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Abstract: A vertex algebra is an algebraic counterpart of a two-dimensional conformal
field theory. We give a new definition of a vertex algebra which includes chiral algebras
as a special case, but allows for fields which are neither meromorphic nor anti-mero-
morphic. To any complex torus equipped with a flat Kähler metric and a closed 2-form
we associate an N = 2 superconformal vertex algebra (N = 2 SCVA) in the sense of
our definition. We find a criterion for two different tori to produce isomorphic N = 2
SCVA’s. We show that for algebraic tori the isomorphism of N = 2 SCVA’s implies
the equivalence of the derived categories of coherent sheaves corresponding to the tori
or their noncommutative generalizations (Azumaya algebras over tori). We also find a
criterion for two different tori to produce N = 2 SCVA’s related by a mirror morphism.
If the 2-form is of type (1, 1), this condition is identical to the one proposed by Golyshev,
Lunts, and Orlov, who used an entirely different approach inspired by the Homologi-
cal Mirror Symmetry Conjecture of Kontsevich. Our results suggest that Kontsevich’s
conjecture must be modified: coherent sheaves must be replaced with modules over
Azumaya algebras, and the Fukaya category must be “twisted” by a closed 2-form. We
also describe the implications of our results for BPS D-branes on Calabi-Yau manifolds.
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1. Introduction

1.1. Physicist’s mirror symmetry. A physicist’s Calabi Yau is a triple (X,G,B), where
X is a compact complex manifold with a trivial canonical bundle, G is a Ricci-flat
Kähler metric onX, and B is a class inH 2(X,R/Z) which is in the kernel of the Bock-
stein homomorphism H 2(X,R/Z) → H 3(X,Z). The class B can be lifted to a class
b ∈ H 2(X,R), and a closed 2-form B representing it is known as the B-field.

Physicists believe that there is a procedure which associates to any such triple an
N = 2 superconformal vertex algebra (N = 2 SCVA). The precise definition of an
N = 2 SCVA is rather complicated and will be given in Sect. 3. Roughly speaking, it is
a Euclidean quantum field theory on a two-dimensional manifold R×S1 whose Hilbert
space is acted upon by a unitary representation of the infinite-dimensional Lie super-al-
gebra with even generators Ln, L̄n, Jn, J̄n, n ∈ Z, odd generatorsQ±

r , Q̄
±
r , r ∈ Z+ 1

2 ,

and the following nonvanishing Lie brackets:

[Lm,Ln] = (m− n)Lm+n + d

4
(m3 −m)δm,−n,

[L̄m, L̄n] = (m− n)L̄m+n + d

4
(m3 −m)δm,−n,

[Lm, Jn] = −nJn+m, [L̄m, J̄n] = −nJ̄n+m,
[Jm, Jn] = dmδm,−n, [J̄m, J̄n] = dmδm,−n,
[Lm,Q±

r ] =
(m

2
− r

)
Q±
r+m, [L̄m, Q̄±

r ] =
(m

2
− r

)
Q̄±
r+m,

[Jm,Q±
r ] = ±Q±

r+m, [J̄m, Q̄±
r ] = ±Q̄±

r+m,{
Q+
r ,Q

−
s

} = 1

4
Lr+s + 1

8
(r − s)Jr+s + d

8

(
r2 − 1

4

)
δr,−s ,{

Q̄+
r , Q̄

−
s

} = 1

4
L̄r+s + 1

8
(r − s)J̄r+s + d

8

(
r2 − 1

4

)
δr,−s .

(1)
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Here d = dimCX, and {·, ·} denotes the anti-commutator. This algebra is a direct sum of
two copies of the celebrated N = 2 super-Virasoro algebra with central charge c = 3d.
If one omits Jn, J̄n and all the odd generators from the definition of the N = 2 SCVA,
one gets a structure which we call a conformal vertex algebra (CVA), and which is also
known as a conformal field theory on R×S1 ∼= C∗.Thus anN = 2 SCVA is a conformal
field theory on C∗ with some additional structure.

Heuristically, the construction of an N = 2 SCVA from a triplet (X,G,B) proceeds
as follows. To any Kähler manifold (X,G) equipped with a closed 2-form B one can
associate a two-dimensional classical field theory on R × S1, the so-called N = 2 su-
persymmetric σ -model. For the reader’s convenience, the definition of the σ -model is
given in Appendix A. The space of solutions of the corresponding classical equations
of motion is an infinite-dimensional symplectic supermanifold with a symplectic action
of two copies of the N = 2 super-Virasoro algebra with zero central charge (see [29,
8], and Appendix A). It can be argued that consistent quantization of this classical field
theory is possible only for c1(TX) ≥ 0, e.g. when X is a Fano manifold or a Calabi-Yau
manifold. In the Fano case (c1(TX) > 0) the quantized σ -model is an N = 2 field
theory, but not a superconformal one, because only a finite-dimensional subalgebra of
the classical N = 2 super-Virasoro algebra survives quantization. The same happens
if c1(TX) = 0 but G is not Ricci-flat. If c1(TX) = 0 and G is Ricci flat, both N = 2
super-Virasoro algebras survive quantization (though the central charges become non-
zero), and therefore the quantized σ -model is an N = 2 superconformal field theory,
i.e. an N = 2 SCVA. One can also argue that this N = 2 SCVA in fact depends only on
the image of B in H 2(X,R/Z), i.e. on B.

The actual quantization of the σ -model is feasible only for very special (X,G,B). In
particular, if X is a complex torus, the corresponding N = 2 SCVA can be constructed
for any flat G and any B ∈ H 2(X,R/Z). The quantization of the σ -model for a flat
complex torus is sketched in Appendix A.

Two physicist’s Calabi-Yaus are said to be mirror if there exists an isomorphism of the
corresponding conformal vertex algebras which acts on the algebra (1) as the so-called
mirror involution:

Ln → Ln, Q±
r → Q∓

r , Jn →−Jn,
(2)

L̄n → L̄n, Q̄±
r → Q̄±

r , J̄n → J̄n.

Such a morphism of N = 2 SCVA’s will be called a mirror morphism.
Mirror symmetry defined in this way acts pointwise on the moduli space of physicist’s

Calabi-Yaus. If one dropsG and B from the definition of a physicist’s Calabi-Yau, then
mirror symmetry becomes a correspondence between two families of Kähler manifolds
with a trivial canonical bundle whose Hodge numbers are related by hp,q = h′d−p,q .
The latter notion of mirror symmetry is much weaker than the physicist’s mirror sym-
metry. Nevertheless, much of the mathematical work on mirror symmetry up to now has
focused on this weaker notion, since it proved hard to make sense of the σ -model.

As mentioned above, the quantum σ -model is manageable when X is a complex
torus, so one could hope to understand mirror symmetry in detail in this particular case.
This is what this paper aims to do. Although from the physical point of view mirror
symmetry for complex tori appears to be rather trivial, we will see that its study sheds
considerable light on the Homological Mirror Symmetry Conjecture (HMSC), a subject
to which we now turn.
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1.2. Homological mirror symmetry. String theory makes highly nontrivial predictions
about the enumerative geometry of a Calabi-YauX in terms of its mirrorX′.The success
of these predictions seems quite mysterious from a purely mathematical standpoint. In an
insightful paper [23], M. Kontsevich formulated a conjecture which relates the proper-
ties of a Calabi-Yau with those of its mirror and suggested that it captures the essence of
mirror symmetry. Subsequently this conjecture was reinterpreted in physical terms [32].
In this subsection we recall the main features of Kontsevich’s conjecture.

Let X be a complex algebraic variety (or a complex manifold). Denote by OX the
sheaf of regular functions (or the sheaf of holomorphic functions). Recall that a coher-
ent sheaf is a sheaf of OX–modules that locally can be represented as a cokernel of a
morphism of holomorphic vector bundles. Coherent sheaves form an abelian category
which will be denoted by Coh(X). To any abelian category we can associate a certain
triangulated category called the bounded derived category. We denote by Db(X) the
bounded derived category of coherent sheaves on X. Roughly speaking, the category
Db(X) is a factor-category of the category of bounded complexes of coherent sheaves by
the subcategory of acyclic complexes (i.e. complexes with trivial cohomology sheaves).

On the other hand, it has been proposed [12, 23] that to any compact symplectic
manifold Y one can associate a certain category whose objects are (roughly speaking)
vector bundles on Lagrangian submanifolds equipped with unitary flat connections. The
morphisms in this category have been defined when Lagrangian submanifolds intersect
transversally. This conjectural category is called the Fukaya category and denoted F(Y ).
The category F(Y ) is not an abelian category; rather, it is supposed to be an A∞-cat-
egory equipped with a shift functor. For an introduction to A∞-categories see [21]. An
A∞–category is not a category in the usual sense, because the composition of morphisms
is not associative. The set of morphisms between two objects in an A∞–category is a
differential graded vector space. To any A∞–category one can associate a true category
which has the same objects but the space of morphisms between two objects is the 0th

cohomology group of the morphisms in the A∞–category. Applying this construction
to F(Y ), we obtain a true category F0(Y ) which is also called the Fukaya category.
Kontsevich [23] also constructs a certain triangulated category DF0(Y ) out of F(Y ).
We will call it the derived Fukaya category. Conjecturally, the category F0(Y ) is a full
subcategory of DF0(Y ).

A physicist’s Calabi-Yau (X,G,B) is both a complex manifold and a symplectic
manifold (the symplectic form being the Kähler form ω = GI ). Thus we can associate
to it a pair of triangulated categories Db(X) and DF0(X). The Homological Mirror
Symmetry Conjecture (HMSC) asserts that if two algebraic Calabi-Yaus (X,G,B) and
(X′,G′,B′) are mirror to each other, then Db(X) is equivalent to DF0(X

′), and vice
versa.

The Homological Mirror Symmetry Conjecture can be reinterpreted in physical terms.
To everyN = 2 superconformal field theory one can associate the set of BPS D-branes,
or more precisely two sets: the set of A-type D-branes and the set of B-type D-branes.
This is reviewed in more detail in Sect. 6. These sets are equipped with a rather intri-
cate algebraic structure: that of an A∞–category. This structure encodes the properties
of correlators in a topological open string theory (see [16] and references therein).
A mirror morphism between two N = 2 superconformal field theories identifies the
A-type D-branes of the first theory with the B-type D-branes of the second theory, and
vice versa. Now suppose that an N = 2 superconformal field theory originates from
a physicist’s Calabi-Yau (X,G,B). In this case there is evidence that A-type D-branes
are closely related to objects of the Fukaya category, while B-type D-branes are related
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to coherent sheaves on X. To prove the Homological Mirror Symmetry Conjecture it
would be sufficient to show that the derived Fukaya category of (X,G,B) (resp. the de-
rived category of X) can be recovered from the A∞-category of A-type D-branes (resp.
B-type D-branes). Conversely, proving the HMSC would likely result in an improved
understanding of BPS D-branes.

So far the Homological Mirror Symmetry Conjecture (with some important modifi-
cations, see Sect. 6 for details) has been proved only for dimCX = dimX′

C
= 1, i.e.

for the elliptic curve [31]. Two features make this case particularly manageable. First,
the N = 2 SCVA for the elliptic curve is known, so one knows the precise conditions
under which (X,G,B) is mirror to (X′,G′,B′). Second, all objects and morphisms in
the Fukaya category can be explicitly described.

In this paper we perform a check of the HMSC for the case when both X and X′ are
algebraic tori of arbitrary dimension. We will see that for algebraic tori of dimension
higher than one the HMSC as formulated by Kontsevich can not be true in general. The
main reason is that both the derived category of coherent sheaves and the derived Fukaya
category do not depend on the B-field, while in the physical mirror symmetry it plays an
essential role. However, a certain modification of the HMSC which takes into account
the B-field passes our check and has a good chance to be correct. This modification is
suggested both by our results on theN = 2 SCVA for complex tori, and by consideration
of BPS D-branes. The modified HMSC conjecture is formulated in Sect. 6. It reduces to
the original HMSC when the B-field vanishes for both manifolds related by the mirror
morphism.

The implications of our results for BPS D-branes on Calabi-Yau manifolds are briefly
described in Sect. 2 and in more detail in Sect. 6.

1.3. Vertex algebras and chiral algebras. Vertex algebras play a key role in physicist’s
mirror symmetry. A vertex algebra is an algebraic counterpart of a two-dimensional
conformal field theory. In the mathematical literature the terms vertex algebra and chi-
ral algebra are used interchangeably. Roughly speaking, a chiral algebra is a vector
superspace V together with a map Y : V → EndV [[z, z−1]] satisfying a number of
properties [19]. One says that Y maps states to quantum fields. The definition of a chiral
algebra first appeared in the work of Borcherds [6], but its origins go back to the classic
paper of Belavin, Polyakov, and Zamolodchikov [5] where an algebraic approach to
two-dimensional conformal field theory was proposed.

From a physical viewpoint, chiral algebras are conformal field theories such that all
fields are meromorphic (do not depend on z̄). Only very special conformal field theories
have this property. Moreover, a generic conformal field theory does not factorize as a
tensor product of two chiral algebras, one depending on z and another on z̄, despite
some claims to the contrary in the physics literature. For example, the quantization of
the σ -model associated to a flat torus yields a conformal field theory which factorizes
in this manner only for very special values of G and B.

Thus in order to give a precise meaning to physicist’s mirror symmetry, we need to
find a sufficiently general definition of a vertex algebra allowing for fields which depend
both on z and z̄.To avoid confusion, we will refer to these more general objects as vertex
algebras, while vertex algebras in the sense of [19] will be called chiral algebras.

Once both z and z̄ are allowed, they need not enter only in integer powers, so Y
will take values in a space of “fractional power series in z and z̄ with coefficients in
End(V )”, rather than in End(V )[[z, z̄, z−1, z̄−1]]. The necessity of fractional powers
can be seen by inspecting the conformal field theories associated to flat tori. Because
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of this, the definition of a vertex algebra is not a trivial extension of the definition of a
chiral algebra.

We hope that our definition of a vertex algebra will be of some interest to physicists as
well as mathematicians. Its advantage over the more standard definitions of conformal
field theory is that it is purely algebraic and based on the notion of Operator Product
Expansion (OPE). In contrast, other rigorous definitions take Wightman axioms as a
starting point. These axioms have an analytic flavor and do not make reference to OPE.
In fact, the existence of OPE does not follow from Wightman axioms (except in some
very special cases), and has to be postulated separately. Another advantage of our defi-
nition is that it does not require an inner product on the state space. Thus it is capable of
describing “non-unitary” conformal field theories which find applications in statistical
mechanics.

2. Summary of Results

2.1. Physicist’s mirror symmetry for complex tori. Let T be a 2d-dimensional real torus
U/&, where U ∼= R2d is a real vector space, and & ∼= Z2d is a lattice in U. Let I be a
(constant) complex structure on T , G be a flat Kähler metric on T , and b ∈ H 2(T ,R).

We will represent b by a constant 2-form B which is uniquely determined by b. In this
simple case there is a well-known explicit construction of the corresponding N = 2
SCVA which we denote V ert (&, I,G,B).We review this construction in Sect. 4. The
relation of this construction to the quantized σ -model is explained in Appendix A.

Our first result describes when two different quadruples (&, I,G,B) and (&′, I ′,
G′, B ′) yield isomorphic N = 2 SCVA’s. To state it, we first introduce some notation.
Let &∗ = Hom(&,Z) be the dual lattice in U∗, and T ∗ be the dual torus U∗/&∗. There
is natural pairing l : & ⊕ &∗ → Z. There is also a natural Z-valued symmetric bilinear
form q on & ⊕ &∗ defined by

q((w1,m1), (w2,m2)) = l(w1,m2)+ l(w2,m1), w1,2 ∈ &, m1,2 ∈ &∗.
Given G, I, B, we can define two complex structures on T × T ∗:

I(I, B) =
(

I 0
BI + I tB −I t

)
, (3)

J (G, I, B) =
( −IG−1B IG−1

GI − BIG−1B BIG−1

)
. (4)

The notation here is as follows. We regard I and J as endomorphisms of U ⊕ U∗,
and write the corresponding matrices in the basis in which the first 2d vector span U,
while the remaining vectors span U∗. In addition, G and B are regarded as elements of
Hom(U,U∗), and I t denotes the endomorphism of U∗ conjugate to I.

It is easy to see that J depends on G, I only in the combination ω = GI, i.e. it de-
pends only on the symplectic structure on T and the B-field. There is also a third natural
complex structure Ĩ on T ×T ∗,which is simply the complex structure that T ×T ∗ gets
because it is a Cartesian product of two complex manifolds:

Ĩ =
(
I 0
0 −I t

)
.

This complex structure will play only a minor role in what follows. Note that I coincides
with Ĩ if and only if B(0,2) = 0.
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Theorem 2.1. V ert (&, I,G,B) is isomorphic toV ert (&′, I ′,G′, B ′) if and only if there
exists an isomorphism of lattices &⊕&∗ and &′ ⊕&′∗ which takes q to q ′, I to I ′, and
J to J ′.

Our second result describes when (T , I,G,B) is mirror to (T ′, I ′,G′, B ′).

Theorem 2.2. V ert (&, I,G,B) is mirror to V ert (&′, I ′,G′, B ′) if and only if there is
an isomorphism of lattices &⊕&∗ and &′ ⊕&′∗ which takes q to q ′, I to J ′, and J to
I ′.

2.2. Applications to homological mirror symmetry. Let us now explain the implications
of these results for the HMSC. First, note that if both B and B ′ are of type (1, 1), the
criterion for mirror symmetry is identical to the one proposed in [14]. In that work,
this criterion was taken as a definition of mirror symmetry for algebraic tori. We now
see that this definition agrees with the physical notion of mirror symmetry and can be
generalized to non-algebraic tori and arbitrary B-fields.

Second, Theorem 2.1 allows us to make a check of the HMSC. Suppose the tori
(T1, I1,G1, B1) and (T2, I2,G2, B2) are both mirror to (T ′, I ′,G′, B ′). Then
V ert (&1, I1,G1, B1) is isomorphic to V ert (&1, I1,G1, B1), and by Theorem 2.1 there
is an isomorphism of lattices &1 ⊕&∗1 and &2 ⊕&∗2 which intertwines q1 and q2, I1 and
I2, and J1 and J2.

On the other hand, if we assume that both (T1, I1) and (T2, I2) are algebraic, then
HMSC implies that Db((T1, I1)) is equivalent to Db((T2, I2)). The criterion for this
equivalence is known [30, 28]: it requires the existence of an isomorphism of &1 ⊕ &∗1
and &2⊕&∗2 which intertwines q1 and q2, and Ĩ1 and Ĩ2. Clearly, since I �= Ĩ in gener-
al, this condition is in conflict with the one stated in the end of the previous paragraph.
Instead, we only have the following result:

Corollary 2.3. If V ert (&1, I1,G1, B1) is isomorphic to V ert (&2, I2,G2, B2), both
(T1, I1) and (T2, I2) are algebraic, and both B1 and B2 are of type (1, 1), then
Db((T1, I1)) is equivalent to Db((T2, I2)).

In Sect. 5 we also prove the following result.

Theorem 2.4. Let (T1, I1,G1, B1) be a complex torus equipped with a flat Kähler metric
and a B-field of type (1, 1). Let (T2, I2) be another complex torus. Let Ĩ1 and Ĩ2 be the
product complex structures on T1×T ∗1 and T2×T ∗2 . Suppose there exists an isomorphism
of lattices g : &1 ⊕ &∗1 → &2 ⊕ &∗2 mapping q1 to q2 and Ĩ1 to Ĩ2. Then on T2 there
exists a Kähler metricG2 and a B-field B2 of type (1, 1) such that V ert (&1, I1,G1, B1)

is isomorphic to V ert (&2, I2,G2, B2) as an N = 2 SCVA.

Combining this with Theorem 2.1 and the criterion for the equivalence ofDb((T1, I1))

and Db((T2, I2)), we obtain a result converse to Corollary 2.3.

