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Abstract

We discuss D-branes of the topological A-model (A-branes), which are believed to be closely
related to the Fukaya category. We give string theory arguments which show that A-branes are not
necessarily Lagrangian submanifolds in the Calabi—Yau: more general coisotropic branes are also
allowed, if the line bundle on the brane is not flat. We show that a coisotropic A-brane has a natural
structure of a foliated manifold with a transverse holomorphic structure. We argue that the Fukaya
category must be enlarged with such objects for the Homological Mirror Symmetry Conjecture to
be true.
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1. Introduction

Let X be a weak Calabi—Yau manifold, i.e. a complex manifold wittX) = O which
admits a Kéhler metric. Given a Ricci-flat Kéhler metéicon X, and a B-field (a class
in H2(X, R)), one can canonically construct &h= 2 supersymmetric sigma-model with
“target” X. On physical grounds, the quantized version of this modelMas 2 super-
conformal symmetry and describes propagation of closed strings émthis note we set
B = 0 for simplicity. According to Calabi’s conjecture proved by Yau, we can parametrize
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G by the cohomology class of its Kahler forim A weak Calabi—Yau manifold equipped
with a Kéhler forme will be called a physicist's Calabi—Yau.

It sometimes happens that two different physicist's Calabi—Yau manifdids) and
(X', ') give rise to a pair ofV = 2 superconformal field theories (SCFTSs) related by
a mirror morphisnt1,2]. A mirror morphism of N = 2 SCFT is an isomorphism of the
underlyingN = 1 SCFT which acts on th& = 2 super-Virasoro algebra as a mirror
involution[3,4]. In this case, one says tha, w) and(X’, ') are mirror to each other. (For
aconcise explanation of the notions involved and further referencg8] s@a algebraically
minded reader may find it useful to consult Rél.for a careful definition oV = 2 SCFTs
and their morphisms.)

A long-standing problem is to understand the mirror relation from a mathematical view-
point, i.e. without a recourse to the ill-defined procedure of quantizing a sigma-model.
A fascinating conjecture has been put forward by Kontseyigh He observed that to
any physicist's Calabi—-YayX, ), one can associate two triangulated categories: the
well-known bounded derived category of coherent shed¥&sy) and the still mysteri-
ous Fukaya categorp F(X). Objects of the categorp?(X) are bounded complexes of
coherent sheaves. Objects of the Fukaya category are (roughly speaking) vector bundles
on Lagrangian submanifolds of equipped with unitary flat connections. The Homolog-
ical Mirror Symmetry Conjecture (HMSC) asseftd that if two algebraic physicist's
Calabi—Yau manifold$X, w) and(X’, »’) are mirror to each other, thed’ (X) is equiva-
lentto DF(X'), andDF(X) is equivalent tab?(X’). So far this conjecture has been proved
only for elliptic curved8].

From a physical viewpoint, complexes of coherent sheaves are D-branes of the topolog-
ical B-model (B-branes). We remind that the B-model of a physicist's Calabi<Xaw)
is a topological “twist” of the correspondiny = 2 SCFT[9]. The twisted theory is
a two-dimensional topological field theory whose correlators do not depend Mor-
phisms between the objects bf (X) are identified with the states of the topological string
stretched between pairs of B-branes, and the compositions of morphisms are computed by
the correlators of the B-model. This correspondence has been intensively discussed in the
physics literature (see e.g. Ref&0-13] and references therein), and will be taken as a
starting point here.

An N = 2 SCFT has another twist, called the A-twfi8f. The corresponding topolog-
ical field theory (the A-model) is insensitive to the complex structur& pbut depends
non-trivially on the symplectic form. D-branes of the A-model are called A-branes. Mirror
morphisms exchange A- and B-twists and A- and B-branes. Thus from a physical viewpoint
the mirror of D?(X) is the category of A-branes oxi.

It can be shown that any object of the Fukaya category gives rise to an A-brane. Moreover,
the recipe for computing morphisms between such A-branes can be derived heuristically
in the path integral formalism, and it reproduces the definition of morphisms in the Fukaya
category[14]. Therefore, the majority of researchers in the field assumed that the mirror
relation between the categories of A- and B-branes is essentially a restatement of the HMSC
in physical terms.

1 In fact, the calculation of morphisms between Lagrangian A-branes ifRfpreceded the formulation of
the HMSC and served as an important motivation for it.
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In this note, we will argue that this is not the case, because A-branes are not necessarily
Lagrangian submanifolds iX. This was mentioned already in one of the first papers on
the subjec{15], but the general conditions for a D-brane to be an A-brane have not been
determined there. I&ection 3 we will show that a coisotropic submanifold &f with a
unitary line bundle on it is an A-brane if the curvature of the connection satisfies a certain
algebraic condition. We remind that a submanif@laéf a symplectic manifold X, o) is
called coisotropic if the skew-complement®f C TX|y with respect tav is contained in
TY. In the physical language, a coisotropic submanifold is a submanifold locally defined by
first-class constraints. One can easily see that the dimension of a coisotropic submanifold is
at least half the dimension &f, and that a middle-dimensional coisotropic submanifold is
the same thing as a Lagrangian submanifold. Thus we show that the category of A-branes
contains, besides Lagrangian A-branes, A-branes of larger dimension.

