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Abstract: Recently N. Nekrasov andA. Schwarz proposed a modification of theADHM
construction of instantons which produces instantons on a noncommutative deformation
of R4. In this paper we study the relation between their construction and algebraic bundles
on noncommutative projective spaces. We exhibit one-to-one correspondences between
three classes of objects: framed bundles on a noncommutativeP2, certain complexes of
sheaves on a noncommutativeP3, and the modified ADHM data. The modified ADHM
construction itself is interpreted in terms of a noncommutative version of the twistor
transform.We also prove that the moduli space of framed bundles on the noncommutative
P2 has a natural hyperkähler metric and is isomorphic as a hyperkähler manifold to the
moduli space of framed torsion free sheaves on the commutativeP2.The natural complex
structures on the two moduli spaces do not coincide but are related by an SO(3) rotation.
Finally, we propose a construction of instantons on a more general noncommutativeR4

than the one considered by Nekrasov and Schwarz (aq-deformedR4).

1. Physical Motivation

In this section we explain the physical motivation for studying instantons on a noncom-
mutativeR4. Readers uninterested in the motivation may skip most of this section and
proceed directly to Subsect. 1.5. Likewise, readers familiar with the way noncommuta-
tive instantons arise in string theory may start with Subsect. 1.5.

1.1. Instanton equations. LetE be a vector bundle with structure groupGon an oriented
Riemannian 4-manifoldX, and letA be a connection onE. The instanton equation is
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the equation

F+
A = 0, (1)

whereFA is the curvature ofA, andF+
A denotes the self-dual (SD) part ofFA. Solutions

of this equation are called instantons, or anti-self-dual (ASD) connections. The second
Chern class ofE is known in the physics literature as the instanton number. Instantons au-
tomatically satisfy theYang–Mills equationdA(∗F) = 0, wheredA : �p⊗End(E) −→
�p+1 ⊗ End(E) is the covariant differential, and∗ : �p −→ �4−p is the Hodge star
operator.

There are several physical reasons to be interested in instantons. If one is study-
ing quantum gauge theory on a Riemannian 3-manifoldM (space), then instantons on
X = M ×R describe quantum-mechanical tunneling between different classical vacua.
The possibility of such tunneling has drastic physical effects, some of which can be
experimentally observed. If one is studying classical gauge theory on a 5-dimensional
space-timeX×R, then instantons onX can be interpreted as solitons, i.e. as static solu-
tions of theYang–Mills equations of motion. In fact, instantons are the absolute minima
of theYang–Mills energy function of the 5-dimensional theory (with fixed second Chern
class).

Both interpretations arise in string theory, but to explain this we need to make a
digression and discuss D-branes.

1.2. D-branes. It has been discovered in the last few years that string theory describes,
besides strings, extended objects (branes) of various dimensions. These extended objects
should be regarded as static solutions of (as yet poorly understood) stringy equations
of motion. D-branes are a particularly manageable class of branes. Recall that ordinary
closed oriented superstrings, known as Type II strings, are described by maps from a Rie-
mann surface� (“worldsheet”) to a 10-dimensional manifoldZ (“target”). The physical
definition of a D-brane is “a submanifold ofZ on which strings can end”. This means
that if a D-brane is present, then one needs to consider maps from a Riemann surface
with boundaries toZ such that the boundaries are mapped to a certain submanifold
X ⊂ Z. In this case one says that there is a D-brane wrapped onX. If X is connected
and has dimensionp+ 1, then one says that one is dealing with a Dp-brane. In general,
X can have several components with different dimensions, and then each component
corresponds to a D-brane.

In perturbative string theory, the role of equations of motion is played by the condition
that a certain auxiliary quantum field theory on the Riemann surface� is conformally
invariant. When D-branes are present,� has boundaries, and the auxiliary theory must
be supplemented with boundary conditions. The requirement that the boundary condi-
tions preserve conformal invariance imposes constraints on the submanifoldX. These
constraints should be regarded as equations of motion for D-branes. For example, if
we consider a D0-brane wrapped on a 1-dimensional submanifoldX, then conformal
invariance requires thatX be a geodesic inZ. This is the usual equation of motion for a
relativistic particle moving inZ.

An important subtlety is that to specify fully the boundary conditions for the auxiliary
theory on� it is not sufficient to specifyX; one should also specify a unitary vector
bundleE on X and a connection on it. In the simplest case this bundle has rank 1,
but one can also have “multiple” D-branes, described by bundles of rankr > 1. Such
bundles describer coincident D-branes wrapped on the same submanifoldX. Using
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the requirement of conformal invariance of the auxiliary two-dimensional quantum field
theory, one can derive equations of motion for the Yang–Mills connection onE. In the
low-energy approximation, the equations of motion are the usual Yang–Mills equations
dA(∗FA) = 0.In particular, instantons are solutions of these equations.

1.3. Instantons and D-branes. Let Z be R10 with a flat metric, and letX ↪→ Z be
R5 = R4 × R linearly embedded inZ. We regardR4 as space andR as time. Consider
r D4-branes wrapped onX. This physical system is described by theYang–Mills action
on R5 = R4 × R. If one is looking for static solutions of the equations of motion, one
needs to consider the minima of the Yang–Mills energy function

W [A] =
∫

R4
||FA||2,

whereFA is the curvature of aU(r) connectionA, and||FA||2 = −Tr (FA ∧ ∗FA). The
instanton number ofA is defined by

c2 = 1

8π2

∫
R4

Tr (FA ∧ FA) . (2)

If the Yang–Mills energy evaluated onA is finite, then the bundleE and the connection
A extend toS4, the one-point compactification ofR4 (see [4] for details). In this casec2
is the second Chern class ofE and is therefore an integer.

Solutions of instanton equations onR4 are precisely the absolute minima of the
Yang–Mills energy function. These solutions should be regarded as composed of iden-
tical particle-like objects (instantons) onX, their number beingc2. Since the energy of
the instanton is proportional toc2, all “particles” have the same mass. Since the solution
is static, the particles neither repel nor attract. This is actually a consequence of super-
symmetry: Type II string theory is supersymmetric, and D4-branes with instantons on
them leave part of supersymmetry unbroken.

In string theory one may also considerk D0-branes present simultaneously with
r D4-branes. More specifically, we will consider D0-branes which are at rest, i.e. the
corresponding one-dimensional manifolds are straight lines parallel to the time axis. Such
a configuration of branes is also supersymmetric, and consequently there are no forces
between any of the branes. The positions of D0-branes are not constrained by anything,
so their moduli space is(R9)k. More precisely, since D0-branes are indistinguishable,
the moduli space is Symk(R9).

It turns out that an instanton with instanton numberk andk D0-branes are related:
they can be deformed into each other without any cost in energy. A convenient point
of view is the following. In the presence of D4-branes wrapped onX the moduli space
of D0-branes has two branches: a branch where their positions are unconstrained and
D0-branes are point-like (this branch is isomorphic to Symk(R9)), and the branch where
they are constrained to lie onX. The latter branch is isomorphic to the moduli space
Mr,k of U(r) instantons onX = R4 with c2 = k.

The dimension ofMr,k is known to be 4rk for r > 1 (see for example [4]). Forr = 1
instantons do not exist. The translation group ofR4 acts freely onMr,k, and the quotient
space describes the relative positions and sizes of instantons. Thus D0-branes are point-
like objects when they are away from D4-branes, but when they bind to D4-branes they
can acquire finite size.
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The “instanton” branch touches the “point-like” branch at submanifolds where some
or all of the instantons shrink to zero size. These are the submanifolds where the instanton
moduli space is singular.At these submanifolds the point-like instantons can detach from
D4-branes and start a new life as D0-branes. This lowers the second Chern class of the
bundle on D4-branes. Thus from the string theory perspective it is natural to glue together
the moduli spaces of instantons with different Chern classes along singular submanifolds.

1.4. Noncommutative geometry and D-branes. Instanton equations (and, more gener-
ally,Yang–Mills equations) arise in the low-energy limit of string theory, or equivalently
for large string tension. Recently, another kind of low-energy limit of string theory was
discussed in the literature [32]. Consider a trivialU(r)-bundle onX = R4 with a con-
nectionAwhose curvatureFA is of the form 1⊗f where 1 is the unit section of End(E),
andf is a constant nondegenerate 2-form. For smallf the D4-branes are described by
the ordinary Yang–Mills action, but for largeFA the stringy equations of motion get
complicated. It turns out that the equations of motion simplify again in the limit when
bothFA and the string tension are taken to infinity, with a certain combination of the
two kept fixed (one also has to scale the metric appropriately, see [32]). We will call
this limit the Seiberg–Witten limit. In this limit the D4-branes are described by Yang–
Mills equations on a certain noncommutative deformation ofR4 (see [32] and references
therein).

There is another description of the Seiberg–Witten limit, which is gauge-equivalent
to the previous one. Type II string theory reduces at low energies to Type II supergravity
in 10 dimensions. The bosonic fields of this low-energy theory include a symmetric rank-
two tensor (metric) and a 2-formB. R10 with a flat Lorenzian metric and a constantB

is a solution of supergravity equations of motion, as well as full stringy equations of
motion. A constantB can be gauged away, so this is not a very interesting solution. Life
gets more interesting if there are D-branes present. For example, considerr coincident
flat D4-branes embedded inR10 with a constantB-field. It turns out that one can gauge
away a constantB-field only at the expense of introducing a constantFA of the form
1⊗f , wheref is equal to the pull-back ofB to the worldvolume of the D4-branes. Thus
the solution with zeroFA and nonzeroB is equivalent to the solution with nonzeroFA
and zeroB. Therefore the Seiberg–Witten limit can be described as the limit in which
both theB-field and the string tension become infinite.

The idea that D-branes in a nonzero B-field are described Yang–Mills theory on a
noncommutative space was first put forward in [13] for the case of D-branes wrapped
on tori.

1.5. Instanton equations on a noncommutative R4. The deformedR4 that one obtains
in the Seiberg–Witten limit is completely characterized by its algebra of functionsA.
It is a noncommutative algebra whose underlying space is a certain subspace ofC∞
functions onR4. The product is the so-called Wigner–Moyal product formally given by

(f � g)(x) = lim
y→x

exp

(
1

2
h̄θij

∂2

∂xi∂yj

)
f (x)g(y). (3)

Hereθ is a purely imaginary matrix, and̄h is a real parameter (“Planck constant”) which
is introduced to emphasize that the Wigner–Moyal product is a deformation of the usual
product. In the string theory contextθ is proportional tof−1.
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Of course, to make sense of this definition we must specify a subspace in the space of
C∞ functions which is closed under the Wigner–Moyal product. Leaving this question
aside for a moment,1 one can define the exterior differential calculus overA. Differential
geometry of noncommutative spaces has been developed by A. Connes [12]. In our
situation Connes’general theory is greatly simplified. For example, the sheaf of 1-forms
�1(A) is simply a bimoduleA⊕4 (the relation of this definition with the general theory
is explained in Subsect. 8.11). The elements of�1(A) will be denoted

∑
i f

i(x)dxi , or
simplyf i(x)dxi . The exterior differentiald is a vector space morphism

d : A → �1(A), f �→ ∂f

∂xi
dxi .

The exterior differentiald satisfies the Leibniz rule

d(f1 � f2) = df1 � f2 + f1 � df2.

This makes sense because�1(A) is a bimodule.
The sheaf of 2-forms overA is a bimodule�2(A) = A⊕6 (see Subsect. 8.11). The

definition of the exterior differential can be extended to�1(A) in an obvious manner.
Complex conjugation acts as an anti-linear anti-homomorphism ofA, i.e.(f � g) =

g � f .ThusA has a natural structure of a∗-algebra. We will denote the∗-conjugate of
f ∈ A by f †.

A trivial bundle over the noncommutativeR4 is defined as a freeA-moduleE. A
trivial unitary bundle over the noncommutativeR4 is defined as a free moduleV ⊗C A,
whereV is a Hermitian vector space. A connection on a trivial bundleE is defined as a
map

∇ : E → E ⊗A �1(A),

which is a vector space morphism satisfying the Leibniz rule

∇(m � f ) = ∇(m) � f +m � df.

This formula makes use of the bimodule structure on�1(A).
The curvatureF∇ = [∇,∇] is a morphism ofA-modules

F∇ : E → E ⊗A �2(A).

As in the commutative case, a connection on a trivial bundleE can be written in terms
of a connection 1-formA ∈ EndA(E)⊗A �1(A):

∇(m) = dm+ A � m.

This formula uses the bimodule structure onm. If E is a unitary bundle, and we have
A† = −A, then we say thatA is a unitary connection.

The curvature is given in terms ofA by the usual formula

F∇ := FA = dA+ A ∧ A.

Here it is understood that

f i dxi ∧ gjdxj = f i � gj dxi ∧ dxj .

1 String theory considerations do not shed light on this problem.
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The instanton equation onA is again given by (1), and the instanton number is defined
by (2).

The most obvious choice of the space of functions closed under the Wigner–Moyal
product is the space of polynomial functions. However, this choice is not suitable for
our purposes because it precludes the decrease ofFA at infinity which is necessary for
the instanton action to converge. In the commutative case, components of an instanton
connection are rational functions [4], so we would like our class of functions to include
rational functions onR4. A possible choice for the underlying set ofA is the set ofC∞
functions onR4 all of whose derivatives are polynomially bounded. Then we face the
question of the convergence of the series (3). To avoid dealing with this issue, we modify
our definition of the Wigner–Moyal product (see theAppendix for details). The modified
product makes the space ofC∞ functions all of whose derivatives are polynomially
bounded into an algebra overC, and agrees with (3) on polynomial functions.

Polynomial functions form a subalgebra ofA. This subalgebra is isomorphic to the
algebra generated by four variablesxi, i = 1,2,3,4 with relations

[xi, xj ] = h̄θij .

This algebra is usually called the Weyl algebra.
To summarize, there is a limit of string theory in which D4 branes are described by

Yang–Mills equations on the noncommutativeR4 (= A). D0-branes bound to D4-branes
are described in this limit by the instanton equations on the noncommutativeR4. One can
show that, unlike in the commutative case, instantons cannot be deformed to point-like
D0-branes without a cost in energy. Thus it is natural to suspect that the moduli space
of instantons on the noncommutativeR4 is metrically complete.

2. Review of the ADHM Construction and Summary

All instantons on the commutativeR4 arise from the so-called ADHM construction. Re-
cently N. Nekrasov and A. Schwarz [29] introduced a modification of this construction
which produces instantons on the noncommutativeR4.2 In the commutative case the
completeness of the ADHM construction can be proved using the twistor transform of
R. Penrose, so one could hope that the same approach could work in the noncommutative
case. In this paper we show that the deformed ADHM data of [29] describe holomor-
phic bundles on certain noncommutative algebraic varieties and interpret the deformed
ADHM construction in terms of noncommutative twistor transform. In this subsection
we review both ordinary and deformed ADHM constructions and make a summary of
our results.

2.1. Review of the ADHM construction of instantons. First let us outline the ADHM
construction ofU(r) instantons on the commutativeR4 following [15]. We assume that
the constant metricG onR4 has been brought to the standard formG = diag(1,1,1,1)
by a linear change of basis. To construct aU(r) instanton withc2 = k one starts with
two Hermitian vector spacesV � Ck andW � Cr . The ADHM data consist of four
linear mapsB1, B2 ∈ Hom(V , V ), I ∈ Hom(W, V ), J ∈ Hom(V ,W) which satisfy
the following two conditions:

2 As in the commutative case, one may consider different classes of functions on the noncommutative
R

4: polynomial,C∞ functions rapidly decreasing at infinity,C∞ functions all of whose derivatives are
polynomially bounded, etc. Our class of functions differs somewhat from that adopted in [29].
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(i) µc = [B1, B2] + IJ = 0, µr = [B1, B
†
1] + [B2, B

†
2] + II† − J †J = 0.