Corollary 2.5. Let (T1, I1,G1, B1) be an algebraic torus equipped with a flat Kähler
metric and a B-field of type (1, 1). Let (T2, I2) be another algebraic torus. Suppose
Db((T1, I1)) is equivalent to Db((T2, I2)). Then on T2 there exists a Kähler metric
G2 and a B-field B2 of type (1, 1) such that V ert (&1, I1,G1, B1) is isomorphic to
V ert (&2, I2,G2, B2) as an N = 2 SCVA.
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If dimC T = 1, then the B-field is automatically of type (1, 1). Therefore the HMSC
passes the check in this special case. Of course, this is what we expect, since the HMSC
is known to be true for the elliptic curve [31]. On the other hand, for dimC T > 1 we
seem to have a problem.

Not all is lost however, and a simple modification of the HMSC passes our check.
The modification involves replacing (T , I ) with a noncommutative algebraic variety, or
more precisely, replacing the structure sheaf of (T , I ) with an Azumaya algebra over
(T , I ).

Let us recall the definition and basic facts about Azumaya algebras. Let A be an OX–
algebra which is coherent as a sheaf of OX–modules. Denote by Coh(A) the abelian
category of sheaves of (right) A–modules which are coherent as sheaves of OX–modules,
and by Db(A) the bounded derived category of Coh(A).

We will be interested in a simple case of this situation when A is anAzumaya algebra.
Recall that A is called an Azumaya algebra if it is locally free as a sheaf of OX–modules,
and for any point x ∈ X the restriction A(x) := A⊗OX

C(x) is isomorphic to a matrix
algebra Mr(C).

A trivial Azumaya algebra is an algebra of the form End(E), where E is a vector
bundle. Two Azumaya algebras A and A′ are called similar (or Morita equivalent) if
there exist vector bundles E and E′ such that

A⊗OX
End(E) ∼= A′ ⊗OX

End(E′).
It is easy to see that in this case the categories Coh(A) and Coh(A′) are equivalent, and
therefore the derived categories Db(A) and Db(A′) are equivalent as well.

Azumaya algebras modulo Morita equivalence generate a group with respect to the
tensor product. This group is called the Brauer group of the variety and is denoted by
Br(X).

There is a natural map
Br(X) −→ H 2(X,O∗

X).

This map is an embedding and its image is contained in the torsion subgroup of
H 2(X,O∗

X). The latter group is denoted by Br ′(X) and called the cohomological Bra-
uer group of X. The well-known Grothendieck conjecture asserts that the natural map
Br(X) −→ Br ′(X) is an isomorphism for smooth varieties. This conjecture was proved
for abelian varieties [17]; we will assume that it is true in general.

LetX be an algebraic variety over C, and let B ∈ H 2(X,R/Z). Let β : H 2(R/Z)→
H 2(X,O∗

X) be the homomorphism induced by the canonical map R/Z −→ O∗
X. We

have the following commutative diagram of sheaves:

0 −→ Z −→ R −−−→ R/Z −→ 0∥∥ 	 	β
0 −→ Z −→ OX

exp(2πi·)−−−→ O∗
X −→ 0

Suppose β(B) is a torsion element of H 2(X,O∗
X), and consider an Azumaya alge-

bra AB which corresponds to this element. The derived category Db(X,AB) does not
depend on the choice of AB because all these algebras are Morita equivalent. Thus we
can denote it simply Db(X,B).
Remark 2.6. It appears that a similar triangulated category can be defined even when
β(B) is not torsion. Any element a ∈ H 2(X,O∗

X) gives us an O∗
X gerbe Xa over X.
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Consider the derived category DbQcoh(Xβ(B)) of quasicoherent sheaves on this gerbe.

Now our triangulated category can be defined as a full subcategory of DbQcoh(Xβ(B))
consisting of weight-1 objects with some condition of finiteness, which replaces coher-
ence.

A sufficient condition for the equivalence of Db(X1,B1) and Db(X2,B2) for the
case of algebraic tori is provided by the following theorem [30].

Theorem 2.7. Let (T1, I1) and (T2, I2) be two algebraic tori. Let B1 ∈ H 2(T1,R/Z)

and B2 ∈ H 2(T2,R/Z), and suppose β maps both B1 and B2 to torsion elements. If
there exists an isomorphism of lattices &1 ⊕ &∗1 and &2 ⊕ &∗2 which maps q1 to q2, and
I1 to I2, then Db((T1, I1),B1) is equivalent to Db((T2, I2),B2).

Remark 2.8. It appears plausible that this is also a necessary condition for Db((T1, I1),

B1) to be equivalent to Db((T2, I2),B2).

Remark 2.9. It appears plausible that the theorem remains true even when β(B1) and
β(B2) have infinite order, see Remark 2.6.

Combining Theorem 2.7 with our Theorem 2.1, we obtain the following result.

Corollary 2.10. Suppose V ert (&1, I1,G1, B1) is isomorphic to V ert (&2, I2,G2, B2),

both (T1, I1) and (T2, I2) are algebraic, and both B1 and B2 are mapped by β to torsion
elements. Then Db((T1, I1),B1) is equivalent to Db((T2, I2),B2).

This corollary suggests that we modify the HMSC by replacingDb(X)withDb(X,B).
Once we decided to include the B-field, it seems unnatural to assume that the Fukaya
category is independent of it. D-brane considerations suggest a particular way to “twist”
the Fukaya category with a B-field (see Sect. 6). Let us denote this “twisted” catego-
ry by F(Y,B). Here Y is a compact symplectic manifold, and B ∈ H 2(Y,R/Z) is in
the kernel of the Bockstein homomorphism H 2(Y,R/Z) → H 3(Y,Z). The modified
HMSC asserts that if (X,G,B) is mirror to (X′,G′,B′), then Db(X,B) is equivalent
to DF0(X

′,B′). Corollary 2.10 shows that this conjecture passes the check which the
original HMSC fails.

If both B and B′ vanish, the modified HMSC reduces to the original HMSC. Thus
one could ask if it is possible to set the B-field to zero once and for all and work with
the original HMSC. This is highly unnatural for the following reason. Suppose we have
a mirror pair of physicist’s Calabi Yaus which both happen to have zero B-fields. Now
let us start varying the complex structure of the first Calabi-Yau. It can be seen in the
case of complex tori and can be argued in general that the corresponding deformation
of the second Calabi-Yau generally involves both the Kähler form and the B-field. Thus
if we have a family of Calabi-Yaus with zero B-field and varying complex structure,
the mirror family of Calabi-Yaus will have nonzero B-field for almost all values of the
parameter.

For example, in the case of the elliptic curve, the usual Teichmüller parameter τ takes
values in the upper half-plane. The mirror elliptic curve has vanishing B if and only if τ
can be made purely imaginary by a modular transformation.

In the case of the elliptic curve, the effect of the B-field on the HMSC is relatively
minor. It has no effect on the derived category of coherent sheaves because h0,2 = 0.
The objects of the Fukaya category are also unmodified in this case (see Sect. 6), and the
only change in the definition of morphisms is to complexify the symplectic form. For
higher-dimensional varieties, the modification of the Fukaya category is more serious.
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2.3. Physical applications. Transformations of the target space metric and the B-field
which leave the conformal field theory unchanged are known as T-duality transfor-
mations. For a real torus T n = Rn/&, & ∼= Zn, such transformations form a group
isomorphic to O(n, n,Z) [29, 24]. The main novelty of this work is that we consider
complex tori, and study transformations ofG,B, and the complex structure which leave
the N = 2 superconformal field theory unchanged or induce a mirror morphism.

Our results have implications for the study of BPS D-branes on Calabi-Yau mani-
folds, a subject which received much attention recently (see [10] and references therein).
They suggest that BPS D-branes of type B are best thought of as objects of the derived
category of coherent sheaves when the B-field is zero. When the B-field is nonzero but
the corresponding class inH 2(X,O∗

X) is a torsion class, the derived category of coherent
sheaves should be replaced with the derived category of a certain noncommutative alge-
braic variety (an Azumaya algebra overX). When the class of the B-field inH 2(X,O∗

X)

has infinite order, it appears that B-type D-branes should be regarded as objects of the
derived category of “coherent” sheaves on a gerbe over X.

Note a similarity with the results of [20, 4] where it was shown that in the presence
of a B-field D-brane charges on a smooth manifold X are classified by the K-theory of
an Azumaya algebra over X, or more generally by the K-theory of a Dixmier-Douady
algebra over X. The main differences are that Refs. [20, 4] work in a C∞-category, the
D-branes are not required to be BPS, and the focus is on D-brane charges rather on
D-branes themselves.

In Sect. 6 we describe the effect of a closed B-field on BPS D-branes of type A
(the ones associated to flat unitary bundles on special Lagrangian submanifolds in a
Calabi-Yau). This subject was previously studied by Hori et al. [18] for the case of a
single D-brane, i.e. when the rank of the bundle is one. Hori et al. find that the restriction
of the B-field to the Lagrangian submanifold must vanish. We find that this restriction is
too strong: it is sufficient to require the restriction of the B-field to have integer periods.
For the higher rank case we argue that in general the unitary bundle on the Lagrangian
submanfold is projectively flat rather than flat. Correspondingly, the restrictions on the
B-field are even weaker.

3. Superconformal Vertex Algebras

3.1. Quantum fields. Let V be a vector superspace over C. The parity of an element
a ∈ V is denoted p(a) and takes values in integers modulo 2.

Definition 3.1. The space of quantum fields in one formal variable with values in End(V )
is a vector superspace whose elements have the form∑

h∈J

∑
n,n̄∈Z

C(h+n,h+n̄)z−h−nz̄−h−n̄,

where J is some subset of [0, 1) (different for different elements),C(h+n,h+n̄) ∈ End(V ),
and the following conditions are satisfied:

a) the set J is countable;
b) for any element v ∈ V there is a finite subset Jv ⊂ J such that

C(h+n,h+n̄)(v) = 0

for all h ∈ J\Jv and all n, n̄ ∈ Z;
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c) for any element v ∈ V there is an integerN such that Ch+n,h+n̄(v) = 0 for all h ∈ J
if n > N or n̄ > N.

The space of quantum fields in one formal variable with values in End(V ) is denoted
QF1(V ).

Given an element A(z, z̄) ofQF1(V ), we will denote the coefficient of z−h−nz̄−h−n̄
in A(z, z̄) by A(h+n,h+n̄).

The intersection of QF1(V ) with End(V )[[z, z−1]] (resp. End(V )[[z̄, z̄−1]]) will be
called the space of meromorphic (resp. anti-meromorphic) fields. We will denote by
A(z) (resp. A(z̄)) meromorphic (resp. anti-meromorphic) fields. The coefficient of z−n
in A(z) (resp. the coefficient of z̄−n in A(z̄)) will be denoted A(n).

Definition 3.2. The space of quantum fields in two formal variables with values in
End(V ) is a vector superspace whose elements have the form∑

(h,g)∈J

∑
n,n̄,m,m̄∈Z

C(h+n,h+n̄,g+m,g+m̄)z−h−nz̄−h−n̄w−g−mw̄−g−m̄,

where J ∈ [0, 1)2, C(h+n,h+n̄,g+m,g+m̄) ∈ End(V ), and the following conditions are
satisfied:

a′) the set J is countable;
b′) for any element v ∈ V there is a finite subset Jv ⊂ J such that

C(h+n,h+n̄,g+m,g+m̄)(v) = 0

for all (h, g) ∈ J\Jv and all n, n̄,m, m̄ ∈ Z;
c′) for any element v ∈ V and any (h, g) ∈ J, there is an integer N such that

C(h+n,h+n̄,g+m,g+m̄)(v) = 0,

C(h+m,h+m̄,g+n,g+n̄)(v) = 0,

for n > N and any n̄, m, m̄ ∈ Z, and

C(h+n,h+n̄,g+m,g+m̄)(v) = 0,

C(h+m,h+m̄,g+n,g+n̄)(v) = 0,

for n̄ > N and any n,m, m̄ ∈ Z.

The space of quantum fields in two formal variables with values in End(V ) is denoted
QF2(V ).

Item (c′) in the definition ofQF2(V ) ensures that given an element C(z, z̄, w, w̄)of
QF2(V ), one can substitute z = w, z̄ = w̄ and get a well-defined element of QF1(V ).

This element will be denotedC(w, w̄,w, w̄).Note that in general a product of two fields
A(z, z̄) ∈ QF1(V ) and B(w, w̄) ∈ QF1(V ) does not belong to QF2(V ), precisely
because (c′) is not satisfied. In this situation one says that the product of A(z, z̄) and
B(w, w̄) has a singularity for z = w, z̄ = w̄.

If an elementA(z, z̄, w, w̄) ∈ QF2(V ) does not contain nonzero powers of z̄ (resp. z)
we will say that this field is meromorphic (resp. anti-meromorphic) in the first variable,
and write it asA(z,w, w̄) (resp.A(z̄, w, w̄)). Fields in two variables (anti-)meromorphic
in the second variable are defined in a similar way.
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3.2. The definition of a vertex algebra. We set

iz,w
1

(z− w)h =
∞∑
j=0

(−h
j

)
(−1)jwj z−j−h,

iz̄,w̄
1

(z̄− w̄)h =
∞∑
j=0

(−h
j

)
(−1)j w̄j z̄−j−h,

iw,z
1

(z− w)h =
∞∑
j=0

(−h
j

)
e−iπh(−1)j zjw−j−h,

iw̄,z̄
1

(z̄− w̄)h =
∞∑
j=0

(−h
j

)
eiπh(−1)j z̄j w̄−j−h,

where (−h
j

)
= (−h)(−h− 1) · · · (−h− (j − 1))

j !
.

These are formal power series expansions of the functions (z−w)−h and (z̄− w̄)−h in
the regions |z| > |w|, |z| < |w| and |z̄| > |w̄|, |z̄| < |w̄|.
Definition 3.3. A vertex algebra structure on a vector superspace V consists of the
following data:

(i) an even vector |vac〉 ∈ V ,
(ii) a pair T , T̄ of commuting even endomorphisms of V annihilating |vac〉,

(iii) a parity-preserving linear map

Y : V → QF1(V ), Y : a �→ Y (a) = a(z, z̄).
These data must satisfy the following requirements.

1. Y (|vac〉) = id ∈ End(V ).
2. [T , a(z, z̄)] = ∂a(z, z̄), [T̄ , a(z, z̄)] = ∂̄a(z, z̄).
3. a(z, z̄)|vac〉 = ezT+z̄T̄ a.
4. For any a, b ∈ V there are integersN,M, real numbers hj ∈ [0, 1), j = 1, . . . ,M,

and quantum fields Cj (z, z̄, w, w̄) ∈ QF2(V ), j = 1, . . . ,M, such that

a(z, z̄)b(w, w̄) =
M∑
j=1

iz,w
1

(z− w)hj+N iz̄,w̄
1

(z̄− w̄)hj+N Cj (z, z̄, w, w̄),

(5)

(−1)p(a)p(b)b(w, w̄)a(z, z̄) =
M∑
j=1

iw,z
1

(z− w)hj+N iw̄,z̄
1

(z̄− w̄)hj+N Cj (z, z̄, w, w̄).

(6)

The map Y is called the state-operator correspondence. The coefficient of z−αz̄−β in
Y (a) is called the (α, β) component of Y (a) and denoted by a(α,β).
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The last requirement in the definition of a vertex algebra is called the Operator Prod-
uct Expansion (OPE) axiom. It contains two important ideas. The equality (5) says
that the product of two fields in the image of Y has only power-like singularities for
z = w, z̄ = w̄. The difference of (5) and (6) means, roughly speaking, that the fields
in the image of Y are mutually local, in the sense that their supercommutator vanishes
when z �= w and z̄ �= w̄. This is particularly clear when all hi are equal to zero. Then
the supercommutator of a(z, z̄) and b(w, w̄) is proportional to

1

((N − 1)!)2
δ(N−1)(z− w)δ(N−1)(z̄− w̄)+ 1

(N − 1)!
δ(N−1)(z− w) iz̄,w̄ 1

(z̄− w̄)N

+ 1

(N − 1)!
δ(N−1)(z̄− w̄) iz,w 1

(z− w)N , (7)

where δ(k)(z − w) is the kth derivative of the formal delta-function defined as a formal
power series

δ(z− w) = z−1
∑
n∈Z

( z
w

)n
.

Given any two elements ofQF1(V ), we will say that they are mutually local if for their
products the OPE formulas (5,6) hold for someN,M ∈ Z, hj ∈ [0, 1), j = 1, . . . ,M,
and Cj ∈ QF2(V ), j = 1, . . . ,M.

Vertex algebras as defined above are a generalization of chiral algebras as defined
in [19] in the following sense. First, any chiral algebra is automatically a vertex alge-
bra, with T̄ = 0 and the image of Y consisting of meromorphic fields only. Second,
if we consider the subspace in V consisting of vectors which are mapped to meromor-
phic fields, the restriction of T and Y to this subspace specifies on it the structure of
a chiral algebra. Similarly, the restriction of T̄ and Y to the anti-meromorphic sector
yields another chiral algebra. Moreover, all meromorphic fields supercommute with all
anti-meromorphic fields. Thus any vertex algebra contains a pair of commuting chiral
subalgebras. All these facts are proved in Appendix B.

The OPE formulas simplify when one of the fields is meromorphic or anti-meromor-
phic. For example, the OPE of a meromorphic field a(z), a ∈ V, with a general field
b(w, w̄), b ∈ V, has the following form (see Appendix B for proof):

a(z)b(w, w̄) =
N∑
j=1

iz,w
1

(z− w)j Dj (w, w̄)+ : a(z)b(w, w̄) :,

(8)

(−1)p(a)p(b)b(w, w̄)a(z) =
N∑
j=1

iw,z
1

(z− w)j Dj (w, w̄)+ : a(z)b(w, w̄) : .

Here N is some integer, Dj(w, w̄) ∈ QF1(V ), and : a(z)b(w, w̄) : is an element of
QF2(V ) defined as follows:

: a(z)b(w, w̄) := a(z)+b(w, w̄)+ (−1)p(a)p(b)b(w, w̄)a(z)−,

where we set

a(z)+ =
∑
n≤0

a(n)z
−n, a(z)− =

∑
n>0

a(n)z
−n. (9)
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The field : a(z)b(w, w̄) : is called the normal ordered product of a(z) and b(w, w̄). Since
it belongs to QF2(V ), one can set z = w and get a well-defined field in one variable
: a(w)b(w, w̄) : . The difference between the right-hand side of (8) and : a(z)b(w, w̄) :
is called the singular part of the OPE.

Similarly, one can define the normal ordered product of an anti-meromorphic field
with a general field. The normal ordered product of two general fields is not defined.

Let us consider now the OPE of two meromorphic fields a(z) and b(z).We already
mentioned that meromorphic fields form a chiral algebra, thus the OPE (8) simplifies
even further:

a(z)b(w) =
N∑
j=1

iz,w
1

(z− w)j Dj (w)+ : a(z)b(w) :,

(−1)p(a)p(b)b(w)a(z) =
N∑
j=1

iw,z
1

(z− w)j Dj (w)+ : a(z)b(w) : .

Here Dj(w), j = 1, . . . , N, are meromorphic elements of QF1(V ). Exchanging a(z)
and b(w) we get

b(w)a(z) =
N∑
j=1

iw,z
1

(w − z)j Cj (z)+ : b(w)a(z) :,

(−1)p(a)p(b)a(z)b(w) =
N∑
j=1

iz,w
1

(w − z)j Cj (z)+ : b(w)a(z) :,

where Cj (z), j = 1, . . . , N, are meromorphic elements of QF1(V ).

In general, the normal ordered product is not supercommutative, i.e.

: a(z)b(w) : �= (−1)p(a)p(b) : b(w)a(z) : .

Neither is it associative, in the sense that in general

: a(z) : b(z)c(z) :: �= :: a(z)b(z) : c(z) : .

We will define the normal ordered product of more than two (anti-)meromorphic fields
inductively from right to left:

: a1(z)a2(z) . . . an(z) :=: a1(z) : a2(z) . . . an(z) :: .

An important special case where the normal ordered product of meromorphic fields is
supercommutative is when the fieldsDj(w) do not depend onw, i.e. are constant endo-
morphisms of V.This follows directly from the above OPE formulas. One can also show
that if pairwise OPE’s of meromorphic fields a(z), b(z), and c(z) have this property, then
their normal ordered product is associative [9]. For example, the normal ordered product
of free fermion and free boson fields is supercommutative and associative [19, 9].