In Section 4 we explore the geometric interpretation of the algebraic condition on the
curvature of the line bundle. We will see that an A-brane is naturaltyiated manifold
with a transverse holomorphic structure. The notion of transverse holomorphic structure
is a generalization of the notion of complex structure to foliated manifolds. If the space of
leaves of a foliated manifoldl is a smooth manifold, a transverse holomorphic structure on
Y is simply a complex structure on the space of leaves. The general definition is given in
Section 4In addition to being transversely holomorphic, a coisotropic A-brane also carries
a transverse holomorphic symplectic form.

In the case of a Lagrangian A-brane, the foliation has codimension zero, there are no
transverse directions, and the transverse holomorphic structure is not visible. In general,
the foliation is determined by the restriction ®fto Y, while the transverse holomorphic
structure comes from the curvature of the line bundle on the brane.

Interestingly, to prove that an A-brane has a natural transverse holomorphic structure, one
needs to use some facts from bihamiltonian geometry. The subject matter of bihamiltonian
geometry is manifolds equipped with two compatible (in a sense explained below) Poisson
structures. In our case, the underlying manifold is foliated, and one is dealing with transverse
Poisson structures. (If the space of leaves is a manifold, specifying a transverse Poisson
structure is the same as specifying an ordinary Poisson structure on the space of leaves.)
One of the transverse Poisson structures arises from the symplectieforthe ambient
spaceX, and the other one from the curvature of the line bundl& on

Our understanding of the category of A-branes is far from complete. Nevertheless, it
is clear that generally it includes objects other than Lagrangian submanifolds with flat
vector bundles. (There are certain special, but important, cases where there seem to be
no non-Lagrangian A-branes, like the case of an elliptic curve, or a simply connected
Calabi-Yau 3-fold.) Therefore, the Fukaya category must be enlarged with coisotropic
A-branes for the HMSC to be true. (This is somewhat reminiscent of the remark made in
Ref.[7] that Lagrangian foliations may need to be included in the Fukaya category.) This
is discussed in more detail Bection 5

Since our arguments are ultimately based on non-rigorous physical reasoning, a skeptic
might not be convinced that the HMSC needs serious modification. To dispel such doubts,
we discuss irsection 2mirror symmetry for tori and show that under mild assumptions the
usual Fukaya category cannot capture the subtle behavio? ©f) under the variation of
complex structure. Inclusion of coisotropic A-branes seems to resolve the problem.
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2. Why Lagrangian submanifolds are not enough

In this section, we give some examples which show that the Fukaya category must be
enlarged with non-Lagrangian objects for the HMSC to be true. We will exhibit a mirror
pair of tori such that mirror symmetry takes a holomorphic line bundle (a B-brane) on the
firsttorus to a complex line bundle on the second torus. This means that the latter line bundle
is an A-brane.

Itis well known that the derived category of coherent sheaves behaves in a very non-trivial
manner under a variation of complex structure, and at special loci in the moduli space of
complex structures it can become “larger.” This is easy to see on the level of the Grothendieck
group of D?(X), which we denote bXo(D?(X)). There is a map

ch: Ko(D’ (X))  Q — H*(X, Q)

called the Chern character. The image of this map is contained in the intersection of
H*(X, Q) with @, H?-?(X) inthe complex cohomology groui* (X, C) and, by the Hodge
Conjecture, should coincide with this intersection.

Let us denote bNS(X) the Neron—Severi group &f which, by definition, is the image
of a natural map from the Picard group £ to H2(X, Z). Then we hav&S(X) @ Q =
Im(chyn H2(X, Q), and therefore Im(ch) contains a subring generated by the Neron—Severi
group.

One can see from examples that the image of the map ch can change under a variation
of complex structure; in particular, the dimension of Im(ch) can jump if, e.g. the dimension
of the Neron—Severi group jumps.

The “jumping” phenomenon can be easily observed in the case of abelian varieties. Let
E; be an elliptic curve with a Teichmuller parameteit has a structure of an algebraic
group. Lete be the identity point of this group. It can be checked that any endomorphism
of E, that sends the poirt to itself is an endomorphism of the algebraic group. Such
endomorphisms form a ring which contalisis a subring and for a “generic” elliptic curve
coincides with it. However, the ring efpreserving endomorphisms &f, can be bigger
thanZ. In this case, one says that the elliptic cuBsgpossesses a complex multiplication. It
can be shown that; has a complex multiplication iff is a root of a quadratic polynomial
with integral coefficients. For example, the elliptic curve with= i is an example of a
curve with a complex multiplication.

