentation of the complex /C.(A).

Proof. We have to check that - dg : K£1(A) — A vanishes. Note thaKO 1(A) =

A ® A1 ® A(-1), and that the differentialdz andd; restricted toKO 1(A) coincide
with the multiplication maps:1 2 andmsy 3, respectively. Thus we have the following
commutative diagram:

Ka(A) IR Ko(d) —2 A

l | |

AQAL®A(-D) —22, A@A — A

mZ.Bl

A ® A(-1)

Now the lemma follows becausem1 2 = § - m2 3 (associativity) obviously annihilates
Ker mpoz = K1(A). O

Proposition 4.7. If A isKoszul, then IC.(A) A is exact.

Proof. The(p, g)-bigraded component d\szﬁl(A) is equal toA 1 ® (A}_k)* ® Ay,
hence the(p, g)-bigraded component of the bicompl&k?(A) vanishes forl < k
orl > q. Thus the(p, ¢)-bigraded component of the bicompl&¢(A) is bounded.
Therefore both spectral sequences of the bicomfil&sd) converge to the cohomology
of the total complex Tatk 2(A)). The first term of the first spectral sequence reads

o1 _ |aw ek, k=
k.t 0, otherwise

Hence the spectral sequence degenerates in the first term, and we have

HO(Tot(K%(A) = D A @ k(=D), H?°(Tot(K2(A))) =0
=0
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On the other hand, the first term of the second spectral sequence reads

kh® A(=D, ifk=1>0
Eg, = { Ki(A), ifk=0
0, otherwise

Hence the spectral sequence degenerates in the second term, and we have

HO(Tot(K%(A)) = HO(K.(A)) & (EB k() ® A(—l)) :

=1
H!(Tot(K2(A))) = H (K.(A)).

ThereforeH#%(K.(A)) = 0, and we have an exact sequence
o0 o
0— HO(K.(A) - EP AW ®k(~1) - Pk ® A(=1) — 0.
1=0 =1

Looking at the(p, ¢)-bigraded component of this sequence we see that

Ap+q, If P,QEO

0 —
(H™(K.(A))p.g = 0, otherwise °

ThusHO(K.(A) = A. O

Definition 4.8. Define the left A-module 2% as the cohomology of the left Koszul com-
plex, truncated in the term Kj. In particular, 21 is defined by the so-called Euler
sequence

0>l A ®ALI S AS Kk —0. (10)

In Sect. 8.11 we will show that for noncommutative projective spaces the sheaves cor-
responding to the modulgg* can be regarded as sheaves of differential forms.

Proposition 4.9. We have K (A) = 2% (k) @ A(—k).
Proof. This follows immediately from the definition a2* andC;(4). O

Combining Propositions 4.7 and 4.9, we obtain the following resolution of the diag-
onal:

> 2°QRA(-2) — QDR A(-D) — A®A— A — 0. (11)
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4.5. Cohomological properties of the algebras PS; and P P,. First we note that both
algebrasPS; and P P, are noetherian. This follows from the fact that they are Ore
extensions of commutative polynomial algebras (see for example, [26]). For the same
reason the algebrdsS; and P P; have finite right (and left) global dimension, which is
equal to 4 and 3, respectively (see [26], p. 273).

We recall that the global dimension of a ridgs the minimal numbex (if it exists)
such that for any two moduled and N we have E)(j‘*l(M, N)=0.

In the paper [1] the notion of a regular algebra has been introduced. Regular algebras
have many good properties (see [3,2,40], etc.).

Definition 4.10. A graded algebra A is called regular of dimension d if it satisfies the
following conditions:

(1) A hasglobal dimensiond,

(2) A has polynomial growth, i.e.dim A, < cn® for somec, § € R,

(3) A isGorenstein, meaning that Ext, (k, A) = 0ifi # d, and Ext‘j(k, A) = k() for
some!l.

Here Exty stands for the Ext functor in the categoryd(A).

It is easy to see that these properties are verifiedPf§f and P P,. Property (2)
holds because our algebras grow as ordinary polynomial algebras. Property (3) follows
from the fact thatP S, and P P, are Koszul algebras and the dual algebras are Frobenius
resolutions. In this case the Gorenstein paraniétd(3) is equal to the global dimension
d. Thus we have

Proposition 4.11. Thealgebras P S; and P P, arenoetherian regular algebras of global
dimension 4 and 3, respectively. For these al gebrasthe Gorenstein parameter [ coincides
with the global dimensiond.

5. Cohomological Properties of Sheaveson P2 and P}

5.1. Ampleness and cohomology of O(i). Let A be a graded algebra and be the
corresponding noncommutative projective variety. Consider the sequence of sheaves
{O(@)}iez in the categoryoh(X) = ggr(A), whereO(i) = A(i).

This sequence is called ample if the following conditions hold:

(a) For every coherent shed there are integergs, ..., ks and an epimorphism
él(’)(—ki) — F
(b) For every epimorphist¥ — G the induced map
Hom(O(—n), F) — Hom(O(—n), G)
is surjective fom > 0.

It is proved in [3] that the sequend®(i)} is ample inggr(A) for a graded right
noetheriark-algebraA if it satisfies the extra condition:

(xp):  dimyg Exty(k, M) < oo

for any finitely generated gradettmoduleM.
This condition can be verified for all noetherian regular algebras (see [3], Theorem
8.1). In particular, the categories ((dﬂj), coh(]P’%) have ample sequences.
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For any sheafr € ¢qgr(A) we can define a graded modul€F) by the rule:
['(F) = _EBOHom(O(i),}').

It is proved in [3] that for any noetherian algebtathat satisfies the conditiogp the
correspondenck is a functor from qg¢A) to gr(A) and the composition df with the
natural projectionr : gr(A) — gqr(A) is isomorphic to the identity functor (see [3,
Ch. 3,4)).

Now we formulate a result about the cohomology of sheaves on noncommutative
projective spaces. This result is proved in [3] for a general regular algebra and parallels
the commutative case.

Proposition 5.1 ([3, Theorem 8.1)] Let A be PS, or PP, and X be P or P2, re-
spectively. Denote by n the dimension of X (in our casen = 3 or n = 2, respectively).
Then

(1) Thecohomological dimension of coh(X) isequal todim(X), i.e. for any two coherent
sheaves F and G Ext' (F, G) vanishesifi > n.
(2) There are isomorphisms

Ay forp=0,i >0
HP(X,0G) =A%, _, , forp=ni<-n-1 (12)
0 otherwise.

This proposition and the ampleness of the sequgtte)} implies the following
corollary:

Corollary 5.2. Let X be either P2 or P2, Then for any sheaf F € coh(X) and for all
sufficiently largei > 0 we have

Hom(F, O()) = 0.

Proof. By ampleness a shed can be covered by a finite sum of shea@4 ;). Now
the statement follows from the proposition, because HBth;), O(i)) = 0 for all
1< kj. O

Corollary 5.3. Let X be either P2 or P2, Then for any sheaf F € coh(X) and for all
sufficiently largei > 0 we have

H*(X, F@i)) =0
for all £k > 1.

Proof. The groupH* (X, F(i)) coincides with EXt(O(—i), F). Let k be the maxi-
mal integer (it exists because the global dimension is finite) such that for gome
there exists arbitrarily large such that EXX(O(—i), F) # 0. Assume that > 1.

Choose an epimorphisnasBl(’)(—kj) — F. Let F; denote its kernel. Then far >
J:

max(k ;} we have Ext®(O(—i), él(’)(—kj)) =0, hence BEX4(O(—i), F) # Oimplies
J:

Ext‘t1(O(—i), F) # 0. This contradicts the assumption of the maximalitg of 00
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5.2. Serre duality and the dualizing sheaf. A very useful property of commutative
smooth projective varieties is the existence of the dualizing sheaf. Recall that assheaf
is called dualizing if for anyF € coh(X) there are natural isomorphismslofvector
spaces

H (X, F) = Ext" (F, )",

where x denotes the&k-dual. The Serre duality theorem asserts the existence of the
dualizing sheaf for smooth projective varieties. In this case the dualizing sheaf is a line
bundle and coincides with the sheaf of differential fortis of top degree.

Since the definition ofv is given in abstract categorical terms, it can be extended
to the noncommutative case. More precisely, we will say that4jgsatisfies classical
Serre duality if there is an objeet € qgr(A) together with natural isomorphisms

Ext (0, —) = Ext" (-, w)*.

Our noncommutative varietié’§ and]P’% satisfy classical Serre duality, with dualizing
sheaves being)]pg(—4) and (’)P%(—S), respectively. This follows from the paper [40],

where the existence of a dualizing sheaf in(@rhas been proved for a general class

of algebras which includes all noetherian regular algebras. In addition, the authors of
[40] showed that the dualizing sheaf coincides witt+!), wherel is the Gorenstein
paramenter foA (see condition (3) of Definition 4.10).

5.3. Bundles on noncommutative projective spaces. To any graded righd-module M
one can attach a left-module MY = Homy (M, A) which is also graded. Note that
under this correspondence the right modailg(r) goes to the left modulg A(—r).