Another important special case is the OPE of a meromorphic field and an anti-mero-
morphic field. In this case one can also define two normal ordered products, : a(z)b(w̄) :
and : b(w̄)a(z) : . But it follows easily from Eqs. (8) and analogous equations for the
OPE of an anti-meromorphic field and a general field, that in this case the singular part
of the OPE vanishes, the normal ordered product coincides with the ordinary product,
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and that consequently all meromorphic fields supercommute with all anti-meromorphic
fields. Thus

: a(z)b(w̄) := (−1)p(a)p(b) : b(w̄)a(z) : .

This is discussed in more detail in Appendix B.
The singular part of the OPE of two meromorphic fields a(z) and b(z) completely

determines and is determined by the supercommutators of a(n) and b(m) for all n,m ∈ Z.

Explicit formulas which enable one to pass from the OPE to the supercommutators and
back can found in [19].

When writing the OPE of two meromorphic fields we will use a shortened notation
in which only the singular part of the OPE is shown. To indicate this, the equality sign
is replaced by ∼. In addition, we will only write the first of the OPE’s in (8), and cor-
respondingly will omit the symbol iz,w, as is common in the physics literature. Similar
notation is used for the OPE of two anti-meromorphic fields. Thus instead of

a(z)b(w) =
N∑
j=1

iz,w
1

(z− w)j Dj (w)+ : a(z)b(w) :

we will write

a(z)b(w) ∼
N∑
j=1

Dj(w)

(z− w)j .

We conclude this subsection by defining morphisms of vertex algebras. A morphism
from a vertex algebra (V , |vac〉, T , T̄ , Y ) to a vertex algebra (V ′, |vac〉′, T ′, T̄ ′, Y ′) is
a morphism of superspaces f : V → V ′ such that

f (|vac〉) = |vac〉′, f T = T ′f, f T̄ = T̄ ′f,

and
Y ′(f (a))f (b) = f (Y (a)b) ∀a, b ∈ V.

3.3. Conformal vertex algebras.

Definition 3.4. Let V = (V , |vac〉, T , T̄ , Y ) be a vertex algebra. Conformal structure
on V is a pair of even vectors L, L̄ ∈ V such that

(i) L(z, z̄) = L(z) =
∑
n∈Z

Lnz
−n−2, L̄(z, z̄) = L̄(z̄) =

∑
n∈Z

L̄nz̄
−n−2.

(ii) L−1 = T , L̄−1 = T̄ .
(iii) L(z)L(w) ∼ c/2

(z− w)4 +
2L(w)

(z− w)2 +
∂L(w)

z− w ,

L̄(z̄)L̄(w̄) ∼ c̄/2

(z̄− w̄)4 +
2L̄(w̄)

(z̄− w̄)2 +
∂̄L̄(w)

z̄− w̄ .
(iv) For any a ∈ V

[L0, a(z, z̄)] = z∂a(z, z̄)+ (L0a)(z, z̄), [L̄0, a(z, z̄)] = z̄∂̄a(z, z̄)+ (L̄0a)(z, z̄).

(10)
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Here c, c̄ ∈ C. A vertex algebra with a conformal structure is called a conformal vertex
algebra (CVA).

The numbers c and c̄ are called the holomorphic and anti-holomorphic central charg-
es of the CVA. The reason for this name is the following. The OPE’s (10) are equivalent
to the following commutation relations for all n,m ∈ Z [19]:

[Lm,Ln] = (m− n)Lm+n + cm
3 −m
12

δm,−n,

[L̄m, L̄n] = (m− n)L̄m+n + c̄m
3 −m
12

δm,−n,

[Ln, L̄m] = 0.

Hence the components of L(z) and L̄(z) form two commuting Virasoro algebras. The
Virasoro algebra is the unique central extension of the Witt algebra (the algebra of
the infinitesimal diffeomorphisms of a circle). In the present case the central charges of
the two Virasoro algebras are c and c̄.

Note that Axiom 3 in the definition of a vertex algebra implies that both Ln and L̄n
annihilate |vac〉 for all n ≥ −1.

A morphism f from a CVA (V , |vac〉, Y, L, L̄) to a CVA (V ′, |vac〉′, Y ′, L′, L̄′) is
a morphism of the underlying vertex algebras which satisfies

f (L) = L′, f (L̄) = L̄′.

A conformal vertex algebra is almost the same as a conformal field theory. Namely, a
physically acceptable conformal field theory is a conformal vertex algebra whose state
space V is equipped with a positive-definite Hermitian inner product, and the following
additional constraints are satisfied:

(v) The space V splits as a direct sum of the form

⊕j∈JWj ⊗ W̄j ,

where J is a countable set, and Wj and W̄j are unitary highest-weight modules
over the meromorphic and anti-meromorphic Virasoro algebras, respectively.

(vi) The vacuum vector is the only vector in V annihilated by both L0 and L̄0.

The conformal vertex algebras we will be working with satisfy these constraints and
therefore are honest conformal field theories. However, we prefer not to stress the “real”
aspects of conformal field theories in this paper.

Furthermore, in order for a conformal field theory to admit a string-theoretic inter-
pretation, it must be defined on a Riemann surface of arbitrary genus. (The above axioms
define a conformal field theory in genus zero.) This does not require new data, but im-
poses additional, so-called sewing, constraints. We will work in genus zero only, and
therefore will neglect the sewing constraints.
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3.4. N = 1 superconformal vertex algebras.

Definition 3.5. Let V = (V , |vac〉, Y, L, L̄) be a conformal vertex algebra with central
charges c, c̄. N = 1 superconformal structure on V is a pair of odd vectors Q, Q̄ ∈ V
such that

(i) Q(z, z̄) = Q(z) =
∑
r∈Z+ 1

2

Qr

zr+3/2 , Q̄(z, z̄) = Q̄(z̄) =
∑
r∈Z+ 1

2

Q̄r

z̄r+3/2 .

(ii) The following OPE’s hold true:

L(z)Q(w) ∼ 3

2

Q(w)

(z− w)2 +
∂Q(w)

(z− w),

Q(z)Q(w) ∼ c/6

(z− w)3 +
1

2

L(w)

(z− w),
and similar OPE’s for the anti-meromorphic fields with z,w, c, ∂ replaced with
z̄, w̄, c̄, ∂̄.

The fields Q(z) and Q̄(z̄) are called left-moving and right-moving supercurrents,
respectively. A CVA with an N = 1 superconformal structure is called an N = 1
superconformal vertex algebra (N = 1 SCVA).

N = 1 superconformal structure is also known as (1, 1) superconformal structure.
Omitting Q̄, one obtains the definition of (1, 0) superconformal structure. Morphisms
of N = 1 SCVA’s are defined in an obvious way.

The OPE’s of Q(z), Q̄(z̄) with themselves and L(z), L̄(z̄) are equivalent to the
following commutation relations:

[Lm,Qr ] =
(m

2
− r

)
Qr+m, [L̄m, Q̄r ] =

(m
2
− r

)
Q̄r+m,

{Qr,Qs} = 1

2
Lr+s + c

12

(
r2 − 1

4

)
δr,−s , {Q̄r , Q̄s} = 1

2
L̄r+s+ c̄

12

(
r2− 1

4

)
δr,−s .

As usual, the barred generators supercommute with the unbarred ones. Thus Ln, L̄n,
Qr, Q̄r form an infinite-dimensional Lie super-algebra which is a direct sum of two
copies of the N = 1 super-Virasoro algebra with central charges c and c̄.

3.5. N = 2 superconformal vertex algebras.

Definition 3.6. Let V = (V , |vac〉, Y, L, L̄) be a conformal vertex algebra with central
charges c, c̄. N = 2 superconformal structure on V is a pair of even vectors J, J̄ ∈ V
and four odd vectors Q+,Q−, Q̄+, Q̄− ∈ V such that
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(i) J (z, z̄) = J (z) =
∑
n∈Z

Jn

zn+1 , J̄ (z, z̄) = J̄ (z̄) =
∑
n∈Z

J̄n

z̄n+1 ,

Q+(z, z̄) = Q+(z) =
∑
r∈Z+ 1

2

Q+
r

zr+3/2 , Q̄+(z, z̄) = Q̄+(z̄) =
∑
r∈Z+ 1

2

Q̄+
r

z̄r+3/2 ,

Q−(z, z̄) = Q−(z) =
∑
r∈Z+ 1

2

Q−
r

zr+3/2 , Q̄−(z, z̄) = Q̄−(z̄) =
∑
r∈Z+ 1

2

Q̄−
r

z̄r+3/2 ;

(ii) the following OPE’s hold true:

L(z)Q±(w) ∼ 3

2

Q±(w)
(z− w)2 +

∂Q±(w)
(z− w) ,

L(z)J (w) ∼ J (w)

(z− w)2 +
∂J (w)

(z− w),

J (z)J (w) ∼ c/3

(z− w)2 ,

J (z)Q±(w) ∼ ±Q
±(w)

(z− w),

Q+(z)Q−(w) ∼ c/12

(z− w)3 +
1

4

J (w)

(z− w)2 +
1

8

∂J (w)+ 2L(w)

(z− w) ,

Q±(z)Q±(w) ∼ 0,
and similar OPE’s for the anti-meromorphic fields with z,w, c, ∂ replaced with
z̄, w̄, c̄, ∂̄.

The fields J (z) and J̄ (z̄) are called left-moving and right-moving R-currents, the
fieldsQ±(z) and Q̄±(z̄) are called left-moving and right-moving supercurrents, respec-
tively. A CVA withN = 2 superconformal structure is called anN = 2 superconformal
vertex algebra (N = 2 SCVA).

The above OPE’s together with the OPE’s for L(z), L̄(z) are equivalent to the com-
mutation relations (1) if we set c = c̄ = 3d.
N = 2 superconformal structure is also known as a (2, 2) superconformal structure.

If one omits the anti-meromorphic currents J̄ (z̄), Q̄±(z̄), one gets the definition of a
(2, 0) superconformal structure.

Given an N = 2 SCVA, one can obtain an N = 1 SCVA by settingQ = Q+ +Q−,
Q̄ = Q̄+ + Q̄−. Thus an N = 2 SCVA can be regarded as an N = 1 SCVA with
additional structure.

Morphisms of N = 2 SCVA’s are defined in an obvious way. A mirror morphism
between two N = 2 SCVA’s is an isomorphism between the underlying N = 1 SCVA’s
which induces the following map on Q±, Q̄±, J, J̄ :

f (Q+) = Q−′ , f (Q−) = Q+′ , f (J ) = −J ′,
f (Q̄+) = Q̄+′ , f (Q̄−) = Q̄−′ , f (J̄ ) = J̄ ′.

This map acts as an outer automorphism on the algebra (1). A composition of two mirror
morphisms is an isomorphism of N = 2 SCVA’s.
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4. N = 2 SCVA of a Flat Complex Torus

The purpose of this section is to describe an N = 2 SCVA canonically associated to
a complex torus endowed with a flat Kähler metric and a constant 2-form. None of
this material is new, and everything can be found, in one form or another, in standard
string theory textbooks [24, 29]. We simply translate these standard constructions into
the language of vertex algebras.

4.1. Vertex algebra structure. LetU be a real vector space of dimension 2d.Let& ∼= Z2d

be a lattice in U. Let &∗ ⊂ U∗ be the dual lattice Hom(&,Z). Let T = U/&, T ∗ =
U∗/&∗. LetG be a metric on U, i.e. a positive symmetric bilinear form on U. Let B be
a real skew-symmetric bilinear form on U. Let l be the natural pairing & × &∗ → Z.

The natural pairing U × U∗ → R will be also denoted l. Let Z∗ be the set of nonzero
integers. Let the vectors e1, . . . , e2d ∈ U be the generators of &. The components of
an element w ∈ & in this basis will be denoted by wi, i = 1, . . . , 2d. The components
of an element m ∈ &∗ in the dual basis will be denoted by mi, i = 1, . . . , 2d.We also
denote by Gij , Bij the components of G, B in this basis. It will be apparent that the
superconformal vertex algebra which we construct does not depend on the choice of
basis in &. In the physics literature & is sometimes referred to as the winding lattice,
while &∗ is called the momentum lattice.

Consider a triple (T ,G,B). To any such triple we will associate a superconform-
al vertex algebra V which may be regarded as a quantization of the supersymmetric
σ -model described in Appendix A.

The state space of the vertex algebra V is

V = Hb ⊗C Hf ⊗C C [& ⊕ &∗].

Here Hb and Hf are bosonic and fermionic Fock spaces defined below, while C [&⊕&∗]
is the group algebra of & ⊕ &∗ over C.

To define Hb, consider an algebra over C with generators αis, ᾱ
i
s , i = 1, . . . , 2d, s ∈

Z∗ and relations

[αis, α
j
p] = s

(
G−1

)ij
δs,−p, [ᾱis , ᾱ

j
p] = s

(
G−1

)ij
δs,−p, [αis, ᾱ

j
p] = 0. (11)

If s is a positive integer, αi−s and ᾱi−s are called left and right bosonic creators, respec-
tively, otherwise they are called left and right bosonic annihilators. Either creators or
annihilators are referred to as oscillators.

The space Hb is defined as the space of polynomials of even variables ai−s , āi−s , i =
1, . . . , 2d, s = 1, 2, . . . . The bosonic oscillator algebra (11) acts on the space Hb via

αi−s �→ ai−s ·, ᾱi−s �→ āi−s ·,
αis �→ s

(
G−1

)ij ∂

∂a
j
−s
, ᾱis �→ s

(
G−1

)ij ∂

∂ā
j
−s
,

for all positive s. This is the Fock-Bargmann representation of the bosonic oscillator
algebra. The vector 1 ∈ Hb is annihilated by all bosonic annihilators and will be denot-
ed |vacb〉.

The space Hb will be regarded as a Z2-graded vector space with a trivial (purely
even) grading. It is clear that Hb can be decomposed as Hb ⊗ H̄b, where Hb (resp. H̄b)
is the bosonic Fock space defined using only the left (right) bosonic oscillators.
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To define Hf , consider an algebra over C with generatorsψis , ψ̄
i
s , i = 1, . . . , 2d, s ∈

Z+ 1
2 subject to relations

{ψis , ψjp} =
(
G−1

)ij
δs,−p, {ψ̄ is , ψ̄jp} =

(
G−1

)ij
δs,−p, {ψis , ψ̄jp} = 0. (12)

If s is positive,ψi−s and ψ̄ i−s are called left and right fermionic creators respectively, oth-
erwise they are called left and right fermionic annihilators. Collectively they are referred
to as fermionic oscillators.

The space Hf is defined as the space of skew-polynomials of odd variables θi−s , θ̄ i−s ,
i = 1, . . . , 2d, s = 1/2, 3/2, . . . . The fermionic oscillator algebra (12) acts on Hf via

ψi−s �→ θi−s ·, ψ̄ i−s �→ θ̄ i−s ·,
ψis �→

(
G−1

)ij ∂

∂θ
j
−s
, ψ̄ is �→

(
G−1

)ij ∂

∂θ̄
j
−s
,

for all positive s ∈ Z + 1
2 . This is the Fock-Bargmann representation of the fermionic

oscillator algebra. The vector 1 ∈ Hf is annihilated by all fermionic annihilators and
will be denoted |vacf 〉. The fermionic Fock space has a natural Z2 grading such that
|vacf 〉 is even. It can be decomposed as Hf ⊗ H̄f , where Hf (resp. H̄f ) is constructed
using only the left (right) fermionic oscillators.

For w ∈ &, m ∈ &∗ we will denote the vector w ⊕m ∈ C [& ⊕ &∗] by (w,m).We
will also use a shorthand |vac,w,m〉, for

|vacb〉 ⊗ |vacf 〉 ⊗ (w,m).
To define V, we have to specify the vacuum vector, T , T̄ , and the state-operator

correspondence Y. But first we need to define some auxiliary objects. We define the
operators W : V → V ⊗ & and M : V → V ⊗ &∗ as follows:

Wi : b⊗f⊗(w,m) �→wi(b⊗f⊗(w,m)), Mi : b⊗f⊗(w,m) �→mi(b⊗f⊗(w,m)).
We also set

Y j (z) =
∞∑′

s=−∞

α
j
s

szs
,

Ȳ j (z̄) =
∞∑′

s=−∞

ᾱ
j
s

sz̄s
,

∂Xj (z) = 1

z

(
G−1

)jk
Pk − ∂Y j (z), (13)

∂̄Xj (z̄) = 1

z̄

(
G−1

)jk
P̄k − ∂̄ Ȳ j (z̄), (14)

ψj (z) =
∑
r∈Z+ 1

2

ψ
j
r

zr+1/2 , (15)

ψ̄j (z̄) =
∑
r∈Z+ 1

2

ψ̄
j
r

z̄r+1/2 , (16)



Vertex Algebras, Mirror Symmetry, and D-Branes 99

where a prime on a sum over s means that the term with s = 0 is omitted, and Pk and
P̄k are defined by

Pk = 1√
2
(Mk +

(−Bkj −Gkj )Wj), P̄k = 1√
2
(Mk +

(−Bkj +Gkj )Wj).

Note that we did not define Xj(z, z̄) themselves, but only their derivatives. The reason
is that the would-be field Xj(z, z̄) contains terms proportional to log z and log z̄, and
therefore does not belong to QF1(V ).

The vacuum vector of V is defined by

|vac〉 = |vac, 0, 0〉.
The operators T , T̄ ∈ End(V ) are defined by

T = Pjαj−1 +
∞∑
s=1

Gjkα
j
−1−sα

k
s +

∑
r= 1

2 ,
3
2 ,...

(
r + 1

2

)
ψ
j
−1−rψ

k
r ,

T̄ = P̄j ᾱj−1 +
∞∑
s=1

Gjkᾱ
j
−1−s ᾱ

k
s +

∑
r= 1

2 ,
3
2 ,...

(
r + 1

2

)
ψ̄
j
−1−r ψ̄

k
r .

The state-operator correspondence is defined as follows. The state spaceV is spanned
by vectors of the form

α
j1−s1 . . . α

jn
−sn ᾱ

j̄1
−s̄1 . . . ᾱ

j̄n̄
−s̄n̄ψ

i1−r1 . . . ψ
iq
−rq ψ̄

ī1
−r̄1 . . . ψ̄

īq̄
−r̄q̄ |vac,w,m〉, (17)

where n, n̄, q, q̄ are nonnegative integers, s1, . . . , sn, s̄1, . . . , s̄n̄ are positive integers,
and r1, . . . , rq, r̄1, . . . , r̄q̄ are positive half-integers. This vector is mapped by Y to the
following quantum field:∑

(w′,m′)∈&⊕&∗
εw,m′ T (w,m) pr(w′,m′)z−2G−1(k,k′) z̄−2G−1(k̄,k̄′)

exp
(
kjY

j (z)+ + k̄j Ȳ j (z̄)+
)

:
n∏
l=1

∂slXjl (z)

(sl − 1)!

n̄∏
l̄=1

∂s̄l̄Xj̄l̄ (z̄)

(s̄l̄ − 1)!

q∏
t=1

∂rt−1/2ψit (z)

(rt − 1
2 )!

q̄∏
t̄=1

∂r̄t̄−1/2ψ̄ īt̄ (z̄)

(r̄t̄ − 1
2 )!

:

exp
(
kjY

j (z)− + k̄j Ȳ j (z̄)−
)
. (18)

Here k, k̄, k′, k̄′ are elements of U∗ defined by

kj = 1√
2
(mj +

(−Bjk −Gjk)wk), k̄j = 1√
2
(mj +

(−Bjk +Gjk)wk),
k′j =

1√
2
(m′j +

(−Bjk −Gjk)w′k), k̄′j =
1√
2
(m′j +

(−Bjk +Gjk)w′k),

the operator T (w,m) is a translation on the lattice & ⊕ &∗:

T (w,m) : (a, b) �→ (a + w, b +m),
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and the operators pr(w′,m′) : V → V are projections onto the subspace Hb ⊗ Hf ⊗
(w′,m′). Finally, εw,m′ is a sign equal to exp(iπl(w,m′)). We also recall that for any
meromorphic quantum field a(z) the fields a(z)+ and a(z)− are defined by (9), and
there is a similar definition for the anti-meromorphic fields. Thus Y j (z)± and Ȳ j (z̄)±
are given by

Y j (z)− =
∑
s>0

α
j
s

szs
, Y j (z)+ =

∑
s<0

α
j
s

szs
,

Ȳ j (z̄)− =
∑
s>0

ᾱ
j
s

sz̄s
, Ȳ j (z̄)+ =

∑
s<0

ᾱ
j
s

sz̄s
.