Let E; be an elliptic curve with a complex multiplication. Consideradimensional
abelian varietyA = E" with n > 2. In this case, the derived categddy(A) is in a certain
sense much bigger than the derived category of a “generic” abelian variety. For a “generic”
abelian variety the Neron—Severi groufZiand, moreoveNS(A) ® Q generates the whole
Im(ch). Thus the dimension of Im(ch) is equalite- 1. For an abelian varietf”, where
E. is a“generic” elliptic curve, the dimension of the Neron—-Severi grougnst 1) /2. If
the elliptic curve possesses a complex multiplication, thenNfixa) = n2 and, moreover,
we have an equality

Im(chy ® C = @HPP.
p
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Thus in this case

) 2n
dimg Im(ch) = ( . )

For example, forn = 2 if 7 is generic, the Neron—Severi group has dimension 3 and is
generated by the divisoigt} x E;, E; x {pt}, A, whereA is the diagonal off; x E-.
In contrast, whenE; possesses complex multiplicatioS(A) has dimension 4, which
coincides with the dimension @gf1(A). It is generated by the divisofgt} x E., E; x
{pt}, A, I', wherel" C E; x E. is the graph of an additional endomorphismif

Now let us look at the Fukaya category of a mirror torus. The mirror relation for abelian
varieties is well-understoofb,16] (see alsd17]). In particular, it is known that for any
abelian variety A, one can find a symplectic foensuch that for the paitA, w) there exists
a mirror-symmetric abelian variet§ with a symplectic formwp [16, Proposition 9.6.1]
Let DF(B, wp) be the Fukaya category of the symplectic manif@dwp). This category
essentially depends only on the symplectic fasgpnand does not depend on the complex
structure of the variety3. This is mirror to the obvious fact that the derived category of
coherent sheaves does not depend on the symplectic form. By the HMSC the category
DZF(B, wg) should be equivalent to the derived categbi(A).

Furthermore, the mirror correspondence induces an isomorphism of the cohomology
vector spaces

B: H*(A, Q)= H*(B, Q).

For abelian varieties, the isomorphiginis described in Ref(16]. It is natural to assume
that is compatible with the conjectured equivalence between the derived cat@goty
and the Fukaya categoyF(B, wg). This means that there should exist a ngefpom the
Grothendieck grouo(DF(B, wp)) ® Q to the cohomology grouff* (B, Q) which closes
the commutative diagram

Ko(D*(4)) ® Q —— Ko(DF(B,wp)) ®Q

ol s

H'(AQ 2 H*(B,Q)

Under the map aflat vector bundle on a Lagrangian submanifold goes to the corresponding
cycle in the middle-dimensional cohomology groldp (B, Q) with a multiplicity equal to
the rank of the bundle.

Now note that classes of Lagrangian submanifolds in the middle-dimensional cohomol-
ogy group belong to the kernel of a surjective map

(B, C) B Hn2(B ).

The dimension of the kernel is equal to

(7)-(2)
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which is less than the dimension of Im(ch). Therefore whAea E?, whereE, is an elliptic
curve with a complex multiplication, Lagrangian submanifolds inith flat vector bundles
cannot generate the mirror 8 (A), in contradiction with the HMSC.

To obtain some information on the mysterious mirroD8{ A), let us describe the mirror
symmetry correspondence fer = E” more explicitly. In this case, mirror symmetry
is a T-duality. For simplicity we lett = i, so thatE, is a “square torus.” Consider a
decomposition of the lattic&X(A, Z) = I’ @ X with bases” = (x1,...,x,) andX =
{(¥1, ..., yn) such that the complex structufg takes; to y; andy; to —x;. Let /1, ... , [,)
be the dual basis in the dual latti¢®&. A mirror manifold for the abelian variety can be
constructed by'-dualizing the directionss, ... , x,,. This means that the mirror manifold
Bisatorus(I'™* @ X) @ R/(I'* & X) equipped with a constant symplectic form:

n
wp = Zli A Yi-
i=1

(For simplicity we do not introduce a symplectic form arand a complex structure ah)

In this case, the mag is defined in the following way. LeT be a real 8-dimensional
torusIT ® R/I1, wherell = I' & X & I'*. The torusT has natural projectiong andq to
the toriA and B:

T 24 B

|

A

Let P be a complex line bundle df defined by its first Chern class:

n
c1-(P) =) xili.
i=1

The Chern character ¢R) € H*(T, Q) is equal to exfr1(P)). According to[16], the map
B from H*(A, Q) to H*(B, Q) is given by the formula:

B(a) := q«(ch(P) - p*(a)).