(ii) For anyξ = (ξ1, ξ2) ∈ C2 ∼= R4 the linear mapDξ ∈ Hom(V ⊕ V ⊕W,V ⊕ V )

defined by

Dξ =
(
B1 − ξ1 −B2 + ξ2 I

B
†
2 − ξ̄2 B

†
1 − ξ̄1 J †

)
(4)

is surjective.

The equationsµc = µr = 0 are called the ADHM equations. They are invariant with
respect to the action of the group of unitary transformations ofV . Solutions of these
equations are called ADHM data. The space of ADHM data moduloU(V ) transforma-
tions has dimension 4rk and carries a natural hyperkähler metric. ADHM construction
identifies this moduli space with the moduli space ofU(r) instantons withc2 = k and
fixed trivialization at infinity. The role of the condition (ii) above is to remove subman-
ifolds in this moduli space where the hyperkähler metric becomes singular (these are
point-like instanton singularities mentioned in Subsect. 1.3).As a result the moduli space
of the ADHM data is metrically incomplete.

The instanton connection can be reconstructed from the ADHM data as follows. The
condition (ii) implies that the familyKer Dξ forms a trivial subbundle ofV ⊕ V ⊕ W

of rank r. Let v(ξ) be its trivialization, i.e. a linear mapv(ξ) : Cr → V ⊕ V ⊕ W

smoothly depending onξ such thatDξ v(ξ) = 0 for all ξ , andρ(ξ) = v(ξ)†v(ξ) is an
isomorphism for allξ . We set

A(ξ) = ρ(ξ)−1v(ξ)† dv(ξ).

The matrix-valued one-formA is a connection on a trivial unitary bundle of rankr. One
can show that its curvatureFA is ASD (see [4]). However, it does not satisfyA† = −A,
because we are not using a unitary gauge. InsteadA satisfies

A†(ξ) = −(ρ(ξ)A(ξ)ρ(ξ)−1 + ρ(ξ)dρ(ξ)−1).

To go to a unitary gauge, we must make a gauge transformation

A′(ξ) = g(ξ)A(ξ)g(ξ)−1 + g(ξ)dg(ξ)−1,

whereg(ξ) is a function taking values in Hermitianr×r matrices and satisfyingg(ξ)2 =
ρ(ξ).

We now explain, following [29], how to modify the ADHM construction so that it
produces rankr instantons on the noncommutativeR4 defined in the previous section.
It proves convenient to apply an orthogonal transformation which brings the matrixθ

in (3) to the standard form

θ = √−1


0 a 0 0

−a 0 0 0

0 0 0 b

0 0 −b 0

 .
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We will assume thata + b �= 0.Sinceθ enters only in the combination̄hθ , we can set
a + b = 1 without loss of generality. The relation between the affine coordinatesξ1, ξ2
onC2 and affine coordinatesx1, x2, x3, x4 onR4 is chosen as follows:

ξ1 = x4 − √−1 x3, ξ2 = −x2 + √−1 x1.

Thenξ1, ξ2, ξ̄1, ξ̄2 obey the Weyl algebra relations

[ξ1, ξ̄1] = 2h̄b, [ξ2, ξ̄2] = 2h̄a, [ξ1, ξ2] = [ξ1, ξ̄2] = [ξ̄1, ξ2] = [ξ̄1, ξ̄2] = 0.

The modified ADHM data consist of the same four maps which now satisfy

µc = 0, µr = −2h̄(a + b) · 1k×k.

The instanton connection is given by essentially the same formulas as in the commutative
case. The operatorD is given by the same formula asDξ , but is now regarded as an
element of

HomA((V ⊕ V ⊕W)⊗C A, (V ⊕ V )⊗C A).

The moduleKer D is a projective module overA. Following [10], we assume that
it is isomorphic to a free module of rankr, andv is the corresponding isomorphism
v : A⊕r → Ker D. We further assume [10] that the morphism

/ = DD† ∈ EndA((V ⊕ V )⊗ A)

is an isomorphism.3 Then it is easy to see thatρ = v†v ∈ EndA(Cr ⊗ A) is an
isomorphism too. We set

A = ρ−1v† dv. (5)

(The multiplication here and below is understood to be the Wigner–Moyal multiplica-
tion.) This formula defines a connection 1-form on a trivial unitary bundle onA of rankr.
The curvature of this connection is given by

FA = ρ−1dv† ∧ (1 − vρ−1v†)dv.

A short computation (essentially the same as in the commutative case) shows that the
curvature can be written in the form

FA = ρ−1v† dD† /−1 ∧ dD v.

Furthermore, sinceD andD† are linear inξi, ξ̄i , their exterior derivatives have a very
simple form:

dD =
(
−dξ1 dξ2 0

−dξ̄2 −dξ̄1 0

)
, dD† =


−dξ̄1 −dξ2

dξ̄2 −dξ1

0 0

 .

3 One can show that the latter assumption is always valid providedh̄ �= 0. As for the former one, it is
not known what constraints should be imposed on the deformed ADHM data to ensure thatKer D is a free
A-module of rankr. Forr = 1 Ker D is never free [16].
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Note also that by virtue of the deformed ADHM equations/ has a block-diagonal form:

/ =
(
δ 0

0 δ

)
,

whereδ ∈ EndA(V ⊗A) is an isomorphism. Using this fact, one can easily see thatFA
is proportional to the 2-forms

dξ1 ∧ dξ̄1 + dξ2 ∧ dξ̄2, dξ1 ∧ dξ̄2, dξ2 ∧ dξ̄1,

which are anti-self-dual.
As in the commutative case, the connectionA does not satisfyA† = −A. To go to a

unitary gauge one has to perform a gauge transformation

A′ = g � A � g−1 + g � dg−1.

Hereg ∈ AutA(Cr ⊗ A) should be found from the conditionsg† = g, g � g = ρ. The
existence of suchg is an additional assumption.

2.2. Summary of results. In the commutative case there is a one-to-one correspondence
between the following four classes of objects:

A. Rankr holomorphic bundles onP2 with c2 = k and a fixed trivialization on the line
at infinity.

B. The set of ADHM data modulo the natural action ofU(k).
C. Rank r holomorphic bundles onP3 with c2 = k, a trivialization on a fixed line,

vanishingH 1(E(−2)), and satisfying a certain reality condition.
D. U(r) instantons onR4 with c2 = k.

The correspondence betweenC andD is a particular instance of twistor transform [6].
The correspondence betweenB andC has been proved by Atiyah, Hitchin, Drinfeld,
and Manin [5,4]. Together these two results imply that all instantons onR4 arise from
the ADHM construction. The correspondence betweenA andB has been proved by
Donaldson [15]. One can also prove the correspondence betweenA andD directly [7,
11,18].

The goal of this paper is to extend some of these results to the noncommutative case.
We show that there is a natural one-to-one correspondence between the isomorphism
classes of the following objects:

A′. Algebraic bundles on a noncommutative deformation ofP2 with c2 = k and a fixed
trivialization on the line at infinity.

B ′. Deformed ADHM data of Nekrasov and Schwarz modulo the naturalU(k) action.
C′. Certain complexes of sheaves on a noncommutative deformation ofP3 satisfying

reality conditions.

The moduli space of the deformed ADHM data has a natural hyperkähler metric, and
the other two moduli spaces inherit this metric.

Furthermore, we reinterpret the deformed ADHM construction of Nekrasov and
Schwarz in terms of a noncommutative deformation of the twistor transform.

It is interesting to note that H. Nakajima [27] studied the same linear algebra data as
Nekrasov and Schwarz and showed that their moduli space coincides with the moduli
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space of torsion free sheaves on a commutativeP2 with a trivialization on a fixed line.
On the other hand, we show that the same data describe algebraic bundles on a noncom-
mutativeP2. As shown below, the interpretation in terms of complexes of sheaves on a
noncommutativeP3 provides a geometric reason for this “coincidence”. We prove that
the two moduli spaces are isomorphic as hyperkähler manifolds, but the natural complex
structures on them differ by an SO(3) rotation.

The rest of the paper is organized as follows. In Sect. 3 we define noncommuta-
tive deformations of certain commutative projective varieties (P2, P3, and a quadric in
P5). Section 4 is an algebraic preparation for the study of bundles on noncommutative
projective spaces. In Sect. 5 we study the cohomological properties of sheaves on non-
commutativeP2 andP3 and define locally free sheaves (i.e. bundles). In Sect. 6 we show
that any bundle on a noncommutativeP2 trivial on the commutative line at infinity arises
as a cohomology of a monad. In Sect. 7 we exhibit bijections betweenA′,B ′, andC′ and
explain the relation with Nakajima’s results. In Sect. 8 we construct a noncommutative
deformation of Grassmannians and flag manifolds and describe a noncommutative ver-
sion of the twistor transform. We also describe a nice class of noncommutative projective
varieties associated with a Yang–Baxter operator and define differential forms on these
varieties. In Sect. 9 we consider a more general deformation ofR4 (a q- deformedR4)
whose physical significance is obscure at present. We propose an ADHM-like construc-
tion of instantons on this space and outline its relation to noncommutative algebraic
geometry. In the Appendix we define the Wigner–Moyal product on the space ofC∞
functions onRn all of whose derivatives are polynomially bounded, and prove that the
Wigner–Moyal product provides this space with a structure of an algebra overC.

Note added in proof. After this paper was submitted to the electronic archive, we
learned that coherent sheaves on the noncommutative projective plane and their moduli
spaces have been studied by L. Le Bruyn [21].

3. Geometry of Noncommutative Varieties

3.1. Algebraic preliminaries. Letk be a base field (we will be dealing only withk = C
or k = R in this paper). LetA be an algebra overk. It is called right (left) noetherian if
every right (left) ideal is finitely generated, and it is called noetherian if it is both right
and left noetherian.

LetA = ⊕
i≥0

Ai be a graded noetherian algebra. We denote by mod(A) the category

of finitely generated rightA-modules, by gr(A) the category of finitely generated graded
right A-modules, and by tors(A) the full subcategory of gr(A) which consists of finite
dimensional gradedA-modules.

An important role will be played by the quotient category qgr(A) = gr(A)/tors(A). It
has the following explicit description. The objects of qgr(A) are the objects of gr(A) (we
denote byM̃ the object in qgr(A) which corresponds to a moduleM). The morphisms
in qgr(A) are given by

Homqgr(M̃, Ñ) = lim−→
M ′

Homgr(M
′, N),

whereM ′ runs over submodules ofM such thatM/M ′ is finite dimensional.
On the category gr(A) there is a shift functor: for a given graded moduleM =

⊕i≥0Mi the shifted moduleM(r) is defined byM(r)i = Mr+i . The induced shift

functor on the quotient category qgr(A) sendsM̃ to M̃(r) = M̃(r).
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Similarly, we can consider the category Gr(A) of all graded rightA-modules. It
contains the subcategory Tors(A) of torsion modules. Recall that a moduleM is called
torsion if for any elementx ∈ M one hasxA≥s = 0 for somes, whereA≥s = ⊕

i≥s
Ai . We

denote by QGr(A) the quotient category Gr(A)/Tors(A). The category QGr(A) contains
qgr(A) as a full subcategory. Sometimes it is convenient to work in QGr(A) instead of
qgr(A).

Henceforth, all graded algebras will be noetherian algebras generated by the first
componentA1 with A0 = k.

Sometimes we use subscriptsR or L for categories gr(A), qgr(A), etc., to specify
whether right or left modules are considered. If the subscript is omitted, the modules
are taken to be right modules. For the same reason for anA-bimoduleM we sometimes
writeMA or AM to specify whether the right or left module structure is considered.

3.2. Noncommutative varieties. A variety in commutative geometry is a topological
space with a sheaf of functions (continuous, smooth, analytic, algebraic, etc.) which
is, obviously, a sheaf of algebras. One of the main objects in geometry (algebraic or
differential) is a bundle or, more generally, a sheaf. To any varietyX we can associate an
abelian category of sheaves of modules (maybe with some additional properties) over
the sheaf of algebras of functions. Given a sheaf of modules onX, the space of its global
sections is a module over the algebra of global functions onX. Thus the functor of
global sections associates to everyX an algebra and a certain category of modules over
it. Under favorable circumstances, much of the information about the geometry ofX is
contained in this purely algebraic datum. Let us give a few examples.

If X is a compact Hausdorff topological space, then the category of vector bundles
overX is equivalent to the category of finitely generated projective modules over the
algebra of continuous functions onX [34,36]. The equivalence is given by the functor
which maps a vector bundle to the module of its global sections.

It is well known that ifA is a commutative noetherian algebra, the category of coherent
sheaves on the noetherian affine scheme Spec(A) is equivalent to the category of finitely
generated modules overA. The equivalence is again given by the functor which attaches
to a coherent sheaf the module of its global sections.

In the case of projective varieties the only global functions are constants, so one has
to act somewhat differently. Since a projective varietyX is by definition a subvariety of
a projective space, it inherits from it the line bundleOX(1) and its tensor powersOX(i).
We can consider a graded algebra

9(X) = ⊕
i≥0

H 0(X,OX(i)).

This algebra is called the homogeneous coordinate algebra ofX. Furthermore, for
any sheafF we can define a gradedA-module

9(F) = ⊕
i≥0

H 0(X,F(i)).

It can be checked that9 is a functor from the category of coherent sheaves onX coh(X) to
gr(9(X)). In a brilliant paper [33], J.-P. Serre described the category of coherent sheaves
on a projective schemeX in terms of graded modules over the graded algebra9(X).
He proved that the category coh(X) is equivalent to the quotient category qgr(9(X)) =
gr(9(X))/tors(9(X)). The equivalence is given by the composition of the functor9
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with the projectionπ : gr(A) → qgr(A). On other hand, letA = ⊕
i≥0

Ai be a graded

commutative algebra generated overk by the first component (which is assumed to be
finite dimensional). We can associate toA a projective schemeX = Proj(A). Serre
proved that the category coh(X) is equivalent to the category qgr(A).

The equivalence also holds for the category of quasicoherent sheaves onX and the
category QGr(A) = Gr(A)/Tors(A).

In all of the above examples it turned out that the natural category of sheaves or
bundles on a variety is equivalent to a certain category defined in terms of (graded)
modules over some (graded) algebra. On the other hand, “as A. Grothendieck taught us,
to do geometry you really don’t need a space, all you need is a category of sheaves on
this would-be space” ([25], p. 83).

For this reason, in the realm of algebraic geometry it is natural to regard a noncom-
mutative noetherian algebra as a coordinate algebra of a noncommutative affine variety;
then the category of finitely generated right modules over this algebra is identified with
the category of coherent sheaves on the corresponding variety. Similarly, a noncom-
mutative graded noetherian algebra is regarded as a homogeneous coordinate algebra
of a noncommutative projective variety. The category of finitely generated graded right
modules over this algebra modulo torsion modules is identified with the category of
coherent sheaves on this variety (see [3,25,35]).

A different approach to noncommutative geometry has been pursued by Connes [12].

3.3. Noncommutative deformations of commutative varieties. Many important noncom-
mutative varieties arise as deformations of commutative ones.

Let X be a commutative variety (affine or projective). LetA be the corresponding
commutative (graded) algebra. A noncommutative deformation ofX is a deformation
of the algebra structure onA, that is, a deformation of the multiplication law. Usually it
is not easy to write down an explicit formula for the deformed product.

There is a more algebraic way to describe noncommutative deformations of commu-
tative varieties. Assume that the algebraA is given in terms of generators and relations.
This means thatA is given as a quotientA = T (V )/〈R〉, whereV is the vector space
spanned by the generators,T (V ) is the tensor algebra ofV , and〈R〉 is a two-sided ideal
in T (V ) generated by a subspace of relationsR ⊂ T (V ). Assume thatRh̄ ⊂ T (V )

is a one-parameter deformation of the subspaceR. ThenAh̄ = T (V )/〈Rh̄〉 is a one-
parameter deformation ofA. (If A is graded, then we assume thatR is a graded subspace,
and the deformation preserves the grading).

We denote byXh̄ the noncommutative variety corresponding to the algebraAh̄. Thus
Xh̄ is a noncommutative one-parameter deformation ofX.