One can easily check that (18) is indeed a well-defined quantum field. Furthermore,
the vector (17) is unchanged when the bosonic oscillators are permuted, and is multiplied
by the parity of the permutation when the fermionic oscillators are permuted. For the
map Y to be well-defined, (18) must have the same property. To see that this is indeed
the case, note that the OPE of the fields ψj and ∂Xj is given by

∂Xj (z)∂Xk(w) ∼
(
G−1

)jk
(z− w)2 ,

ψj (z)ψk(w) ∼
(
G−1

)jk
(z− w) , (19)

∂Xj (z)ψi(z) ∼ 0,

and similarly for the anti-meromorphic fields. It follows that the singular part of the OPE
for ψj , ψ̄j , ∂Xj , ∂̄Xj and their derivatives is proportional to the identity operator, and
therefore their normal ordered product is supercommutative.

To facilitate the understanding of (18), we list a few special cases of the state-operator
correspondence.

The state αj−s |vac, 0, 0〉 is mapped by Y to

1

(s − 1)!
∂sXj (z).

The state ᾱj−s |vac, 0, 0〉 is mapped to

1

(s − 1)!
∂̄ sXj (z̄).

The state ψj−s |vac, 0, 0〉 is mapped to

1

(s − 1
2 )!
∂s−1/2ψj (z).

The state ψ̄j−s |vac, 0, 0〉 is mapped to

1

(s − 1
2 )!
∂̄ s−1/2ψ̄j (z̄).
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The state |vac,w,m〉 is mapped to∑
(w′,m′)∈&⊕&∗

εw,m′ T (w,m) z−2G−1(k,k′) z̄−2G−1(k̄,k̄′) exp
(
kjY

j (z)+ + k̄j Ȳ j (z̄)+
)

exp
(
kjY

j (z)− + k̄j Ȳ j (z̄)−
)
pr(w′,m′).

Checking that (V , |vac〉, T , T̄ , Y ) satisfies the vertex algebra axioms is a tedious but
straightforward exercise which we leave to the reader. Implicitly, the axioms are verified
in most textbooks on string theory, for example in [29, 24].

4.2. N = 2 superconformal structure. We first define an N = 1 superconformal struc-
ture on V by setting

L(z) = 1

2
: G(∂X(z), ∂X(z)) : −1

2
: G(ψ(z), ∂ψ(z)) : ,

L̄(z̄) = 1

2
: G

(
∂̄X(z̄), ∂̄X(z̄)

)
: −1

2
: G

(
ψ̄(z̄), ∂̄ψ̄(z̄)

)
: ,

Q(z) = i

2
√

2
: G(ψ(z), ∂X(z)) : ,

Q̄(z̄) = i

2
√

2
: G

(
ψ̄(z̄), ∂̄X(z̄)

)
: .

It can be easily checked that all these fields are in the image of Y, that L−1 = T , L̄−1 =
T̄ , and that they satisfy the OPE’s specified in Definition 3.5. The central charges turn
out to be c = c̄ = 3d.

To define anN = 2 superconformal structure, we need to choose a complex structure
I on U with respect to which G is a Kähler metric. Let ω = GI be the corresponding
Kähler form. Then the left-moving supercurrents and the U(1) current are defined as
follows:

Q±(z) = i

4
√

2
: G(ψ(z), ∂X(z)) : ± 1

4
√

2
: ω (ψ(z), ∂X(z)) : ,

J (z) = − i
2

: ω(ψ(z), ψ(z)) : .

The right-moving currents Q̄±(z̄) and J̄ (z̄) are defined by the same expressions with
∂X replaced by ∂̄X and ψ replaced by ψ̄. We omit the check that the OPE’s of these
currents are as specified in Definition 3.6. In checking the OPE’s the relations (19) are
useful.

5. Morphisms of Toroidal Superconformal Vertex Algebras

5.1. Isomorphisms of N = 1 SCVA’s. Let (T ,G,B) and (T ′,G′, B ′) be a pair of 2d-
dimensional real tori equipped with flat metrics and constant B-fields. Given G and B,
we define a flat metric on T × T ∗ by the formula

G(G,B) = 2

(
G− BG−1B BG−1

−G−1B G−1

)
.
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The meaning of this formula is that the value of G on a pair of vectors x1 ⊕ y1 and
x2 ⊕ y2, xi ∈ U, yi ∈ U∗, i = 1, 2, is

2
(
x1 y1

) (G− BG−1B BG−1

−G−1B G−1

)(
x2
y2

)
.

G(G,B) is obviously a symmetric form onU⊕U∗, and its positive-definiteness follows
from the positive-definiteness of G and the identity

G = R(G,B)t
(
G 0
0 G

)
R(G,B), (20)

where

R(G,B) =
(−1−G−1B G−1

1−G−1B G−1

)
.

We will use a shorthand G(G,B) = G and G(G′, B ′) = G′. Recall also that we have
canonical Z-valued symmetric bilinear forms on &⊕&∗ and &′ ⊕&′∗ denoted by q and
q ′, respectively (see Sect. 2).

In this subsection we prove

Theorem 5.1. N = 1 SCVA’s corresponding to (T ,G,B) and (T ′,G′, B ′) are isomor-
phic if and only if there exists an isomorphism of lattices & ⊕ &∗ and &′ ⊕ &′∗ which
takes q to q ′, and G to G′.

The “if” part of this theorem is proved in many string theory papers, see for exam-
ple [25, 34]. Below we outline a construction of the isomorphism of N = 1 SCVA’s
given an isomorphism of lattices and then prove the “only if” part of the theorem.

Let g be an isomorphism of & ⊕ &∗ with &′ ⊕ &′∗.We will write it as follows:

g =
(
a b

c d

)
,

where a ∈ Hom(&, &′), b ∈ Hom(&∗, &′), c ∈ Hom(&, &′∗), d ∈ Hom(&∗, &′∗). The
“realified” maps from U,U∗ to U ′, U ′∗ will be denoted by the same letters. Let us also
set H = G+ B. Both V and V ′ are tensor products of the group algebra of the respec-
tive lattice and bosonic and fermionic Fock spaces. The vertex algebra isomorphism
f : V → V ′ respects this tensor product structure. C[&⊕&∗] is mapped to C[&′ ⊕&′∗]
in an obvious way:

f :

(
w

m

)
�→
(
a b

c d

)(
w

m

)
.

The mapping of Fock spaces is defined by the substitutions(
ai−s
āi−s

)
�→ M(g,H)ij

(
a
j
−s
ā
j
−s

)
, s = 1, 2, . . . ,

(
θi−s
θ̄ i−s

)
�→ M(g,H)ij

(
θ
j
−s
θ̄
j
−s

)
, s = 1

2
,

3

2
, . . . ,
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where

M(g,H) =
(
a − bH t 0

0 a + bH
)
.

In particular, f preserves the bosonic and fermionic vacuum vectors.
Let us now indicate why this mapping is an isomorphism of N = 1 SCVA’s. The

statement that g takes q to q ′ is equivalent to

atc + cta = btd + dtb = 0, atd + ctb = id&∗ , (21)

where at denotes the conjugate of a, etc.
The statement that g takes G to G′ is equivalent to

H ′ = (c + dH)(a + bH)−1, (22)

where H ′ = G′ + B ′, H = G + B. To show this, let us denote the right-hand side of
the above equation byH ′′, letG′′ and B ′′ be the symmetric and anti-symmetric parts of
H ′′, and let G′′ = G(G′′, B ′′). In view of (20) we have

G′′ = R(G′′, B ′′)t
(
G′′ 0
0 G′′

)
R(G′′, B ′′).

Let us multiply this equation by gt from the left and by g from the right and use the
identity

R(G′′, B ′′)g = M(g,H)R(G,B), (23)

which can be easily proved using (21). We get

gtG′′g = R(G,B)tM(g,H)t
(
G′′ 0
0 G′′

)
M(g,H)R(G,B).

We now use another easily checked identity:

G′′ = [
(a + bH)t ]−1

G(a + bH)−1 = [
(a − bH t)t

]−1
G(a − bH t)−1, (24)

and obtain
gtG′′g = G.

On the other hand, we know that gtG′g = G. Thus G′′ = G′, and henceG′′ = G′, B ′′ =
B ′, H ′′ = H ′. This proves (22). As a consequence of G′′ = G′ and (24), we obtain a
useful formula relating G′ and G:

G′ = [
(a + bH)t ]−1

G(a + bH)−1 = [
(a − bH t)t

]−1
G(a − bH t)−1. (25)

Using these relations, one can easily check that the map f intertwines Y and Y ′, i.e.

Y ′(f (a), z, z̄) = f Y (a, z, z̄)f−1, ∀a ∈ V. (26)

In particular, we have

f−1

(
∂X′i (z)
∂̄X′i (z)

)
f = M(g,H)ij

(
∂Xj (z)

∂̄X
j
(z)

)
,

(27)

f−1
(
ψ
′i (z)

ψ̄
′i (z)

)
f = M(g,H)ij

(
ψj (z)

ψ̄j (z)

)
.
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These relations and the definition of L(z), L̄(z̄),Q(z), Q̄(z̄) imply that the N = 1
superconformal structure is also preserved:

L′(z) = fL(z)f−1, Q′(z) = fQ(z)f−1,
(28)

L̄′(z̄) = f L̄(z̄)f−1, Q̄′(z̄) = f Q̄(z̄)f−1.

Hence f is an isomorphism of N = 1 superconformal vertex algebras.
In the remainder of this subsection we prove the “only if” part of the theorem. Let

(T ,G,B) and (T ′,G′, B ′) be two real tori equipped with a flat metric and a constant
B-field. Thus T = U/& and T ′ = U ′/&′, where U and U ′ are real vector spaces and
& and &′ are lattices of maximal rank in the respective spaces. Clearly, for the N = 1
SCVA’s to be isomorphic, the central charges of the corresponding super-Virasoro alge-
bras must agree, hence dimU = dimU ′. We pick an isomorphism of U and U ′ and a
basis inU. Let V = (V , Y, |vac〉, L, L̄,Q, Q̄) and V ′ = (V ′, Y ′, |vac′〉, L′, L̄′,Q′, Q̄′)
be the corresponding N = 1 SCVA’s. Let f : V → V ′ be an isomorphism of N = 1
SCVA’s. This means that Eqs. (26) and (28) hold true. In particular, f preserves the form
of the OPE.

Consider the “Hamiltonians” L0, L̄0 ∈ End(V ).A short computation yields:

L0 = 1

8
G(Z,Z)− 1

4
q(Z,Z)+Nb+Nf , L̄0 = 1

8
G(Z,Z)+ 1

4
q(Z,Z)+N̄b+N̄f .

Here Z = (W,M) is regarded as an element of End(H)⊗R (U ⊕U∗), and we defined

Nb =
∞∑
s=1

G(α−s , αs) , Nf =
∑

r=1/2,3/2,...

rG (ψ−r , ψr) ,

N̄b =
∞∑
s=1

G(ᾱ−s , ᾱs) , N̄f =
∑

r=1/2,3/2,...

rG
(
ψ̄−r , ψ̄r

)
.

The operators Nb,Nf , N̄b, N̄f commute with each other. For what follows it is
important to know their spectrum in Fock space. One can show that the Fock space
decomposes into a tensor sum of the joint eigenspaces of Nb,Nf , N̄b, N̄f , and that all
the eigenvalues are nonnegative. Furthermore, the spectrum ofNb, N̄b is integer, and the
spectrum of Nf , N̄f is half-integer. Finally, the only vector in Hb ⊗ Hf annihilated by
all four operators is |vacb〉 ⊗ |vacf 〉. (All of these facts are standard and can be easily
proved using the commutation relations for the oscillators.)

Note also that the spectrum of the operator G(Z,Z) is nonnegative because G is a
positive-definite form. The only vector in C

[
& ⊕ &∗] annihilated by G(Z,Z) is (0, 0).

Now let us find all the eigenvectors of L0, L̄0 with eigenvalues (1/2, 0). Suppose
a ∈ V is such an eigenvector. SinceL0, L̄0 commute withZ = (W,M),we may assume
that a is an eigenvector of Z with an eigenvalue z = (w,m), where w ∈ &,m ∈ &∗. In
view of the above we have three possibilities:
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Case 1. Nb a = N̄b a = Nf a = N̄f a = 0,

1

2
G(z, z)− q(z, z) = 2,

1

2
G(z, z)+ q(z, z) = 0.

Case 2. Nb a = N̄b a = Nf a = 0,

(
N̄f − 1

2

)
a = 0,

G(z, z) = q(z, z) = 0. (29)

Case 3. Nb a = N̄b a = N̄f a = 0,

(
Nf − 1

2

)
a = 0,

G(z, z) = q(z, z) = 0.

The first case is ruled out, because we must have q(z, z) = −1, in contradiction with
the fact that q is an even form.

In the second case, we must have z = 0. Then from the formulas for L0, L̄0 we see
that such a vector has eigenvalues (0, 1/2) rather than (1/2, 0). Hence this case is also
ruled out.

In the third case, we must have z = 0. Furthermore, it is easy to see that all vectors
satisfying (29) must also satisfy

αisa = ᾱisa = 0, i = 1, . . . , 2d, s = 1, 2, . . . ,

ψ̄ ir a = 0, i = 1, . . . , 2d, r = 1/2, 3/2, . . . ,

ψira = 0, i = 1, . . . , 2d, r = 3/2, 5/2, . . . .

It follows that a must have the form

a =
(

2d∑
i=1

ci ψ
i
−1/2

)
|vac, 0, 0〉,

where ci, i = 1, . . . , 2d, are arbitrary complex numbers. A similar argument shows
that all eigenvectors of L0, L̄0 with eigenvalues (0, 1/2) have the form(

2d∑
i=1

c̄i ψ̄
i
−1/2

)
|vac, 0, 0〉,

where c̄i , i = 1, . . . , 2d, are arbitrary complex numbers.
Now recall that L′0f = fL0 and L̄′0f = f L̄0. This implies that f identifies the

(1/2, 0) eigenspace of (L0, L̄0) with the (1/2, 0) eigenspace of (L′0, L̄
′
0), and (0, 1/2)

eigenspace of (L0, L̄0) with the (0, 1/2) eigenspace of (L′0, L̄
′
0). Thus there exist two

invertible complex matrices F ij and F̄ ij such that

ψ
′i
−1/2|vac, 0, 0〉 = f

(
F ijψ

j
−1/2|vac, 0, 0〉

)
,

ψ̄
′i
−1/2|vac, 0, 0〉 = f

(
F̄ ij ψ̄

j
−1/2|vac, 0, 0〉

)
.

Applying Y ′ to both sides of this equation and using (26), we obtain:

ψ
′i (z) = f F ijψj (z) f−1, ψ̄ i(z̄) = f F̄ ij ψ̄j (z̄) f−1.
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An immediate consequence of this is the transformation law for fermionic oscillators:

ψ
′i
r = f F ijψjr f−1, ψ̄

′i
r = f F̄ ij ψ̄jr f−1, r ∈ Z+ 1

2
.

Compatibility with the commutation relations of the fermionic oscillators then requires:

FTG′F = G, F̄ T G′F̄ = G.
(Alternatively, one may derive this by comparing the OPE ofψ(z), ψ̄(z̄)with themselves
and the OPE of ψ ′(z), ψ̄ ′(z̄) with themselves.)

Now let us turn to bosonic oscillators. Consider the OPE of Q(z) with ψ(z):

Q(z)ψi(w) ∼ i

2
√

2

∂Xi(w)

(z− w).

Since f preserves the OPE and takes Q(z) to Q′(z), and ψ(w) to F−1ψ ′(w), we infer
that

∂X
′i (z) = f F ij ∂Xj (z) f−1.

Similarly, the OPE of Q̄(z̄) with ψ̄(w) implies that

∂̄X̄
′i (z̄) = f F̄ ij ∂̄X̄j (z̄) f−1.

These formulas imply the following transformation laws for bosonic oscillators:

α
′i
n = f F ij αjn f−1, ᾱ

′i
n = f F̄ ij ᾱjn f−1, n ∈ Z.

Another consequence is the transformation law of Z:

Z′ = f gZ f−1,

where g ∈ HomR(U ⊕ U∗, U ′ ⊕ U ′∗) is defined by

g = R(G′, B ′)−1
(
F 0
0 F̄

)
R(G,B),

andZ andZ′ are regarded as elements of End(C[&⊕&∗])⊗R (U⊕U∗) and End(C[&′⊕
&′∗])⊗R(U

′⊕U ′∗).Now note thatZ andZ′ are in fact “realifications” of some elements
in End(C[&⊕&∗])⊗Z (&⊕&∗) and End(C[&′ ⊕&′∗])⊗Z (&

′ ⊕&′∗). This means that
g is a “realification” of an element of HomZ(& ⊕ &∗, &′ ⊕ &′∗), which we also denote
g.

It remains to show that g takes q to q ′ and G to G′. To this end notice that the
transformation laws for the oscillators imply

N ′
b = fNbf−1, N ′

f = fNf f−1, N̄ ′
b = f N̄bf−1, N̄ ′

f = f N̄f f−1.

Then it follows from L′0 = fL0f
−1 and L̄′0 = f L̄0f

−1 that for all x ∈ & ⊕ &∗ we
have

q ′(gx, gx) = q(x, x),
G′(gx, gx) = G(x, x).

This concludes the proof of the theorem.
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5.2. Isomorphisms of N = 2 SCVA’s. The goal of this subsection is to prove Theo-
rem 2.1 which we restate below. Given a metricG onU, a compatible complex structure
I on U, and B ∈ E2U∗, we define a pair of commuting complex structures on U ⊕U∗
as follows:

I(I, B) =
(

I 0
BI + I tB −I t

)
,

J (G, I, B) =
( −IG−1B IG−1

GI − BIG−1B BIG−1

)
.

The complex structure J can be expressed in terms of the Kähler form ω = GI and B:

J (ω, B) =
(

ω−1B −ω−1

ω + Bω−1B −Bω−1

)
.

We will use a simplified notation I(I, B) = I, I(I ′, B ′) = I ′, etc. The complex
structures I,J and the symmetric forms G, q are related by an identity

G = −2qIJ ,
where G and q are understood as elements of HomR(U,U

∗).

Theorem 5.2. V ert (&, I,G,B) is isomorphic to V ert (&′, I ′,G′, B ′) as an N = 2
SCVA if and only if there is an isomorphism of lattices &⊕&∗ and &′ ⊕&′∗ which takes
q to q ′, I to I ′, and J to J ′.

To prove this theorem, note that f : V → V ′ is an isomorphism of N = 2 SCVA’s
if and only if it is an isomorphism of the underlying N = 1 SCVA’s, and maps J (z) to
J ′(z) and J̄ (z̄) to J̄ ′(z̄).Now suppose f is an isomorphism ofN = 1 SCVA’s underlying
V ert (&, I,G,B) and V ert (&′, I ′,G′, B ′). By Theorem 5.1 we know that there exists
g ∈ Hom(& ⊕ &∗, &′ ⊕ &′∗) which takes q to q ′, and G to G′. To prove the theorem, it
is sufficient to show that f maps J (z), J̄ (z̄) correctly if and only if g maps I to I ′ and
J to J ′. In fact, since G = −2qIJ and G′ = −2q ′I ′J ′, it is sufficient to show that f
maps J (z), J̄ (z̄) correctly if and only if g maps I to I ′.