It is known that if A is a noetherian regular algebra, then Hgm, A) is a func-
tor from the category gr)x to the category grd);. Moreover, its derived functor
RHom, (—, A) gives an anti-equivalence between the derived categories4j giand
gr(A). (see [39,40,38]).

If we assume that the composition of the functor Hgm, A) with the projection
or(A), —> qgr(A), factors through the projection @gt)g — qgr(A)r, then we
obtain a functor from qdrd)  to qgr(A) L whichis denoted bom (—, O). This functor
is not right exact and has right derived functéest! (—, ©), i > 0, from qgA)z to
qgr(A)L.

For a noetherian regular algebrathe funéiain (—, ©) and its right derived functors
exist. This follows from the fact that the functors gzt—, A) send a finite dimensional
module to a finite dimensional module (see condition (3) of Definition 4.10).

Moreover, in this case the functgfom (—, O) can be represented as the composition
of the functorl" : qgr(A)g —> gr(A)g, the functor Hom (—, A) : gr(A)g —>
gr(A), and the projectionr : gr(A)r, —> qg@r(A).. This can be illustrated by the
following commutative diagram:

grMg Y gray,
JTLTF ln (13)

om(—,0)

qgr(A)g ——  qgr(A)L
For a noetherian regular algebra the fun&étom’, (—, A) is an anti-equivalence be-
tween the derived categories@f(A) g andgr (A); and takes complexes of finite dimen-
sional modules ovegr(A)g to complexes of finite dimensional modules ovetAj; .
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This implies that the functdRHom (—, O) gives an anti-equivalence between the de-
rived categories of qgA) g and qg(A) . . (Note that for derived functoBHom 4 (—, A)
andR#Hom (—, O) there is also a commutative diagram like (13).)

The functor€xt/ (—, ©) can be described more explicitly. Lt be anA- bimodule.
Regarding itas a right module, we see that for &y QGr(A)x the groups EX(F, M)
have the structure of lefi-modules. We can project them to Q@ . Thus each
bimodule M defines functors from QGA) to QGr(A)., which will be denoted by
TEXt (—, M).

Now, usingnmI" = id and the commutativity of the diagram (13) for the derived
functors Exg(—, A) and&xt’/ (—, ©), we obtain isomorphisms

Ext! (F, 0) = nExt| (T (F), A) = nExt’r(A)(F(]-') @A) = TEXV (F, 8 0a)
19
for any sheafF € qgr(A)g.

Definition 5.4. We call a coherent sheaf 7 € qgr(A)r locally free (or a bundle) if
Ext! (F,O) =0forany j #0.

Remark. In the commutative case this definition is equivalent to the usual definition of
a locally free sheaf.

Definition 5.5. The dual sheaf Hom (F, ©O) € qgr(A) . will be denoted by 7" .

If 7 € qgr(A). is a bundle, then the dual she&f is a bundle inggr(A) ., because
RHom (FY, 0) = F in the derived category, arttkt/ (FY, O) = 0for j # 0.

Thus we have a good definition of locally free sheavesiPﬁ)rand IP’%. Since the
derived functoRHom (—, O) gives an anti-equivalence between the derived categories
of ggr(A)g andggr(A), there is an isomorphism:

Hom(F, G) = Hom(G", FY) (15)

for any two bundles” andg onP? or P2.

6. Bundleson P2

6.1. Bundles on P2 with a trivialization on the commutative line. In this section we
study bundles oi2. By definition, a bundle is an objeét € coh(P?) satisfying the
additional conditior€xz’ (£, ©) = 0 for alli > 0 (see (5.4)).

The noncommutative plan@ contains the commutative projective lings P! given
by the equationvs = 0. If M is a P P;-module, then the quotient modulé/M w3 is a
P Py/{w3)-module. This gives a functor c@f2) — coh(P), F ~ FJ;. The sheafF|,
is referred to as the restriction &f to the linel.

Lemma6.1. If F isabundle, thereis an exact sequence:

‘w3

0— F(-1) —- F — F|; — 0. (16)
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Proof. To prove this we only need to show that multlpllcatlorwyls amonomorphism.
If Fis a bundle, it can be embedded into a direct s@m@(k ), because by ampleness

the dual bundle?—'v is covered by a direct sum of Ime bundles Now, since the morphlsm

O(ki—1) 8 O(k;) is mono for any, the same is true for the morphisf{—1) —>
o

Lemma6.2. Let £ be a bundle on IP’% such that its restriction £|; to the commutative
line isisomorphic to a trivial bundle O". Then

HOP;, £(—1) = HOP}, £(-2) = H*(P}, £(—1)) = H*(P}, £(~2)) =0.
Proof. We have the following exact sequence in the categor;(]B%))h
0— £(=2) — E(-1) — E(-1)|; —> O. (17)

Since&(=1)|; = 0;(=1)®", we haveH%(E(=1)|;) = 0

Assume thag (—1) has a nontrivial section. Thef{—2) has a nontrivial section too.
For the same reas&(—3) has a nontrivial section, and so on. Thus for any 0 the
bundle&(—n) has a nontrivial section. By (15) we have isomorphisms:

HO(E(—n)) = Hom(O(n), £) = Hom(EY, O(—n)).

On the other hand, by Corollary 5.2 the last group is trivialfop 0. HenceH°(£(—n))
= 0foralln >> 0, and consequentlf®(£(—2)) = H%(E(-1)) = 0.

Further, assume th&f2(£(—2)) is nontrivial. SinceH1(£(i)|;) = 0 foralli > —1
we have from the exact sequence (16) With= £(i) thatH (£ (i)) is nontrivial too for all
i > —1. But this contradicts Corollary 5.3. Therefab#(£(—2)) = H2(£(—1)) = 0.
This completes the proof.0

6.2. Monads on P2 and . As in the commutative case, a non-degenerate monad on
P2 or P2 is a complex over cof?)
0— H®O-) -5 K®0 -5 L0l — 0

for which the map: is an epimorphism ana is a monomorphism. (Note that there is
another more restrictive definition of a monad, according to which the dual(mgp
has to be an epimorphism, see [30]). The coherent sheaf

E = Ker(n)/Im(m)

is called the cohomology of a monad. A morphism between two monads is a morphism
of complexes. The following lemma is proved in [30, Lemma 4.1.3] in the commutative
case, but the proof is categorical and applies to the noncommutative case as well.

Lemma 6.3. Let X beeither P2 or onP3, and let E and E’ be the cohomol ogy bundles
of two monads

M0—HR0-) -5 K0 -5 Le0ol) — 0,

M0— H0-1) " Ke0 "5 L'e01) — 0
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on X. Then the natural mapping
Hom(M, M) — Hom(E, E')
is bijective.
The proof is based on the fact that
Ext/ (0, O(-1)) = Ext/ (O(1), O(=1)) = Ext/ (O(1), ®) =0
for all j (see [30], Lemma 4.1.3).

6.3. Non-degeneracy conditions. In the definition of a monad we require that the map

be an epimorphism. In the commutative case this condition must be verified pointwise. In
the noncommutative case the situation is simpler in some sense, because the complement
of the commutative liné does not have points.

Lemma 6.4. If the restriction of a sheaf F ¢ coh(]P’%) to the projective line! isthe zero
object, then F is also the zero object.

Proof. Let M be a finitely generated gradétiP;-module such thaf = M. Consider
an exact sequence:

M2 M1 — N—O.
SinceN = F(Q)|; = 0, the moduleV is finite dimensional. This implies that fors> 0

the mapM; =3 M; 1 is surjective. Moreover, these maps are isomorphisms $sr0,
because allM; are finite dimensional vector spaces. Let us identifydglifor i > 0

with respect to these isomorphisms. Using fhenodule structure o, we obtain a
representation of the Weyl algebréX, Y)/([X, Y] = 24) on the vector spac¥;. But

it is well known that the Weyl algebra does not have finite dimensional representations.
ThusM; = 0 for alli > 0, andM is finite dimensional. Therefor® = 0. O

The following corollary is an immediate consequence of the lemma.

Corollary 6.5. Let f : F — G be a morphismin coh(]P’%). Suppose its restriction
f : Fli — G|, isan epimorphism. Then £ is an epimorphism too.

6.4. Fromthe resolution of the diagonal to amonad. Let M be anA-bimodule. Regard-
ing it as a left module, we see that for afiye QGr(A), the groups EX{F, M) have
the structure of right-modules. We can project them to Q@ z. Thus each bimodule
M defines functorg Ext' (—, M) from QGr(A); to QGr(A)g.

Let& be abundle om"% such that its restriction to the lirigs a trivial bundle. Let us
consider the bundI€¥ (1) € qgr(P P;),; and the resolution of the diagon@l (P Py),
which has only three terms:

{0 — PPy(—1) ®@ PPy(—2) — .Ql(l) ® PPy(—1) — PP, @ PPy} — A.

The resolution of the diagonal is a complex of bimodules. It induces a corﬁple\xer
QGr(P Py):

{0— O(-1) @ PPr(—2) — QY1) @ PPy(—-1) — O ® PPy} —> A, (18)
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whereQ! is a sheaf or]?,% corresponding to th@ P,-modules2?.