If X is projective andA is a graded algebra, then we denote by coh(Xh̄) the category
qgr(Ah̄). Furthermore, as in the commutative case, we will writeO(r) for the object
Ãh̄(r).

Now we define noncommutative varieties which are going to be used in this paper.

3.4. Noncommutative C4. Denote byA(C4) the algebra of polynomial functions onC4.
Let θ be a skew-symmetric 4× 4 matrix.

Let us define the algebraA(C4
h̄) as an algebra overC generated byxi (i = 1,2,3,4)

with relations[xi, xj ] = h̄θij :

A(C4
h̄) = T(x1, x2, x3, x4)/〈[xi, xj ] = h̄θij 〉1≤i,j≤4. (6)
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We will regardA(C4
h̄) as the algebra of polynomial functions on a noncommutative

affine varietyC4
h̄.

3.5. Noncommutative 4-dimensional quadric. Let G be a 4× 4 symmetric nondegen-
erate matrix. Consider a graded algebraQh̄ = ⊕

i≥0
Qi overC generated by the elements

X1, X2, X3, X4,D, T of degree 1 with the following quadratic relations:

[T ,D] = [T ,Xi] = 0,

[Xi,Xj ] = h̄θij T
2,

[D,Xi] = 2h̄
∑
lk

θilG
lkXkT ,∑

ij

GijXiXj = DT.

(7)

We denote byQ4
h̄ the noncommutative projective variety corresponding to the algebra

Qh̄. It is evident thatQ4
h̄ is a deformation of a 4-dimensional commutative quadric

Q4 = {∑ij G
ijXiXj = DT } ⊂ CP5.

3.6. Embedding C4
h̄ ↪→ Q4

h̄. Let Qh̄[T −1] be the localization of the algebraQh̄ with
respect toT . Elements of degree 0 inQh̄[T −1] form a subalgebra which will be denoted
byQh̄[T −1]0.

Lemma 3.1. The map xi �→ T −1Xi (i = 1,2,3,4) induces an isomorphism of the
algebra A(C4

h̄) with the algebra Qh̄[T −1]0.

Proof. Obvious. !"
This means thatC4

h̄ can be identified with the open subset{T �= 0} in Q4
h̄. For this

reason,Q4
h̄ may be regarded as a compactification ofC4

h̄ which is compatible with the
bilinear formG. Note also that the complement ofC4

h̄ in Q4
h̄ corresponds to the algebra

Qh̄/〈T 〉 = T(X1, X2, X3, X4,D)/

〈
[Xi,Xj ] = [D,Xi] = 0,

∑
ij

GijXiXj = 0

〉
.

Since this algebra is commutative, the complement is the usual 3-dimensional commu-
tative quadratic cone. Thus one may say thatQ4

h̄ is obtained fromC4
h̄ by adding a cone

“at infinity”. This is in complete analogy with the commutative case.

3.7. Noncommutative P2
h̄ and P3

h̄. Noncommutative deformations of the projective plane
have been classified in [1,2,9]. We will need one of them, namely the one whose homo-
geneous coordinate algebra is a graded algebraPPh̄ = ⊕

i≥0
PPh̄i overC generated by

the elementsw1, w2, w3 of degree 1 with the relations:

[w3, wi] = 0 for any i = 1,2,3,

[w1, w2] = 2h̄w2
3.

(8)
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We will also need a noncommutative deformation of the 3-dimensional projective
space, whose homogeneous coordinate algebra will be denotedPSh̄ = ⊕

i≥0
PSh̄i . It is a

graded algebra overC generated byPSh̄1 = U , where the vector spaceU is spanned
by elementsz1, z2, z3, z4 obeying the relations

[z3, zi] = [z4, zi] = 0 for any i = 1,2,3,4,

[z1, z2] = 2h̄z3z4.
(9)

The noncommutative projective varieties corresponding toPPh̄ andPSh̄ will be
denotedP2

h̄ andP3
h̄, respectively.

Note that forh̄ �= 0 all algebrasPSh̄ are isomorphic, and therefore the varietiesP3
h̄

are the same for all̄h �= 0. The same is true forP2
h̄.

3.8. Subvarieties in P3
h̄ and P2

h̄. If I ⊂ PSh̄ is a graded two-sided ideal, then the quotient
algebraPSh̄/I corresponds to a closed subvarietyX(I) ⊂ P3

h̄. Let us describe some of
them.

Let J be the graded two-sided ideal generated byz3 andz4. Then

PSh̄/J = T(z1, z2)/〈[z1, z2] = 0〉,
henceX(J ) is the commutative projective line.

For each pointp = (λ : µ) ∈ P1 let Jp denote the graded two-sided ideal generated
by λz3 + µz4. If p = (0 : 1) or p = (1 : 0), then it is easy to see thatX(Jp) is the
commutative projective plane. For all otherp ∈ P1 we have

PSh̄/Jp = T(z1, z2, z3)/

〈
[z1, z3] = [z2, z3] = 0, [z1, z2] = −2h̄

λ

µ
z2

3

〉
,

henceX(Jp) is a noncommutative projective plane isomorphic toP2
h̄.

We haveJp ⊂ J for all p ∈ P1, hence all planesX(Jp) pass through the lineX(J ).
Thus we see thatP3

h̄ is a pencil of noncommutative projective planes passing through a
fixed commutative projective line.

Similarly, the two-sided ideal generated byw3 in PPh̄ corresponds to a commutative
projective linel = {w3 = 0} ⊂ P2

h̄.

4. Properties of Algebras PSh̄ and PPh̄ and the Resolution of the Diagonal

This section is a preparation for the study of sheaves onP3
h̄ and P2

h̄. We show that
the algebrasPSh̄ andPPh̄ are regular and Koszul and construct the resolution of the
diagonal, which will enable us to associate monads to certain bundles onP2

h̄.

4.1. Quadratic algebras. A graded algebraA = ⊕
i≥0

Ai over a fieldk is called quadratic

if it is connected (i.e.A0 = k), is generated by the first componentA1, and the ideal of
relations is generated by the subspace of quadratic relationsR(A) ⊂ A1 ⊗ A1.

Therefore the algebraA can be represented asT (A1)/〈R(A)〉, whereT (A1) is a free
tensor algebra generated by the spaceA1.

The algebrasPSh̄ andPPh̄ are quadratic algebras. For example,PSh̄ can be repre-
sented as T(U)/〈W 〉, whereU = PSh̄1 is a 4-dimensional vector space andW is the
6–dimensional subspace ofU ⊗ U spanned by the relations (9).
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4.2. The dual algebra. For any quadratic algebraA = T (A1)/〈R(A)〉 we can define its
dual algebra which is also quadratic.

Let us identifyA∗
1 ⊗ A∗

1 with (A1 ⊗ A1)
∗ by (l ⊗ m)(a ⊗ b) = m(a)l(b). Denote

by R(A)⊥ the annulator ofR(A) in A∗
1 ⊗ A∗

1, i.e. the subspace which consists of such
q ∈ (A∗

1)
⊗2 thatq(r) = 0 for anyr ∈ R(A).

Definition 4.1 ([25]). The algebra A! = T (A∗
1)/〈R(A)⊥〉 is called the dual algebra

of A.

Example 4.2. Let {ži}, i = 1,2,3,4, be the basis ofPSh̄!
1 = U∗ which is dual to{zi}.

By definition,PSh̄! is generated by{ži} with defining relations

ž2
i = 0 for all i = 1, . . . ,4;

ži žj + žj ži = 0 for all i < j, (i, j) �= (3,4);
ž3ž4 + ž4ž3 = h̄[ž1, ž2] = 2h̄ž1ž2.

In the commutative case the dual algebra of the symmetric algebraS·(U) is iso-
morphic to the exterior algebraC·(U∗). Obviously, the algebrasPSh̄! andPPh̄! are
deformations of exterior algebras. For example, the vector spacePSh̄

!
k is spanned by the

elementšzi1 · · · žik with i1 < · · · < ik. In particular, the dimension of the vector space
PSh̄

!
k is equal to

(4
k

)
. Similarly, the dimension ofPPh̄!

k is equal to
(3
k

)
.

Proposition 4.3. Let A be PSh̄ or PPh̄, and let n be 4 or 3, respectively. The multipli-
cation map A!

k ⊗A!
n−k −→ A!

n is a non-degenerate pairing. Hence the dual algebra A!
is a Frobenius algebra, i.e. (A!)A! ∼= (A!A!)∗ as right A!-modules.

Proof. The proposition holds for the exterior algebra, and therefore also for the algebra
A!, since the latter is a “small” deformation of the exterior algebra.!"

4.3. The Koszul complex. Consider rightA-modules(A!
k)

∗⊗A. The following complex
K·(A) is called the (right) Koszul complex of a quadratic algebra:

· · · d−→ (A!
3)

∗⊗A(−3)
d−→ (A!

2)
∗⊗A(−2)

d−→ (A!
1)

∗⊗A(−1)
d−→ (A!

0)
∗⊗A −→ 0,

where the mapd : (A!
k)

∗ ⊗ A → (A!
k−1)

∗ ⊗ A is a composition of two natural maps:

(A!
k)

∗ ⊗ A −→ (A!
k)

∗ ⊗ A!
1 ⊗ A1 ⊗ A −→ (A!

k)
∗ ⊗ A.

Here the first arrow sendsα ⊗ a to α ⊗ e ⊗ a with e defined as

e =
∑
i

yi ⊗ xi ∈ A!
1 ⊗ A1,

and{xi} and{yi} being the dual bases ofA1 andA!
1, respectively. The second map is

determined by the algebra structures onA! andA.
It is a well–known fact thatd2 = 0 (see, for example, [25]).
LetkA be the trivial rightA-module. The Koszul complexK·(A) possesses a natural

augmentationK·
ε−→ kA −→ 0.
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Definition 4.4 (see [31]). A quadratic algebra A = ⊕
i≥0

Ai is called a Koszul algebra if

the augmented Koszul complex K·(A)
ε−→ kA −→ 0 is exact.

In the same manner one can define the left Koszul complex of a quadratic algebra. It is
well known that the exactness of the right Koszul complex is equivalent to the exactness
of the left Koszul complex (see, for example, [22]).

Proposition 4.5. The algebras PSh̄ and PPh̄ are Koszul algebras.

Proof. For h̄ = 0 this is a well-known fact about the symmetric algebraS·(U). Since
the augmented Koszul complex is exact forh̄ = 0, it is also exact for small̄h, and
consequently for all̄h. !"

Since the dual algebrasPSh̄! andPPh̄! are finite, the Koszul resolutions for the
algebrasPSh̄ andPPh̄ are finite too and have the same form as the resolutions for
ordinary symmetric algebras. For example, the Koszul resolution forA = PPh̄ is:

{0 → (A!
3)

∗ ⊗ A(−3) → (A!
2)

∗ ⊗ A(−2) → (A!
1)

∗ ⊗ A(−1) → (A!
0)

∗ ⊗ A} → C.

4.4. Resolution of the diagonal. Consider a bigraded vector space

K2··(A) =
⊕
k,l≥0

K2
k,l(A) with K2

k,l(A) = A(k)⊗ (A!
l−k)∗ ⊗ A(−l).

Consider morphismsdR : K2
k,l → K2

k,l−1 and dL : K2
k,l → K2

k+1,l given by the
following compositions:

dR : A⊗ (A!
k)

∗ ⊗ A → A⊗ (A!
k)

∗ ⊗ A!
1 ⊗ A1 ⊗ A → A⊗ (A!

k−1)
∗ ⊗ A,

dL : A⊗ (A!
k)

∗ ⊗ A → A⊗ A1 ⊗ A!
1 ⊗ (A!

k)
∗ ⊗ A → A⊗ (A!

k−1)
∗ ⊗ A.

Here the leftmost maps are given by

eR =
∑
i

yi ⊗ xi ∈ A!
1 ⊗ A1 and eL =

∑
i

xi ⊗ yi ∈ A1 ⊗ A!
1,

where{xi} and{yi} are the dual bases ofA1 andA!
1, respectively, while the rightmost

maps are induced by the algebra structures ofA! andA. It is easy to show that

d2
R = d2

L = 0 and dRdL = dLdR,

henceK2··(A) is a bicomplex. It is called thedouble Koszul bicomplex of the quadratic
algebraA.

The topmost part of the bicomplex looks as follows:

. . .
dR−−−−→ A⊗ (A!

l+1)
∗ ⊗ A(−1 − l)

dR−−−−→ A⊗ (A!
l )

∗ ⊗ A(−l) dR−−−−→ . . .

dL

� dL

�
. . .

dR−−−−→ A(1)⊗ (A!
l )

∗ ⊗ A(−1 − l)
dR−−−−→ A(1)⊗ (A!

l−1)
∗ ⊗ A(−l) dR−−−−→ . . .
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Each term of the bicomplexK2··(A) has an obvious structure of a bigradedA-
bimodule, and it is clear that the differentials are morphisms of bigradedA-bimodules.

Let
Kl (A) = KerdL : K2

0,l(A) → K2
1,l(A).

ThenK·(A) is a complex of bigradedA-bimodules (with respect to the differentialdR).
Consider a bigraded algebra/ = ⊕

i,j /ij with /ij = Ai+j and with the mul-
tiplication induced fromA. The algebra/ is called the diagonal bigraded algebra of
A. Note that the multiplication map induces a surjective morphism ofA-bimodules
δ : A⊗ A → /.

Lemma 4.6. The map
δ : K0(A) = A⊗ A → /

gives an augmentation of the complex K·(A).

Proof. We have to check thatδ · dR : K1(A) → A vanishes. Note thatK2
0,1(A) =

A ⊗ A1 ⊗ A(−1), and that the differentialsdR anddL restricted toK2
0,1(A) coincide

with the multiplication mapsm1,2 andm2,3, respectively. Thus we have the following
commutative diagram:

K1(A)
dR−−−−→ K0(A)

δ−−−−→ /� ∥∥∥ ∥∥∥
A⊗ A1 ⊗ A(−1)

m1,2−−−−→ A⊗ A
δ−−−−→ /

m2,3

�
A(1)⊗ A(−1)

Now the lemma follows becauseδ ·m1,2 = δ ·m2,3 (associativity) obviously annihilates
Kerm2,3 = K1(A). !"

Proposition 4.7. If A is Koszul, then K·(A)
δ→ / is exact.

Proof. The(p, q)-bigraded component ofK2
k,l(A) is equal toAp+k ⊗ (A!

l−k)∗ ⊗Aq−l ,
hence the(p, q)-bigraded component of the bicomplexK2··(A) vanishes forl < k

or l > q. Thus the(p, q)-bigraded component of the bicomplexK2··(A) is bounded.
Therefore both spectral sequences of the bicomplexK2··(A) converge to the cohomology
of the total complex Tot(K2··(A)). The first term of the first spectral sequence reads

E1
k,l =

{
A(l)⊗ k(−l), if k = l

0, otherwise.

Hence the spectral sequence degenerates in the first term, and we have

H 0(Tot(K2··(A))) =
∞⊕
l=0

A(l)⊗ k(−l), H �=0(Tot(K2··(A))) = 0.
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On the other hand, the first term of the second spectral sequence reads

E1
k,l =


k(l)⊗ A(−l), if k = l > 0
Kl (A), if k = 0
0, otherwise.

Hence the spectral sequence degenerates in the second term, and we have

H 0(Tot(K2··(A))) = H 0(K·(A))⊕
( ∞⊕
l=1

k(l)⊗ A(−l)
)
,

H l(Tot(K2··(A))) = Hl(K·(A)).

ThereforeH �=0(K·(A)) = 0, and we have an exact sequence

0 → H 0(K·(A)) →
∞⊕
l=0

A(l)⊗ k(−l) →
∞⊕
l=1

k(l)⊗ A(−l) → 0.

Looking at the(p, q)-bigraded component of this sequence we see that

(H 0(K·(A)))p,q =
{
Ap+q, if p, q ≥ 0
0, otherwise

.

ThusH 0(K·(A)) = /. !"