Using the transformation law (27) for the fields and the formula (25) relating G and
G′, one can easily see that f maps J (z) to J ′(z) if and only if

I ′ = (a − bH t)I (a − bH t)−1. (30)

Similarly, f maps J̄ (z̄) to J̄ ′(z̄) if and only if

I ′ = (a + bH)I (a + bH)−1. (31)

On the other hand, I(I, B) can be written as

I(I, B) = R(G,B)−1
(
I 0
0 I

)
R(G,B). (32)

This and the identity (23) imply that I ′ = gIg−1 if and only if(
I ′ 0
0 I ′

)
= M(g,H)

(
I 0
0 I

)
M(g,H)−1.

This matrix identity is equivalent to (30, 31), which proves the theorem.
Let us also note the following simple corollary of this theorem.
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Corollary 5.3. Let (T , I,G,B) be a complex torus equipped with a flat Kähler metric
and a B-field of type (1, 1). Let T ′ = U ′/&′ be another torus of the same dimension and
I ′ be a complex structure on T ′. Let Ĩ and Ĩ ′ be the product complex structures on T ×T ∗
and T ′ × T ′∗. Suppose there exists an isomorphism of lattices g : & ⊕ &∗ → &′ ⊕ &′∗
mapping q to q ′ and Ĩ to Ĩ ′. Then on T ′ there exists a Kähler metric G′ and a B-field
of type (1, 1) such that V ert (&, I,G,B) is isomorphic to V ert (&′, I ′,G′, B ′) as an
N = 2 SCVA.

To show this, we define H ′ using (22) and set G′ and B ′ to be the symmetric and
skew-symmetric parts ofH ′, respectively. Then it follows from (25) thatG′ is positive-
definite. By Theorem 5.1 theN = 1 SCVA corresponding to (T ,G,B) is isomorphic to
anN = 1 SCVA corresponding to (T ′,G′, B ′). Using the fact that g intertwines Ĩ to Ĩ ′
it is easy to show thatH ′I ′ + I ′tH ′ = 0, which means thatG′ is a Kähler metric and B ′
has type (1, 1). In particular, Ĩ ′ = I ′. Then it follows from the identity G′ = −2q ′I ′J ′
and the fact g intertwines G, q, I and G′, q ′, I ′ that g also intertwines J and J ′. Theo-
rem 5.2 then implies that V ert (&, I,G,B) is isomorphic to V ert (&′, I ′,G′, B ′) as an
N = 2 SCVA.

5.3. Mirror morphisms ofN = 2 SCVA’s. In this subsection we establish a criterion for
the existence of a mirror morphism between two complex tori equipped with flat Kähler
metrics and B-fields.

Theorem 5.4. V ert (&, I,G,B) is mirror to V ert (&′, I ′,G′, B ′) if and only if there is
an isomorphism of lattices &⊕&∗ and &′ ⊕&′∗ which takes q to q ′, I to J ′, and J to
I ′.

The proof is very similar to that of Theorem 5.2. Again it is sufficient to show that
if f is an isomorphism of the underlying N = 1 SCVA’s, and g the corresponding
isomorphism of lattices, then

f J (z)f−1 = −J ′(z), f J̄ (z̄)f−1 = J̄ ′(z̄)
is equivalent to

gJ g−1 = I ′. (33)

The first of these is equivalent to

I ′ = (a + bH)I (a + bH)−1 = −(a − bH t)I (a − bH t)−1. (34)

On the other hand, J (G, I, B) can be written as

J (G, I, B) = R(G,B)−1
(−I 0

0 I

)
R(G,B),

which together with (23) and (32) implies that (33) is equivalent to

M(g,H)

(−I 0
0 I

)
M(g,H)−1 =

(
I ′ 0
0 I ′

)
.

This is obviously equivalent to (34). This concludes the proof.
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6. Homological Mirror Symmetry with B-Fields

6.1. Mirror symmetry and D-branes. As explained in Sect. 2, Kontsevich’s conjecture
must be modified if the B-field does not vanish. When the image of B in H 2(X,O∗

X) is
torsion, our results on complex tori suggest that the bounded derived category Db(X)
should be replaced with Db(X,B), the bounded derived category of coherent modules
over an Azumaya algebra. The similarity class of the Azumaya algebra is determined by
the image of B in H 2(X,O∗

X). (Presumably, when B does not map to a torsion class,
the proper analogue of Db(X) is some “coherent” subcategory of the derived category
of quasicoherent sheaves on a gerbe over X, see Remark 2.6.) However, this does not
provide any hint as to what the modification of the Fukaya category might be. In this
section we explain some string theory lore which suggests a particular definition of the
Fukaya category in the presence of the B-field. A similar proposal has been made in [2].

The ordinary σ -model whose quantization yields an N = 2 superconformal vertex
algebra is a classical field theory on a two-dimensional manifold F = R × S1 (“the
worldsheet”). Let us replace S1 with an interval I = [0, 1] and consider the same
σ -model on a worldsheet with boundaries R× I. This procedure is referred to as pass-
ing from closed to open strings. Now, in order to make the space of solutions of the
Euler-Lagrange equations a symplectic supermanifold, one has to supply boundary con-
ditions for the fields of the σ -model on both ends of the interval. In addition one requires
that these boundary conditions preserve N = 2 superconformal symmetry. To be more
precise, while the classical σ -model on R × S1 has two copies of the N = 2 super-
Virasoro algebra (with zero central charge) as its classical symmetry, the σ -model on
R × I is required to be symmetric only with respect to a single N = 2 super-Virasoro
algebra. There are two essentially different classes of such boundary conditions, called
A and B boundary conditions. The B-type boundary conditions preserve the “diagonal”
super-Virasoro subalgebra whose generators are given by

Ln + L̄n, Jn + J̄n, Q+
r + Q̄+

r , Q−
r + Q̄−

r , n ∈ Z, r ∈ Z+ 1

2
.

The A-type boundary conditions preserve a different subalgebra whose generators are

Ln + L̄n, −Jn + J̄n, Q−
r + Q̄+

r , Q+
r + Q̄−

r , n ∈ Z, r ∈ Z+ 1

2
.

Superconformally-invariant boundary conditions for a σ -model are called supersymmet-
ric (or BPS, for Bogomolny-Prasad-Sommerfeld) D-branes. Thus we have BPS D-branes
of typesA and B. Note that the mirror involution (2) exchanges the two types of D-branes.

D-branes are understood best when the B-field is zero. In this case one can construct
examples of the B-type boundary conditions by starting from a holomorphic submani-
fold of the Calabi-Yau manifold X. More generally, one can start from a holomorphic
submanifold M ⊂ X and a holomorphic bundle on M equipped with a compatible
connection. On the other hand, examples of the A-type boundary conditions (with zero
B-field) can be constructed starting from a Lagrangian submanifoldL ⊂ X (with respect
to the Kähler form), a trivial unitary bundle E on L, and a unitary flat connection on E.

Note that one can choose different boundary conditions for the Euler-Lagrange equa-
tions on the two ends of the interval I. The only constraint is that both boundary condi-
tions must be of the same type (A or B). If this condition is violated, then the symmetry
of the corresponding classical field theory is only some subalgebra of the N = 2 super-
Virasoro algebra, namely an N = 1 super-Virasoro algebra.
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After quantization, the σ -model on R × I is supposed to yield a superconformal-
ly invariant quantum field theory on the same manifold. The axioms of such quantum
field theories have not been formulated yet, and we will not attempt it here. Suffice
it to say that physicists expect that any B-type D-brane can be consistently quantized,
while A-type boundary conditions may lead to “anomalies,” i.e. inconsistencies in the
quantization procedure. One can argue that anomalies are absent if the A-type D-brane
originates from a special Lagrangian submanifold. We recall that a special Lagrangian
submanifold in a Calabi-Yau manifold with a Kähler metric is defined by two properties:
it is Lagrangian, and the restriction of a nonzero section of the canonical bundle to the
submanifold is proportional to its volume form.

Thus to any physicist’s Calabi-Yau with zero B-field one can associate two sets: the
set of B-type D-branes, and the set of (non-anomalous) A-type D-branes. The former
set has many elements in common with the set of coherent sheaves on X. The latter set
resembles the set of objects of the Fukaya category of X. Moreover, there are heuris-
tic arguments using path integrals showing that either A or B-type D-branes form an
A∞–category (see [16] and references therein). Thus, conjecturally, to every physicist’s
Calabi-Yau with zero B-field one can canonically associate a pair ofA∞–categories, the
categories of A- and B-type D-branes. Assuming there are shift functors on them, one
can define the corresponding triangulated categories as in [23].

It is natural to conjecture that for B = 0 the triangulated category associated with
A-type (resp. B-type) D-branes is equivalent to DF(X) (resp. Db(X)) [32, 10]. There
are several pieces of evidence supporting this conjecture. First, as we have already re-
marked, F(X) and Coh(X) have many objects in common with the categories of A and
B-type D-branes, respectively. Second, using path integrals one can argue [33] that the
category of B-type D-branes is independent of the Kähler form, while the category of
A-type D-branes is independent of the complex structure on X if ω is fixed. For further
evidence see [10] and references therein.

If this conjecture is true, then Kontsevich’s conjecture has a natural explanation. Sup-
pose we have a mirror pair of physicist’s Calabi-YausX and X′, both with zero B-field.
The corresponding N = 2 SCVA’s are related by a mirror morphism. Since a mirror
morphism ofN = 2 SCVA’s acts on theN = 2 super-Virasoro by the mirror involution,
it exchanges the A and B-type boundary conditions. Hence it induces an equivalence of
Db(X) with the derived Fukaya category DF0(X

′), and vice versa.

6.2. Fukaya category with a B-field. Now let us generalize this to nonzero B-fields. We
already know the effect of a B-field on Db(X): the sheaf OX is replaced with a certain
sheaf of noncommutative algebras. This agrees with the string theory lore that the B-field
makes the D-brane worldvolume noncommutative [7, 11].

The effect of the B-field on the Fukaya category seems rather different. Let us start
by recalling the definition of the set of objects of the Fukaya category [23]. Let (X, ω)
be a symplectic manifold of dimension 2d.We fix an almost complex structure I on X
compatible with ω and thereby obtain a Hermitian metric on X. (If X is a physicist’s
Calabi-Yau, it automatically comes equipped with a compatible complex structure).
Moreover, we assume that c1(T

hol
X ) = 0. In this case the line bundleEd(GholX ) is trivial

and has a nowhere vanishing holomorphic section G which is called a calibration.
Naively, an object of the Fukaya category should be a triple (L,E,∇), where L is

a Lagrangian submanifold, E is a trivial unitary vector bundle on L, and ∇ is a flat
connection on E. From the physical point of view, such a triple allows one to define
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an A-type boundary condition for the classical σ -model, and therefore it is an A-type
D-brane [33, 26].

The naive definition of an object does not allow one to define a nontrivial shift func-
tor and A∞ structure. This difficulty can be overcome as follows [23]. For any point
x ∈ L the tangent space TxL is a Lagrangian subspace of TxX. The Grassmannian of
Lagrangian subspaces has fundamental group equal to Z. Each Lagrangian submanifold
comes with a Gauss map from L to LG, where LG→ X is a fibration whose fiber over
x is the Grassmannian of Lagrangian subspaces of TxX. Consider a fibration L̃G→ X

covering LG → X such that its fiber is the universal cover of the fiber of LG → X.

(As mentioned in [23], there is a canonical choice of such a fibration if c1(T
hol
X ) = 0.)

Instead ofL,we will consider pairs (L, i),where i is a lift of the Gauss map to L̃G.Not
every Lagrangian L admits such a lift, so not any Lagrangian submanifold can be ex-
tended to an object of the Fukaya category. Note that any Lagrangian L comes equipped
with two natural d-forms: the volume form and the restriction of the calibration G. The
latter is defined up to a multiplicative constant. Their quotient is a nowhere vanishing
function f which maps L to C∗. One can show that the Gauss map admits a lift to L̃G if
and only if the image f (L) is contractible. For example, any special Lagrangian L has
a lift, because by definition of specialty the function f is constant for any such L.

To summarize, we can define an object of the Fukaya category in the absence of the
B-field as a quadruple (L, i, E,∇), where L and i are as above, and (E,∇) is a trivial
complex vector bundle on L with a unitary flat connection. The natural fiberwise action
of Z on L̃G→ X induces an action of Z on such quadruples. One hopes that this action
extends to a shift functor from the Fukaya category to itself.

Now let us try to guess how the definition of the Fukaya category should be modified
when B �= 0. Let B be a closed 2-form on X representing B ∈ H 2(X,R/Z). (Since
we assumed that B is in the kernel of the Bockstein homomorphism H 2(X,R/Z) →
H 3(X,Z), such a 2-form exists.) Let F∇ be the curvature of a connection ∇ on a bundle
E on L. If B = 0, the condition on ∇ is

F∇ = 0. (35)

On the other hand, it is a general principle of string theory that the equations of motion
must be invariant with respect to a substitution

B → B + dλ, ∇ → ∇ + 2πi idE λ|L, (36)

where λ is any real 1-form on X. This must be true because the action of the σ -model
on R × I is invariant with respect to such transformations [29]. This requirement is
sufficient to fix the generalization of (35) to arbitrary B:

F∇ = 2πi idEB|L. (37)

We propose that an object of the Fukaya category for B �= 0 is a quadruple (L, i, E,∇),
where L and i are the same as above, E is a complex vector bundle on L, and ∇ is a
connection on E satisfying (37).

We can make some checks of this proposal. First, our definition of an object depends
on how one lifts B ∈ H 2(X,R/Z) to a 2-form B.However, given two different 2-forms
B1 and B2 representing B, there is a one-to-one map between the corresponding sets
of objects. Indeed, let f = B2 − B1. It is easy to see that f has integral periods, and
therefore there exists a line bundle N on X and a connection ∇0 on N such that the
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curvature of ∇0 is equal to 2πif. The bijection between the set of objects corresponding
to B1 and the set of objects corresponding to B2 is given by

L �→ L, i �→ i, E �→ E ⊗N |L, ∇1 �→ ∇1 ⊗ idN + idE ⊗∇0. (38)

Second, from Eq. (37) we see that c1(E) = rank(E)b|L, where b is the de Rham
cohomology class of B. Since c1(E) is integral, we infer that

rank(E)B|L = 0.

In particular, for rank(E) = 1, we get that the restriction of B to L must vanish. This is
consistent with the results of Hori et al. [18], who analyzed the A-type boundary condi-
tions in the rank-one case. Hori et al. find that the restriction of B to L must be zero if
one wants to make an A-type D-brane out of L.We found that it is sufficient to require
B|L = 0.

We need to address one more subtlety. The original HMSC requiredE to be a unitary
vector bundle and ∇ to be a unitary connection [23]. This requirement naturally arises
in the string theory context as well. Nevertheless, this condition is much too strong.
Even in the case of the elliptic curve one has to allow for non-unitary connections on the
A-side if one wants to account for all bundles on the B-side [31]. In that case, the right
thing to do is to require the holonomy representation of ∇ to have eigenvalues with unit
modulus. It is natural to conjecture that this is also the right requirement for dimCX > 1
or B �= 0.

In the absence of the B-field, any pair (L, i) can be extended (in many different ways)
to an object of the Fukaya category. The situation is more complex for B �= 0.Recall that
to any flat connection on a manifold L one can canonically associate a finite-dimension-
al representation of π1(L) (or, equivalently, a finite-dimensional representation of the
group algebra ofπ1(L)), and vice versa. In fact, this map is a one-to-one correspondence.
Similarly, given a bundleE onL and a connection∇ onE such thatF∇ satisfies (37), one
can construct a finite-dimensional representation of a twisted group algebra of π1(L) in
the following way. To (E,∇) we can associate a projective representation R of π1(L).

To any such R one can attach an element ψR ofH 2(π1(L), U(1)).Acting on it with the
natural embedding

H 2(π1(L), U(1))
j→ H 2(L,U(1)) (39)

we obtain an element j (ψR) ∈ H 2(L,U(1)). One can show that j (ψR) = B|L(we
identify R/Z with U(1)).

To any 2-cocycleψ one can associate a twisted group algebra Cψ [π1(L)],which is a
vector space generated by the elements of π1(L) with the following multiplication law:

g · h = ψ(g, h)gh, g, h ∈ π1(L).

The correspondence between pairs (E,∇) satisfying (37) and finite-dimensional rep-
resentations of the twisted group algebra Cψ [π1(L)] is one-to-one. A proof of this fact
is given in Appendix C. The eigenvalues of the holonomy representation of ∇ have unit
modulus if and only if the eigenvalues of g ∈ π1(L) have unit modulus. In particular
this means that a Lagrangian submanifold L can be extended to an object of the Fukaya
category only if B|L is in the image of the homomorphism (39).

As a by-product, we obtained an equivalent definition of an object of the Fukaya cate-
gory: it is a triple (L, i, R),whereL, i are the same as above, andR is a finite-dimensional
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representation of the twisted group algebra Cψ [π1(L)] such that j (ψR) = B|L and all
the eigenvalues of R(g) have unit modulus for all g ∈ π1(L).

Morphisms in the modified Fukaya category F(X,B) are defined in analogy with [12,
23]. Let U1 = (L1, i1, E1,∇1) and U2 = (L2, i2, E2,∇2) be two objects such that L1
and L2 intersect transversally. Morphisms from U1 to U2 in F(X) form a complex of
vector spaces defined by the rule

Hom·(U1,U2) =
⊕

x∈L1∩L2

Homi (E1|x, E2|x). (40)

It is graded in the following way. For any point x ∈ L1 ∩ L2 we have two points
i1(x) and i2(x) on the universal cover of the Lagrangian Grassmannian of TxX.To these
two points we can associate an integer µ(i1(x), i2(x)) which is called the Maslov index
of i1(x), i2(x) (see for example [3]). By definition, the space Hom(E1|x, E2|x) has a
grading µ(i1(x), i2(x)).

The differential on Hom(U1,U2) is defined by the rule

d(u) =
∑

z∈L1∩L2

m1(u; z),

where u ∈ Hom(E1|x, E2|x), and m1(u; z) ∈ Hom(E1|z, E2|z) is given by

m1(u; z) =
∑

φ:D→X

± exp

(
2πi

∫
D

φ∗(−B + iω)
)
· P exp

(∮
∂D

φ∗∇
)
.

Here φ is an (anti)-holomorphic map from the disk D = {|w| ≤ 1, w ∈ C} to X such
that φ(−1) = x, φ(1) = z and φ([x, z]) ⊂ L2 and φ([z, x]) ⊂ L1. The path-ordered
integral is defined by the following rule

P exp

(∮
∂D

φ∗∇
)

:= P exp

(∫ z

x

φ∗∇2

)
· u · P exp

(∫ x

z

φ∗∇1

)
.

This homomorphism from E1|z to E2|z can be described as follows. We take a vector
e ∈ E1|z, use the connection ∇1 transport it to E1|x, apply the map u, and obtain an
element of E2|x. Then we transport this element to E2|z using the connection ∇2.

The± sign indicates the natural orientation on the space of (anti)-holomorphic maps.
One expects that there are finitely many such maps if µz − µx = 1.

To define the composition of morphisms, let us take u ∈ Hom(E1|x, E2|x) and
v ∈ Hom(E2|y, E3|y), where x ∈ L1 ∩ L2 and y ∈ L2 ∩ L3. Then the composition of
u and v is defined as

v ◦ u =
∑

z∈L1∩L3

m2(v, u; z),

where m2(v, u; z) ∈ Hom(E1|z, E3|z) is given by

m2(v, u; z) =
∑

φ:D→X

± exp

(
2πi

∫
D

φ∗(−B + iω)
)
· P exp

(∮
∂D

φ∗∇
)
.

Here we sum over (anti)-holomorphic maps φ from a two-dimensional disk D to X,
such that three fixed points p1, p2, p3 ∈ ∂D are mapped to x, y, z respectively, and
φ([pi, pi+1]) ∈ Li+1. The path-ordered integral here is calculated by the rule

P exp

(∮
∂D

φ∗∇
)

:=P exp

(∫ p3

p2

φ∗∇3

)
·v·P exp

(∫ p2

p1

φ∗∇2

)
·u·P exp

(∫ p1

p3

φ∗∇1

)
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In the same manner we can define higher order compositions using zero-dimensional
components of spaces of maps φ from the disk D to X with φ(∂D) sitting in the union
of Lagrangian submanifolds.