(To define the mag., we chose fundamental classes7ofind B and used the Poincare
duality between cohomology and homology groups). Using this formula, one can explicitly
calculate the subspagglim(ch)).

To demonstrate the existence of objects in the mirrdpdfA ) which are not Lagrangian
submanifolds, we let = 2 for simplicity and consider a holomorphic line bundlen A
whose first Chern class is equal to

C1=X1 X2+ y1-Yy2.

Such a holomorphic line bundle exists because H-1(A). The moduli space of such
holomorphic line bundles is a homogeneous space ovétPicthe kernel of the natural
map from Pi¢A) to NS(A). More explicitly, L is of the formO(—D) ® N, whereN €
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Pi®(A), D = I' — {pt} x E — E x {pt}, and[" is the graph of the automorphism Bfgiven
by multiplication byi. A direct calculation shows that

BEh(L)) = (L y1-y2 —l1-12; —y1- y2 - 11 - I2) € H*®'(B, Q).

We see thag(ch(L)) coincides with the Chern character(afi of a complex line bundle
M on B with the first Chern class equal to

caM) =y1-y2—11-1p.

Therefore, itis natural to expect that the complex line buiilgvith an unitary connection)
is an object of the mirror ob?(A), and that the invertible coherent shéafjoes to the line
bundleM under the mirror symmetry correspondence described above. In physical terms,
this shows that the mirror of a D4-brane of type B with a flux wrapped on a 4-torus can be
a D4-brane of type A with a flux wrapped on the mirror torus.

One can check thatin this case the subspgla(ch)) consists of the elements, ¢; s) €
H®®(B, Q) such that

c-wp =0, s = %rw%. (1)

Similarly, for anyn > 2 we can find elements gf(Im(ch)) which do not belong to the
middle cohomology group a8 and therefore correspond to non-Lagrangian objects of the
mirror of D?(A).

One may ask how general this phenomenon is. It does not occur for odd-dimensional
Calabi—Yau manifolds which are complete intersections in projective spaces. But it seems
that for even-dimensional Calabi-Yau (e.g. for K3 surfaces) or for more general odd-
dimensional Calabi-Yau the situation is similar to that for abelian varieties, i.e. non-
Lagrangian A-branes appear at special points in the moduli space of symplectic structures.

3. World-sheet approach to A-branes

This section assumes some familiarity with supersymmetric sigma-models (on the clas-
sical level) and superconformal symmetries. Kelhe a Kaler manifold with metri¢ and
Kéahler formw. The complex structure o is given byl = G~lw. The supersymmet-
ric sigma-model with targeX classically hag2, 2) superconformal symmetry. Quantum
anomaly destroys this symmetry unleggéX) = 0.

Let j : Y — X be a submanifold irnX, and E be a line bundle orY with a unitary
connection. Our goal is to derive the necessary and sufficient conditions for@,p&jrto
be a D-brane of type A. We will find that these conditions depend,dout are not sensitive
to the complex structure oK, as expected on general grounds.

LetWbe an open string world-sheet, i.e. a Riemann surface with a boundary. The fields of
the sigma-model consist of a smooth ap W — X, and sectiong,  of @*(TX) @ ITS*.

Here S* are semi-spinor line bundles o, and /7 is the parity-reversal functor. In the
physical languagep is a bosonic field, whiley and are fermionic fields. The precise
form of the action is unimportant for our purposes; what is important is that the action has
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(2,2) superconformal symmetry. In particular, the supercurr@ftsQ=* are given by

+ | 1 ~ 4 | - = 1 - =
=——=G, 0P) £ — , 09), = ——=G, 00) £ — , 09),
0 WG (W, 80) 4ﬁw(w ), @ NG (V. 90) 4ﬁw(w )

and theU(1) R-currents are given by

i - io-
I =0y, I =—Z0Wy).

Supercurrents anB-currents are sections of powers of the semi-spinor bundles.

Consider open strings ending #ni.e. mapsp such that some or all of the components
of W are mapped t&'. For example, we may consider the situation whatés an upper
half-plane, andW is the real axis. Then the mah and the sectiong, ¥ must satisfy on
the boundary = 7 the following conditions:

9P = R(0D), 2)
¥ = R®¥Y). ®3)

HereR is an endomorphism of the restriction DX to Y. FurthermoreR can be expressed
in terms ofG and the curvature of the line bundie To write it down, we will use the metric
G to decompos@X|y asNY & TY. R preserves this decomposition and has the form:

R = (~idwy) ® (g = H) ™ (g + ). @

Hereg is the restriction ofG to Y, and F the curvature 2-form of the line bundke. (We
use the physical convention in whichis real.)