Definition 4.8. Define the left A-module Ωk as the cohomology of the left Koszul com-
plex, truncated in the term Kk . In particular, Ω1 is defined by the so-called Euler
sequence

0 → Ω1 → A(−1)⊗ A1
m→ A

ε→ k → 0. (10)

In Sect. 8.11 we will show that for noncommutative projective spaces the sheaves cor-
responding to the modulesΩk can be regarded as sheaves of differential forms.

Proposition 4.9. We have Kk(A) = Ωk(k)⊗ A(−k).

Proof. This follows immediately from the definition ofΩk andKk(A). !"

Combining Propositions 4.7 and 4.9, we obtain the following resolution of the diag-
onal:

. . . −→ Ω2(2)⊗ A(−2) −→ Ω1(1)⊗ A(−1) −→ A⊗ A −→ / −→ 0. (11)
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4.5. Cohomological properties of the algebras PSh̄ and PPh̄. First we note that both
algebrasPSh̄ andPPh̄ are noetherian. This follows from the fact that they are Ore
extensions of commutative polynomial algebras (see for example, [26]). For the same
reason the algebrasPSh̄ andPPh̄ have finite right (and left) global dimension, which is
equal to 4 and 3, respectively (see [26], p. 273).

We recall that the global dimension of a ringA is the minimal numbern (if it exists)
such that for any two modulesM andN we have Extn+1

A (M,N) = 0.
In the paper [1] the notion of a regular algebra has been introduced. Regular algebras

have many good properties (see [3,2,40], etc.).

Definition 4.10. A graded algebra A is called regular of dimension d if it satisfies the
following conditions:

(1) A has global dimension d,
(2) A has polynomial growth, i.e. dimAn ≤ cnδ for some c, δ ∈ R,
(3) A is Gorenstein, meaning that ExtiA(k, A) = 0 if i �= d, and ExtdA(k, A) = k(l) for

some l.

Here ExtA stands for the Ext functor in the categorymod(A).
It is easy to see that these properties are verified forPSh̄ andPPh̄. Property (2)

holds because our algebras grow as ordinary polynomial algebras. Property (3) follows
from the fact thatPSh̄ andPPh̄ are Koszul algebras and the dual algebras are Frobenius
resolutions. In this case the Gorenstein parameterl in (3) is equal to the global dimension
d. Thus we have

Proposition 4.11. The algebrasPSh̄ andPPh̄ are noetherian regular algebras of global
dimension 4and 3, respectively. For these algebras the Gorenstein parameter l coincides
with the global dimension d .

5. Cohomological Properties of Sheaves on P2
h̄

and P3
h̄

5.1. Ampleness and cohomology of O(i). Let A be a graded algebra andX be the
corresponding noncommutative projective variety. Consider the sequence of sheaves
{O(i)}i∈Z in the categorycoh(X) ∼= qgr(A), whereO(i) = Ã(i).

This sequence is called ample if the following conditions hold:

(a) For every coherent sheafF there are integersk1, . . . , ks and an epimorphism
s⊕

i=1
O(−ki) −→ F .

(b) For every epimorphismF −→ G the induced map

Hom(O(−n),F) −→ Hom(O(−n),G)
is surjective forn & 0.

It is proved in [3] that the sequence{O(i)} is ample inqgr(A) for a graded right
noetheriank-algebraA if it satisfies the extra condition:

(χ1) : dimk Ext1A(k,M) < ∞
for any finitely generated gradedA-moduleM.

This condition can be verified for all noetherian regular algebras (see [3], Theorem
8.1). In particular, the categories coh(P3

h̄), coh(P2
h̄) have ample sequences.
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For any sheafF ∈ qgr(A) we can define a graded module9(F) by the rule:

9(F) := ⊕
i≥0

Hom(O(i),F).

It is proved in [3] that for any noetherian algebraA that satisfies the conditionχ1 the
correspondence9 is a functor from qgr(A) to gr(A) and the composition of9 with the
natural projectionπ : gr(A) −→ gqr(A) is isomorphic to the identity functor (see [3,
Ch. 3,4]).

Now we formulate a result about the cohomology of sheaves on noncommutative
projective spaces. This result is proved in [3] for a general regular algebra and parallels
the commutative case.

Proposition 5.1 ([3, Theorem 8.1.]). Let A be PSh̄ or PPh̄, and X be P3
h̄ or P2

h̄, re-
spectively. Denote by n the dimension of X (in our case n = 3 or n = 2, respectively).
Then

(1) The cohomological dimension of coh(X) is equal to dim(X), i.e. for any two coherent
sheaves F and G Exti (F,G) vanishes if i > n.

(2) There are isomorphisms

Hp(X,O(i)) =


Ak for p = 0, i ≥ 0
A∗−i−1−n for p = n, i ≤ −n− 1
0 otherwise.

(12)

This proposition and the ampleness of the sequence{O(i)} implies the following
corollary:

Corollary 5.2. Let X be either P3
h̄ or P2

h̄. Then for any sheaf F ∈ coh(X) and for all
sufficiently large i ≥ 0 we have

Hom(F,O(i)) = 0.

Proof. By ampleness a sheafF can be covered by a finite sum of sheavesO(kj ). Now
the statement follows from the proposition, because Hom(O(kj ),O(i)) = 0 for all
i < kj . !"
Corollary 5.3. Let X be either P3

h̄ or P2
h̄. Then for any sheaf F ∈ coh(X) and for all

sufficiently large i ≥ 0 we have

Hk(X,F(i)) = 0

for all k ≥ 1.

Proof. The groupHk(X,F(i)) coincides with Extk(O(−i),F). Let k be the maxi-
mal integer (it exists because the global dimension is finite) such that for someF
there exists arbitrarily largei such that Extk(O(−i),F) �= 0. Assume thatk ≥ 1.

Choose an epimorphism
s⊕

j=1
O(−kj ) → F . Let F1 denote its kernel. Then fori >

max{kj } we have Ext>0(O(−i), s⊕
j=1

O(−kj )) = 0, hence Extk(O(−i),F) �= 0 implies

Extk+1(O(−i),F) �= 0. This contradicts the assumption of the maximality ofk. !"
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5.2. Serre duality and the dualizing sheaf. A very useful property of commutative
smooth projective varieties is the existence of the dualizing sheaf. Recall that a sheafω

is called dualizing if for anyF ∈ coh(X) there are natural isomorphisms ofk-vector
spaces

Hi(X,F) ∼= Extn−i (F, ω)∗,
where∗ denotes thek-dual. The Serre duality theorem asserts the existence of the
dualizing sheaf for smooth projective varieties. In this case the dualizing sheaf is a line
bundle and coincides with the sheaf of differential forms�n

X of top degree.
Since the definition ofω is given in abstract categorical terms, it can be extended

to the noncommutative case. More precisely, we will say that qgr(A) satisfies classical
Serre duality if there is an objectω ∈ qgr(A) together with natural isomorphisms

Exti (O,−) ∼= Extn−i (−, ω)∗.
Our noncommutative varietiesP3

h̄ andP2
h̄ satisfy classical Serre duality, with dualizing

sheaves beingOP3
h̄
(−4) andOP2

h̄
(−3), respectively. This follows from the paper [40],

where the existence of a dualizing sheaf in qgr(A) has been proved for a general class
of algebras which includes all noetherian regular algebras. In addition, the authors of
[40] showed that the dualizing sheaf coincides withÃ(−l), wherel is the Gorenstein
paramenter forA (see condition (3) of Definition 4.10).

5.3. Bundles on noncommutative projective spaces. To any graded rightA-moduleM
one can attach a leftA-moduleM∨ = HomA(M,A) which is also graded. Note that
under this correspondence the right moduleAA(r) goes to the left moduleAA(−r).

It is known that ifA is a noetherian regular algebra, then HomA(−, A) is a func-
tor from the category gr(A)R to the category gr(A)L. Moreover, its derived functor
RHom·

A(−, A) gives an anti-equivalence between the derived categories of gr(A)R and
gr(A)L (see [39,40,38]).

If we assume that the composition of the functor HomA(−, A) with the projection
gr(A)L −→ qgr(A)L factors through the projection gr(A)R −→ qgr(A)R, then we
obtain a functor from qgr(A)R to qgr(A)L which is denoted byHom(−,O). This functor
is not right exact and has right derived functorsExti(−,O), i > 0, from qgr(A)R to
qgr(A)L.

For a noetherian regular algebra the functorHom(−,O) and its right derived functors
exist. This follows from the fact that the functors Exti

A(−, A) send a finite dimensional
module to a finite dimensional module (see condition (3) of Definition 4.10).

Moreover, in this case the functorHom(−,O) can be represented as the composition
of the functor9 : qgr(A)R −→ gr(A)R, the functor HomA(−, A) : gr(A)R −→
gr(A)L, and the projectionπ : gr(A)L −→ qgr(A)L. This can be illustrated by the
following commutative diagram:

gr(A)R
HomA(−,A)−−−→ gr(A)L

π

��9 �π
qgr(A)R

Hom(−,O)−−−→ qgr(A)L

(13)

For a noetherian regular algebra the functorRHom·
A(−, A) is an anti-equivalence be-

tween the derived categories ofgr(A)R andgr(A)L and takes complexes of finite dimen-
sional modules overgr(A)R to complexes of finite dimensional modules over gr(A)L.
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This implies that the functorRHom·(−,O) gives an anti-equivalence between the de-
rived categories of qgr(A)R and qgr(A)L. (Note that for derived functorsRHomA(−, A)
andRHom(−,O) there is also a commutative diagram like (13).)

The functorsExtj (−,O) can be described more explicitly. LetM be anA-bimodule.
Regarding it as a right module, we see that for anyF ∈ QGr(A)R the groups Exti (F, M̃)

have the structure of leftA-modules. We can project them to QGr(A)L. Thus each
bimoduleM defines functors from QGr(A)R to QGr(A)L, which will be denoted by
πExti (−, M̃).

Now, usingπ9 = id and the commutativity of the diagram (13) for the derived
functors ExtjA(−, A) andExtj (−,O), we obtain isomorphisms

Extj (F,O) ∼= πExtjA(9(F), A) ∼= πExtjgr(A)(9(F), ⊕
i≥0

A(i)) ∼= πExtj (F, ⊕
i≥0

O(i))

(14)

for any sheafF ∈ qgr(A)R.

Definition 5.4. We call a coherent sheaf F ∈ qgr(A)R locally free (or a bundle) if
Extj (F,O) = 0 for any j �= 0.

Remark. In the commutative case this definition is equivalent to the usual definition of
a locally free sheaf.

Definition 5.5. The dual sheaf Hom(F,O) ∈ qgr(A)L will be denoted by F∨ .

If F ∈ qgr(A)L is a bundle, then the dual sheafF∨ is a bundle inqgr(A)L, because
RHom·(F∨,O) = F in the derived category, andExtj (F∨,O) = 0 for j �= 0.

Thus we have a good definition of locally free sheaves onP3
h̄ and P2

h̄. Since the
derived functorRHom(−,O) gives an anti-equivalence between the derived categories
of qgr(A)R andqgr(A)L, there is an isomorphism:

Hom(F,G) ∼= Hom(G∨,F∨) (15)

for any two bundlesF andG onP3
h̄ or P2

h̄.

6. Bundles on P2
h̄

6.1. Bundles on P2
h̄ with a trivialization on the commutative line. In this section we

study bundles onP2
h̄. By definition, a bundle is an objectE ∈ coh(P2

h̄) satisfying the

additional conditionExti(E,O) = 0 for all i > 0 (see (5.4)).
The noncommutative planeP2

h̄ contains the commutative projective linel ∼= P1 given
by the equationw3 = 0. If M is aPPh̄-module, then the quotient moduleM/Mw3 is a
PPh̄/〈w3〉-module. This gives a functor coh(P2

h̄) → coh(P1), F �→ F |l . The sheafF |l
is referred to as the restriction ofF to the linel.

Lemma 6.1. If F is a bundle, there is an exact sequence:

0 −→ F(−1)
·w3−→ F −→ F |l −→ 0. (16)
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Proof. To prove this we only need to show that multiplication byw3 is a monomorphism.

If F is a bundle, it can be embedded into a direct sum
s⊕

i=1
O(ki), because by ampleness

the dual bundleF∨ is covered by a direct sum of line bundles. Now, since the morphism

O(ki−1)
·w3−→ O(ki) is mono for anyi, the same is true for the morphismF(−1)

·w3−→ F .
!"
Lemma 6.2. Let E be a bundle on P2

h̄ such that its restriction E |l to the commutative

line l is isomorphic to a trivial bundle O⊕r
l . Then

H 0(P2
h̄, E(−1)) = H 0(P2

h̄, E(−2)) = H 2(P2
h̄, E(−1)) = H 2(P2

h̄, E(−2)) = 0.

Proof. We have the following exact sequence in the category coh(P2
h̄):

0 −→ E(−2) −→ E(−1) −→ E(−1)|l −→ 0. (17)

SinceE(−1)|l ∼= Ol (−1)⊕r , we haveH 0(E(−1)|l ) = 0.
Assume thatE(−1) has a nontrivial section. ThenE(−2) has a nontrivial section too.

For the same reasonE(−3) has a nontrivial section, and so on. Thus for anyn < 0 the
bundleE(−n) has a nontrivial section. By (15) we have isomorphisms:

H 0(E(−n)) ∼= Hom(O(n), E) ∼= Hom(E∨,O(−n)).
On the other hand, by Corollary 5.2 the last group is trivial forn & 0. HenceH 0(E(−n))
= 0 for all n & 0, and consequentlyH 0(E(−2)) = H 0(E(−1)) = 0.

Further, assume thatH 2(E(−2)) is nontrivial. SinceH 1(E(i)|l ) = 0 for all i ≥ −1
we have from the exact sequence (16) withF = E(i) thatH 2(E(i)) is nontrivial too for all
i ≥ −1. But this contradicts Corollary 5.3. ThereforeH 2(E(−2)) = H 2(E(−1)) = 0.
This completes the proof.!"

6.2. Monads on P2
h̄ and P3

h̄. As in the commutative case, a non-degenerate monad on
P2
h̄ or P3

h̄ is a complex over coh(P2
h̄)

0 −→ H ⊗ O(−1)
m−→ K ⊗ O n−→ L⊗ O(1) −→ 0

for which the mapn is an epimorphism andm is a monomorphism. (Note that there is
another more restrictive definition of a monad, according to which the dual map(m)∗
has to be an epimorphism, see [30]). The coherent sheaf

E = Ker(n)/ Im(m)

is called the cohomology of a monad. A morphism between two monads is a morphism
of complexes. The following lemma is proved in [30, Lemma 4.1.3] in the commutative
case, but the proof is categorical and applies to the noncommutative case as well.

Lemma 6.3. Let X be either P2
h̄ or on P3

h̄, and let E and E′ be the cohomology bundles
of two monads

M :0 −→ H ⊗ O(−1)
m−→ K ⊗ O n−→ L⊗ O(1) −→ 0,

M ′ :0 −→ H ′ ⊗ O(−1)
m′−→ K ′ ⊗ O n′−→ L′ ⊗ O(1) −→ 0
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on X. Then the natural mapping

Hom(M,M ′) −→ Hom(E,E′)

is bijective.

The proof is based on the fact that

Extj (O,O(−1)) = Extj (O(1),O(−1)) = Extj (O(1),O) = 0

for all j (see [30], Lemma 4.1.3).

6.3. Non-degeneracy conditions. In the definition of a monad we require that the mapn

be an epimorphism. In the commutative case this condition must be verified pointwise. In
the noncommutative case the situation is simpler in some sense, because the complement
of the commutative linel does not have points.

Lemma 6.4. If the restriction of a sheaf F ∈ coh(P2
h̄) to the projective line l is the zero

object, then F is also the zero object.

Proof. Let M be a finitely generated gradedPPh̄-module such thatF ∼= M̃. Consider
an exact sequence:

M
·w3−→ M(1) −→ N −→ 0.