As described above, each-bimodule M gives the functorstExt (—, M) from
QGr(A) to QGr(A)g. In particular, each object of the resolution of the diagonal induces
such functors. N ~

First we calculate these functors for the objactNote that the objech coincides
with ‘690(9(1'). Hence by (14) we have

1>

TExt/ (£Y(1), A) =0

if j > 0, whilexExt%(€V(1), A) = £(-1).
The resolution of the diagonal (18) gives us a spectral sequence with tteem

E{! = nExt!(£¥(D), K-p) = 7Ext?M (€Y (1), B),

which converges to

[e.¢]

ey ifi=o0
~]o otherwise

Now we describe all term&{? of this spectral sequence. First we have
TEXt/ (£Y(1), 0 ® PPy) = Ext/ (£Y(1), 0) ® PPy
= Ext/(£V(1),0)® O = H/(P2,£(-1) ® O.
By Lemma 6.2, these groups are trivial fpe£ 1. For the same reason we have
TEXt (EY(1), O(-1) ® PPy(—2)) = H/ (P2, £(-2)) ® O(~2) =0
for j #1and
rEXH(EY (D), O(=1) @ PPy(—2)) = HY(P2, £(—2)) ® O(-2).

Now let us consider the functors which are associated with the ddjgdd @ P P, (—1).
We have

TExt/ (€Y (1), QY1) ® PPy(—1) = Ext/ (&Y, QY ® O(-1).

It follows from the Koszul complex that the she@f can be included in two exact
sequences:

0— Q' — O0-1)® PP, — O—0,
0— O(=3) — O(-2) @ (PPy))* — Q' — 0.

Applying the functor Hone€", —) to the first sequence and taking into account that
Hom(£Y, O(—1)) = 0, we obtain HonigY, 1) = 0. Similarly, we deduce from the
second sequence that B¢V, Q1) = 0, because EXtEY, O(—2)) = 0. This implies
that the objectr Ext/ (£V (1), Q1(1) ® P Py(—1)) is trivial for all j # 1.

Thus our spectral sequence is nothing more than the complex

TEXtH(EV (L), K2) — mEXE(EY (D), K1) — 7EXtH(EY (D), Ko),
which is isomorphic to the complex
HYP?, £(-2) ® O(-2) — Ext}(&Y, QY @ O(-1) — HY(P?,£(-1) ® O.

It has only one cohomology which coincides wil—1).
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Theorem 6.6. Let £ be a bundle on IP’% such that its restriction to the commutative line
[ isisomorphic to the trivial bundle Ol@’. Then & is the cohomology of a monad

0> HRO-1) L K05 L®0O@) — 0

with H = HY(P?, £(-2)), L = HY(P?, £(—1)), and such a monad is unique up to an
isomor phism. Moreover, inthiscasethevector spaces H and L havethe samedimension.

Proof. The existence of such a monad was proved above. The uniqueness follows from
Lemma 6.3. The equality of dimensionsifandL follows immediately from the exact
sequence (17).O

6.5. Barth description of monads. Now following Barth [8], we give a description of
the moduli space of vector bundles Bb trivial on the linel in terms of linear algebra
(see also [15]).

Denote by (r, O, k) the moduli space of bundles on the noncommutdfﬁlﬂrivial
on the linel and with a fixed trivialization there (i.e. with a fixed isomorphigip =
OF"). Letdim H1(P2, £(—1)) = k. As in the commutative case, the numberg k can
be regarded as the rank, first Chern class, and second Chern cfasesgpectively.

The following theorem gives a description of this moduli space which is similar to
the description given by Barth in the commutative case.

Theorem 6.7. Let {(b1, bo; |, 1)} be the set of quadruples of matrices
b1, b2 € Mixk(C), j € Myxk(C), i € Myx,(C),
which satisfy the condition
[b1, b2] +ij 4 27 - Ljux = O.
Then the space 915 (r, O, k) is the quotient of this set with respect to the following free

action of GL(k, C):

bi — gbig™ 1, j jg_l, i — gi, whereg e GL(k, C).
Proof. Let £ be a bundle oﬂP’% trivial on the linel. We showed above that any such
bundle comes from a monad unique up to an isomorphism. Conversely, suppose we have
a monad

0—>HRO-1) 5L K®0-5L®0O01) —0 (19)

with dim H = dimL = k such that its restriction to the linkis a monad with the
cohomolog)O,@’. Then the cohomology of this monad is a bundIePérwhich belongs
to My (r, O, k). Indeed, the cohomologies of the dual complex

0— O=DRL* 5 00 K* ™5 01) ® H* —> 0

coincide withHom (€, ©) and Ext*(E, ©). Hence, to prove thaf is a bundle, it is
sufficient to show that the dual complex is a monad too, i.e. that themtajs an
epimorphism. The restriction of the dual complex e a monad which is dual to the
restriction of the monad (19) tb Hence the restriction ofi* on! is an epimorphism.
Then, by Lemma 6.5z* is an epimorphism as well. Thus to describe the moduli space
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My (r, 0, k) we have to decsribe the space of all monads (19) modulo isomorphisms
preserving trivialization oi.
Consider a monad

0> HRO-1D) S5 K0 -5 L®O1A) — 0

with dim H = dim L = k and dimK = 2k + r. Denote by¢ its cohomology bundle.

The mapsn andn can be regarded as elementdbf® K @ W andK* @ L W,
respectively, wher® = HO(P2, O(1)) is the vector space spannediby, wa, ws. The
mapsmn andn can be written as

miwi + mawz + m3wsz, ni1wi + n2w2 + nN3ws,

wherem; : H — K andn; : K — L are constant linear maps.
Let us restrict the monad to the lineThe monadic conditionm = 0 implies now:

nimo +nom1 =0, nim1=0, nompy=0.

Moreover, since the restriction 6fto! is trivial, the composition1my is anisomorphism
(see [30], Lemma 4.2.3). We can choose basesffoK, L so thatnymo = 1y« (the
identity matrix) and

Lk Ok xk
m1 = | Orxx | > m2 = Lrxx | >
Orxk 0r><k

ni = <0k><k Lk kar) , N2 = (_1k><k Ok xk kar> .
Using the equationsgmy + n1ms = 0 andngmz + nomz = 0 we can write:
by
m3z=|bz2|. ’l3=<—b2 b1 i).
j
Now the monadic conditionm = 0 can be written as:
(n3m3) - w3 + Lk - [w1, wo] = 0.
Therefore we obtain the following matrix equation:
[b1,b2] +1j + 2k - Lixx = 0.

Note that the last basis vectors oK give us a trivialization of the restriction éfto the
linel. Itis easy to check that any isomorphism of a monad which preserves trivialization
on!/ and the choice of the bases#f K, L made above has the form

bi — gbig_l, i jg_l, i — gi, whereg € GL(k, C).

This proves the theorem.O
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7. The Noncommutative Variety P3 asa Twistor Space

7.1. Real structures. A x-algebra is, by definition, an algebra o¥@with an anti-linear
anti-homomorphism satisfying«? = id.A s-structure on a (graded) algebra s regarded
as a real structure on the corresponding (projective) noncommutative variety.

Letus introduce real structures on the complex vari€tfeandQ? defined in Sect. 3.
Assume that in (6), (7) the skew-symmetric mattiis purely imaginary and is real.
Then there is a unique-structure on the aIgebrA((Cg) such thate* = x;. We denote
the corresponding noncommutative variety]Ré/.

Assume in addition that the symmetric matéxin (7) is real and positive definite.
There is a unique:-structure on the algebr@;, such thatX’ = X;,D* = D, and
T* = T. The corresponding noncommutative real variety will be called the noncommu-
tative sphere and denoted 8. The embedding of;} into Q7 induces an embedding

R# < S7. Recall that the complement Gf} in Q} is a commutative quadratic cone

> G¥ X X; = 0 which has only one real point. ThE§ can be regarded as a one-point
kl
compactification oy

By a linear change of basis one can bring the p&ir6) to the standard form

1000 0 a 0 0
0100 a0 0 0

G = L o=v_1| 7 (20)
0010 0 0 0 b
0001 0 0 -bo0

Furthermore, sincé and6 enter only in the combinatioh - 6, and we asssume that
a + b # 0, we can set + b = 1 without loss of generality.

7.2. Realification of IP%. Recall that the noncommutative projective spﬁiﬁecorre-
sponds to the algebmS, with generators;, i = 1, 2, 3, 4, and relations (9). Consider
an algebraP S; with generators;, z;,i =1, 2, 3, 4, and relations

[z1,z2] = 2h(a + b)z3z4, [z1, z1] = 2hibz3zz — 2hazaza, [z1,22]1 =0,
(21, Z2] = —2h(a + b)Z3Za, (22, Z2] = 2hazazz — 2hibzaZa, [z2,711 =0, (21)
(zi,zj1=lzi,2j1=[2i,2j1=[2;,2;1=0 forall i=34;j=1234

There is a unique-structure on this algebra such théit= z;,z7 = z;. We denote
the corresponding real varidﬂi(R). This variety can be considered a realizatioﬁ’ﬁxf

Remark. In contrast to the commutative situation, a noncommutative complex variety in
general has many different realization. We have an ambiguity in the choice of relations
involving bothz; andz;. The realization (21) is distinguished by the fact that it is the
twistor space of the noncommutative sphﬁﬁeas explained below.