The physical meaning of this formula is very simple. Recall that the boundary of the
string world-sheelV is the trajectory of a string end-point, and that the string end-point is
charged with respect to the gauge field on the bfa8§ Thus for non-zerd, there is a
Lorenz force acting on the end-poifigs. (2) and (4%ay that the velocity of the end-point
is tangent toY, and that the Lorenz force acting on it is balanced by the string tension.
Eq. (3)arises from the requirement &f = 1 world-sheet supersymmetry.

It is easy to check thak satisfies

R'GR = G,

i.e. R is an orthogonal transformation d¥X|y. This implies that on the boundary the
left-moving and right-movingV = 1 supercurrents are equal:

0t +0 =0"+0".

Thus such a boundary condition automatically preseiwes 1 superconformal symmetry
and therefore corresponds to a D-br§t@].

Boundary conditions for a topologically twisted sigma-model must in addition preserve
N = 2 superconformal symmetijjt4]. This can be achieved in two inequivalent ways:
either we must have

ot=0% J=1,
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or

0 =0F, J=-J

on the boundary. In the first case, we say that we have a B-type boundary condition, while in
the second case we have an A-type boundary condition. One can show that a B-type boundary
condition corresponds to a B-brane, while an A-type boundary condition corresponds to an
A-brane[14].

Itis easy to see thak corresponds to a B-type boundary condition if and onl§'ib R =
. SinceR is orthogonal, this is equivalent to saying tiatommutes with the complex
structurel = G ~1w. The latter condition obviously implies thiis a complex submanifold
in X, and, less obviously, thd is of type (1,1). Thus a B-brane is a complex submanifold
in X with a holomorphic line bundle. This is the standard regia{15]

On the other handR corresponds to an A-type boundary condition if and only if

R'wR = —w. (5)
To analyze this equation, let us choose a basisy in which the first ding X — dimgY

vectors spamNY and the remaining dimY vectors spaY. Let w~1 have the following
form in this basis:

1 A B
w = s
-Bt C

whereA = —A!, C = —C'. Then the conditiorquation (5)s equivalent to the following
conditions on4, B, C:

A=0, (6)
BF =0, ()
gCg = FCF. (8)

The first condition means thitis a coisotropic submanifold &f. This implies thatv|y has
a constantrank, and the dimension of the budifie= ker(w|y) is equal to the codimension
of Y.

The second condition is equivalent to the statement that if we regard the 2Ffasn
a bundle morphisnTY — TY*, then its restriction taCY vanishes. In other words, if we
denote byFY the quotient bundI&Y/LY, thenF descends to a section afFY*. We will
denote this sectiorf. The formw gives rise to another section @ FY*, which we will
call 0. Obviously,o is non-degenerate and makgE into a symplectic bundle (i.e. a vector
bundle with a smoothly varying symplectic structure on the fibers).

Now let us analyze the third condition. The metgiprovides a canonical splittingy =
LY & FY, and itis easy to see thatis simply 0 o~1. The Kahler property of the metric
then implies

and therefore the third condition is equivalent to

folf=-o
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In other words, if we denote the endomorphisnt f : FY — FY by J, thenJ? = —1.
ThusFY has a natural complex structife.

Anobvious consequence ofthe first condition is thatglifa-(1/2) dimg X is a non-negative
integer. The other two conditions imply that this integer is even. Indeed, the complex struc-
ture J leads to the Dolbeault decomposition#f FY*, and it is easy to see that battand
f are forms of type0, 2) + (2, 0). Since both forms we non-degenerate, it follows that the
complex dimension afY must be even. This in turn implies that dirii — (1/2) dimg X
is even.

For example, wheiX is a four-dimensional manifold/t* or a K3 surface), an A-brane
can be either two-dimensional or four-dimensional. Wiés six-dimensional, an A-brane
can be either three-dimensional or five-dimensional. Note that a Calabi—Yau 3-fold which
is a complete intersection in a projective space HgsX,7Z) = 0, and therefore any
five-dimensional A-brane must be homologically trivial. This seems to suggest that all
A-branes are middle-dimensional in this case.

Let us consider two extreme cases. If gith = (1/2) dimr X, then the first condition
onY says that’ is Lagrangian. Sinc€Y = TY in this case, the second condition says that
F is zero, i.e. the line bundI£ is flat. The third condition is vacuous in this case. Thus a
middle-dimensional A-brane is a Lagrangian submanifold with a flat unitary line bundle.
This is the standard res|jt4,15]

Another extreme case 5§ = X. In this caseCY is the zero vector bundle, and the first
two conditions are trivially satisfied. The bundi& coincides withTX, and thus the third
condition says thal = w~1F is an almost complex structure ¢h

(0 1FH? = —id. (9)

We will see in the next section thdtis integrable, and thu¥ is a complex manifold. Note
that X has a complex structurketo begin with, but the topological A-model is insensitive
to it. Given an A-brane wrapping the whalg one can construct a new complex structure
J out of w and F. It is necessarily different fromi, because» has type (1,1) with respect
to I and type(2, 0) + (0, 2) with respect ta/.