SinceÑ = F(1)|l = 0, the moduleN is finite dimensional. This implies that fori & 0

the mapMi
·w3→ Mi+1 is surjective. Moreover, these maps are isomorphisms fori & 0,

because allMi are finite dimensional vector spaces. Let us identify allMi for i & 0
with respect to these isomorphisms. Using theA-module structure onM, we obtain a
representation of the Weyl algebra T(X, Y )/〈[X, Y ] = 2h̄〉 on the vector spaceMi . But
it is well known that the Weyl algebra does not have finite dimensional representations.
ThusMi = 0 for all i & 0, andM is finite dimensional. ThereforeF = 0. !"

The following corollary is an immediate consequence of the lemma.

Corollary 6.5. Let f : F −→ G be a morphism in coh(P2
h̄). Suppose its restriction

f̄ : F |l −→ G|l is an epimorphism. Then f is an epimorphism too.

6.4. From the resolution of the diagonal to a monad. LetM be anA-bimodule. Regard-
ing it as a left module, we see that for anyF ∈ QGr(A)L the groups Exti (F, M̃) have
the structure of rightA-modules. We can project them to QGr(A)R. Thus each bimodule
M defines functorsπExti (−, M̃) from QGr(A)L to QGr(A)R.

Let E be a bundle onP2
h̄ such that its restriction to the linel is a trivial bundle. Let us

consider the bundleE∨(1) ∈ qgr(PPh̄)L and the resolution of the diagonalK·(PPh̄),
which has only three terms:

{0 −→ PPh̄(−1)⊗ PPh̄(−2) −→ Ω1(1)⊗ PPh̄(−1) −→ PPh̄ ⊗ PPh̄} −→ /.

The resolution of the diagonal is a complex of bimodules. It induces a complexK̃· over
QGr(PPh̄)L:

{0 −→ O(−1)⊗ PPh̄(−2) −→ �1(1)⊗ PPh̄(−1) −→ O ⊗ PPh̄} −→ /̃, (18)
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where�1 is a sheaf onP2
h̄ corresponding to thePPh̄-moduleΩ1.

As described above, eachA-bimoduleM gives the functorsπExti (−, M̃) from
QGr(A)L to QGr(A)R. In particular, each object of the resolution of the diagonal induces
such functors.

First we calculate these functors for the object/̃. Note that the object̃/ coincides
with ⊕

i≥0
O(i). Hence by (14) we have

πExtj (E∨(1), /̃) = 0

if j > 0, whileπExt0(E∨(1), /̃) ∼= E(−1).
The resolution of the diagonal (18) gives us a spectral sequence with theE1 term

E
pq
1 = πExtq(E∨(1), K̃−p) (⇒ πExtp+q(E∨(1), /̃),

which converges to

Ei∞ =
{

E(−1) if i = 0
0 otherwise.

Now we describe all termsEpq
1 of this spectral sequence. First we have

πExtj (E∨(1),O ⊗ PPh̄) ∼= Extj (E∨(1),O)⊗ P̃ Ph̄

∼= Extj (E∨(1),O)⊗ O ∼= Hj(P2
h̄, E(−1))⊗ O.

By Lemma 6.2, these groups are trivial forj �= 1. For the same reason we have

πExtj (E∨(1),O(−1)⊗ PPh̄(−2)) = Hj(P2
h̄, E(−2))⊗ O(−2) = 0

for j �= 1 and

πExt1(E∨(1),O(−1)⊗ PPh̄(−2)) ∼= H 1(P2
h̄, E(−2))⊗ O(−2).

Now let us consider the functors which are associated with the object�1(1)⊗PPh̄(−1).
We have

πExtj (E∨(1),�1(1)⊗ PPh̄(−1)) ∼= Extj (E∨, �1)⊗ O(−1).

It follows from the Koszul complex that the sheaf�1 can be included in two exact
sequences:

0 −→ �1 −→ O(−1)⊗ PPh̄1 −→ O −→ 0,

0 −→ O(−3) −→ O(−2)⊗ (PPh̄1)
∗ −→ �1 −→ 0.

Applying the functor Hom(E∨,−) to the first sequence and taking into account that
Hom(E∨,O(−1)) = 0, we obtain Hom(E∨, �1) = 0. Similarly, we deduce from the
second sequence that Ext2(E∨, �1) = 0, because Ext2(E∨,O(−2)) = 0. This implies
that the objectπExtj (E∨(1),�1(1)⊗ PPh̄(−1)) is trivial for all j �= 1.

Thus our spectral sequence is nothing more than the complex

πExt1(E∨(1), K̃2) −→ πExt1(E∨(1), K̃1) −→ πExt1(E∨(1), K̃0),

which is isomorphic to the complex

H 1(P2
h̄, E(−2))⊗ O(−2) −→ Ext1(E∨, �1)⊗ O(−1) −→ H 1(P2

h̄, E(−1))⊗ O.

It has only one cohomology which coincides withE(−1).
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Theorem 6.6. Let E be a bundle on P2
h̄ such that its restriction to the commutative line

l is isomorphic to the trivial bundle O⊕r
l . Then E is the cohomology of a monad

0 −→ H ⊗ O(−1)
m−→ K ⊗ O n−→ L⊗ O(1) −→ 0

with H = H 1(P2
h̄, E(−2)), L = H 1(P2

h̄, E(−1)), and such a monad is unique up to an
isomorphism. Moreover, in this case the vector spacesH andL have the same dimension.

Proof. The existence of such a monad was proved above. The uniqueness follows from
Lemma 6.3. The equality of dimensions ofH andL follows immediately from the exact
sequence (17). !"

6.5. Barth description of monads. Now following Barth [8], we give a description of
the moduli space of vector bundles onP2

h̄ trivial on the linel in terms of linear algebra
(see also [15]).

Denote byMh̄(r,0, k) the moduli space of bundles on the noncommutativeP2
h̄ trivial

on the linel and with a fixed trivialization there (i.e. with a fixed isomorphismE |l ∼=
O⊕r
l ). Let dimH 1(P2

h̄, E(−1)) = k. As in the commutative case, the numbersr,0, k can
be regarded as the rank, first Chern class, and second Chern class ofE , respectively.

The following theorem gives a description of this moduli space which is similar to
the description given by Barth in the commutative case.

Theorem 6.7. Let {(b1, b2; j, i)} be the set of quadruples of matrices

b1, b2 ∈ Mk×k(C), j ∈ Mr×k(C), i ∈ Mk×r (C),

which satisfy the condition

[b1, b2] + ij + 2h̄ · 1k×k = 0.

Then the space Mh̄(r,0, k) is the quotient of this set with respect to the following free
action of GL(k,C):

bi �→ gbig
−1, j �→ jg−1, i �→ gi, where g ∈ GL(k,C).

Proof. Let E be a bundle onP2
h̄ trivial on the linel. We showed above that any such

bundle comes from a monad unique up to an isomorphism. Conversely, suppose we have
a monad

0 −→ H ⊗ O(−1)
m−→ K ⊗ O n−→ L⊗ O(1) −→ 0 (19)

with dimH = dimL = k such that its restriction to the linel is a monad with the
cohomologyO⊕r

l . Then the cohomology of this monad is a bundle onP2
h̄ which belongs

to Mh̄(r,0, k). Indeed, the cohomologies of the dual complex

0 −→ O(−1)⊗ L∗ n∗−→ O ⊗K∗ m∗−→ O(1)⊗H ∗ −→ 0

coincide withHom(E,O) andExt1(E,O). Hence, to prove thatE is a bundle, it is
sufficient to show that the dual complex is a monad too, i.e. that the mapm∗ is an
epimorphism. The restriction of the dual complex tol is a monad which is dual to the
restriction of the monad (19) tol. Hence the restriction ofm∗ on l is an epimorphism.
Then, by Lemma 6.5,m∗ is an epimorphism as well. Thus to describe the moduli space
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Mh̄(r,0, k) we have to decsribe the space of all monads (19) modulo isomorphisms
preserving trivialization onl.

Consider a monad

0 −→ H ⊗ O(−1)
m−→ K ⊗ O n−→ L⊗ O(1) −→ 0

with dimH = dimL = k and dimK = 2k + r. Denote byE its cohomology bundle.
The mapsm andn can be regarded as elements ofH ∗ ⊗K ⊗W andK∗ ⊗ L⊗W ,

respectively, whereW = H 0(P2
h̄,O(1)) is the vector space spanned byw1, w2, w3. The

mapsm andn can be written as

m1w1 +m2w2 +m3w3, n1w1 + n2w2 + n3w3,

wheremi : H → K andni : K → L are constant linear maps.
Let us restrict the monad to the linel. The monadic conditionnm = 0 implies now:

n1m2 + n2m1 = 0, n1m1 = 0, n2m2 = 0.

Moreover, since the restriction ofE to l is trivial, the compositionn1m2 is an isomorphism
(see [30], Lemma 4.2.3). We can choose bases forH,K,L so thatn1m2 = 1k×k (the
identity matrix) and

m1 =


1k×k
0k×k
0r×k

 , m2 =


0k×k
1k×k
0r×k

 ,

n1 =
(
0k×k 1k×k 0k×r

)
, n2 =

(
−1k×k 0k×k 0k×r

)
.

Using the equationsn3m1 + n1m3 = 0 andn3m2 + n2m3 = 0 we can write:

m3 =


b1

b2

j

 , n3 =
(
−b2 b1 i

)
.

Now the monadic conditionnm = 0 can be written as:

(n3m3) · w2
3 + 1k×k · [w1, w2] = 0.

Therefore we obtain the following matrix equation:

[b1, b2] + ij + 2h̄ · 1k×k = 0.

Note that the lastr basis vectors ofK give us a trivialization of the restriction ofE to the
line l. It is easy to check that any isomorphism of a monad which preserves trivialization
on l and the choice of the bases ofH,K,L made above has the form

bi �→ gbig
−1, j �→ jg−1, i �→ gi, whereg ∈ GL(k,C).

This proves the theorem.!"
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7. The Noncommutative Variety P3
h̄

as a Twistor Space

7.1. Real structures. A ∗-algebra is, by definition, an algebra overC with an anti-linear
anti-homomorphism∗ satisfying∗2 = id.A ∗-structure on a (graded) algebra is regarded
as a real structure on the corresponding (projective) noncommutative variety.

Let us introduce real structures on the complex varietiesC4
h̄ andQ4

h̄ defined in Sect. 3.
Assume that in (6), (7) the skew-symmetric matrixθ is purely imaginary and̄h is real.
Then there is a unique∗-structure on the algebraA(C4

h̄) such thatx∗
i = xi . We denote

the corresponding noncommutative variety byR4
h̄.

Assume in addition that the symmetric matrixG in (7) is real and positive definite.
There is a unique∗-structure on the algebraQh̄ such thatX∗

i = Xi,D
∗ = D, and

T ∗ = T . The corresponding noncommutative real variety will be called the noncommu-
tative sphere and denoted byS4

h̄. The embedding ofC4
h̄ into Q4

h̄ induces an embedding
R4
h̄ ↪→ S4

h̄. Recall that the complement ofC4
h̄ in Q4

h̄ is a commutative quadratic cone∑
kl

GklXkXl = 0 which has only one real point. ThusS4
h̄ can be regarded as a one-point

compactification ofR4
h̄.

By a linear change of basis one can bring the pair(G, θ) to the standard form

G =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , θ = √−1


0 a 0 0

−a 0 0 0

0 0 0 b

0 0 −b 0

 . (20)

Furthermore, sincēh andθ enter only in the combination̄h · θ , and we asssume that
a + b �= 0, we can seta + b = 1 without loss of generality.

7.2. Realification of P3
h̄. Recall that the noncommutative projective spaceP3

h̄ corre-
sponds to the algebraPSh̄ with generatorszi, i = 1,2,3,4, and relations (9). Consider
an algebrâPSh̄ with generatorszi, z̄i , i = 1,2,3,4, and relations

[z1, z2] = 2h̄(a + b)z3z4, [z1, z̄1] = 2h̄bz3z̄3 − 2h̄az4z̄4, [z1, z̄2] = 0,

[z̄1, z̄2] = −2h̄(a + b)z̄3z̄4, [z2, z̄2] = 2h̄az3z̄3 − 2h̄bz4z̄4, [z2, z̄1] = 0,

[zi, zj ] = [zi, z̄j ] = [z̄i , zj ] = [z̄i , z̄j ] = 0 for all i = 3,4; j = 1,2,3,4.

(21)

There is a unique∗-structure on this algebra such thatz∗i = z̄i ,z̄
∗
i = zi . We denote

the corresponding real varietyP3
h̄(R). This variety can be considered a realization ofP3

h̄.

Remark. In contrast to the commutative situation, a noncommutative complex variety in
general has many different realization. We have an ambiguity in the choice of relations
involving bothzi and z̄j . The realization (21) is distinguished by the fact that it is the
twistor space of the noncommutative sphereS4

h̄, as explained below.

In the commutative case there is a map fromP3(R) to the sphereS4 which is aP1

fibration. The correspondingP1 bundle is the projectivization of a spinor bundle on
S4. This map is known as the Penrose map. In the noncommutative case we have a
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similar picture. The analogue of the Penrose map is a mapN : P3
h̄(R) −→ S4

h̄ which is
associated with the homomorphism of∗-algebrasQh̄ −→ P̂ Sh̄:

X1 �→ −
√−1

2
(z1z̄4 − z̄1z4 − z̄2z3 + z2z̄3),

D �→ −1

2
(z1z̄1 + z̄1z1 + z2z̄2 + z̄2z2),

X2 �→ 1

2
(z1z̄4 + z̄1z4 − z̄2z3 − z2z̄3),

T �→ − (z3z̄3 + z4z̄4),

X3 �→ −
√−1

2
(z̄1z3 − z1z̄3 + z2z̄4 − z̄2z4),

X4 �→ 1

2
(z1z̄3 + z̄1z3 + z̄2z4 + z2z̄4).

Note that forh̄ = 0 we obtain the homomorphism of commutative algebras which
corresponds to the usual Penrose map. This means thatP3

h̄(R) is the twistor space ofS4
h̄.

The varietyP3
h̄(R) is a twistor space in yet another sense. For the commutativeR4 the

complex structures compatible with the symmetric bilinear formG and orientation are
parametrized by points of aP1. This remains true in the noncommutative case.A complex
structure (resp. orientation) onR4

h̄ is defined as a complex structure (resp. orientation)
on the real vector spaceU spanned byx1, . . . , x4. We will choose an orientation onU
and require that the complex structure be compatible with it.All such complex structures
are parametrized by points of aP1.

Recall now thatP3
h̄ is a pencil of noncommutative projective planes passing through

the commutative line. Let us pick any one of them. The realification ofP3
h̄ defined above

induces a realification of the noncommutative projective plane. It is easy to see that the
complement of the commutative linew3 = w̄3 = 0 in the realified projective plane
is isomorphic toR4

h̄. Furthermore, the complement carries a natural complex structure
defined by

w−1
3 wi �→ √−1w−1

3 wi, w̄−1
3 w̄i �→ −√−1 w̄−1

3 w̄i , i = 1,2.

The Penrose map induces an identification between the complement andR4
h̄ ⊂ S4

h̄,
and therefore induces a complex structure on the latter. Varying the noncommutative
projective plane, one obtains all possible complex structures onR4

h̄ compatible with a
particular orientation. This is completely analogous to the commutative case.

7.3. Connection between sheaves on commutative and noncommutative planes. In this
subsection we are going to connect the moduli spaceMh̄(r,0, k) of bundles onP2

h̄ with a
trivialization on the linel with the moduli spaceM(r,0, k) of torsion free sheaves on the
commutativeP2 with a trivialization on a fixed line. The bridge between bundles onP2

h̄

and torsion free sheaves onP2 is provided by the twistor varietyP3
h̄. This gives a geomet-

rical interpretation of Nakajima’s results (the description of the moduli spaceM(r,0, k)
by the deformed ADHM data [28,27]). We will construct a hyperkähler manifoldM
parametrizing certain complexes onP3

h̄ which is isomorphic toM(r,0, k) (which is also
a hyperkähler manifold [28]). The isomorphism is given by the restriction of complexes
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to one of the commutativeP2’s. On the other hand, the restriction of complexes to a non-
commutative planeP2

h̄ yields an isomorphism betweenM with a particular choice of
complex structure and the moduli spaceMh̄(r,0, k). ThusMh̄(r,0, k) can be obtained
from M(r,0, k) by a rotation of complex structure.