It is easy to check that the above definition of morphisms and their compositions does
not change if we replace B with another 2-form with the same image in H 2(X,R/Z).

The check makes use of (37) and (38). This confirms our claim that the Fukaya category
depends only on B.

The rules for computing morphisms and their compositions can be explained heuris-
tically using the path integral for the σ -model on a worldsheet with boundaries [33].

The category F0(X) has the same objects as F(X), but the morphisms are the degree
zero cohomology groups of the complexes defined above. Note that different objects
of F(X) often become isomorphic in F0(X). For example, in the case when X is a
real symplectic 2-torus, any one-dimensional submanifold is Lagrangian. Many of them
admit a lift of the Gauss map. Thus the category F(X) contains many more objects than
the derived category of the elliptic curve (an elliptic curve with a flat metric is a self-
mirror). But in F0(X) any object becomes isomorphic to some other object associated
with a special Lagrangian submanifold (see [31]). More generally, it appears likely that
working in the category F0(X) one may restrict the set of objects of the Fukaya cate-
gory and consider only special Lagrangian submanifolds with respect to a holomorphic
calibration. For different L the calibrations may differ by a multiplicative constant. This
restriction is also natural from the string theory point of view, since, as explained above,
non-anomalous A-type D-branes are associated with special Lagrangian submanifolds
in a Calabi-Yau [26].

A. Supersymmetric σ -Model of a Flat Torus

In this section we define the classical field theory known in the physics literature as
the N = 1 supersymmetric σ -model. The data needed to specify a σ -model consist of
a C∞ manifold M (“the target space”), a Riemannian metric G on M, and a 2-form
B on M. We then discuss the problem of the quantization of the σ -model in the case
when the target space is a flat torus. The superconformal vertex algebra constructed in
Sect. 4 can be regarded as a solution of the quantization problem. A detailed discussion
of supersymmetric σ -models can be found in [8].

Let W be a two-dimensional C∞ manifold R × S1 (“the worldsheet”). We para-
metrize W by (τ, σ ) ∈ R × R/(2πZ). The coordinate τ is regarded as “time.” We
endow W with a Minkowskian metric ds2 = dτ 2 − dσ 2 and orientation dτ ∧ dσ. Thus
∗dσ = dτ, ∗dτ = dσ. The symmetric tensor corresponding to the metric will be denot-
ed g.General coordinates on W will be denoted (y0, y1). The invariant volume element
dτ ∧ dσ = d2y

√− det g will be denoted dF. We denote by S+ and S− = S+∗ the
complexified semi-spinor representations of SO(1, 1) and by V its complexified funda-
mental representation. Complexified semi-spinor representations are one-dimensional
complex vector spaces endowed with SO(1, 1)-invariant nondegenerate morphisms

γ : S− → V ⊗ S+, γ̄ : S+ → V ⊗ S−. (41)

These morphisms are determined up to a scalar factor, and we assume that they satisfy
the Clifford algebra relation

γ γ̄ + γ̄ γ = 2g−1 · idS+⊕S− .
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Here g−1 is regarded as map C → V ∗ ⊗ V ∗. In a suitable basis, one has

γ =
(

1
−1

)
, γ̄ =

(
1
1

)
.

Since H 1(W,Z2) = Z2, there are two inequivalent spinor structures on W. The
trivial one is called the periodic, or Ramond, spin structure in the physics literature. The
nontrivial one is known as the anti-periodic, or Neveu-Schwarz, spin structure. Both spin
structures play a role in string theory, but for our purposes it will be sufficient to consider
the Neveu-Schwarz spin structure. The corresponding semi-spinor bundles on W will
be denoted by the same letters S+, S−. The parity-reversed (i.e. odd) semi-spinor bun-
dles will be denoted by NS+,NS−. More generally, N will denote the parity-reversal
functor. The vector space morphisms γ and γ̄ give rise to a pair of bundle morphisms
S− → TW ⊗ S+ and S+ → TW ⊗ S− which we denote by the same letters.

Let M be a C∞ manifold endowed with a Riemannian metric G and a real 2-form
B. At this stage we do not require B to be closed. The indices of the tangent bundle
TM will be denoted by j, k, l, . . . in the upper position. The indices of the cotangent
bundle T ∗M will be denoted by the same letters in the lower position. Summation over
repeating indices is always implied.

Let X be a C∞ map from W toM. Let ψ and ψ̄ be C∞ sections of X∗TM ⊕NS+
and X∗TM ⊕NS−, respectively. N = 1 supersymmetric σ -model with worldsheet W
and target (X,G,B) is a classical field theory on W defined by the action

1

4π

∫
W
Gjk(X)

(
dXj ∧ ∗dXk

)
+ 1

4π

∫
W
Bjk(X)

(
dXj ∧ dXk

)
+ 1

4π

∫
W

(
Gjk(X)ψ

j iγ̄ · ∇ψk +Gjk(X)ψ̄j iγ · ∇ψ̄k

+ 1

2
Rjklm(X)ψ

jψkψ̄lψ̄m
)
dF. (42)

Here the covariant derivatives ∇ψ and ∇ψ̄ are sections of X∗TM ⊗ NS± ⊗ T ∗W
defined as follows:

∇ψj = Dψj +
({
j

kl

}
+ 3

2

(
G−1

)jm
(dB)klm

)
dXkψl,

∇ψ̄j = Dψ̄j +
({
j

kl

}
− 3

2

(
G−1

)jm
(dB)klm

)
dXkψ̄l,

where {j, kl} are the Christoffel symbols constructed fromG, andD : S± → S±⊗T ∗W
is the Levi-Civita covariant derivative constructed from g. Rjklm(X) is the curvature
corresponding to the following connection 1-form on M:({

j

kl

}
+ 3

2

(
G−1

)jm
(dB)klm

)
dxl.

In the last term in the action we used twice the natural SO(1, 1)-invariant pairing S+ ⊗
S− → C.

This complicated-looking action has an elegant reformulation in terms of superfields,
i.e. maps from a super-Riemann surface to M [8].
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The extrema of the action (42) are given by the solutions of the Euler-Lagrange equa-
tions. In the case when all the fields are even, it is well known that the space of solutions
of the Euler-Lagrange equations is a manifold with a natural symplectic structure. This
statement remains true in the supersymmetric context (see e.g. [15]). In the present case
the symplectic structure is given by

1

2π

∫
τ=τ0

(
δXj ∧ δ

(
Gjk(X)

∂Xk

∂τ
+ Bjk(X)∂X

k

∂σ

)
+ − iGjk(X)δψj ∧ δψk + iGjk(X)δψ̄j ∧ δψ̄k

)
dσ. (43)

Here we used the fact the Euler-Lagrange equations are second-order in time derivatives
of X and first-order in time derivatives of ψ, ψ̄, and therefore a solution is completely
determined by the values of X, ∂X/∂τ, ψ, and ψ̄ on any circle τ = τ0. One can check
that the symplectic structure thus defined does not depend on τ0. The space of solutions
endowed with this symplectic structure is called the phase space of the σ -model.

We are interested in the case when M is a torus T 2d = R2d/&, & ∼= Z2d , with a
constant metricG and a constant 2-form B.We will fix an isomorphism between & and
Z2d .Without loss of generality we may assume that the action of & on R2d is

xj �→ xj + 2πnj , nj ∈ Z, j = 1, 2, . . . , 2d.

In this special case the σ -model action becomes

1

4π

∫
W

(
Gjk

(
∂Xj

∂τ

∂Xk

∂τ
− ∂Xj

∂σ

∂Xk

∂σ

)
+ 2Bjk

∂Xj

∂τ

∂Xk

∂σ

+ iGjkψj
(
∂

∂τ
+ ∂

∂σ

)
ψk + iGjkψ̄j

(
∂

∂τ
− ∂

∂σ

)
ψ̄k
)
dτdσ. (44)

The Euler-Lagrange equations have a simple form:(
∂2

∂σ 2 −
∂2

∂τ 2

)
Xj = 0,

(
∂

∂σ
+ ∂

∂τ

)
ψj = 0,

(
∂

∂σ
− ∂

∂τ

)
ψ̄j = 0. (45)

In what follows we will use the notation

∂− = 1

2

(
∂

∂σ
− ∂

∂τ

)
, ∂+ = 1

2

(
∂

∂σ
+ ∂

∂τ

)
.

The Poisson brackets of the fields evaluated at equal times follow from (43):{
Xj(τ, σ ),Xk(τ, σ ′)

}
P.B.

= 0,{
Xj(τ, σ ),

∂Xk

∂τ
(τ, σ ′)

}
P.B.

= 2π
(
G−1

)jk
δ
(
σ − σ ′) ,{

ψ(τ, σ ), ψ̄(τ, σ ′)
}
P.B.

= 0, (46){
ψ(τ, σ ), ψ(τ, σ ′)

}
P.B.

= −2πi
(
G−1

)jk
δ
(
σ − σ ′) ,{

ψ̄(τ, σ ), ψ̄(τ, σ ′)
}
P.B.

= −2πi
(
G−1

)jk
δ
(
σ − σ ′) .

The Poisson brackets between even and odd fields vanish.
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Note that neither the Euler-Lagrange equations (45) nor the symplectic structure cor-
responding to (46) depend onB.This happens wheneverB is closed, because in this case
the B-dependent terms in the action are locally total derivatives. We will see below that
quantization of the σ -model introduces arbitrariness which is parametrized by a class
in H 2(M,R/Z). The usual interpretation is that while the classical σ -model does not
detect a closed B-field, the quantized σ -model detects the image of B in H 2(M,R/Z).

The Euler-Lagrange equations (45) can be rewritten in the Hamiltonian form:

∂Xj

∂τ
(τ, σ ) =

{
Xj(τ, σ ),H(τ)

}
P.B.

,

∂

∂τ

(
∂Xj

∂τ

)
(τ, σ ) =

{(
∂Xj

∂τ

)
(τ, σ ),H(τ)

}
P.B.

,

∂ψj

∂τ
(τ, σ ) =

{
ψj (τ, σ ),H(τ)

}
P.B.

,

∂ψ̄j

∂τ
(τ, σ ) =

{
ψ̄j (τ, σ ),H(τ)

}
P.B.

.

The Hamiltonian H is a function on the phase space given by

H(τ0) = 1

4π

∫
τ=τ0

Gjk

(
∂Xj

∂τ

∂Xk

∂τ
+ ∂Xj

∂σ

∂Xk

∂σ
− iψj ∂ψ

k

∂σ
+ iψ̄j ∂ψ̄

k

∂σ

)
dσ.

As a consequence of the equations of motion, we have dH(τ0)
dτ0

= 0.
Hamiltonian vector fields on the phase space are those vector fields which preserve

the symplectic form. They obviously form a Lie (super-)algebra with respect to the Lie
bracket. We will now exhibit a subalgebra in this super-algebra which is isomorphic to
the direct sum of two copies of the N = 1 super-Virasoro algebra.

Recall that given a function W on the phase space, we can define a Hamiltonian
vector field vW as follows:

vW (·) = { · ,W }P.B.
One has an identity

[vW , vU ]Lie = v{W,U}P.B. .
We will define a set of functions on the phase space which forms a super-Virasoro algebra
with respect to the Poisson bracket; then the corresponding set of Hamiltonian vector
fields forms a super-Virasoro algebra with respect to the Lie bracket.

The set of functions we want to define is a vector space generated over C by the
following elements:

Ln = 1

2π

∫
τ=τ0

e−inσGjk
(
∂−Xj∂−Xk − i

2
ψ∂−ψ

)
dσ, n ∈ Z,

L̄n = 1

2π

∫
τ=τ0

einσGjk

(
∂+Xj∂+Xk + i

2
ψ̄∂+ψ̄

)
dσ, n ∈ Z,

(47)

Qr = −i
4π

∫
τ=τ0

e−irσGjkψj∂−Xk dσ, r ∈ Z+ 1

2
,

Q̄r = i

4π

∫
τ=τ0

eirσGjkψ̄
j ∂−Xk dσ, r ∈ Z+ 1

2
.
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Two remarks are in order concerning these expressions. First, all these functions on the
phase space implicitly depend on τ0 as a parameter. Second, since we picked the anti-
periodic spin structure on W, the lift ofψ to the universal cover of W is an anti-periodic
function of σ. This is the reason the index r runs over half-integers.

The Poisson brackets of the generators can be easily computed using (46), and the
nonvanishing ones turn out to be

{Lm,Ln}P.B. = −i(m− n)Lm+n,
{
L̄m, L̄n

}
P.B.

= −i(m− n)L̄m+n,
{Lm,Qr}P.B. = −i

(m
2
− r

)
Qm+r ,

{
L̄m, Q̄r

}
P.B.

= −i
(m

2
− r

)
Q̄m+r , (48)

{Qr,Qs}P.B. = − i
2
Lr+s ,

{
Q̄r , Q̄s

}
P.B.

= − i
2
L̄r+s .

Thus the space spanned by the generators is a Lie super-algebra isomorphic to the direct
sum of two copies of the N = 1 super-Virasoro algebra (with zero central charge).

Note that L0 + L̄0 = H. Recalling that the τ -dependence of any function F on the
phase space is determined by

dF

dτ
= {F,H }P.B.,

and using (48), one can show that all the generators have a very simple dependence on
τ0:

Ln(τ0) = e−inτ0Ln(0), L̄n(τ0) = e−inτ0 L̄n(0),

Qr(τ0) = e−irτ0Qr(0), Q̄r (τ0) = e−irτ0Q̄r (0).

Thus the space spanned by the generators does not depend on τ0.

The presence of two copies of the N = 1 super-Virasoro algebra acting on the phase
space is a feature of the supersymmetric σ -model with an arbitrary target (M,G,B).
This fact is crucial for string theory applications of the σ -model, see [29] for details.

Now let us choose a constant complex structure I on M such that G is a Hermitian
metric. This makes M a Kähler manifold. Let ω = GI be the corresponding Kähler
form. It turns out that we can embed each of the two N = 1 super-Virasoro algebras in
a bigger N = 2 super-Virasoro algebra. The additional generators are given by

Q±
r =

−i
8π

∫
τ=τ0

e−i(r+1/2)σ (Gjk ∓ iωjk)ψj∂−Xk dσ, r ∈ Z+ 1

2
,

Q̄±
r =

i

8π

∫
τ=τ0

ei(r+1/2)σ (Gjk ∓ iωjk) ψ̄j ∂+Xk dσ, r ∈ Z+ 1

2
,

(49)

Jn = −i
4π

∫
τ=τ0

e−inσωjkψjψk dσ, n ∈ Z,

J̄n = −i
4π

∫
τ=τ0

einσωjkψ̄
j ψ̄k dσ, n ∈ Z.
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Note thatQr = Q+
r +Q−

r and Q̄r = Q̄+
r + Q̄−

r for all r. The Poisson brackets between
Ln,Q

±
r , and Jn are given by{

Lm,Q
±
r

}
P.B.

=− i
(m

2
− r

)
Q±
r+m,

{Lm, Jn}P.B. = inJn+m,{
Q+
r ,Q

+
s

}
P.B.

= {Q−
r ,Q

−
r

}
P.B.

= 0,{
Q+
r ,Q

−
s

}
P.B.

=− i

4
Lr+s − i

8
(r − s)Jr+s ,{

Jm,Q
±
r

}
P.B.

=∓ iQ±
r+m.

The Poisson brackets between the barred generators have the same form. The Poisson
brackets between barred and unbarred generators are trivial, as usual.

Again, the emergence of the N = 2 super-Virasoro is not limited to the particular
situation we are considering: one can prove that the phase space of the supersymmetric
σ -model is acted upon by the N = 2 super-Virasoro if (M,G) is an arbitrary Kähler
manifold, andB is closed [1]. The statement can be further generalized to B-fields which
are not closed [13].

Let us now look more closely at the space of solutions of the Euler-Lagrange equa-
tions. Note that any map X : W → M induces a homomorphism of the homology
groupsH1(W)→ H1(M).The groupH1(W) ∼= π1(W) ∼= Z has a preferred generator,
namely the loop winding the S1 in the direction of increasing σ. SinceH1(T

2d) = &,we
see that to any mapX : W → M we can assign an elementw(X) of &. The components
of w are the so-called winding numbers of the map X. Thus the phase space of the
σ -model is a disconnected sum

M =
⊔
w∈&

Mw.

We will see in a moment that Mw is connected for all w.
The Euler-Lagrange equations (45) are linear and can be solved by Fourier transform.

The general solution in Mw is given by

Xj = xj + σwj + τ
(
G−1

)jk
pk + i√

2

∞∑′

s=−∞

1

s

(
α
j
s e
is(σ−τ) + ᾱjs e−is(σ+τ)

)
, (50)

ψj =
∑

r∈Z+1/2

ψ
j
r e
ir(σ−τ), (51)

ψ̄j =
∑

r∈Z+1/2

ψ̄
j
r e
−ir(σ+τ). (52)

Here αjs , ᾱ
j
s are complex numbers satisfying (αjs )∗ = α

j
−s , (ᾱ

j
s )
∗ = ᾱ

j
−s ; ψ

j
r , ψ̄

j
r are

elements ofNC; xj , j = 1, . . . , 2d, take values in R/(2πZ); and pj , i = 1, . . . , 2d,

take values in R.The variablesαjs , ᾱ
j
s , ψ

j
r , ψ̄

j
r will be referred to as “the oscillators.” The

variables (xj , pj ), j = 1, . . . , 2d, together parametrize a copy of T ∗M ∼= T 2d ×R2d .

Thus for any w ∈ & the supermanifold Mw is a product of the vector superspace
spanned by αn, ᾱn, n ∈ Z, ψr , ψ̄r , r ∈ Z+ 1/2, and the cotangent bundle of M.
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The Poisson brackets of the coordinates on Mw can be computed from (46) and
(50-52). The non-vanishing ones are given by{

α
j
n, α

k
m

}
P.B.

= −in
(
G−1

)jk
δm+n,

{
ᾱ
j
n, ᾱ

k
m

}
P.B.

= −in
(
G−1

)jk
δm+n,{

ψ
j
r , ψ

k
s

}
P.B.

= −i
(
G−1

)jk
δr+s ,

{
ψ̄
j
r , ψ̄

k
s

}
P.B.

= −i
(
G−1

)jk
δr+s ,{

xj , pk

}
P.B.

= δjk .

Thus the symplectic supermanifold Mw decomposes into a product of a symplectic
vector superspace spanned by the oscillators and T ∗M with the standard symplectic
structure.

It is customary to continue analytically the time variable τ to the imaginary axis.
If we set τ = it, then the combination v = σ + τ = σ + it becomes a complex
variable. Since we identify σ ∼ σ + 2π, it is convenient to set v = i log z, where
z ∈ C∗. After analytic continuation ∂− and ∂+ become ∂v = −iz∂z and ∂̄v = iz̄∂̄z,

respectively. The functionsXj(v(z)) are multi-valued functions of z if w �= 0. But their
derivatives with respect to z and z̄ are single-valued, and moreover are holomorphic and
anti-holomorphic, respectively:

∂Xj

∂z
= − i

2z

((
G−1

)jk
pk − wj

)
− i√

2

∞∑′

s=−∞

α
j
s

zs+1 ,

∂Xj

∂z̄
= − i

2z̄

((
G−1

)jk
pk + wj

)
− i√

2

∞∑′

s=−∞

ᾱ
j
s

z̄s+1 .

Note that after rescaling Xj → (i
√

2)Xj these expressions become formally the same
as (13,14), except that in (13,14) the coordinates on the phase space wk, pk, αks , ᾱ

k
s are

replaced with the operatorsWk,Mk −BklW l, αks , ᾱ
k
s , respectively. This replacement is

the quantization map discussed in more detail below.
Similarly, after analytic continuation to imaginary τ, the sectionsψj and ψ̄j become

holomorphic and anti-holomorphic, respectively. One additional subtlety arises due to
the fact that ψ and ψ̄ are sections of semi-spinor bundles. Thus the coordinate change
v �→ z = e−iv must be accompanied by ψj �→ z−1/2ψj , and ψ̄j �→ z̄−1/2ψ̄j . This
accounts for the shift r �→ r + 1

2 between (51,52) and (15,16).
Let us now turn to the quantization of the σ -model. This discussion provides a mo-

tivation for the constructions of Sect. 4.
Since the classical phase space is a disconnected sum of identical pieces labeled by

w ∈ &, the quantum-mechanical Hilbert space will be a direct sum of identical Hil-
bert spaces labeled by w ∈ &. Thus we only need to understand how to quantize the
supermanifold Mw. In turn, Mw decomposes as a product of T ∗M with the standard
symplectic structure, and a vector superspace spanned by the oscillators.