In the commutative case there is a map frBfiR) to the spher&* which is aP!
fibration. The corresponding® bundle is the projectivization of a spinor bundle on
S*. This map is known as the Penrose map. In the noncommutative case we have a
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similar picture. The analogue of the Penrose map is aFhaf3 (R) — S} which is
associated with the homomorphismsedilgebrasD, — 155-,:

X1 —

(2124 — 7124 — 7223 + 2223),
1 _ _ _ _
D+ —5 (z1z1 + Z121 + 2222 + 2222),

1 _ _ _
X2 =~ 5(21Z4 + 2124 — 7223 — 2223),

T — — (2323 + 2424),

2

X3+ — (z123 — 2123 + 2224 — Z224),

1 _ _ _
X4 E(ZlZS + 7123 + 7224 + 2274).

Note that forz = O we obtain the homomorphism of commutative algebras which
corresponds to the usual Penrose map. This mean@jﬁ@) is the twistor space cﬂ;l‘

The variet)AP’f.l’(R) is a twistor space in yet another sense. For the commuigfitiee
complex structures compatible with the symmetric bilinear féa¥rand orientation are
parametrized by points offl. This remains true in the noncommutative case. A complex
structure (resp. orientation) dkfg is defined as a complex structure (resp. orientation)
on the real vector spadé spanned by, ... , x4. We will choose an orientation o
and require that the complex structure be compatible with it. All such complex structures
are parametrized by points offd.

Recall now thaﬁbg is a pencil of noncommutative projective planes passing through

the commutative line. Let us pick any one of them. The realificatid?ﬁa:fefined above
induces a realification of the noncommutative projective plane. It is easy to see that the
complement of the commutative lines = w3 = 0 in the realified projective plane
is isomorphic th;i‘. Furthermore, the complement carries a natural complex structure
defined by

wytw; > V=lwztw;,  wzlw > —V—Llwglw;, i=12
The Penrose map induces an identification between the complemetitjaad S7,
and therefore induces a complex structure on the latter. Varying the noncommutative
projective plane, one obtains all possible complex structurelR;ommpatibIe with a
particular orientation. This is completely analogous to the commutative case.

7.3. Connection between sheaves on commutative and noncommutative planes. In this
subsection we are going to connect the moduli spaigér, 0, k) of bundles orPg with a
trivialization on the ling with the moduli spac&i(r, 0, k) of torsion free sheaves on the
commutativeP? with a trivialization on a fixed line. The bridge between bundle@ﬁm

and torsion free sheaves Bfis provided by the twistor varieﬂ?g. This gives a geomet-
rical interpretation of Nakajima'’s results (the description of the moduli sp6e 0, k)

by the deformed ADHM data [28,27]). We will construct a hyperk&hler manifeld
parametrizing certain complexes Eﬁl which is isomorphic t@1(r, 0, k) (which is also

a hyperkahler manifold [28]). The isomorphism is given by the restriction of complexes
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to one of the commutativigs. On the other hand, the restriction of complexes to a non-
commutative plan@g yields an isomorphism betweew with a particular choice of
complex structure and the moduli spad, (r, 0, k). ThusOiy (r, 0, k) can be obtained
from 9t (r, O, k) by a rotation of complex structure.

Consider complexes onP? of the form

0—-Ho0-) L koo X Lol —o0 (22)

with dimH = dimL = k, dimK = 2k + r, which satisfies the condition that its
restriction to the liné has only one cohomology which is a trivial bundle (with a fixed
trivialization). This condition implies that/ is a monomorphism. Note thaf is not
an epimorphism in general, so (22) is not a monad. But the restriction of the complex
(22) to any noncommutative plane is a monad by Corollary 6.5. Thesan fail to be
surjective only on the commutative plangs= 0 andz4 = 0.

Now we introduce a real structure dﬁi (this is different from the real structure
on the realification oin defined above). Assume thiatis a real number. Consider an

anti-linear anti-homomorphisi of P Sy defined by

Tz =22, J@2)=-z1. J@3) =24 J(@a)=-2z3 JA)=xr reC.

Thus.7 is a homomorphism dk-algebras fronP S, to the opposite algebiS;°?. (The
notation7 is used by analogy with the commutative case, where this anti-homomorphism
is a composition of a complex structufewith complex conjugation [15].)

The anti-homomaorphisny induces a functog* from qgr(P Sy) g to qgr(P Sy°?)g.
The latter category is naturally identified with the category( &gt ) ; . Using this identi-
fication we can consider the composition/sf with the dualization functatom (—, O)
as a functor from qgiP S;) » to itself. For any bundl€ we denote by7*(£)" its image
under this functor. The functor can be extended to complexes of bundles. It takes the
complexC’ (22) to the complex7*(C")Y

0—i*eo) X oo’ Y G0 — 0.

Let us consider complexés on IP% with an isomorphism
TJHeHyY =C (23)

and trivialization on the liné. Then the spac& acquires a hermitian metric arfd
becomes isomorphic t&*. The reasoning of Sect. 6 shows that we can represent the
mapsM andN as

Miz1 + Mozp + M3z3 + Maza, Nizi+ N2zo + N3z3 + Naza,

whereM; andN; are constant maps. By a suitable choice of bases we can put these maps
into the form

1 0
Mi=|0|, Mx=|1|. M3=|By|., Ma=|By|. (24)
0 0
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le(o 1 o), N2:<—1 0 o),
N3=(—32 B |), N4=(—32’ By |/).

Using the reality condition*(N)¥ = M and 7*(M)" = —N we find that

/ ’

B =—B,', B, =B, J=1T 1'=-J" (25)
Finally the conditionNV M = 0 gives

a) pe=[B1,B]+1J=0,
b) = [B1, Bi'1+[B2, B2 1+ N1 =370 = ~27 - Ly

These matrix equations are invariant under the following actidii @:

Bi— gBig Y, 1 gl, J—Jg L wherege U(k). (26)

Denote byM the vector space of complex matriogs, Bo, |, J). It has a structure
of a quaternionic vector space defined by

(Bla 325 Ia ‘]) = (_BZT, BlT5 _‘]Tv IT)a

and, moreover, it is a flat hyperkéhler manifold (see [28]). The map (u,, uc) is

a hyperkahler moment map for the actionlofk) defined in (26) (see [19]). Since the
action ofU (k) onu 1 (0) Nt (—2k-1) is free, the quotient = - 2(0) N t(—2k-

1)/ U (k) is a smooth hyperkahler manifold. This manifold parametrizes complexes (22)
with a real structure (23) and a trivialization on the line

Onthe other hand, it was proved in [28, 27] that the moduli sfE¢e 0, k) of torsion
free sheaves on the commutati®Rwith a trivialization on a fixed line can be identified
with M.

This identification can be described geometrically as follows. Let us assume that
is positive. It can be checked that in this case the tagan fail to be surjective only
on the plane4 = 0. We can restrict the complex (22) to the commutative plane 0.

The restriction is a monad and its cohomology sheaf is a torsion free sheaf. It is easy to
see that this yields a complex isomorphism frarhto 9i(r, O, p).

The restriction of the complex (22) to anoncommutative plane is amonad as well. This
yields a map from\ to the moduli spac®i; (r, 0, k) of bundles on the noncommutative
plane. Let us show that this map is an isomorphism. To this end we note that on the level
of the linear algebra data this map sends a quadr@pieB,, |, J) to the quadruple
(b1, b2, i, }) with

bi=B1— By, by=Bo+Bi", i=1-3" j=3+I".

Further, note that the equatiops = 0, u, = —2# - 1 are equivalent to the equation
[b1, b2] +i-j + 2h - 1 = 0 and the vanishing of the moment map for the action of the
groupU (k) on the space of quadruplés, b, i, j). Now it follows from the theorem
of Kempf and Ness ([28,20]) that the magl — 91, (r, 0, k) is a diffeomorphism.
It becomes a complex isomorphism if we replace the natural complex structure of the
spaceM with another one within th&! of complex structures oM.

Thus we have
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Theorem 7.1. The moduli space M (r, 0, k) is a smooth hyperkahler manifold of real
dimension 4rk, and as a hyperkahler manifold it is isomorphic to the moduli space
M (r, 0, k) of torsion free sheaves on the commutative P2 with a trivialization on a fixed
line. Asa complex manifold 9t (r, O, k) is obtained from 9 (r, O, k) by a rotation of the
complex structure.

The above discussion shows that there are natural bijections between

A’. Bundles oriP,% with a trivialization on the commutative lineandcy = k.

B’. Solutions of the equations, = 0, u, = —2k - 1 modulo the action o/ (k).
C’. Complexes of sheaves (’Eiﬁ of the form (22) with a trivialization on the commu-
tative linel satisfying the reality condition (23).