Consider complexesC· onP3
h̄ of the form

0 −→ H ⊗ O(−1)
M−→ K ⊗ O N−→ L⊗ O(1) −→ 0 (22)

with dimH = dimL = k, dimK = 2k + r, which satisfies the condition that its
restriction to the linel has only one cohomology which is a trivial bundle (with a fixed
trivialization). This condition implies thatM is a monomorphism. Note thatN is not
an epimorphism in general, so (22) is not a monad. But the restriction of the complex
(22) to any noncommutative plane is a monad by Corollary 6.5. ThusN can fail to be
surjective only on the commutative planesz3 = 0 andz4 = 0.

Now we introduce a real structure onP3
h̄ (this is different from the real structure

on the realification ofP3
h̄ defined above). Assume thath̄ is a real number. Consider an

anti-linear anti-homomorphism̄J of PSh̄ defined by

J̄ (z1) = z2, J̄ (z2) = −z1, J̄ (z3) = z4, J̄ (z4) = −z3, J̄ (λ) = λ̄, λ ∈ C.

ThusJ̄ is a homomorphism ofR-algebras fromPSh̄ to the opposite algebraPSh̄op. (The
notationJ̄ is used by analogy with the commutative case, where this anti-homomorphism
is a composition of a complex structureJ with complex conjugation [15].)

The anti-homomorphism̄J induces a functorJ̄ ∗ from qgr(PSh̄)R to qgr(PSh̄op)R.
The latter category is naturally identified with the category qgr(PSh̄)L. Using this identi-
fication we can consider the composition ofJ̄ ∗ with the dualization functorHom(−,O)

as a functor from qgr(PSh̄)R to itself. For any bundleE we denote byJ̄ ∗(E)∨ its image
under this functor. The functor can be extended to complexes of bundles. It takes the
complexC· (22) to the complexJ̄ ∗(C·)∨

0 −→ L̄∗ ⊗ O(−1)
J̄ ∗(N)∨−→ K̄∗ ⊗ O J̄ ∗(M)∨−→ H̄ ∗ ⊗ O(1) −→ 0.

Let us consider complexesC· onP3
h̄ with an isomorphism

J̄ ∗(C·)∨ ∼= C· (23)

and trivialization on the linel. Then the spaceK acquires a hermitian metric andL
becomes isomorphic tōH ∗. The reasoning of Sect. 6 shows that we can represent the
mapsM andN as

M1z1 +M2z2 +M3z3 +M4z4, N1z1 +N2z2 +N3z3 +N4z4,

whereMi andNi are constant maps. By a suitable choice of bases we can put these maps
into the form

M1 =


1

0

0

 , M2 =


0

1

0

 , M3 =


B1

B2

J

 , M4 =


B1

′

B2
′

J ′

 , (24)
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N1 =
(
0 1 0

)
, N2 =

(
−1 0 0

)
,

N3 =
(
−B2 B1 I

)
, N4 =

(
−B2

′
B1

′
I
′)
.

Using the reality conditions̄J ∗(N)∨ = M andJ̄ ∗(M)∨ = −N we find that

B1
′ = −B2

†, B2
′ = B1

†, J
′ = I†, I

′ = −J†. (25)

Finally the conditionNM = 0 gives

a) µc = [B1, B2] + IJ = 0,
b) µr = [B1, B1

†] + [B2, B2
†] + II† − J†J = −2h̄ · 1k×k.

These matrix equations are invariant under the following action ofU(k):

Bi �→ gBig
−1, I �→ gI, J �→ Jg−1, whereg ∈ U(k). (26)

Denote byM the vector space of complex matrices(B1, B2, I, J). It has a structure
of a quaternionic vector space defined by

(B1, B2, I, J) �→ (−B2
†, B1

†,−J†, I†),

and, moreover, it is a flat hyperkähler manifold (see [28]). The mapµ = (µr, µc) is
a hyperkähler moment map for the action ofU(k) defined in (26) (see [19]). Since the
action ofU(k) onµ−1

c (0)∩µ−1
r (−2h̄ ·1) is free, the quotientM = µ−1

c (0)∩µ−1
r (−2h̄ ·

1)/U(k) is a smooth hyperkähler manifold. This manifold parametrizes complexes (22)
with a real structure (23) and a trivialization on the linel.

On the other hand, it was proved in [28,27] that the moduli spaceM(r,0, k) of torsion
free sheaves on the commutativeP2 with a trivialization on a fixed line can be identified
with M.

This identification can be described geometrically as follows. Let us assume thath̄

is positive. It can be checked that in this case the mapN can fail to be surjective only
on the planez4 = 0. We can restrict the complex (22) to the commutative planez3 = 0.
The restriction is a monad and its cohomology sheaf is a torsion free sheaf. It is easy to
see that this yields a complex isomorphism fromM to M(r,0, p).

The restriction of the complex (22) to a noncommutative plane is a monad as well.This
yields a map fromM to the moduli spaceMh̄(r,0, k) of bundles on the noncommutative
plane. Let us show that this map is an isomorphism. To this end we note that on the level
of the linear algebra data this map sends a quadruple(B1, B2, I, J) to the quadruple
(b1, b2, i, j) with

b1 = B1 − B2
†, b2 = B2 + B1

†, i = I − J†, j = J + I†.

Further, note that the equationsµc = 0, µr = −2h̄ · 1 are equivalent to the equation
[b1, b2] + i · j + 2h̄ · 1 = 0 and the vanishing of the moment map for the action of the
groupU(k) on the space of quadruples(b1, b2, i, j). Now it follows from the theorem
of Kempf and Ness ([28,20]) that the mapM → Mh̄(r,0, k) is a diffeomorphism.
It becomes a complex isomorphism if we replace the natural complex structure of the
spaceM with another one within theP1 of complex structures onM.

Thus we have
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Theorem 7.1. The moduli space Mh̄(r,0, k) is a smooth hyperkähler manifold of real
dimension 4rk, and as a hyperkähler manifold it is isomorphic to the moduli space
M(r,0, k) of torsion free sheaves on the commutative P2 with a trivialization on a fixed
line. As a complex manifold Mh̄(r,0, k) is obtained from M(r,0, k) by a rotation of the
complex structure.

The above discussion shows that there are natural bijections between

A′. Bundles onP2
h̄ with a trivialization on the commutative linel andc2 = k.

B ′. Solutions of the equationsµc = 0, µr = −2h̄ · 1 modulo the action ofU(k).
C′. Complexes of sheaves onP3

h̄ of the form (22) with a trivialization on the commu-
tative linel satisfying the reality condition (23).

One can show that forr > 1 a generic complex (22) is a monad and its cohomology
is a bundleE onP3

h̄ such that

H 1(P3
h̄, E(−2)) = 0, J̄ ∗(E)∨ ∼= E . (27)

Moreover, it can be shown that any bundleE satisfying the conditions (27) can be
represented as a cohomology of a monad of the form (22).

8. Noncommutative Twistor Transform

8.1. Review of the twistor transform. In the commutative case the ADHM construction
of instantons has the following geometric interpretation. Consider the double fibration

G(2; 4)
p←−−−− Fl(1,2; 4)

q−−−−→ P3, (28)

whereG(2; 4) is the Grassmannian andFl(1,2; 4) is the partial flag variety. The Grass-
mannianG(2; 4) has a real structure withS4 as the set of real points. For any bundle
E on P3 its twistor transform is defined as a sheafp∗q∗E on G(2; 4). Given ADHM
data we have a monad onP3 whose cohomology is a bundle. It can be shown that the
restriction of its twistor transform to the sphereS4 coincides with the instanton bundle
corresponding to these ADHM data. The instanton connection can also be reconstructed
from the bundle onP3 (see [4,24] for details).

In this section we show that one can consider the noncommutative quadric introduced
in Sect. 3 as a noncommutative GrassmannianG(2; 4). We also construct a noncommu-
tative flag varietyFl(1,2; 4) and projectionsp, q giving a noncommutative analogue
of the twistor diagram (28). The twistor transform can be defined in the same way as
above. It produces a bundle on the noncommutative sphere from the deformed ADHM
data. We show that this bundle is precisely the kernel of the mapD defined in Sect. 2.

It should also be possible to construct the instanton connection on the noncommutative
R4 from the complex of sheaves onP3

h̄. To do this, one needs to develop the differential
geometry of noncommutative affine and projective varieties. We go some way in this
direction by defining differential forms and spinors.

Since the goal of this section is mainly illustrative, we limit ourselves to stating the
results. An interested reader should be able to fill in the proofs.
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8.2. Tensor categories. A good way to construct noncommutative varieties with prop-
erties similar to those of commutative varieties is to start with a tensor category (see [25,
23]). LetT be an abelian tensor category. Consider a tensor functorO : T → Vect to
the abelian tensor category of vector spaces compatible with the associativity constraint
but not compatible with the commutativity constraint. IfA is a commutative algebra in
the tensor categoryT , thenO(A) is a noncommutative algebra in the tensor category
Vect . If M ∈ T is a rightA-module, thenO(M) is a rightO(A)-module. Any right
A-module (in the categoryT ) has a natural structure of a leftA-module (and hence an
A-bimodule). Thus any rightO(A)-module of the formO(M) has a natural structure of
aO(A)-bimodule.

Consider the categoryCommT of all finitely generated (graded) commutative al-
gebras in the tensor categoryT . Then underO the categoryCommT is mapped to a
subcategory of the category of finitely generated (graded) algebras. This subcategory
enjoys many properties of the category of commutative (graded) algebras. For example,
for all A,B ∈ CommT there is a natural algebra structure onO(A) ⊗ O(B) coming
from the algebra structure onA ⊗ B. The corresponding subcategory in the category
of noncommutative affine (resp. projective) varieties shares a lot of properties with the
category of commutative varieties. For example, ifX andY are varieties in this category,
then using the tensor product of the corresponding algebras one can define the “Carthe-
sian” productX × Y . More generally, given a pair of morphismsX → Z andY → Z

one can define the fiber productX ×Z Y . Further, starting from the module of differen-
tial forms ofA one can construct the sheaf of differential forms on the corresponding
noncommutative variety.

The category qgr(O(A)) has a nice subcategory which consists of modules of the
form O(M), whereM ∈ T is anA-module. To any objectO(M) of this subcategory
one can associate its symmetric and exterior powers. The symmetric powers ofO(M)

form a noncommutative graded algebra. This enables one to define the projectivization
of the sheaf corresponding to the moduleO(M).

8.3. Yang–Baxter operators. One way to construct an abelian tensor categoryT with a
functorO : T → Vect is to consider a Yang–Baxter operator (see [25,23]).

A Yang–Baxter operator on a vector spaceV is an operatorR : V ⊗ V → V ⊗ V ,
such that

R2 = idV⊗V ,

(R ⊗ idV )(idV ⊗ R)(R ⊗ idV ) = (idV ⊗ R)(R ⊗ idV )(idV ⊗ R).
(29)

A Yang–Baxter operator induces an action of the permutation groupSn on the tensor
powerV⊗n, where the transposition(i, i + 1) ∈ Sn acts as the operator

Ri,i+1 = idV⊗(i−1) ⊗ R ⊗ idV⊗(n−i−1) : V⊗n → V⊗n.

Equations (29) ensure that operatorsRi,i+1 satisfy the relations between the transposi-
tions(i, i + 1) in the groupSn.

If R is a Yang–Baxter operator on a vector spaceV , then the dual operatorR∨ :
V ∗ ⊗ V ∗ → V ∗ ⊗ V ∗ is also a Yang–Baxter operator.

Given a Yang–Baxter operatorR : V ⊗ V → V ⊗ V , one can construct an abelian
tensor categoryTR and a functorOR : TR → Vect such thatV is aOR-image of some
object ofTR, and the commutativity morphism in the categoryTR is mapped byOR to
R [23]. As mentioned above, given any two objectsA,B of the categoryCommTR , one
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has a natural algebra structure on the vector spaceO(A) ⊗ O(B). This algebra will be
denotedO(A) ⊗

R
O(B) and called theR-tensor product ofO(A) andO(B).

It is well known that there is a one-to-one correspondence between irreducible
representations of the groupSn and partitions ofn (Young diagrams). Under this
correspondence the trivial partition(n) corresponds to the sign representation, while
the maximal partition(1,1, . . . ,1︸ ︷︷ ︸

n times

) corresponds to the identity representation. Given

a partition(k1, . . . , kr ) of n (k1 ≥ k2 ≥ · · · ≥ kr) we denote by(k1, . . . , kr ) the
corresponding irreducible representation and by�

(k1,...,kr )
R V (resp.�(k1,...,kr )

R V ∗) the
(k1, . . . , kr )-isotypical component ofV⊗n (resp.(V ∗)⊗n), i.e. the sum of all subrepresen-
tations ofV⊗n (resp.(V ∗)⊗n) isomorphic to(k1, . . . , kr ). We also putCn

RV = �
(n)
R V ,

Cn
RV

∗ = �
(n)
R V ∗ for brevity.

Remark. The subspaces�λ
RV ⊂ V⊗n are theOR-images of some objects of the category

TR.

Let λ, µ be partitions ofn andm respectively. It is clear that the action of the
permutationσn,m ∈ Sn+m

σn,m(i) =
{
i +m, if 1 ≤ i ≤ n

i − n, if n+ 1 ≤ i ≤ n+m

gives an isomorphism

Rn,m : �λ
RV ⊗�

µ
RV → �

µ
RV ⊗�λ

RV.

Remark. This isomorphism is the image of an isomorphism in the categoryTR.

The trivial example of a Yang–Baxter operator is the usual transposition

R0(v1 ⊗ v2) = v2 ⊗ v1.

We will say thatR is a deformation-trivial Yang–Baxter operator ifR is an algebraic
deformation ofR0 in the class ofYang–Baxter operators. For a deformation-trivialYang–
Baxter operatorR we have

dim�λ
RV = dim�λ

R0
V

for any partitionλ.

8.4. The noncommutative projective space. LetR be a deformation-trivialYang–Baxter
operator on the vector spaceV ∗. Then the graded algebra

S·
RV

∗ = T (V ∗)
/〈

C2
RV

∗〉
is a noncommutative deformation of the coordinate algebra of the projective spaceP(V ).
We denote byPR(V ) the corresponding noncommutative variety. ThusPR(V ) is a non-
commutative deformation of the projective spaceP(V ).
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Example 8.1. The operator

R(zi ⊗ zj ) = zj ⊗ zi, if (i, j) �= (1,2), (2,1),

R(z1 ⊗ z2) = z2 ⊗ z1 + 2h̄(az3 ⊗ z4 + bz4 ⊗ z3),

R(z2 ⊗ z1) = z1 ⊗ z2 − 2h̄(bz3 ⊗ z4 + az4 ⊗ z3),

(30)

is a deformation trivialYang–Baxter operator on the 4-dimensional vector spaceZ∗ with
the basis{z1, z2, z3, z4}. By definition the homogeneous coordinate algebra ofPR(Z) is
generated byz1, z2, z3, z4 with relations(9) (we seta+b = 1 as before). HencePR(Z)

is isomorphic to the noncommutative projective spaceP3
h̄ defined in Sect. 3. The space

Z∗ was denotedU in that section.

The above example shows that part of the data encoded in theYang–Baxter operatorR

is lost in the structure of the corresponding noncommutative projective space.We will see
below that this data appears in the structure of other noncommutative varieties associated
with R.

8.5. Noncommutative Grassmannians. It is well known that the homogeneous coordi-
nate algebra of the Grassmann varietyG(k;V ) is a graded quadratic algebra withCkV ∗
as the space of generators and

Ker
(
CkV ∗ ⊗CkV ∗ → (V ∗)⊗2k → �(k,k)V ∗)

as the space of relations. This description justifies the following definition.