The vector superspace spanned by the oscillators can be quantized using the well-
known Fock-Bargmann prescription. The resulting Hilbert superspace is the so-called
Fock space, i.e. the completion with respect to a suitable norm of the space of poly-
nomials of even variables ai−s , āi−s , s = 1, 2, . . . , and odd variables θ−r , θ̄−r , r =
1/2, 3/2, . . . .We will denote this space of polynomials HFock.

The quantization of T ∗M is also standard and yields the Hilbert space which is the
completion of the space C∞(M) of smooth functions on M = R2d/& with respect to
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an L2 norm. Using the Fourier transform, this Hilbert space can be identified with the
completion of the group algebra of &∗ with respect to an O2 norm.

Thus the quantization procedure sketched above leads to the Hilbert space which is
a suitable completion of an infinite-dimensional superspace

⊕w∈&C[&∗]⊗HFock.

This can be written in a more symmetric form:

C[& ⊕ &∗]⊗HFock.

For our purposes, only the superspace structure, and not the Hilbert space structure, is
important. Thus we need not perform the completion procedure, and can take the above
superspace as the state space of theN = 2 superconformal vertex algebra corresponding
to the supersymmetric σ -model. We will call this vector superspace the state space of
the quantized σ -model.

Finding a suitable state space is but a part of the quantization problem. Quantizing
a classical field theory usually requires finding a sufficiently large subset of functions
on the phase space closed under the Poisson brackets, and a map from this subset to
the set of linear operators on the state space, such that the Poisson brackets are mapped
to −i times the graded commutator. The choice of the subset of functions on the phase
space is dictated by physical considerations. For example, for string theory applications
it is imperative to have an N = 1 super-Virasoro algebra acting on the state space. Thus
the distinguished subset must include the generators of the N = 1 super-Virasoro alge-
bra (47) and their linear combinations. We will also require that the subset include the
generators of the N = 2 super-Virasoro (49). Usually one also requires that the distin-
guished subset include the fields in terms of which the classical action is written. In our
case these areXj(σ, τ ), ψj (σ, τ ), ψ̄j (σ, τ ).One also wants the operator corresponding
to the Hamiltonian H = L0 + L̄0 to have nonnegative spectrum.

To quantize the fields Xj ,ψj , and ψ̄j it is sufficient to quantize the oscillators and
(xj , pj ) (the coordinates on T ∗M). The Fock-Bargmann quantization map sends oscil-
lators with negative subscripts to multiplication operators on the space of polynomials:

α
j
s �→ a

j
s , ᾱ

j
s �→ ā

j
s , s = −1,−2, . . . ,

ψ
j
r �→ θ

j
r , ψ̄

j
r �→ θ̄

j
r , r = −1

2
,−3

2
, . . . .

The oscillators with positive subscripts are mapped to differentiation operators on the
space of polynomials:

α
j
s �→ s

(
G−1

)jk ∂

∂ak−s
, ᾱ

j
s �→ s

(
G−1

)jk ∂

∂āk−s
, s = 1, 2, . . . ,

ψ
j
r �→

(
G−1

)jk ∂

∂θk−r
, ψ̄

j
r �→

(
G−1

)jk ∂

∂θ̄k−r
, r = 1

2
,

3

2
, . . . .

It is easy to see that the (graded) commutators between these operators are equal to i
times the Poisson brackets of their classical counterparts, as required.

The quantization of (xj , pj ) proceeds as follows. The function xj is a multi-val-
ued function on the phase space and cannot be quantized. But any smooth function
f (x1, . . . , x2d) which is periodic, i.e. invariant with respect to shifts xj → xj +
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2πnj , nj ∈ Z, is a univalued function on the phase space. The standard quantization
of T ∗M maps such a function to a multiplication operator on C∞(M):

f (x1, . . . , x2d) �→ f (x1, . . . , x2d).

Actually, the vector space we are dealing with is not just C∞(M), but a &-graded
vector space

F = ⊕w∈&C∞(M),
and therefore we should quantize a pair (f,w) rather than f. This leads to an important
subtlety. If w = 0, we can assign to (f,w) a multiplication operator which acts on each
of the &-homogeneous components of F in an identical manner. On the other hand, if
w �= 0, it does not seem right to assign to it multiplication by f, since such a quantiza-
tion procedure would map different classical functions to the same quantum-mechanical
operator. A natural guess for the operator corresponding to (f,w) is multiplication by
f followed by an operator Tw, where Tw shifts the &-grading by w. This guess will be
justified below.

Under the standard quantization of T ∗M, the function pj is mapped to a differenti-
ation operator on F:

pj �→ p̂j = −i ∂

∂xj
. (53)

If f̂w is the quantum operator corresponding to the function (f,w) ∈ F, we have the
commutation relation

[f̂w, p̂j ] = i
̂( ∂f
∂xj

)
w

.

This should be compared with the classical relation

{f (x), pj }P.B. = ∂f (x)

∂xj
.

The Fourier transform which identifies the completion of F with the completion of
C[& ⊕ &∗] sends p̂j to the following operator Mj on C[& ⊕ &∗]:

Mj : (w,m) �→ mj(w,m), ∀(w,m) ∈ & ⊕ &∗. (54)

Putting all this together, we obtain the quantization map for ∂Xj , ∂̄Xj , ψj , and ψ̄j .
It is easy to check that this yields the expressions (13–16) of Sect. 4 with B = 0 (after
we rescale Xj by a factor i

√
2).

Now we can also motivate the state-operator correspondence postulated in Sect. 4.
The main idea that the quantization map should send local classical observables to local
quantum fields belonging to the image of Y. For example, ∂Xj , ∂̄Xj , ψj , ψ̄j and their
derivatives are local classical observables, so the corresponding quantum fields must lie
in the image of Y. These considerations explain the mapping of the states αj−s |vac〉,
ᾱ
j
−s |vac〉, ψj−r |vac〉, and ψ̄j−r |vac〉. Together with the axioms of vertex algebra, this

uniquely fixes the mapping of other states in the subspace w = m = 0. Other natural
local classical observables are suitable exponentials of Xj(z, z̄). (The classical field
Xj(z, z̄) itself is multi-valued and therefore should not be quantized.) Requiring that
they map to local quantum fields fixes the form of Y for all (w,m) ∈ & ⊕ &∗. An
interested reader is referred to [29] for details.



Vertex Algebras, Mirror Symmetry, and D-Branes 123

Another important ingredient is the quantization of the N = 2 super-Virasoro
algebra. Naively, one would like to define the quantum generators by the same for-
mulas (47,49), but with the classical fields replaced by the quantum fields. This idea
runs into an immediate problem since the products of quantum fields at the same point
are not well-defined. The normal ordering prescription resolves this problem and leads
to well-defined operators. One can easily check that this definition of the generators of
the N = 2 super-Virasoro is equivalent to the one given in Sect. 4. The operators thus
defined form an infinite-dimensional Lie super-algebra which is a central extension of
the classical N = 2 super-Virasoro (47,49). One can also check that the spectrum of
H = L0 + L̄0 is nonnegative.

It remains to explain how to include the effect of the B-field. As remarked above, a
closed B-field does not affect the classical σ -model. However, the above quantization
procedure admits a modification which depends on a class inH 2(M,R/Z).We wish to
interpret this class as the cohomology class of the B-field.

The modification affects the quantization of T ∗M and consists in replacing the space
of smooth functions on R2d/& with the space of smooth functions on R2d satisfying
the following quasi-periodicity condition:

f (x1 + 2πn1, . . . , x2d + 2πn2d) = e−2πiBjknjwkf (x1, . . . , x2d),

where Bjk is a real skew-symmetric matrix which we can interpret as an element of
H 2(M,R) in a natural manner. We will denote the space of such functions C∞w (M,B).
It is clear that C∞w (M,B) depends only on the image of B in H 2(M,R/Z). Thus the
modification consists of replacing F with the space

F(B) = ⊕w∈&C∞w (M,B).
Fourier transform identifies a completion of C∞w (M,B) with a completion of C[&∗], as
before, so the Hilbert space of the quantum theory is unaffected by B. But the map of
the classical functions on the phase space to operators is affected.

First, the product of two quasi-periodic functions f ∈ C∞w (M,B) and f ′ ∈ C∞
w′

(M,B) belongs to the space C∞
w+w′(M,B). Hence the multiplication operators do not

preserve the &-grading on F(B). Rather, multiplication by f ∈ C∞w (M,B) shifts the
grading by w. If we want the limit B → 0 to be smooth, we have to postulate that even
for B = 0 multiplication by f ∈ C∞w (M,B) shifts the grading by w. This provides a
justification for the guess made above. Second, while the function pj is still mapped
according to (53), the Fourier transform of p̂j is different from (54). Namely, it is easy
to see that the Fourier transform of the differentiation operator on C∞w (M,B) is given
by Mj − Bjkwk. Putting these facts together, one obtains the quantization map for all
classical fields in agreement with (13–16).

B. The Relation Between Vertex Algebras and Chiral Algebras

In this appendix we describe some properties of vertex algebras in the sense of Defini-
tion 3.3. Let (V , |vac〉, T , T̄ , Y ) be a vertex algebra. We prove that the subspace of V
spanned by vectors which are mapped by Y to meromorphic fields has a natural structure
of a chiral algebra. Furthermore, anti-meromorphic fields form another chiral algebra,
and these two chiral algebras supercommute with each other. We also describe an ana-
logue of the Borcherds (or associativity) formula for vertex algebras. Finally, we show
that any chiral algebra is a vertex algebra.
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We start with the following useful lemma.

Lemma B.1. Let N,M be integers and let hj , j = 1, . . . , K be distinct real numbers
belonging to [0, 1). Suppose the following relation holds:

K∑
j=1

iz,w
1

(z− w)N+hj iz̄,w̄
1

(z̄− w̄)M+hj Cj (z, z̄, w, w̄) = 0, (55)

where Cj (z, z̄, w, w̄) ∈ QF2(V ). Then Cj (z, z̄, w, w̄) ≡ 0 for all j.

It is sufficient to prove the statement for M = N = 0. Let v ∈ V be an arbitrary
vector. We are going to prove that the value of Cj on v vanishes for all j. To this end let
us evaluate both sides of (55) on v and set w = zx and w̄ = z̄x̄. Since Cj ∈ QF2(V ),

the expression Cj (z, z̄, zx, z̄x̄)(v) can be written as∑
α,β

fαβ(x, x̄)z
−αz̄−β, (56)

where each fαβ is a finite sum of fractional powers of x, x̄ with coefficients in V.Hence
the value of the left-hand side of Eq. (55) on v is a sum∑

α,β

z−αz̄−β
∑

(γ,δ)∈Jαβ
x−γ x̄−δTαβγ δ,

where Jαβ ⊂ R2 is a finite set for each (α, β). Each Tαβγ δ has the form

K∑
j=1

ix
1

(1− x)hj ix̄
1

(1− x̄)hj fj (x, x̄), (57)

where all fj are polynomials in x, x̄ with coefficients in V, and hj ∈ [0, 1) are distinct
real numbers. The symbol ix (resp. ix̄) means “expand in a Taylor series around x = 0”
(resp. x̄ = 0). To prove the lemma it is sufficient to show that if the expression Eq. (57)
is zero, then fj ≡ 0 for all j. To prove this, we rewrite fj as a polynomial in 1− x and
1− x̄. Then Eq. (57) takes the form

L∑
l=1

ix
1

(1− x)tl ix̄
1

(1− x̄)sl al,

where (tl, sl) are distinct pairs of real numbers, and each al ∈ V is a coefficient of some
fj . Let us denote this expression by T .We will show by induction in L that if T is equal
to 0 then al = 0 for all l. This will imply that fj ≡ 0 for all j. The base of induction is
evident. Suppose a1 �= 0.Multiply T by ix(1−x)t1 ix(1− x̄)s1 and apply to the resulting
expression an operator

A(1− x)∂x + B(1− x̄)∂x̄ ,
where A,B are arbitrary real numbers. We obtain a sum with L− 1 terms:

L∑
l=2

ix
1

(1− x)tl ix̄
1

(1− x̄)sl (A(tl − t1)+ B(sl − s1))al

which is equal to 0 whenever T = 0. Since A and B are arbitrary, by the induction
hypothesis we get al = 0 for l = 2, . . . , L. Consequently, a1 is equal to 0 as well. This
proves the lemma.
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Theorem B.2 (Uniqueness theorem). Let V be a subspace inQF1(V ) which satisfies
the following conditions:

1. any field A(z, z̄) ∈ V is mutually local with all fields Y (a), a ∈ V ;
2. all fields are creative, i.e. A(z, z̄)|0〉 ∈ V [[z, z̄]].

Then the map
s : V → V [[z, z̄]],
A(z, z̄) �→ A(z, z̄)|0〉

is injective.

Suppose A(z, z̄)|0〉 = 0. Take a vector a ∈ V and consider Y (a). From locality we
know that

Y (a)(z, z̄)A(w, w̄) =
M∑
j=1

iz,w
1

(z− w)hj+N iz̄,w̄
1

(z̄− w̄)hj+N Cj (z, z̄, w, w̄).

Hence we have

M∑
j=1

iz,w
1

(z− w)hj+N iz̄,w̄
1

(z̄− w̄)hj+N Cj (z, z̄, w, w̄)|0〉 = 0.

Using the arguments of Lemma B.1, we get Cj (z, z̄, w, w̄)|0〉 = 0 for all j . Now from
locality we obtain

A(w, w̄)Y (a)(z, z̄)|0〉 = 0.

This implies that A(w, w̄)a = 0 for any a ∈ V . Hence A(w, w̄) = 0, and the theorem
is proved.

Corollary B.3. For any a ∈ V the following identities hold:

Y (T a) = ∂Y (a), Y (T̄ a) = ∂̄Y (a).
Both fields Y (T a) and ∂Y (a) are mutually local with all fields Y (b). Moreover we

have
Y (T a)|0〉 = ∂Y (a)|0〉 = T eT z+T̄ z̄a.

Hence by the uniqueness theorem

Y (T a) = ∂Y (a).
The other identity is proved similarly.

We call a vector a ∈ V meromorphic (resp. anti-meromorphic) if Y (a) is mero-
morphic (resp. anti-meromorphic). To show that meromorphic and anti-meromorphic
vectors form two supercommuting chiral algebras, it is sufficient to prove the following
proposition.

Proposition B.4. Let V be a vertex algebra. Then

1. the subspace of meromorphic vectors is closed with respect to Y and T , i.e. T (a) and
a(n)b are meromorphic when a ∈ V and b ∈ V are meromorphic,
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2. the OPE of two meromorphic fields a(z) and b(w) can be written in the form

a(z)b(w) = iz,w 1

(z− w)N C(z,w),

(−1)p(a)p(b)b(w)a(z) = iw,z 1

(z− w)N C(z,w), C(z,w) ∈ QF2(V ),

where N is an integer,
3. If a ∈ V is meromorphic and b ∈ V is anti-meromorphic, then their OPE has the

form

a(z)b(w̄) = C(z, w̄), (−1)p(a)p(b)b(w̄)a(z) = C(z, w̄), C(z, w̄) ∈ QF2(V ).

Let us prove statement (1) of the proposition. From Corollary B.3. we infer that a is
meromorphic if and only if T̄ a = 0. Since T and T̄ commute, this immediately implies
that T a is meromorphic when a is meromorphic. Further, consider Y (a)b, where both
a and b are meromorphic. We have

T̄ Y (a)b = Y (a)(T̄ b) = 0.

Hence T̄ (a(n)b) = 0, and all a(n)b are meromorphic as well.
Statements (2) and (3) of the proposition are special cases of a more general statement

which we are going to prove.

Proposition B.5. Let a, b ∈ V. If a is meromorphic, then the OPE of a(z) and b(w, w̄)
can be written in the form

a(z)b(w, w̄) = iz,w 1

(z− w)N D(z,w, w̄), (58)

(−1)p(a)p(b)b(w, w̄)a(z) = iw,z 1

(z− w)N D(z,w, w̄),

where D(z,w, w̄) ∈ QF2(V ), and N is an integer.

This means that if a certain variable does not appear on the left-hand-side of the OPE,
it does not appear on the right-hand-side either.

The general form of the OPE of a(z) and b(w, w̄) is

a(z)b(w, w̄) =
M∑
i=1

iz,w
1

(z− w)N+hi iz̄,w̄
1

(z̄− w̄)N+hi Ci(z, z̄, w, w̄),

where N ∈ Z, hi, i = 1, . . . ,M, are distinct real numbers which belong to [0, 1), and
Ci ∈ QF2(V ).

Let us act on both sides with an operator (z̄− w̄) ∂
∂z̄
.We get

0 =
M∑
i=1

iz,w
1

(z− w)N+hi iz̄,w̄
1

(z̄− w̄)N+hi
(
−(N + hi)+ (z̄− w̄) ∂

∂z̄

)
Ci.

By Lemma B.1. we may conclude that for all i we have(
−(N + hi)+ (z̄− w̄) ∂

∂z̄

)
Ci = 0. (59)
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Now let us show that Ci ≡ 0 if hi �= 0. Assume the converse. Then there is a vector
v ∈ V such that

Ci(z, z̄, w, w̄)(v) =
∑
α,β,γ,δ

c(αβγ δ)z
−αz̄−βw−γ w̄−δ �= 0.

Equation (59) implies

(N + hi + β)c(αβγ δ) = (β − 1)c(α,β−1,γ,δ+1). (60)

SinceCi ∈ QF2(V ),we can chooseα, β, γ, δ so that c(α,β,γ,δ) �= 0 and c(α,β−1,γ,δ+1) =
0. From Eq. (60) we find that β = −(N + hi). Furthermore, (60) implies that

c(α,β+k,γ,δ−k) =
(
β + k − 1

k

)
c(α,β,γ,δ) =

(−(N + hi)+ k − 1

k

)
c(α,β,γ,δ)

for all k ∈ N. If hi �∈ Z then the vector c(α,β+k,γ,δ−k) ∈ V is nonzero for all k ∈ N. But
this contradicts the condition Ci ∈ QF2(V ).

Since hi ∈ [0, 1) for all i, and hi �= hj for i �= j, we conclude that Ci = 0 for
all i except maybe one, and for the latter value of i we have hi = 0. In addition, for
c(α,β+k,γ,δ−k) to be zero for k > 0, as required by the condition Ci ∈ QF2(V ), the
integer N must be nonnegative. Thus the OPE of a(z) and b(w, w̄) has the form

a(z)b(w, w̄) = iz,w 1

(z− w)N iz̄,w̄
1

(z̄− w̄)N C(z, z̄, w, w̄),

where C(z, z̄, w, w̄) ∈ QF2(V ) and N ≥ 0.
Applying Eq. (59) to C(z, z̄, w, w̄) and differentiating it with respect to z̄, we infer

that

C(z, z̄, w, w̄) = 1

N !
(z̄− w̄)N∂Nz̄ C(z, z̄, w, w̄) and ∂N+1

z̄ C(z, z̄, w, w̄) = 0.

For this reason the element 1
N !∂

N
z̄ C(z, z̄, w, w̄) ∈ QF2(V ) does not depend on z̄. Let

us denote it by D(z,w, w̄). Then the OPE of a(z) and b(w, w̄) takes the form

a(z)b(w, w̄) = iz,w 1

(z− w)N D(z,w, w̄),

(−1)p(a)p(b)b(w, w̄)a(z) = iw,z 1

(z− w)N D(z,w, w̄).

This completes the proof of Proposition B.4.. As a corollary, we have:

Corollary B.6. Meromorphic and anti-meromorphic vectors form two supercommuting
chiral algebras.