One can show that for > 1 a generic complex (22) is a monad and its cohomology
is a bundle€ onP$ such that

HY P2, £(-2) =0, J*E) =E. (27)

Moreover, it can be shown that any bundlesatisfying the conditions (27) can be
represented as a cohomology of a monad of the form (22).

8. Noncommutative Twistor Transform

8.1. Review of the twistor transform. In the commutative case the ADHM construction
of instantons has the following geometric interpretation. Consider the double fibration

G2 4) <2 — FI@1, 2,4 —1 P3, (28)

whereG(2; 4) is the Grassmannian afidi(1, 2; 4) is the partial flag variety. The Grass-
mannianG(2; 4) has a real structure wit§* as the set of real points. For any bundle

£ on P8 its twistor transform is defined as a sheaf*E on G(2; 4). Given ADHM

data we have a monad @¥ whose cohomology is a bundle. It can be shown that the
restriction of its twistor transform to the sphed®coincides with the instanton bundle
corresponding to these ADHM data. The instanton connection can also be reconstructed
from the bundle orP2 (see [4, 24] for details).

In this section we show that one can consider the noncommutative quadric introduced
in Sect. 3 as a noncommutative Grassmanfé® 4). We also construct a noncommu-
tative flag varietyFI(1, 2; 4) and projectiony, ¢ giving a honcommutative analogue
of the twistor diagram (28). The twistor transform can be defined in the same way as
above. It produces a bundle on the noncommutative sphere from the deformed ADHM
data. We show that this bundle is precisely the kernel of thehdpfined in Sect. 2.

Itshould also be possible to construct the instanton connection on the noncommutative
R* from the complex of sheaves ﬁﬁ To do this, one needs to develop the differential
geometry of noncommutative affine and projective varieties. We go some way in this
direction by defining differential forms and spinors.

Since the goal of this section is mainly illustrative, we limit ourselves to stating the
results. An interested reader should be able to fill in the proofs.
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8.2. Tensor categories. A good way to construct noncommutative varieties with prop-
erties similar to those of commutative varieties is to start with a tensor category (see [25,
23]). LetT be an abelian tensor category. Consider a tensor fudetof — Vect to

the abelian tensor category of vector spaces compatible with the associativity constraint
but not compatible with the commutativity constraintAlfis a commutative algebra in

the tensor category, then®(A) is a noncommutative algebra in the tensor category
Vect. If M € 7T is aright A-module, thend (M) is a right ®(A)-module. Any right
A-module (in the category) has a natural structure of a leftmodule (and hence an
A-bimodule). Thus any righb (A)-module of the formd (M) has a natural structure of
ad(A)-bimodule.

Consider the categor§omm of all finitely generated (graded) commutative al-
gebras in the tensor categofy Then underd the categoryComm is mapped to a
subcategory of the category of finitely generated (graded) algebras. This subcategory
enjoys many properties of the category of commutative (graded) algebras. For example,
for all A, B € Comm there is a natural algebra structure ®9A) ® ®(B) coming
from the algebra structure ot @ B. The corresponding subcategory in the category
of noncommutative affine (resp. projective) varieties shares a lot of properties with the
category of commutative varieties. For examplé éindY are varieties in this category,
then using the tensor product of the corresponding algebras one can define the “Carthe-
sian” productX x Y. More generally, given a pair of morphisms— Z andY — Z
one can define the fiber produ€tx z Y. Further, starting from the module of differen-
tial forms of A one can construct the sheaf of differential forms on the corresponding
noncommutative variety.

The category qgrb(A)) has a nice subcategory which consists of modules of the
form ® (M), whereM € 7T is an A-module. To any objecd (M) of this subcategory
one can associate its symmetric and exterior powers. The symmetric powk(a/0f
form a noncommutative graded algebra. This enables one to define the projectivization
of the sheaf corresponding to the mod@éeM).

8.3. Yang—Baxter operators. One way to construct an abelian tensor categomyith a
functor® : 7 — Vect is to consider a Yang—Baxter operator (see [25,23]).

A Yang—Baxter operator on a vector spdces an operatoR : VRV — V®V,
such that

R? =idygy,

29
(R®idy)(idy ® R)(R®idy) = (idy ® R)(R ®idy)(idy ® R). (29)

A Yang—Baxter operator induces an action of the permutation g&upn the tensor
powerV®", where the transpositiof, i + 1) € &, acts as the operator

Riiy1= idv®(i71) QR® idv@(n—i—l) LYo yen,

Equations (29) ensure that operat®s 1 satisfy the relations between the transposi-
tions(i, i + 1) in the groups,,.

If R is a Yang—Baxter operator on a vector spacethen the dual operataR" :
V*Q® V* - V* ® V*is also a Yang—Baxter operator.

Given a Yang—Baxter operat® : V ® V — V ® V, one can construct an abelian
tensor categoryk and a functo®y : Tg — Vect such thatV is a® g-image of some
object of Tg, and the commutativity morphism in the categ@iyis mapped byb g to
R [23]. As mentioned above, given any two objegtsB of the categoryomm,, one
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has a natural algebra structure on the vector sgaee ® ®(B). This algebra will be
denotedd(A) ® ®(B) and called ther-tensor product ofb(A) and®(B).
R

It is well known that there is a one-to-one correspondence between irreducible
representations of the group, and partitions ofn (Young diagrams). Under this
correspondence the trivial partitian) corresponds to the sign representation, while
the maximal partition(1, 1, ..., 1) corresponds to the identity representation. Given

n times

a partition (k1, ..., k) of n (kg > k2 > --- > k) we denote byks, ..., k) the

(k1, ..., k,)-isotypical component df ®" (resp(V*)®"),i.e. the sum of all subrepresen-
tations of V®" (resp.(V*)®") isomorphic to(k1, ..., k,). We also putA’, V = Ef,:)V,
ARV* = Eg')v* for brevity.

Remark. The subspac@}e V C V®" arethedg-images of some objects of the category
Tr.

Let A, u be partitions ofn and m respectively. It is clear that the action of the
permutatiors, , € G,4m

i4+m, ifl<i<n
i—n, fn+tl<i<nd+m

Onm (i) =
gives an isomorphism
Rum: TRV @ TRV — TRV @ Z}V.
Remark. This isomorphism is the image of an isomorphism in the cate@gry
The trivial example of a Yang—Baxter operator is the usual transposition
Ro(v1 ® v2) = v2 @ v1.

We will say thatR is a deformation-trivial Yang—Baxter operatorifis an algebraic
deformation ofRg in the class of Yang—Baxter operators. For a deformation-trivial Yang—
Baxter operatoR we have

dimZ}V = dimx vV

for any partitioni.

8.4. The noncommutative projective space. Let R be a deformation-trivial Yang—Baxter
operator on the vector spat®. Then the graded algebra

SLV* =T (V") /(A%Q v*)
is a noncommutative deformation of the coordinate algebra of the projectiveBgare

We denote byPg (V) the corresponding noncommutative variety. TRBygV) is a non-
commutative deformation of the projective sp&& ).
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Example 8.1. The operator

R(izi®z)) =zj ®zi, if @, j)#(12),(2 1),
R(z1®72) =22 ® 71 + 2i(az3 ® z4 + bza ® z3), (30)
R(z2®721) =21 ® 220 — 2h(bz3 ® 24 + az4 @ z3),
is a deformation trivial Yang—Baxter operator on the 4-dimensional vector gjagéh
the basiqz1, z2, z3, z4}. By definition the homogeneous coordinate algebiggiz) is
generated by, z2, z3, z4 with relations(9) (we setz + b = 1 as before). Hendgg (Z)
is isomorphic to the noncommutative projective spﬁﬁeﬂefined in Sect. 3. The space
Z* was denoted’/ in that section.

The above example shows that part of the data encoded in the Yang—Baxter oRerator
is lostin the structure of the corresponding noncommutative projective space. We will see
below that this data appears in the structure of other noncommutative varieties associated
with R.

8.5. Noncommutative Grassmannians. It is well known that the homogeneous coordi-
nate algebra of the Grassmann varigik; V) is a graded quadratic algebra with v *
as the space of generators and
Ker (AfV* @ AV — (V9%  pkby)
as the space of relations. This description justifies the following definition.

Definition 8.2. Let R be aYang—Baxter operator on the space V*. The noncommutative
Grassmann variety Gy (k; V) is the noncommutative projective variety corresponding
to the quadratic algebra

Gr(k: V) = T(AL V") /<Ker(A';€V* ® ALV* - 2}5*’%*)) :

The algebraiz (k; V) is the® z-image of a commutative algebra in the categpgy
If R is deformation-trivial, therGg(k; V) is a honcommutative deformation of
G(k; V). Note thatGg(1; V) = Pg(V) by definition.