Definition 8.2. Let R be a Yang–Baxter operator on the space V ∗. The noncommutative
Grassmann variety GR(k;V ) is the noncommutative projective variety corresponding
to the quadratic algebra

GR(k;V ) = T (Ck
RV

∗)
/〈

Ker(Ck
RV

∗ ⊗Ck
RV

∗ → �
(k,k)
R V ∗)

〉
.

The algebraGR(k;V ) is theOR-image of a commutative algebra in the categoryTR.
If R is deformation-trivial, thenGR(k;V ) is a noncommutative deformation of

G(k;V ). Note thatGR(1;V ) = PR(V ) by definition.

Example 8.3. Consider the noncommutative GrassmannianGR(2;Z) corresponding to
the Yang–Baxter operator(30). Let

zij = 1

2
((zi ⊗ zj − zj ⊗ zi)− R(zi ⊗ zj − zj ⊗ zi)) ∈ C2

RZ
∗.

Then it is easy to check thatGR(2;Z) is generated by the elements

Y1 = z13, Y2 = −z24, Y3 = z23, Y4 = z14, D = −z12, T = z34,

with relations

[Y1, Y2] = 2h̄aT 2, [Y3, Y4] = 2h̄bT 2,

[D,Y1] = −2h̄aY1T , [D,Y2] = 2h̄aY2T ,

[D,Y3] = −2h̄bY3T , [D,Y4] = 2h̄bY4T ,

DT = 1

2
(Y1Y2 + Y2Y1 + Y3Y4 + Y4Y3) ,

(31)
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[Yi, Yj ] = [T , Yj ] = [T ,D] = 0 for all i = 3,4, j = 1,2,3,4. Comparing with(7)
one can see that the algebraGR(2;Z) is isomorphic toQh̄ with G andθ given by

G = 1

2


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , θ = 2h̄


0 a 0 0

−a 0 0 0

0 0 0 b

0 0 −b 0

 .

Note that the variablesXi, i = 1,2,3,4, used in Sect. 7 to describe the quadric are
related toYi, i = 1,2,3,4, by the following formulas:

Y1 = X2 + √−1X1, Y2 = −X2 + √−1X1,

Y3 = X4 + √−1X3, Y4 = −X4 + √−1X3.
(32)

8.6. Products of Grassmannians and flag varieties. Let R be a Yang–Baxter operator
on the vector spaceV ∗. Consider a sequencek1, . . . , kr of integers. LetZr be the free
abelian group withr generatorse1, . . . , er . TheR-tensor product

GR(k1;V ) ⊗
R
. . . ⊗

R
GR(kr ;V )

is aZr -graded algebra generated by the vector spacesC
ki
RV

∗ in degreeei , with relations

Ker
(
C
ki
RV

∗ ⊗C
ki
RV

∗ → �
(ki ,ki )
R V ∗)

in degree 2ei for all i and

Ker
(
(C

ki
RV

∗ ⊗C
kj
R V

∗)⊕ (C
kj
R V

∗ ⊗C
ki
RV

∗)
(id,−Rkj ,ki

)

−−−−−−−−−−→ C
ki
RV

∗ ⊗C
kj
R V

∗
)

in degreeei + ej for all i > j . For any increasing sequencek1, . . . , kr we define
also aZr -graded algebraFLR(k1, . . . , kr ;V ).It has the same generators as the algebra
GR(k1;V ) ⊗

R
. . . ⊗

R
GR(kr ;V ),, subject to the same relations in degrees 2ei and to

relations

Ker
(
(C

ki
R
V ∗ ⊗C

kj
R
V ∗)⊕ (C

kj
R
V ∗ ⊗C

ki
R
V ∗)

(id,−Rkj ,ki )−−−−−−−−→ C
ki
R
V ∗ ⊗C

kj
R
V ∗ −−−−−→ �

(ki ,kj )

R
V ∗)

in degreeei + ej for all i > j . This definition is suggested by the Borel–Weil–Bott
theorem (see [14]). In particular, forR = R0 we get the algebra corresponding to the
commutative flag variety.

We define theR-Carthesian productGR(k1;V ) ×
R
. . . ×

R
GR(kr ;V )and the noncom-

mutative flag varietyFlR(k1, . . . , kr ;V ) as the noncommutative varieties corresponding
to the algebrasGR(k1;V ) ⊗

R
. . . ⊗

R
GR(kr ;V ) andFLR(k1, . . . , kr ;V ) respectively.

To make this compatible with our definition of a noncommutative variety, we consider
instead of aZr -graded algebra its diagonal subalgebra. The diagonal subalgebra is a
graded algebra whosenth graded component is then(e1 + · · · + er)-graded component
of theZr -graded algebra. Thus according to Sect. 3 the category of coherent sheaves on
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theR-Cartesian product of Grassmannians (or the flag variety) is the categoryqgr of
the corresponding diagonal subalgebra.

The algebraFLR(k1, . . . , kr ;V ) is theOR-image of a commutative algebra in the
categoryTR. Hence one can define theR-Carthesian product of several flag varieties.

If R is deformation-trivial, then

GR(k1;V ) ×
R
. . . ×

R
GR(kr ;V ) and FlR(k1, . . . , kr ;V )

are noncommutative deformations of the corresponding commutative varieties.
Note that we have a canonical embedding of the graded algebraGR(ki;V ) into the

graded algebraFLR(k1, . . . , ki, . . . , kr ;V ) inducing the canonical projections

pi : FlR(k1, . . . , ki, . . . , kr ;V ) → GR(ki;V ).

On the other hand, by definitionFLR(k1, . . . , kr ;V ) is a quotient algebra of the algebra
GR(k1;V ) ⊗

R
. . . ⊗

R
GR(kr ;V ). HenceFlR(k1, . . . , kr ;V ) can be regarded as a closed

subvariety inGR(k1;V ) ×
R
. . . ×

R
GR(kr ;V ).

Example 8.4. The algebraGR(1;Z) ⊗
R

GR(2;Z) corresponding to the Yang–Baxter op-

erator(30) is generated by the elementsz1, z2, z3, z4, Y1, Y2, Y3, Y4,D, T with relations
(9), (31), and

[z1, Y2] = −2h̄az4T , [z2, Y1] = 2h̄az3T ,

[z1, Y3] = −2h̄bz3T , [z2, Y4] = −2h̄bz4T ,

[z1,D] = −2h̄bz3Y4 − 2h̄az4Y1, [z2,D] = 2h̄az3Y2 − 2h̄bz4Y3,

[z1, Y1] = [z2, Y2] = 0, [z3, Yi] = [z3,D] = 0, [z4, Yi] = [z4,D] = 0, [zi, T ] = 0 for
all i = 1,2,3,4. The algebraFLR(1,2;Z) is given by the same generators subject to
the same relations, as well as the additional relations

0 T Y2 Y3

T 0 −Y4 Y1

Y2 Y4 0 D − h̄(a + b)T

Y3 −Y1 −D − h̄(a + b)T 0



z1

z2

z3

z4

 =


0

0

0

0

 . (33)

As explained above, we have projections

Qh̄ GR(2;Z) p←−−−− FlR(1,2;Z) q−−−−→ PR(Z) P3
h̄

and a closed embedding

FlR(1,2;Z) ⊂ GR(2;Z) ×
R

PR(Z) = Qh̄ ×
R

P3
h̄.
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8.7. Tautological bundles. Let V (resp.V∗, �λ
RV, �λ

RV∗) denote the coherent sheaf
on GR(k;V ) corresponding to the free rightGR(k;V )-moduleV ⊗ GR(k;V ) (resp.
V ∗⊗GR(k;V ),�λ

RV ⊗GR(k;V ),�λ
RV

∗⊗GR(k;V )). Since the space of global sections
of the sheafO(1) on the GrassmannianGR(k;V ) is Ck

RV
∗, the mapsCk−1

R V ∗ →
V ⊗Ck

RV
∗ andCk+1

R V ∗ → V ∗ ⊗Ck
RV

∗ induce morphisms of sheaves

Ck−1
R V∗(−1)

φ−−−−→ V and Ck+1
R V∗(−1)

ψ−−−−→ V∗.

We putS = Im φ, V/S = Coker φ, S′ = Imψ , V∗/S′ = Cokerψ .

Remark. Fork = 1 we haveS = O(−1), V∗/S′ = O(1).

One can show that these sheaves are locally free. We refer to them as tautological
bundles.

The freeGR(k;V )-modules, corresponding to the sheaves�λ
RV, �λ

RV∗ are theOR-
images of free modules over the corresponding algebra in the categoryTR. Furthermore,
the morphismsφ andψ areOR-images. This implies that theGR(k;V )-modules cor-
responding to the tautological bundles areOR-images as well. Therefore they all have
a natural structure ofGR(k;V )-bimodules. This allows to defineR-symmetric powers
SkR(−) (resp.R-exterior powersCk

R(−)) of the tautological bundles as the corresponding
OR-images.

One can check that we have canonical isomorphisms of bimodules

V∗/S′ ∼= S∨, S′ ∼= (V/S)∨.

Example 8.5. Let R be the Yang–Baxter operator(30) andk = 2. Let ž1, ž2, ž3, ž4 be
the dual basis ofZ. Then the twisted maps

φ(1) : Z∗ ⊗ OGR
→ Z ⊗ OGR

(1),

ψ(1) : Z ⊗ OGR
∼= C3

RZ
∗ ⊗ OGR

→ Z∗ ⊗ OGR
(1)

are given by

φ(1) :


z1

z2

z3

z4

 �→


0 D + h̄(a − b)T −Y1 −Y4

D − h̄(a − b)T 0 −Y3 Y2

−Y1 Y3 0 −T
−Y4 −Y2 T 0



ž1

ž2

ž3

ž4

 ,

ψ(1) :


ž1

ž2

ž3

ž4

 �→


0 T Y2 Y3

T 0 −Y4 Y1

Y2 Y4 0 D − h̄(a + b)T

Y3 −Y1 −D − h̄(a + b)T 0



z1

z2

z3

z4

 .

Note thatψ(1)φ = 0 andφ(1)ψ = 0. Hence we have isomorphisms

S′(1) ∼= V/S, S(1) ∼= S∨.
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Note also that on the open subsetT �= 0 elements(z3, z4) give a trivialization of the
tautological bundleS∨. More precisely, the restriction of the sectionsz1, z2 of S∨ can
be expressed as

z1 = y4z3 − y1z4, z2 = −y2z3 − y3z4, (34)

whereyi = T −1Yi . Similarly, the elements(ž1, ž2) give a trivialization ofV/S onT �= 0.
Thus the restrictions of all tautological bundles to the open subsetT �= 0 correspond to
the free rank two bimodule over the Weyl algebraA(C4

h̄).

8.8. Pull-back and push-forward. Recall that we have canonical projections

pi : FlR(k1, k2;V ) → GR(ki;V ) (i = 1,2).

Given a right gradedGR(ki;V )-module E we consider the right bigraded
FLR(k1, k2;V )-moduleE ⊗GR(ki ;V ) FLR(k1, k2;V ). The diagonal subspace of this
module is a graded module over the diagonal subalgebra ofFLR(k1, k2;V ). This gives
the pull-back functor

p∗
i : coh(GR(ki;V )) → coh(FlR(k1, k2;V )).

The pull-back functor is exact and takes aOR-image to aOR-image. In particular, the
pull-backs of the tautological bundles have a canonical bimodule structure.

The pull-back functorp∗
i admits a right adjoint functorpi∗ : coh(FlR(k1, k2;V )) →

coh(GR(ki;V )), called the push-forward functor. It also takes aOR-image to aOR-
image.

The line bundlesp∗
1O(i) andp∗

2O(j) on the flag varietyFlR(k1, k2;V ) areOR-
images, hence they have a canonical bimodule structure. Therefore, we have a well-
defined tensor product

O(i, j) = p∗
1O(i)⊗ p∗

2O(j).

The line bundleO(i, j) is also aOR-image and has a canonical bimodule structure.
Thenth graded component of the corresponding module over the diagonal subalgebra
of FLR(k1, k2;V ) is the ((n + i)e1 + (n + j)e2)-graded component of the algebra
FLR(k1, k2;V ).

One can check that the push-forward of the line bundleO(j1, j2) with respect top2
is given by the formula

p2∗O(j1, j2) = S
j1
R (S

∨)(j2).

8.9. FlR(1,2;Z) as the projectivization of the tautological bundle. TheR-symmetric
powers of the tautological bundle form a sheaf of graded algebras on the Grassmannian
GR(k;V ),

S·
R(S

∨) = T (S∨)
/〈

C2
RS

∨〉 .
The correspondingGR(k;V )-module

∞⊕
i,j=0

9(GR(k;V ), SjR(S∨)(i))
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is a bigraded module with a structure of a bigraded algebra. One can check that this
bigraded algebra is isomorphic to the bigraded algebraFLR(1, k;V ). Thus we can
regard the flag varietyFlR(1, k;V ) as the projectivization of the tautological bundleS
on the GrassmannianGR(k;V ). In particular,FlR(1,2;Z) is the projectivization of the
tautological bundleS on the GrassmannianGR(2;Z).

8.10. Noncommutative twistor transform. If E is a coherent sheaf on the noncommuta-
tive projective spacePR(Z) = P3

h̄, we define its twistor transform as the sheafp∗q∗E
on GR(2;Z) = Qh̄, whereq is the projectionFlR(1,2;Z) → PR(Z) = P3

h̄ andp is
the projectionFlR(1,2;Z) → GR(2;Z) = Qh̄. Similarly, we can define the twistor
transform of a complex of sheaves onP3

h̄. Actually, it is more natural to consider the
derived twistor transform, i.e. the derived functor of the ordinary twistor transform.

Consider a complexC· of the form

0 −→ H ⊗ O(−1)
M−→ K ⊗ O N−→ L⊗ O(1) −→ 0

on the projective spaceP3
h̄. One can check that under the twistor transform one has

OP3
h̄
(−1) �→ 0, OP3

h̄
�→ OGR

, OP3
h̄
(1) �→ S∨.

In fact, for these sheaves the derived twistor transform coincides with the ordinary one.
Thus the (derived) twistor transform takes the complexC· to the complex

0 −→ K ⊗ O N−→ L⊗ S∨ −→ 0.

Let E denote the middle cohomology of the complexC·. It follows that the twistor
transform takesE to the kernel of the mapN : K ⊗ O −→ L⊗ S∨.

One can describeN without reference to the twistor transform. The morphismN is
the same thing as a vector space morphism

N1z1 +N2z2 +N3z3 +N4z4 : K −→ Z∗ ⊗ L. (35)

Here the mapsNi are given in terms of the deformed ADHM data according to (24) and
(25). The mapN is a composition of two maps

K ⊗ OGR
−→ L⊗ Z∗ ⊗ OGR

−→ L⊗ S∨,

where the first map is given by (35), while the second map comes from the canonical
projectionZ∗ ⊗ OGR

→ S∨. (We remind thatS∨ is the cokernel of the mapψ :
Z ⊗ OGR

(−1) −→ Z∗ ⊗ OGR
.)

Recall that on the open subset{T �= 0} the bundleS∨ is trivial, and the elements
(z3, z4) give its trivialization (see (34)). Hence the restriction of the twistor transform
of the complex (22) to this open subset is isomorphic to the complex

0 −−−−→ K ⊗ O

N3 + y4N1 − y2N2

N4 − y1N1 − y3N2


−−−−−−−−−−−−−−−−→ (L⊕ L)⊗ O −→ 0.

(36)
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Assume now that the complex (22) is given by the deformed ADHM data(B1, B2, I, J)
(see Sect. (7)). Applying the formulas (24) and (25), we see that with respect to the
chosen bases ofL andK the mapN is given by the matrix(

−B2 + y2 B1 + y4 I

−B1
† + y3 −B2

† − y1 −J†

)
.

It is evident that this operator is related to the operatorD in (4) by a change of basis. In
particular, the Nekrasov–Schwarz coordinatesξ1, ξ2, ξ̄1, ξ̄2 (see Sect. 2) can be expressed
throughxi = T −1Xi as follows:

ξ1 = −y4 = x4 − √−1 x3, ξ2 = y2 = −x2 + √−1 x1,

ξ̄1 = y3 = x4 + √−1 x3, ξ̄2 = −y1 = −x2 − √−1 x1.