In the theory of chiral algebras an important role is played by the so-called Borc-
herds formula which expresses the OPE of any two fields a(z) and b(z) in the image
of Y through their normal ordered product and the Borcherds products a(n)b. We will
prove an analogue of the Borcherds formula for vertex algebras.
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Note that any field D(z,w, w̄) ∈ QF2(V ) meromorphic in the first variable can be
expanded in a Taylor series in (z − w) to an arbitrarily high order. This means that for
any integer K > 0 there exists a field DK(z,w, w̄) ∈ QF2(V ) such that

D(z,w, w̄) =
K−1∑
j=0

(z− w)j
j !

∂jD(z,w, w̄)

∂zj

∣∣∣∣
z=w

+ (z− w)KDK(z,w, w̄).

To prove this, it is sufficient to show that for any D(z,w, w̄) ∈ QF2(V ) we have

D(z,w, w̄)−D(w,w, w̄) = (z− w)D1(z, w, w̄)

for some D1(z, w, w̄) ∈ QF2(V ). This fact is trivial. Note also that if D ∈ QF2(V )

contains fractional powers of z (and therefore also depends on z̄), the Taylor formula
need not hold.

Using the Taylor formula, the OPE (58) can be rewritten in the following form:

a(z)b(w, w̄) =
N∑
j=1

iz,w
1

(z− w)j Cj (w, w̄)+DN(z,w, w̄),

where Cj (w, w̄) ∈ QF1(V ) for all j, DN(z,w, w̄) ∈ QF2(V ). It is easy to see that Cj
and DN are uniquely defined by this formula.

Moreover it can be easily checked that Cn(w, w̄) coincides with

a(w)(n)b(w, w̄) := Resz((z− w)n−1(a(z)b(w, w̄)− b(w, w̄)a(z))).
The analogue of the Borcherds formula provides explicit expressions for Cj andDN

in terms of a and b:

Cj (w, w̄) = Y
(
a(j)b

)
(w, w̄), j = 1, . . . , N, DN(z,w, w̄) =: a(z)b(w, w̄) : .

(61)

Here the normal ordered product : a(z)b(w, w̄) :∈ QF2(V ) is defined as follows. Let

a(z)+ =
∑
n≤0

a(n)z
−n, a(z)− =

∑
n>0

a(n)z
−n.

Then the normal ordered product of a(z) and b(w, w̄) is defined by

: a(z)b(w, w̄) := a(z)+b(w, w̄)+ (−1)p(a)p(b)b(w, w̄)a(z)−.

Thus the OPE of a meromorphic field and an arbitrary field takes the form

a(z)b(w, w̄) =
N∑
j=1

iz,w
1

(z− w)j Y
(
a(j)b

)
(w, w̄)+ : a(z)b(w, w̄) : . (62)

Similarly, the OPE of an anti-meromorphic field and an arbitrary field is given by

a(z̄)b(w, w̄) =
N∑
j=1

iz̄,w̄
1

(z̄− w̄)j Y
(
a(j)b

)
(w, w̄)+ : a(z̄)b(w, w̄) : . (63)
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To prove the analogue of the Borcherds formula it is sufficient to show that a(w)(n)
b(w, w̄) is mutually local with any Y (c). Indeed, it can be easily checked that

a(w)(n)b(w, w̄)|0〉 = Y (a(n)b)(w, w̄)|0〉,
and hence by the uniqueness theorem we obtain

a(w)(n)b(w, w̄) = Y (a(n)b)(w, w̄).
Lemma B.7. If a ∈ V is meromorphic, then a(z)(n)b(z, z̄), n ≥ 1 is mutually local
with any Y (c).

We have to prove that

a(w)(n)b(w, w̄) = Resz((z− w)n−1(a(z)b(w, w̄)− b(w, w̄)a(z)))
is mutually local with any Y (c) = c(z, z̄).

Let us consider

A = (z1 − z2)
n−1(a(z1)b(z2, z̄2)c(z3, z̄3)− b(z2, z̄2)a(z1)c(z3, z̄3))

and
B = (z1 − z2)

n−1(c(z3, z̄3)a(z1)b(z2, z̄2)− c(z3, z̄3)b(z2, z̄2)a(z1)).

We know that for some sufficiently large r ∈ N the following identities hold:

(z1 − z2)
ra(z1)b(z2, z̄2) = (z1 − z2)

rb(z2, z̄2)a(z1),

(z1 − z3)
ra(z1)c(z3, z̄3) = (z1 − z3)

rc(z3, z̄3)a(z1).

Now let us consider (z2 − z3)
M . We have

(z2 − z3)
M =

M∑
s=0

(
M

s

)
(z2 − z1)

M−r (z1 − z3)
s .

Let us multiply A with (z2 − z3)
M , where M ≥ 2r . We get

M∑
s=0

(
M

s

)
(z2 − z1)

M−r (z1 − z3)
sA.

For 0 ≤ s ≤ r the sth summand in this expression is 0, because (z1 − z2)
M−s

(z1 − z2)
n−1 = (z1 − z2)

r ′ , where r ′ ≥ r . Hence the expression is equal to

M∑
s=r+1

(
M

s

)
(z2 − z1)

M−r (z1 − z3)
sA

=
M∑

s=r+1

(
M

s

)
(z2 − z1)

M−r (z1 − z3)
s(z1 − z2)

n−1(a(z1)b(z2, z̄2)c(z3, z̄3)

− b(z2, z̄2)a(z1)c(z3, z̄3))

=
M∑

s=r+1

(
M

s

)
(z2 − z1)

M−r (z1 − z3)
s(z1 − z2)

n−1

× (a(z1)b(z2, z̄2)c(z3, z̄3)− b(z2, z̄2)c(z3, z̄3)a(z1))

=
M∑

s=r+1

(
M

s

)
(z2 − z1)

M−r (z1 − z3)
s(z1 − z2)

n−1[a(z1), b(z2, z̄2)c(z3, z̄3)].
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In the same way we find that

(z2 − z3)
MB =

M∑
s=r+1

(
M

s

)
(z2 − z1)

M−r (z1 − z3)
s[a(z1), c(z3, z̄3)b(z2, z̄2)].

From our definition of a vertex algebra we know that

b(z2, z̄2)c(z3, z̄3) =
∑
j

iz2,z3

1

(z2 − z3)
hj+N iz̄2,z̄3

1

(z̄2 − z̄3)
hj+N Ej (z2, z̄2, z3, z̄3),

c(z3, z̄3)b(z2, z̄2) =
∑
j

iz3,z2

1

(z2 − z3)
hj+N iz̄3,z̄2

1

(z̄2 − z̄3)
hj+N Ej (z2, z̄2, z3, z̄3)

for some Ej from QF2(V ). Substituting these expressions into the formulas above we
find that

(z2 − z3)
M(a(z2)(n)b(z2, z̄2))c(z3, z̄3)

= Resz1

( M∑
s=r+1

(
M

s

)
(z2 − z1)

M−r (z1 − z3)
s(z1 − z2)

n−1

∑
j

iz2,z3

1

(z2 − z3)
hj+N iz̄2,z̄3

1

(z̄2 − z̄3)
hj+N [a(z1), Ej (z2, z̄2, z3, z̄3)]

)
,

and

(z2 − z3)
Mc(z3, z̄3)a(z2)(n)b(z2, z̄2)

= Resz1

( M∑
s=r+1

(
M

s

)
(z2 − z1)

M−r (z1 − z3)
s(z1 − z2)

n−1

∑
j

iz3,z2

1

(z2 − z3)
hj+N iz̄3,z̄2

1

(z̄2 − z̄3)
hj+N [a(z1), Ej (z2, z̄2, z3, z̄3)]

)
.

To prove mutual locality of a(z)(n)b(z, z̄) with any Y (c) one only needs to show that
one can divide both sides of the above equations by (z2 − z3)

M . In fact, it is sufficient
to show this for M = 1, and then use induction on M.

To show that one can divide both sides by z2 − z3, we note that the kernel of multi-
plication by z− w consists of expressions of the form∑

n∈Z

( z
w

)n
D(z, z̄, w, w̄),

whereD(z, z̄, w, w̄) is a formal fractional power series with coefficients inEnd(V ) (but
not necessarily an element ofQF2(V )). IfD(z, z̄, w, w̄) is not identically zero, then there
exists v ∈ V such that when this expression is applied to v, one gets a fractional power
series with coefficients in V containing arbitrarily large negative powers of w and z.
On the other hand, applying any element of QF1(V ) or QF2(V ) to any v ∈ V one
always obtains a fractional power series with powers bounded from below. This implies
that one can divide both sides of the above equations by z2−z3.The Borcherds formulas
are proven.
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Three remarks are in order here. First, it seems that there is no analogous way to
rewrite the OPE of two fields when neither of them is meromorphic or anti-meromor-
phic. Consequently, the normal ordered product of two general fields is not a very useful
concept.

Second, given two meromorphic fields, one can define two normal ordered products:

: a(z)b(w) : = a(z)+b(w)+ (−1)p(a)p(b)b(w)a(z)−,

: b(w)a(z) : = b(w)+a(z)+ (−1)p(a)p(b)a(z)b(w)−.

Correspondingly, there are two different OPEs that one can write down. The first one is

a(z)b(w) =
N∑
j=1

iz,w
1

(z− w)j Y
(
a(j)b

)
(w)+ : a(z)b(w) :,

(−1)p(a)p(b)b(w)a(z) =
N∑
j=1

iw,z
1

(z− w)j Y
(
a(j)b

)
(w)+ : a(z)b(w) :,

and the second one is

b(w)a(z) =
N∑
j=1

iw,z
1

(w − z)j Y
(
b(j)a

)
(z)+ : b(w)a(z) :,

(−1)p(a)p(b)a(z)b(w) =
N∑
j=1

iz,w
1

(w − z)j Y
(
b(j)a

)
(z)+ : b(w)a(z) : .

In general, the two normal ordered products are not related in any simple way.
Third, given a meromorphic and an anti-meromorphic field, one can also define two

normal ordered products. However, in this case they always coincide up to a sign:

: a(z)b(w̄) := (−1)p(a)p(b) : b(w̄)a(z) : .

Indeed, the OPE formulas (62,63) read in this case

a(z)b(w̄) = (−1)p(a)p(b)b(w̄)a(z) =: a(z)b(w̄) :,

b(w̄)a(z) = (−1)p(a)p(b)a(z)b(w̄) =: b(w̄)a(z) : .

This fact also follows directly from the definition of the normal ordered product and the
fact that meromorphic and anti-meromorphic fields in the image of Y supercommute.

Finally, let us show that any chiral algebra is a special case of a vertex algebra with
T̄ = 0 and the image of Y consisting of meromorphic fields only. The only thing which
needs to be checked is the OPE axiom. For a chiral algebra, the OPE of any two fields
in the image of Y has the form

a(z)b(w) =
N∑
n=1

iz,w
1

(z− w)n Y
(
a(n)b

)
(w)+ : a(z)b(w) :,

(−1)p(a)p(b)b(w)a(z) =
N∑
n=1

iw,z
1

(z− w)n Y
(
a(n)b

)
(w)+ : a(z)b(w) : .
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Obviously, a(n)b(w) belongs to QF2(V ). It is also easy to check that : a(z)b(w) : also
belongs to QF2(V ). Hence, the above OPE can be rewritten as

a(z)b(w) = iz,w 1

(z− w)N C(z,w),

where C(z,w) ∈ QF2(V ). Therefore the OPE axiom is satisfied.

C. Projectively Flat Connections and the Fundamental Group

In this appendix we establish a relation between projectively flat connections on complex
vector bundles on a connected manifold and finite representations of a twisted group
algebra of the fundamental group. This relation is a generalization of the well-known
statement that flat connections on complex vector bundles are in one-to-one correspon-
dence with representations of the fundamental group.

Let M be a paracompact connected C∞-manifold. Let us fix a closed real 2-form B

on M. Consider a complex vector bundle E on M with a connection ∇ such that its
curvature F∇ ∈ G2 ⊗ End(E) is equal to

F∇ = 2πiB ⊗ idE. (64)

Such a connection is called projectively flat, and it is flat if and only if B = 0. When
B is non-zero, we can consider the condition (64) as a “twisted” variant of the flatness
condition.

We will prove that the set of such connections is in one-to-one correspondence with
finite representations of a twisted group algebra of π1(M) defined below.

Let us fix a point x ∈ M. Since (E,∇) is projectively flat, for any contractible closed
path c starting at x the holonomy operator Hc : Ex −→ Ex is equal to tc · id, where
tc is a nonzero complex number. By the Reduction Theorem (see [22]) (E,∇) can be
reduced locally to a C∗–bundle, and therefore by Stockes’ theorem

tc = exp

(
2πi

∫
D

φ∗B
)
,

where φ is a map from the two dimensional disk D to M satisfying φ(∂D) = c. Since
B is a real 2-form, (E,∇) in fact locally reduces to a U(1)-bundle.

The above formula for tc is independent of the choice of φ only if

exp

(
2πi

∫
S2
φ∗B

)
= 1 (65)

for any map φ from the 2-dimensional sphere S2 to M. Thus a vector bundle (E,∇)
with curvature F∇ = 2πiB ⊗ idE can exist only if the de Rham cohomology class of
B belongs to the kernel of the composition homomorphism

H 2(M,R)→ H 2(M,U(1))→ Hom(π2(M),U(1)).

Let us consider the Hopf sequence

π2(M) −→ H2(M,Z) −→ H2(K(G, 1),Z) −→ 0,
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where G := π1(M). This sequence induces an injective map

0 −→ H 2(K(G, 1), U(1)) −→ H 2(M,U(1)). (66)

Denote by B the image of B in H 2(M,U(1)). We showed that if B does not belong
to the image of the map (66) then the set of vector bundles (E,∇) with curvature
F∇ = 2πiB ⊗ idE is empty.

Assume now that B is in the image of the map (66). Let us fix a point x ∈ M and
for each element g ∈ G choose a closed path cg beginning at x and representing g such
that the closed path cg−1 coincides with the inverse of cg for any g. Let c(g,h) be a loop
which is the union of the loops ch, cg, and c(gh)−1 This loop is contractible. Define a
function ψ : G×G→ U(1) by the rule

ψ(g, h) = exp

(
2πi

∫
D

φ∗B
)
, (67)

where φ is a map from the two dimensional disc D to M satisfying φ(∂D) = c(g,h). It
is easy to see that this function is a 2-cocycle on the group G. Moreover, if we choose
the representatives cg differently, we obtain a cocycle which is cohomologous to ψ.

The holonomy operators along the loops cg, ch, and cgh satisfy the following relation:

Hcg ·Hch = ψ(g, h)Hcgh .
This identity has the following representation-theoretic meaning. With any 2-cocycle ψ
one can associate a twisted group algebra Cψ [G], which is a vector space generated by
the elements g ∈ G with the following multiplication law:

g · h = ψ(g, h)gh.
(Note that if two 2-cocycles are cohomological to each other, then the corresponding
twisted group algebras are isomorphic.) The holonomy operatorsHcg define a represen-
tation of the twisted group algebra Cψ [G] on the vector space Ex.

An equivalent definition of the algebra Cψ [G] goes as follows. Let Lpx be the loop
space ofM with the well-known composition of loops (which is associative only up to a
homotopy). Let us consider the corresponding non-associative “group” algebra C[Lpx].
Then the algebra Cψ [G] is a factor-algebra of C[Lpx] modulo all relations of the form

c − exp

(
2πi

∫
D

φ∗B
)
· 1 = 0,

where c is a contractible loop, and φ is a map from the discD toM such that φ(∂D) = c.
By (65) this definition does not depend on the choice of φ. For any loop c ∈ Lpx we
denote by r(c) the element of the twisted group algebra which is the image of c with
respect to this factorization.

In this way to any vector bundle (E,∇) satisfying the condition (64) we can associate
a finite-dimensional representation of the twisted group algebra. We assert that this is a
one-to-one correspondence. To show this, we describe how to construct (E,∇) starting
from a representation R of the twisted group algebra.

Let CM be the sheaf of algebras of complex-valued C∞–functions onM. Let A be a
sheaf of algebras onM defined as Cψ [G]⊗CCM. If R is a representation of the twisted
group algebra, then the sheaf R = R⊗CCM has a natural left module structure over the
sheaf of algebras A.Below we construct a sheaf P of right A–modules with a connection
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∇P and setE = P⊗A R. This sheaf is the sheaf of sections of a complex vector bundle
on M, and ∇P induces a natural connection ∇ on it.

Let M̃
τ−→ M be a universal covering. Denote by B̃ the pull-back of the form B to

M̃. It is easy to check that B belongs to the image of the map (66) if and only if B̃ is
an exact form. Let us choose a 1-form η on M̃ such that dη = B̃.

Consider a sheaf of algebras Ã = Cψ [G]⊗CCM̃ on M̃.The tautological action ofG
on M̃ can be lifted to a left action on Ã as follows. Let cg be a loop inM based at a fixed
point x ∈ M and representing the element g ∈ G, and let r(cg) be the corresponding
element of the twisted group algebra ofG (see above). Let x0 be a lift of x to M̃. Let c̃g
be a path on M̃ which covers cg, begins at g−1(x0) and ends at x0. For any point y ∈ M̃
let us choose some path dy from y to x0. Let c̃g,y be a path from g−1(y) to y which is a
composition of g−1(dy), c̃g, and d−1

y . The left action of the group G on the sheaf Ã is
defined by the rule:

g(a ⊗ f )(y) = exp

(
−2πi

∫
c̃g,y

η

)
(r(cg)a ⊗ f (g−1y)),

where a ∈ Cψ [G] and f is a C∞–function on M̃.
This definition does not depend on the choice of dy, because the form B̃ isG-invari-

ant. Nor does it depend on the choice of cg, because for any other loop c′g representing
g we have

exp

(
−2πi

∫
c̃′g,y

η

)
r(c′g) = exp

(
−2πi

∫
c̃′g,y

η + 2πi
∫
D

φ∗B̃)r(cg

)

= exp

(
−2πi

∫
c̃g,y

η)r(cg

)
,

where φ is a map fromD to M̃ such that φ(∂D) is the composition of c̃′g and the inverse
of c̃g.

Furthermore, we can define a connection on Ã by the formula

∇̃(a ⊗ f ) = a ⊗ (df + 2πif η).

This connection is G-invariant. Indeed, let us regard
∫
c̃g,y

η as a function on M̃ and
denote it by h(y). Then we have

g∇̃(a ⊗ f )(y) = g(a ⊗ (df + 2πif η))(y)

= exp(−2πih(y))r(cg)a ⊗ (df (g−1y)+ 2πif (g−1y)η(g−1y)).

On the other hand, since dh(y) = η(y)− η(g−1y) we obtain

∇̃g(a ⊗ f )(y) = ∇̃(r(cg)a ⊗ exp(−2πih(y))f (g−1y))

= exp(−2πih(y))r(cg)a ⊗ (df (g−1y)

− 2πif (g−1y)dh(y)+ 2πif (g−1y)η(y))

= exp(−2πih(y))r(cg)a ⊗ (df (g−1y)+ 2πif (g−1y)η(g−1y)).
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The definitions of the connection ∇̃ and the action of the group G on Ã depend
on the choice of η. However, if we take another form η′ = η+ df then the data (Ã, ∇̃)
and (Ã, ∇̃′) are isomorphic under the multiplication by the function exp(−2πif ).More-
over, this isomorphism is compatible with the action of the group G.

We define a sheaf P on M as the sheaf of invariants τ∗(Ã)G with a connection ∇P
induced by ∇̃.

The sheaf P has a right module structure over A. It is locally free of rank 1 as an
A-module. It follows from the preceding discussion that the datum (P,∇P ) is unique
and depends only on the form B.

To any representationR of the twisted group algebra ofGwe attach a complex vector
bundle E = P ⊗A R with the connection ∇ induced by ∇P . It is easy to see that the
representation of the twisted group algebra on the space Ex corresponding to ∇ is iso-
morphic to R. Thus pairs (E,∇) satisfying (64) are in one-to-one correspondence with
finite-dimensional representations of Cψ [G], where the cocycle ψ is defined by (67).
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