If X is compact, the 2-forn’ must have integer periods, and it is clear that the equation
(w1F)? = —id can be satisfied only for very special For example, ifX is a 4-torus
andw is generic, no line bundle oK can be an A-brane. Presumably, this implies that
generically all A-branes are Lagrangian submanifoldX irBut for some speciab there
appear additional A-branes with digly = 4.

Let us show that this “jumping” phenomenon is mirror to the one describ8ddtion 2
Recall that inSection 2ve considered a complex tordsof a very special kindi(th power
of an elliptic curve with a complex multiplicatiom, > 1). The Grothendieck group of
DP(A) and its image irH*(A, Q) are unusually large. We also described a fa&pm the
rational cohomology ofA to the rational cohomology of its mirra®, and showed that in
general the image ¢f does not lie in the middle-dimensional cohomology of the mirror
torus. For example, for = 2 the image of lies in the even cohomology, and it can happen

2 Note thatFY is both a complex bundle and a symplectic bundle, but it is not a unitary bundle. The symplectic
form o on the fibers has typ@®, 2) + (2, 0) in the complex structuré. ThusoJ = f is a skew-symmetric pairing,
rather than a K&ahler metric.
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that 8 maps the Chern character of a coherent sheaf ¢m an element which looks like
the Chern character of a complex vector bundl&okiVe interpreted this as saying that the
mirror of a coherent sheaf ofican be a complex vector bundle 8nThe Chern classes of
such a vector bundle are not arbitrary, but must satisfy certain constraints=f& these
constraints are given bigq. (1) When the rank of the bundle is 1, we can compare these
constraints with the algebraic constraint on the curvatureation (9) The condition(9)
means that the rank of the matii+ iw is half the dimension ok . If we set ding X = 2n,

then this implies that is even, and that the/2 + 1 exterior power of’ + iw vanishes. For

n = 2 the latter condition is equivalent to

FAw=0, FAF=wAw.

On the level of cohomology, these conditions are the santega$l)in the special case
r = 1. A similar argument can be made for- 2.

4. The geometry of A-branes

In this section, we discuss the geometry of a general coisotropic A-brane. We will see
that it has some beautiful connections with bihamiltonian geometry and foliation theory.

A coisotropic submanifold” of a symplectic manifold( has several equivalent defini-
tions. The usual definition is that at any pomk Y the skew-orthogonal complement of
TY, is contained ifTY,. Another popular definition is thatis locally defined by first-class
constraints. In other words, locally can be represented as the zero-level of a finite set of
smooth functions oX all of whose Poisson brackets vanishion

For our purposes, yet another definition will be useful. A submanifois coisotropic
if and only if the restriction ofv to Y has a constant rank, and its kerd& C TY an
integrable distribution. This means that the commutator of any two vector fieldlg aiso
belongs talY.

By the Frobenius theorem, this induces a foliatiorgfuch that the vector fields tangent
to the leaves of the foliation are precisely the vector field£h The dimension of the
leaves is equal to the codimensiontofWe may callCY the tangent bundle of the foliation.

The quotient bundlY = TY/LY is called the normal bundle of the foliation. (Elementary
notions from foliation theory that we will need can be found in Chapter 1 of [R€f.)

If we interpretY as a first-class constraint surface in a phase space of a mechanical
system, then the meaning of the above foliation can be understood as follows. First-class
constraints lead to gauge symmetries. A lea¥iis precisely an orbit of a point under all
gauge transformations. Formally, the reduced phase spacdescribing gauge-invariant
degrees of freedom is the quotientloby gauge transformations. In other wordgg is
the space of leaves of the foliation. However, this space in general does not have good
properties, e.g. it need not be a manifold, or even a Hausdorff topological space. Generally,
it is unclear how to define dynamics &feq.

Instead, Dirac instructed us to work with gauge-invariant observables, ae. with
smooth functions oY which are locally constant along the leaves of the foliation. Such
functions form a sheaD £(Y), which we can regard as the structure sheaf of the foliated
manifold Y. It plays the role of the (generally non-existent) sheaf of smooth functions on
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the spacéeq. Similarly, the sheaf of sections gfY locally constant along the leaves of
the foliation replaces the tangent sheat’rfy. We will denote this shedfz(Y).

An A-brane is a coisotropic submanifoldwith an additional structure: a unitary line
bundleE onY whose curvaturé” satisfies certain constraints. As explained in the previous
section, this additional structure maké&¥ into a complex vector bundle with complex
structure/. Itis easy to see that bothi andw are constant along the leaves, i.e.