Thus the twistor transform of the complex corresponding to the deformed ADHM data
coincides with the instanton bundle corresponding to these data (see Sect. 2). This gives
a geometric interpretation of the deformed ADHM construction of the noncommutative
instanton bundle.

8.11. Differential forms. Let an algebraA be theOR-image of a commutative algebra in
the categoryTR. This means that there exists an operatorR : A⊗2 −→ A⊗2 compatible
with the multiplication law ofA. Above we have defined theR-tensor productA ⊗

R
A

which is also an algebra with a Yang–Baxter operator. Explicitly, the multiplication law
of A ⊗

R
A is defined as follows. Letm be the multiplication map fromA⊗A toA. Then

the multiplication map from(A ⊗ A) ⊗ (A ⊗ A) to A ⊗ A is given bym12m34R23 in
the obvious notation. It is easy to see that the multiplication mapm is a homomorphism
of algebras.

Let I denote the kernel of the mapm : A ⊗
R
A → A. ThenI is a two-sided ideal of

the algebraA ⊗
R
A.

Definition 8.6. We define the bimodule of R-differential forms of the algebra A by

Ω1
A = I/I2.

For a motivation of this definition, see [12]. Furthermore, supposeA is a graded algebra.
Consider the total grading of the bigraded algebraA ⊗

R
A. The two-sided idealI inherits

the grading. Therefore the bimoduleΩ1
A is graded too.

In the graded case, besidesΩ1
A, we can define the module of projective differential

forms ofA in the following way. Letχ : A ⊗
R
A → A ⊗

R
A be the linear operator which

acts on the(p, q)th graded component of the algebraA ⊗
R
A as a scalar multiplication by

q. Sinceχ is a derivation, we haveχ(I2) ⊂ I . Thereforem(χ(I2)) = 0. Furthermore,

the induced mapΩ1
A = I/I2 m·χ−→ A is a morphism of gradedA-bimodules.

Definition 8.7. We define the A-bimodule of projective differential forms of the algebra
A by

Ω̂1
A = Ker(Ω1

A

m·χ−→ A).
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First, let us apply this construction of differential forms to the noncommutative affine
varietyC4

h̄ (Subsect. 3.4). The algebraA(C4
h̄) of polynomial functions onC4

h̄ is the Weyl
algebra:

A(C4
h̄) = T(x1, x2, x3, x4)/〈[xi, xj ] = h̄θij 〉1≤i,j≤4.

Let us define the Yang–Baxter operator on the tensor square of the subspace ofA(C4
h̄)

spanned by 1, x1, x2, x3, x4 by the formula

1 ⊗ xi �→ xi ⊗ 1, xi ⊗ 1 �→ 1 ⊗ xi,

xi ⊗ xj �→ xj ⊗ xi + h̄θij · 1 ⊗ 1 for all 1 ≤ i, j ≤ 4.

This Yang–Baxter operator has a unique extension to the wholeA(C4
h̄) compatible with

the multiplication law.
There is another way to look at this Yang–Baxter operator. Recall thatC4

h̄ is an open
subsetT �= 0 in the noncommutative GrassmannianGR(2;Z), whereR is defined by
(30). TheYang–Baxter operator on the quadratic algebraGR(2;Z) has the property that
R(T ⊗ a) = a⊗ T for anya ∈ GR(2;Z). Hence it descends to a Yang–Baxter operator
onA(C4

h̄). It is easy to see that it acts on the tensor square of the subspace spanned by
1, x1, x2, x3, x4 in the above manner.

We define the sheaf of differential forms�1
C4
h̄

as the bimodule ofR-differential forms

of the algebraA(C4
h̄). It is easy to check that�1

C4
h̄

is isomorphic to the bimoduleA(C4
h̄)

⊕4.

Futhermore, we can take anyR-exterior power of�1
C4
h̄

and thereby define�p

C4
h̄

. This

enables us to define a connection and its curvature on any bundle on the noncommutative
affine space. The relevant formulas were written above (see Subsect. 1.5).

Second, we define the sheaf of differential forms�1
GR

on the noncommutative Grass-
mannianGR(k;V ) as the sheaf corresponding to the module of projective differential
formsΩ̂1

GR
.

It can be shown that as in the commutative case we have an isomorphism of coherent
sheaves on the noncommutative GrassmannianGR(k;V ):

�1
GR

∼= S ⊗ S′.

It follows that fork = 1 that we have an exact sequence

0 −→ �1
PR(V )

−→ V∗(−1) −→ O −→ 0.

Thus this definition of the sheaf of differential forms�1
PR(V )

is consistent with Defini-
tion 4.8.

Similarly, one can define the sheaf of differential forms�1
FlR

on the noncommutative
flag varietyFlR(k1, . . . , kr ;V ). One can check that the projection

pi : FlR(k1, . . . , ki, . . . , kr ;V ) → GR(ki;V )
induces a morphism of bundlesp∗

i : �1
GR

→ �1
FlR

.
In the commutative case the ADHM construction of the instanton connection can be

interpreted in terms of twistor transform (see [4,24] for details). We believe that this
can be done in the noncommutative case as well. It appears that the most convenient
definition of connection on a bundle on a noncommutative projective variety is in terms
of jet bundles (see, for example, [24]).
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9. Instantons on a q-Deformed R4

In this paper we have focused on a particular noncommutative deformation ofR4 related
to the Wigner–Moyal product (3). This is the only deformation ofR4 which is known to
arise in string theory. But most of our constructions work for more general deformations
which do not have a clear physical interpretation. For example, let us replaceC4

h̄ with
a noncommutative affine variety whose coordinate ring is generated byz1, z2, z3, z4
subject to the following quadratic relations:

qz1z2 − q−1z2z1 = h̄, qz3z4 − q−1z4z3 = h̄,

[z1, z3] = [z1, z4] = [z2, z3] = [z2, z4] = 0.

We will denote this noncommutative affine variety byC4
q,h̄, and its coordinate algebra

by Aq,h̄. If h̄ andq are real, we can define a∗-operation onAq,h̄ by z∗1 = z2, z
∗
3 = z4.

The corresponding real noncommutative affine variety will be denoted byR4
q,h̄.

Consider now the following deformation of the ADHM equations:

[B1, B2]q−1 + IJ = 0, [B1, B
†
1]q−1 + [B2, B

†
2]q + II† − J †J = −2h̄ · 1k×k.

(37)

HereB1, B2 ∈ Hom(V , V ), I ∈ Hom(W, V ), J ∈ Hom(V ,W), as usual, and by
[A,B]q we mean aq-commutator:

[A,B]q = qAB − q−1BA.

We claim that solutions of these “q- deformed” ADHM equations can be used as an
input for the construction of instantons onR4

q,h̄ of rankr = dimW and instanton charge
k = dimV . Let us sketch this construction. Define an operator

D ∈ HomAq,h̄
((V ⊕ V ⊕W)⊗C Aq,h̄, (V ⊕ V )⊗C Aq,h̄)

by the formula

D =
(
B1 − qz1 −qB2 + qz2 I

B
†
2 − z̄2 qB

†
1 − z̄1 J †

)
.

Now we can go through the same manipulations as in Sect. 2: assume thatD is surjective,
and its kernel is a free module, and define a connection 1-form by the expression (5).
The same formal computation as in Sect. 2 shows that the curvature of this connection
is anti-self-dual.

In order to ensure thatD is surjective, it is probably necessary to replace the algebra
Aq,h̄ with some bigger algebra containingAq,h̄ as a subalgebra. This bigger algebra
should play the role of the algebra of smooth functions on our noncommutativeR4. For
h̄ = 0, q �= 1 there is even a natural candidate for this bigger algebra: it should consist
of C∞ functions onC2 with some suitable growth conditions at infinity and the product
defined by

(f � g)(z1, z2, z̄1, z̄2)

= exp

(
− ln(q)

(
z1z̄

′
1

∂2

∂z1∂z̄
′
1

+ z2z̄
′
2

∂2

∂z2∂z̄
′
2

− z′1z̄1
∂2

∂z′1∂z̄1
− z′2z̄2

∂2

∂z′2∂z̄2

))
f (z1, z2, z̄1, z̄2) g

(
z′1, z′2, z̄′1, z̄′2

) |z′1=z1,z
′
2=z2

. (38)
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Assuming that this formal expression exists, it is easy to check that the product is as-
sociative, that polynomial functions form a subalgebra with respect to it, and that this
subalgebra is isomorphic toAq,h̄.

It is natural to conjecture that all instantons onR4
q,h̄ arise from this deformed ADHM

construction. Note that in this case the deformed ADHM equations are not hyperkähler
moment map equations, and one cannot use the hyperkähler quotient construction to
infer the existence of a hyperkähler metric on the quotient space.

The algebro-geometric part of the story can also be generalized. We did not go
through this carefully, but nevertheless would like to indicate one result. It appears that
theq-deformed ADHM data can be interpreted in terms of sheaves on a more general
noncommutativeP2 than the one defined in Sect. 3. The graded algebra corresponding to
this noncommutativeP2 is generated by degree one elementsz1, z2, z3 with the quadratic
relations

qz1z2 − q−1z2z1 = 2h̄z2
3, [zi, z3] = 0, i = 1,2.

This algebra is one of the Artin-Schelter regular algebras of dimension three [1,2]. It is
characterized by the fact that the corresponding noncommutative varietyP2

q,h̄ contains
as subvarieties a commutative quadric and a noncommutative line. The latter is given
by the equationz3 = 0. In the limitq → 1 the planeP2

q,h̄ reduces toP2
h̄, and the union

of the quadric and the line turns into the triple commutative linel which played such a
prominent role in this paper. Ifq �= 1, then in the limith̄ → 0 the quadric turns into a
union of two intersecting commutative linesz1 = 0 andz2 = 0.

For anyq the line z3 = 0 should be regarded as “the line at infinity” (which is
noncommutative forq �= 1). It is plausible that theq- deformed ADHM data are in
one-to-one correspondence with bundles, or may be torsion–free sheaves, onP2

q,h̄ with
a trivialization on this line.

10. Appendix

In this section we define a�-product on the space of complex-valuedC∞ functions onRn

whose derivatives of arbitrary order are polynomially bounded. The�-product endows
this space with a structure of aC-algebra and reduces to the Wigner–Moyal product (3)
on polynomial functions.

Definition 10.1. Let O be a topological vector space which is a subspace of the space of
C∞ functions on Rn, and let O′ be the space of distributions on O. Let f be a C-valued
function on Rn which simultaneously is a distribution in O′. f is called a multiplier if
for any φ ∈ O, f φ ∈ O.

The set of multipliers ofO′ is obviously a subspace ofO′.

Definition 10.2. Let f ∈ O′. f is called a convolute if for any φ ∈ O we have

(f ∗ φ)(x) ≡ (f (ξ), φ(x + ξ)) ∈ O,

and this expression depends continuously on φ. The above expression is called the
convolution of f with φ.

The set of convolutes is obviously a subspace ofO′.
We will denote the Fourier duals ofO andO′ by Õ andÕ′, respectively. Iff ∈ O,

thenf̃ ∈ Õ will be the Fourier transform off , etc.
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Definition 10.3. The Schwartz space S(Rn) is the space of C-valued C∞ functions on
Rn such that φ ∈ S if and only if all the norms

sup
x

xkDmφ(x), k = 0,1,2, . . . , (39)

are finite. Here m = (m1, . . . , mn) is an arbitrary polyindex.

Convergence onS is defined using the family of norms (39). ThenS becomes a
complete countably normed space [17].

Proposition 10.4. A function f ∈ S ′ is a multiplier if and only if it is a C∞ function on
Rn all of whose derivatives are polynomially bounded.

Proof. Obvious. !"
The following theorem proved in [37] describes the subspace of convolutes ofS ′:

Theorem 10.5. A distribution f ∈ S ′ is a convolute if and only if it has the form

f =
∑
|α|<r

Dαfα(x),

where r is a positive integer, and fα are C0 functions on Rn which decrease at infinity
faster than any negative power of x.

The functions which decrease at infinity faster than any negative power will be called
rapidly decreasing.

The following theorem is proved in [17, Vol. 2, Ch. III]:

Theorem 10.6. Fourier transform and its inverse act as automorphisms on both S
and S ′.

From now on we identifyS ∼= S̃, S ′ ∼= S̃ ′.

Theorem 10.7. Fourier transform and its inverse establish an isomorphism between the
space of multipliers and the space of convolutes of S ′.

Proof. By the preceding theorem, it is sufficient to show that the Fourier transform of
every multiplier is a convolute, and vice versa. The former fact is proved in [17], vol. 2,
ch. III. Let us prove the converse.

By Theorem 10.5, every convolute has the form

f (x) =
∑
|α|<r

Dαfα(x)

for somer and rapidly decreasing continuous functionsfα. Let

f̃α(p) =
∫

fα(x) e
√−1px dnx

be the Fourier transform offα(x). Since the integrals∫
xβfα(x) e

√−1px dnx
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are absolutely convergent, the functionsf̃α areC∞ functions. Furthermore, the Fourier
transform off is equal to

f̃ (p) =
∑
|α|<r

(−√−1 p)α f̃α(p)

(see [17, Vol. 2, Ch. III]), hencẽf is also aC∞ function. Finally, since by the preceding
theorem the Fourier transform of any element ofS ′ is again an element ofS ′, f̃ and all
its derivatives are polynomially bounded. Hencef̃ is a multiplier. !"
Definition 10.8. Let ω be a skew-symmetric real-valued bilinear form on Rn. The --
product on the space of convolutes of S ′ is defined by

(f̃ -g̃)(p) =
∫

f̃ (q) g̃(p − q) e
√−1ω(p,q) dnq

(2π)n
.

Theorem 10.9. The --product is well-defined and makes the space of convolutes of S ′
into an algebra over C.

Proof. We will prove that the--product of two convolutes ofS ′ is well-defined, and is
again a convolute ofS ′. The rest is obvious.

It is sufficient to consider the case when

f̃ (p) = Dαf̃0(p), g̃(p) = Dβg̃0(p).

Then, integrating by parts, we may rewrite the--product in the following form:

(−1)|α|
∫

f̃0(q)
∂α

∂qα

[
∂β

∂pβ
g̃0(p − q) e

√−1ω(p,q)
]

dnq

(2π)n
.

Derivatives acting on the exponential bring down powers ofp, so the integral can be
rewritten as

P

(
p,

∂

∂p

)∫
f̃0(q)

∂β

∂pβ
g̃0(p − q) e

√−1ω(p,q) dnq

(2π)n
,

whereP(u, v) is a homogeneous polynomial of degree|α|. We now use the Leibniz rule
repeatedly to rewrite the expression above as

P

(
p,

∂

∂p

)∫
Q

(
q,

∂

∂p

)[
f̃0(q) g̃0(p − q) e

√−1ω(p,q)
] dnq

(2π)n
,

whereQ(u, v) is a homogeneous polynomial of degree|β|. Because both̃f0 and g̃0
are rapidly decreasing, the integral converges absolutely and defines aC0 function ofq
which is rapidly decreasing. Hence the--product off̃0 andg̃0 has the form∑

|m|≤|α|+|β|
Dmh̃m(p),

where the functions̃hm(p) are continuous and rapidly decreasing. It follows that the
space of convolutes is closed under the--product. !"
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Corollary 10.10. The space of multipliers of S ′ inherits a product from the --product
on the space of convolutes of S ′, and this product makes the space of multipliers into an
algebra over C. Polynomials form a subalgebra of this algebra isomorphic to the Weyl
algebra with generators xi, i = 1, . . . , n, and relations

[xi, xj ] = 2
√−1ωij .

Proof. The first statement is an immediate consequence of Theorems 10.7 and 10.9. The
second statement follows from a simple computation.!"

It is this product on the space of multipliers that we call the Wigner–Moyal product
and denote with�.
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