Example 8.3. Consider the noncommutative Grassmani@a(2; Z) corresponding to
the Yang—Baxter operat@B0). Let
1
Zij = 5((11' ®zj—2;®z)— Rz ®zj —27j ®z)) € ARZ*.
Then it is easy to check théiz (2; Z) is generated by the elements
Yi=z13 Y2=-—z224, Y3=2z23 Ya=z1sa, D=-z12, T =234
with relations

[Y1,Y2) = 2haT?, — [Y3, Y4l = 2hbT2,
[D, Y1] = —2haY1T, [D,Y2] = 2haY>T,
[D, Y3] = —2kbY3T, [D,Ya] = 2hbYaT, (31)

1
DT = > (N1Y2 + YoY1 + Y3Ya + Y4Y3),
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[Y;,Y;1=1[T,Y;1=1[T,D] =0foralli = 3,4, j =1,2,3,4. Comparing with(7)
one can see that the algel§ia(2; Z) is isomorphic taQy with G andd given by

0100 0O a 0 O
111 0 -a 0 0 O
G=—- , 0=2n
2l0 001 0O 0 0 b
0010 0O 0 -b O
Note that the variableX;, i = 1, 2, 3,4, used in Sect. 7 to describe the quadric are

related toY;, i = 1, 2, 3, 4, by the following formulas:

i=Xo++~-1X;, Yo=-Xo++-1Xy,

(32)
Y3=Xa+~-1X3, Ys4=-X4++/-1Xa3.

8.6. Products of Grassmannians and flag varieties. Let R be a Yang—Baxter operator
on the vector spacEé*. Consider a sequenge, . .., k, of integers. LeZ" be the free
abelian group withr generatores1, .. ., ¢,. The R-tensor product

Grk;; V)® ... ® Grlks; V)
R R

is aZ"-graded algebra generated by the vector spaégéié* in degreez;, with relations
Ker (Afiv@ afive - sifhovs)
in degree 2; for all i and

ki y % kjy s iy ki v, % (id.~Ry; ;) ki yrx kjvrs
Ker ((A%v= @ AV @ (A V@ Afive) Njve @ A V)
in degreee; + ¢; for all i > j. For any increasing sequenke, ..., k, we define
also aZ’"-graded algebr& Lg (k1, ..., k-; V).It has the same generators as the algebra
Grk1; V) ® ... ® Gr(ky; V),, subject to the same relations in degrees &d to
R R

relations

N k: ki . (ida—Rk-,k-) X ki ki ki
Ker (A V@ voe yvie aivy —25 afiviea]ve —— M f)v*)

in degreee; + ¢; for all i > j. This definition is suggested by the Borel-Weil-Bott
theorem (see [14]). In particular, f& = Rp we get the algebra corresponding to the
commutative flag variety.

We define the®-Carthesian produ@g (k1; V) >1§ >R<, Gr(k,; V)andthe noncom-

mutative flag varietflg (k1, ..., k-; V) as the noncommutative varieties corresponding
to the algebra§g(k1; V) ® ... ® Gr(k,; V) andFLg(ky, ..., k.; V) respectively.
R R

To make this compatible with our definition of a noncommutative variety, we consider
instead of &Z"-graded algebra its diagonal subalgebra. The diagonal subalgebra is a
graded algebra whos&" graded component is thee1 + - - - + ¢,)-graded component
of theZ"-graded algebra. Thus according to Sect. 3 the category of coherent sheaves on
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the R-Cartesian product of Grassmannians (or the flag variety) is the categoryf
the corresponding diagonal subalgebra.
The algebraFLg(k1, ..., kr; V) is the ®g-image of a commutative algebra in the
category7z. Hence one can define tlie Carthesian product of several flag varieties.
If R is deformation-trivial, then

Grk1; V) x ... x Ggr(ky; V) and Flg(ky, ..., k; V)
R R

are noncommutative deformations of the corresponding commutative varieties.
Note that we have a canonical embedding of the graded al@gglifa; V) into the
graded algebr& Lk (k1, ..., k;, ..., kr; V) inducing the canonical projections

pi i Flrlka, ... kiy oo ks V) — Gr(kis V).
On the other hand, by definitidAL g (k1, ..., k»; V) is a quotient algebra of the algebra

Grk1; V) ® ... ® Gp(k,; V). HenceFlg(ky, ..., k,; V) can be regarded as a closed
R R
subvariety inGg(k1; V) x ... x Gr(ky; V).
R R

Example 8.4. The algebraiz (1; Z) ® Gr(2; Z) corresponding to the Yang—Baxter op-
R

erator(30) is generated by the elemenis z2, z3, z4, Y1, Y2, Y3, Ya, D, T with relations
(9), (31, and

[z1, Y2] = —2haz4T, [z2, Y11 = 2haz3T,
[z1, Y3] = —2hbz3T, [z2, Ya] = —2hbzaT,
[z1, D] = —2hbz3Ys — 2hazaY1, |22, D] = 2hazzYo — 2hbz4Y3,

[z1, Y1] = [z2, Y2] = 0, [z3, Y;] = [23, D] = 0, [24, Yi] = [24, D] = 0, [z;, T] = O for
alli =1,2,3,4. The algebraF Lz (1, 2; Z) is given by the same generators subject to
the same relations, as well as the additional relations

0o T Y2 Y3 21 0
T 0 —Y. Y 0
4 1 2| _ (33)
Yo Y4 0 D —h(a+b)T 23 0
Y3 - Y1 —D —Hh(a+b)T 0 24 0
As explained above, we have projections
Q@ = Gr(22) «—— Flr(1,22) —— Pp(2) —— P}

and a closed embedding

FIr(1,2; Z) C Gr(2; Z) x Pr(Z) = Q4 x P,
R R
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8.7. Tautological bundles. Let V (resp.V*, £4V, £4V*) denote the coherent sheaf
on Gg(k; V) corresponding to the free riglgiz (k; V)-moduleV ® Gr(k; V) (resp.
V*®Gr(k; V), ZhV@Gr(k; V), Z5V*®Gr(k; V)). Since the space of global sections
of the sheafO(1) on the GrassmanniaGg (k; V) is A% V*, the mapsaktv* —

v ®@ Ak v+ andAbtvs — v @ Ak V*induce morphisms of sheaves

A -y —2 5y and AkPVr-1) —Ls

We putS =1Im¢, V/S = Coker ¢, ' = Imy, V*/S" = Coker .
Remark. Fork = 1 we haveS = O(-1), V*/§' = O(1).

One can show that these sheaves are locally free. We refer to them as tautological
bundles.

The freeGg (k; V)-modules, corresponding to the sheal#s), =% V* are thed -
images of free modules over the corresponding algebra in the catggdfurthermore,
the morphisms andyr are ® gz-images. This implies that th@g (k; V)-modules cor-
responding to the tautological bundles drg-images as well. Therefore they all have
a natural structure afg (k; V)-bimodules. This allows to definR-symmetric powers
Sﬁ,(—) (resp.R-exterior powers\’}‘e(—)) of the tautological bundles as the corresponding
dr-images.

One can check that we have canonical isomorphisms of bimodules

VEIS =Sy, s = /s)Y.

Example 8.5. Let R be the Yang—Baxter operat@0) andk = 2. LetZ1, Z2, Z3, 24 be
the dual basis of . Then the twisted maps

d(D) : Z*® Ogy — Z @ Og, (1),
Y1) Z®Og, = AYZ* ® Og, — Z* ® Og, (1)

are given by
71 0 D+ha—-bT —Y1 —Ys\ (21
22 D —h(a—b)T 0 Y3 Yo 22
é1): — N
23 -1 Y3 0 -T 23
24 —Yq -1 T 0 Z4
21 o T Y Y3 21
Z2 T O —Y4 Y1 22
v |
23 Yo Y4 0 D —h(a+b)T Z3
24 Y3 -Y1 —D—h(a+b)T 0 24

Note thaty (1)¢ = 0 and¢ (1)¥ = 0. Hence we have isomorphisms
SH=v/s, S1=sY.
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Note also that on the open subgett 0 elementszs, z4) give a trivialization of the
tautological bundles™. More precisely, the restriction of the sectiansz, of SV can
be expressed as

71 = Y473 — Y124, 22 = —Y223 — Y34, (34)

wherey; = T-1y;. Similarly, the elementg1, z2) give atrivializationofy’/SonT # 0.
Thus the restrictions of all tautological bundles to the open subs£t0 correspond to
the free rank two bimodule over the Weyl algebraiﬁ).

8.8. Pull-back and push-forward. Recall that we have canonical projections
pi : Flr(ky, k2; V) — Gr(ki; V) (i =1, 2).

Given a right gradedGg(k;; V)-module E we consider the right bigraded
FLR(k1, ko; V)-module E @g, vy FLr(k1, k2; V). The diagonal subspace of this
module is a graded module over the diagonal subalgehfalaf(k1, k2; V). This gives
the pull-back functor

pi 1 cON(Ggr(ki; V) — coh(Flg(ky, ko; V).

The pull-back functor is exact and take®a-image to ad gz-image. In particular, the
pull-backs of the tautological bundles have a canonical bimodule structure.

The pull-back functop; admits a right adjoint functgp;, : con(Flg (k1, k2; V)) —
coh(Gg(k;; V)), called the push-forward functor. It also take®a-image to ad g-
image.