L, F=L,0w=0 Vuel(LlY).

ThusJ = o~1f is also constant along the leaves. This means itdgfines a transverse
almost complex (TAC) structure dn TAC structure is an analog of almost complex struc-
ture for foliated manifolds. In the case wh&pg is a manifold, giving a TAC structure on
Y is the same as giving an almost complex structur&,gg

The “foliated” analog of a complex manifold is a manifold with a transverse holomorphic
structure (see e.g20] for a definition and discussion). Heq is @ manifold, a transverse
holomorphic structure oH is simply a complex structure dheg. In general, the definition
goes as follows. A codimensiory Zoliation on Y is specified locally by a submersion
f U — R% ~ C4, whereU is a coordinate chaftOn the overlap of two charts and
V, the two respective submersiofisandg are related by a transition diffeomorphigm
fUNV) — g(UnNV).Atransverse holomorphic structure Biis specified by a collection
of charts covering’ such that all transition diffeomorphisms are bi-holomorphic.

The “foliated” analog of the sheaf of holomorphic functions is the sheaf of functions which
are locally constant along the leaves and holomorphic in the transverse directions. Aremark-
able feature of this sheaf is that for a compgaet! its cohomologies are finite-dimensional
[20,21] Similarly, one can define transversely holomorphic bundle% oand again for
compactY their sheaf cohomologies are finite-dimensiof24dl]. In general, properties of
compact transversely holomorphic manifolds are very similar to those of compact complex
manifolds.

Itis easy to see that every transverse holomorphic structure gives rise to a TAC structure.
A TAC structure which arises in this way is called integrable. The integrability condition for
a TAC structure is the vanishing of the corresponding Nijenhuis torsion defined as follows.

Letu andv be local sections of =(Y). Itis easy to see that the Lie bracketby) descends
to a Lie bracket oV =(Y), therefore the commutatos [v] is well defined. The Nijenhuis
torsion7(J) is a section ofFY ® A2FY* whose value om, v is defined to be

T(J)(u, v) = [du, ] — J[du, v] — J[u, ] + J?[u, v].

In the case of a trivial foliation, this reduces to the standard definition of the Nijenhuis
torsion of an almost complex structure.

Obviously, an integrable TAC structure has a vanishing Nijenhuis torsion, because in
suitable coordinated is constant. Conversely, by analogy with the classical case, one
expects that any TAC structure with a vanishing Nijenhuis torsion is integrable. Indeed, as
noted in Ref[21], this is a special case of a theorem proved by Nirenf2} Thus there
is a one-to-one correspondence between transverse holomorphic structures on a foliated
manifoldY and TAC structures ofi with a vanishing Nijenhuis torsion.

3 A submersion is a smooth map whose derivative is surjective.
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A remarkable and non-obvious fact is that the TAC structiiren an A-braneY is
automatically integrable. Let us give a proof of this fact for the extreme case Whex
and the foliation is trivial (i.e. each leaf is a point). It is easy to extend the proof to general
coisotropic A-branes.

First note that both andF are symplectic structures dh Furthermore, since 1 F has
eigenvaluesti, w; = w + tF is non-degenerate for any reabnd therefore is a symplectic
structure as well. Hence its inverse is a Poisson structure for any. tdaW note that by
virtue of (w~1F)? = —id the inverse has a very simple form:

oyt =1+ o +FTY.

Thus any linear combination @f~1 and F~1 is a Poisson structure ax. In the language

of bihamiltonian geometrj23,24], = and F~* are compatible Poisson structuresXn
Now we can use the fundamental theorem of bihamiltonian georfz2r24] which says
that if two Poisson structuresandb are compatible, and is non-degenerate, then the
endomorphisna—15 : TX — TX has a vanishing Nijenhuis torsion. This theorem implies
that the Nijenhuis torsion aof vanishes, and thereforkis integrable.

For a general coisotropic A-brane one can use the same argument, but all objects are
replaced by their foliated analogsX is replaced byFY, functions onX are replaced by
functions locally constant along the leaves, Poisson structures are replaced by transverse
Poisson structures, etc. One can check that the fundamental theorem of bihamiltonian ge-
ometry remains valid in the foliated case. In fact, the version of this theorem proved in
Ref.[23] (Theorem 3.12) is valid in a very general setting, where the exterior differential
complex of a smooth manifold is replaced by an arbitrary complex over a Lie algebra. The
statement we need is a special case of this theorem.

We have shown that if there exists an A-brane Witk X, thenJ = o1 F is a complex
structure onX. Furthermore, one can easily see that iw is a closed 2-form oX of type
(2,0) and maximal rank, i.e. a holomorphic symplectic form. Thus in the complex structure
J the manifoldX is a compact holomorphic symplectic manifold. If in additi@radmits
a Kahler metric compatible withi, thenX is necessarily hyperkahl¢25]. In general X
need not be hyperkahler for an A-brane with= X to exist.