The line bundlesp; O@) and p5O(;) on the flag varietyFl g (ky, k2; V) are ®g-
images, hence they have a canonical bimodule structure. Therefore, we have a well-
defined tensor product

0@, j) = p10@) ® p50(j).
The line bundleO(, j) is also ad®z-image and has a canonical bimodule structure.
Then™ graded component of the corresponding module over the diagonal subalgebra
of FLr(k1, k2; V) is the ((n + i)er + (n + j)ez)-graded component of the algebra
FLrk1, ko; V).

One can check that the push-forward of the line buid@¢;, j2) with respect tgps
is given by the formula

p2:0j1, j2) = SI(SY) (o).

8.9. FIg(1, 2; Z) as the projectivization of the tautological bundle. The R-symmetric
powers of the tautological bundle form a sheaf of graded algebras on the Grassmannian
Gr(k; V),

Se(8Y) = T(SV)/<A§,SV> .
The correspondingg (k; V)-module

o0

P rGrk: V). 55(5%)(0))

i,j=0
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is a bigraded module with a structure of a bigraded algebra. One can check that this
bigraded algebra is isomorphic to the bigraded algebrz (1, k; V). Thus we can
regard the flag varieti#l (1, k; V) as the projectivization of the tautological bundle

on the GrassmannidBg (k; V). In particularFl 3 (1, 2; Z) is the projectivization of the
tautological bundle§ on the GrassmannidBz (2; Z).

8.10. Noncommutative twistor transform. If E is a coherent sheaf on the noncommuta-

tive projective spac®z(Z) = Pg, we define its twistor transform as the sheaf* E

onGgr(2; Z) = Qu, wheregq is the projectiorFlg (1, 2; Z) — Pr(Z) = Pg’ andp is

the projectionFlz (1, 2; Z) — Ggr(2; Z) = Q. Similarly, we can define the twistor

transform of a complex of sheaves BEI. Actually, it is more natural to consider the

derived twistor transform, i.e. the derived functor of the ordinary twistor transform.
Consider a compleg’ of the form

0—H0-1) L ko0 Leoow —o0
on the projective spad@%. One can check that under the twistor transform one has
Opg(—l) — 0, O]P;’; — Ogg» Opg(l) — SY.

In fact, for these sheaves the derived twistor transform coincides with the ordinary one.
Thus the (derived) twistor transform takes the comleto the complex

0—5kKk02 Les —o.

Let £ denote the middle cohomology of the compt&x It follows that the twistor
transform takeg to the kernel ofthemapy : K O — L ® SV.

One can describ&/ without reference to the twistor transform. The morphisns
the same thing as a vector space morphism

N1z1+ Nozo + N3zz+ Naza: K — Z* QL. (35)

Here the map®/; are given in terms of the deformed ADHM data according to (24) and
(25). The mapV is a composition of two maps

K®0Og, — L®Z*"®0c, — L®S",

where the first map is given by (35), while the second map comes from the canonical
projectionZ* @ Og, — SY. (We remind thatS" is the cokernel of the map :
Z® Ocgr(—1) — Z* ® Og,.)

Recall that on the open subg@t # 0} the bundleSY is trivial, and the elements
(z3, z4) give its trivialization (see (34)). Hence the restriction of the twistor transform
of the complex (22) to this open subset is isomorphic to the complex

36
Ng — y1N1 — y3N2 (36)

(N3+y4N1—y2N2)
00— K®O (LOL)y®O — 0.
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Assume now that the complex (22) is given by the deformed ADHM ¢@&taBo, |, J)
(see Sect. (7). Applying the formulas (24) and (25), we see that with respect to the
chosen bases df andK the map\ is given by the matrix

—Bo+y2 Bi+ysa |
~B1"+ys —Bl—y; 37
It is evident that this operator is related to the oper@tan (4) by a change of basis. In

particular, the Nekrasov—Schwarz coordingteso, &1, £ (see Sect. 2) can be expressed
throughx; = 7-1X; as follows:

§1=—-ya=x4—+v—-1lx3, &=y2=-x2++v—-1x,
B=y3=x4+vV-1x3, &E=-y=-x2—v-1x.
Thus the twistor transform of the complex corresponding to the deformed ADHM data
coincides with the instanton bundle corresponding to these data (see Sect. 2). This gives

a geometric interpretation of the deformed ADHM construction of the noncommutative
instanton bundle.

8.11. Differential forms. Letan algebra be thed g-image of a commutative algebrain
the categoryTz. This means that there exists an oper&orA®?> —s A%®2 compatible
with the multiplication law ofA. Above we have defined the-tensor product ® A

R

which is also an algebra with a Yang—Baxter operator. Explicitly, the multiplication law
of A ® A is defined as follows. Let: be the multiplication map from ® A to A. Then

R
the multiplication map fromA ® A) ® (A ® A) t0 A ® A is given bymiomsz4R23 in
the obvious notation. It is easy to see that the multiplication m&pa homomorphism
of algebras.

Let I denote the kernel of the map: A % A — A.Thenl is a two-sided ideal of

the algebrad ® A.
R

Definition 8.6. We define the bimodule of R-differential forms of the algebra A by
r=1/1%

For a motivation of this definition, see [12]. Furthermore, suppbisea graded algebra.
Consider the total grading of the bigraded algebr@ A. The two-sided ideal inherits
R

the grading. Therefore the bimodulb/} is graded too.

In the graded case, besid@i, we can define the module of projective differential
forms of A in the following way. Lety : A ® A — A ® A be the linear operator which
R R

acts onthép, )" graded component of the algebta® A as a scalar multiplication by
R

g. Sincey is a derivation, we havg (12) c 1. Thereforem(x (I%)) = 0. Furthermore,

the induced mag?t = 1/12 ™% A is a morphism of graded-bimodules.

Definition 8.7. We define the A-bimodule of projective differential forms of the algebra
A by

QL =Ker (2} 2% 4.
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First, let us apply this construction of differential forms to the noncommutative affine
varietyCy (Subsect. 3.4). The algeb#dC3) of polynomial functions o€’} is the Weyl
algebra:

A(CH) = T(xw, x2, x3, x4)/{[xi, Xj1 = h6;j)1<i,j<a-

Let us define the Yang—Baxter operator on the tensor square of the subsma(@%‘a)f
spanned by 1x1, x2, x3, x4 by the formula

1xi—x®1L xQ1l—1®ux;,
X ®xj > x;@x +h6;-1®1 forall 1<i,j<4

This Yang—Baxter operator has a unique extension to the v\m(dlfé) compatible with
the multiplication law.

There is another way to look at this Yang—Baxter operator. Recal@#iﬂ an open
subsetl" # 0 in the noncommutative Grassmanniap(2; Z), wherer is defined by
(30). The Yang—Baxter operator on the quadratic algéhi@; Z) has the property that
R(T ®a) =a®T foranya € Gr(2; Z). Hence it descends to a Yang—Baxter operator
on A((Cg). It is easy to see that it acts on the tensor square of the subspace spanned by
1, x1, x2, x3, x4 in the above manner.

We define the sheaf of differential forr(%4 as the bimodule oR-differential forms

h

ofthe algebrat (C}). Itis easy to check the§!(1Cg isisomorphic to the bimodulé(C7)®4.

Futhermore, we can take amexterior power 0f§2}C4 and thereby definéz(’é4. This

enables us to define a connection and its curvature gn any bundle on the ngncommutative
affine space. The relevant formulas were written above (see Subsect. 1.5).

Second, we define the sheaf of differential fom@R on the noncommutative Grass-
mannianGg (k; V) as the sheaf corresponding to the module of projective differential
forms .QéR.

It can be shown that as in the commutative case we have an isomorphism of coherent
sheaves on the noncommutative Grassman@iack; V):

0L, =5®S.
It follows that fork = 1 that we have an exact sequence

0— QIlP,R(V) — V'(-1) — 0 —0.

Thus this definition of the sheaf of differential forrf%R(v) is consistent with Defini-
tion 4.8.

Similarly, one can define the sheaf of differential forﬁf;R on the noncommutative
flag varietyFlg (k1, ..., k-; V). One can check that the projection

pi i Flrky, ... kiy ... ks V) = Grlki; V)

induces a morphism of bundleg : Qf — Q,lle.

In the commutative case the ADHM constrlction of the instanton connection can be
interpreted in terms of twistor transform (see [4,24] for details). We believe that this
can be done in the noncommutative case as well. It appears that the most convenient
definition of connection on a bundle on a noncommutative projective variety is in terms
of jet bundles (see, for example, [24]).
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9. Instantons on a g-Defor med R*

In this paper we have focused on a particular noncommutative deformatitfirefated

to the Wigner—Moyal product (3). This is the only deformatio®8fwhich is known to

arise in string theory. But most of our constructions work for more general deformations
which do not have a clear physical interpretation. For example, let us re@bwiih

a noncommutative affine variety whose coordinate ring is generated, by, z3, z4
subject to the following quadratic relations:

qz1z2 —q tzoz1=h, qzaza—q ‘zazz=h,
[z1, 23] = [z1, z4] = [22, z3]l = [z2,z4] = 0.

We will denote this noncommutative affine variety @gﬁ, and its coordinate algebra

by A, ». If i andg are real, we can definesaoperation ond, » by z] = z2, z5 = za.

The corresponding real noncommutative affine variety will be denotdﬁggy
Consider now the following deformation of the ADHM equations:

[B1, B2lg-1+1J =0, [B1, Bl + (B2, Byl + 11T = JJ = =2h - L.
@37

Here B1, B, € Hom(V,V), I € Hom(W, V), J € Hom(V, W), as usual, and by
[A, B], we mean a-commutator:

[A, Bl, = qAB — ¢ 1BA.

We claim that solutions of thesey*deformed” ADHM equations can be used as an
input for the construction of instantons Erj,h of rankr = dim W and instanton charge
k = dim V. Let us sketch this construction. Define an operator

D eHomy, ,(VOV®W)®c Agn, (V& V)®c Agn)

by the formula

By —qz1 —qBo+qzo 1
D=7 T P N
By—z2 gBy—z1 J

Now we can go through the same manipulations as in Sect. 2: assurfiashatrjective,

and its kernel is a free module, and define a connection 1-form by the expression (5).
The same formal computation as in Sect. 2 shows that the curvature of this connection
is anti-self-dual.

In order to ensure thd® is surjective, it is probably necessary to replace the algebra
Ag.» with some bigger algebra containind, » as a subalgebra. This bigger algebra
should play the role of the algebra of smooth functions on our noncommuittiveor
A = 0,q # 1thereis even a natural candidate for this bigger algebra: it should consist
of C* functions onC2 with some suitable growth conditions at infinity and the product
defined by

(f *8)(z1, 22,21, 22)

exp( In( )( o + 227 Ui 1z i 1 O ))
= - U= + 222 — — 4l — 22—
1 1921027 202007y, YTazjoz1 2 8z,0%2

f(z1,22,71,22) g (21, 25, 1. 25) |pmeycp=cp- - (38)
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Assuming that this formal expression exists, it is easy to check that the product is as-
sociative, that polynomial functions form a subalgebra with respect to it, and that this
subalgebra is isomorphic td, 5.

Itis natural to conjecture that all mstantonsmjh arise from this deformed ADHM
construction. Note that in this case the deformed ADHM equations are not hyperkahler
moment map equations, and one cannot use the hyperkahler quotient construction to
infer the existence of a hyperkahler metric on the quotient space.

The algebro-geometric part of the story can also be generalized. We did not go
through this carefully, but nevertheless would like to indicate one result. It appears that
the g-deformed ADHM data can be interpreted in terms of sheaves on a more general
noncommutativ@®? than the one defined in Sect. 3. The graded algebra corresponding to
this noncommutativ®? is generated by degree one elements», z3 with the quadratic
relations

qr1z2 —q ‘zoz1 =205, [z,z31=0, i =12

This algebra is one of the Artin-Schelter regular algebras of dimension three [1,2]. It is
characterized by the fact that the corresponding noncommutative vﬁﬁgtyontalns
as subvarieties a commutative quadric and a noncommutative line. The latter is given
by the equationz = 0. In the limitg — 1 the pIaneP2 ., reduces td2, and the union
of the quadric and the line turns into the triple commutatlve limgnich played such a
prominent role in this paper. if # 1, then in the limiti — O the quadric turns into a
union of two intersecting commutative lines= 0 andz, = 0

For anyq the linezz = 0 should be regarded as “the line at infinity” (which is
noncommutative foy # 1). It is plausible that the- deformed ADHM data are in
one-to-one correspondence with bundles, or may be torsion—free shea@§§, otith
a trivialization on this line.

10. Appendix

In this section we definesaproduct on the space of complex-valug&® functions oriR”
whose derivatives of arbitrary order are polynomially bounded.+Fpeoduct endows
this space with a structure of&algebra and reduces to the Wigner—Moyal product (3)
on polynomial functions.

Definition 10.1. Let ® beatopological vector space which isa subspace of the space of
C* functionsonR”, and let @’ be the space of distributionson ®. Let f bea C-valued
function on R” which simultaneously is a distribution in ®'. f is called a multiplier if
forany¢ € @, f¢ € .

The set of multipliers ofd’ is obviously a subspace df'.
Definition 10.2. Let f € @'. f iscalled a convoluteif for any ¢ € ® we have
(fxP)(x) = (f(§),p(x +§)) € D,

and this expression depends continuously on ¢. The above expression is called the
convolution of f with ¢.

The set of convolutes is obviously a subspaceof
We will denote the Fourier duals d@f and®’ by ® and P, respectively. Iff € @,
thenf € @ will be the Fourier transform of, etc.
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Definition 10.3. The Schwartz space S(R") is the space of C-valued C*° functions on
R" suchthat ¢ € S if and only if all the norms

supxkD"p(x), k=0,1,2,..., (39)
X

arefinite. Herem = (my, ... ,m,) isan arbitrary polyindex.

Convergence ok is defined using the family of norms (39). Théhbecomes a
complete countably normed space [17].

Proposition 10.4. Afunction f € S’ isamultiplier if and only if it isa C* function on
R" all of whose derivatives are polynomially bounded.

Proof. Obvious. O

The following theorem proved in [37] describes the subspace of convolut®s of
Theorem 10.5. Adistribution f € S’ isa convolute if and only if it has the form
=Y D*fuln),
la|<r

where r is a positive integer, and f,, are C° functions on R” which decrease at infinity
faster than any negative power of x.

The functions which decrease at infinity faster than any negative power will be called
rapidly decreasing.
The following theorem is proved in [17, Vol. 2, Ch. III]:

Theorem 10.6. Fourier transform and its inverse act as automorphisms on both S
and S'.

From now on we identifys = S, &' = &.

Theorem 10.7. Fourier transformand itsinverse establish an i somor phism between the
space of multipliers and the space of convolutes of S'.

Proof. By the preceding theorem, it is sufficient to show that the Fourier transform of
every multiplier is a convolute, and vice versa. The former fact is proved in [17], vol. 2,
ch. 1. Let us prove the converse.

By Theorem 10.5, every convolute has the form

)= D falx)

la|<r

for somer and rapidly decreasing continuous functiofys Let

Falp) = f fule) /77 d"x
be the Fourier transform of, (x). Since the integrals

/ xP () eV=Ipx gny
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are absolutely convergent, the functiofisareC* functions. Furthermore, the Fourier
transform off is equal to

Fp) =Y (—vV=1p)* fu(p)
lae|<r

(see [17,Vol. 2, Ch. IlI]), hencg is also aC> function. Finally, since by the preceding
theorem the Fourier transform of any elemens6fs again an element &', f and all
its derivatives are polynomially bounded. Her)(‘:us a multiplier. O

Definition 10.8. Let w be a skew-symmetric real-valued bilinear form on R”. The o-
product on the space of convolutes of S’ is defined by

- o dn
(foR)(p) = f F@gp—q e/ vo 2L
(27)

Theorem 10.9. The ¢-product is well-defined and makes the space of convolutes of S’
into an algebra over C.

Proof. We will prove that the>-product of two convolutes a$’ is well-defined, and is
again a convolute af’. The rest is obvious.
It is sufficient to consider the case when

f(p)=Dfo(p), Z(p) = DPZo(p).

Then, integrating by parts, we may rewrite throduct in the following form:

RL: dn
(— 1)'“‘/ fo(q) [a 5 80(p—q)e l“’(”q)] ﬁ~

Derivatives acting on the exponential bring down powerg oéo the integral can be
rewritten as

9 ~ 0P W= d"q
P - - _ —lo(p.g) = 1
<p, 8p>/ fo(q) opP go(p—q)e 20

whereP (u, v) is a homogeneous polynomial of degfeé We now use the Leibniz rule
repeatedly to rewrite the expression above as

9 INTZ (o) 30 — o) " Top)] 44
P(z% ap)/ Q(q, ap)[fo(q) go(p—q)e ”‘1] 20

where Q(u, v) is @ homogeneous polynomial of degrge. Because bottyo and Zo
are rapidly decreasing, the integral converges absolutely and defirfefuaction ofg
which is rapidly decreasing. Hence thgproduct of fop andgp has the form

Y D"hu(p),

lm|<lec|+|B]

where the functiong,, (p) are continuous and rapidly decreasing. It follows that the
space of convolutes is closed under ¢aproduct. O



Noncommutative Instantons and Twistor Transform 431

Corollary 10.10. The space of multipliers of S’ inherits a product from the -product
on the space of convolutes of S’, and this product makes the space of multipliersinto an
algebra over C. Polynomials form a subalgebra of this algebra isomorphic to the Weyl
algebra with generatorsx;, i =1, ..., n,andrelations

[x,-, )Cj] = 2\/ —1a)l'j.

Proof. The first statement is an immediate consequence of Theorems 10.7 and 10.9. The
second statement follows from a simple computation.

It is this product on the space of multipliers that we call the Wigner—Moyal product
and denote with.
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