5. A-branesand homological mirror symmetry

We have shown that an A-brane is a coisotropic submanifold #nd that it is naturally
a foliated manifold with a transverse holomorphic structure. Now let us see how this fits in
with the HMSC.

As explained irSection 1the mirror of the derived category is the category of A-branes.
We have seen that in general the set of A-branes includes non-Lagrangian coisotropic branes,
and therefore the Fukaya category must be enlarged with such A-branes for the HMSC to
be true. Of course, in some special cases there may be no non-Lagrangian A-branes, and
the generalization we are proposing is vacuous. For example, there are no non-Lagrangian
A-branes on an elliptic curve for dimensional reasons. It also seems likely that there are no
non-Lagrangian A-branes on odd-dimensional Calabi—Yau which are complete intersections
in projective spaces, because any non-Lagrangian A-brane would be homologically trivial.
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Nevertheless, we believe that a uniform formulation of the HMSC for all weak Calabi—Yau
manifolds would be very illuminating. Let us see how one far one can go in this direction.
One immediately sees the following major difficulty. A Lagrangian A-brane can carry
a flat vector bundle of rank higher than 1. From a physical viewpoint, such an A-brane
should be thought of ascoincident A-branes of rank 1. The same reasoning suggests that
there exist coisotropic A-branes with higher rank bundles. However, it is not clear to us what
the constraints on the connection are in this case, and whether a transverse holomorphic
structure arises again. Thus, we do not really understand all the objects in the enlarged
Fukaya category.

We will ignore this difficulty and try instead to say something about morphisms between
the objects we already know. Unfortunately, understanding morphisms between different
A-branes is not much easier than understanding A-branes with higher rank bundles: the
former question is just an “infinitesimal” form of the latter. Therefore, we will focus on the
endomor phisms of coisotropic A-branes.

To guess the right definition, let us look at the two extremes: Lagrangian A-branes and
A-branes wrapping the wholeé (i.e.Y = X). The space of endomorphisms of a Lagrangian
A-braneY is its Floer homologyHF. (Y, C). This is hard to compute, but in many cases
it coincides with the de Rham cohomolod¥* (Y, C). From a physical viewpoint, the de
Rham cohomology is a classical approximation to the Floer homology; the two coincide
when there are no world-sheet instanton contributions to the path integral computing the
Floer differential[14].

Now suppose we have an A-braie= X. This means that there exists a unitary line
bundle onX with a connection 1-fornd whose curvaturé” = dA satisfies

(0 1PH? = —id. (10)

As explained in the previous section, this implies that »~1F is a complex structure on

X. On general grounds, endomorphisms of an A-brane must have the structure of a graded
vector space (in physical terms, the grading is given by the ghost charge). A natural guess
is the Dolbeault cohomologsf®*(X) with respect ta/.

As a simple check, note that degree one elements in the space of endomorphisms must
parametrize infinitesimal deformations of the A-brane. In the present case, a deformation
is a real 1-forma such that the curvature of the connection 1-fotm- a satisfiesEq. (10)
up to terms quadratic in. This is equivalent to the condition:

(da)J + J'(da) = 0,

i.e. dz must be a form of type (1,1). If we denote bY the (0,1) part ok, then the latter
condition is equivalent tda” = 0. Thusa” represents a class H#%1(X). Sincea is real,
the (1,0) part o is determined by:” (is complex conjugate to it). Thus there is a natural
map from the space of deformations of an A-brané/fol(X).

We want to show that this map becomes one-to-one, if we quotient the space of deforma-
tions by deformations which are isomorphisms in the category of A-branes. Obviously, the
usual infinitesimal gauge transformatians- d f, where is a real function orX, induce
isomorphisms. However, this is not all. In the case of Lagrangian A-branes, itis known thata
flow along a Hamiltonian vector field aXiinduces an isomorphism in the Fukaya category,
and it is natural to assume that the same is true for more general coisotropic A-branes. If
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is a smooth real function ok, andV}, = w1 dh is the corresponding Hamiltonian vector
field, then the induced deformation of the connection 1-farion X is

a= EVhA = thF-I—d(thA),

whereLy is the Lie derivative alond’. Thus the most general deformatienvhich is an
isomorphism in the category of A-branes has the form:

a:thF+dﬁ

whereh and f are arbitrary smooth real functions éh Taking into account the relation
J = o~ 1F, this can be rewritten as

a=—Jtdh+df = 3(f —ih) +d(f +ih).

Let us denote by Extthe space of deformations of the A-brane modulo isomorphisms. (We
remind that we work in the “classical” approximation which neglects possible world-sheet
instanton effects.) From the above formulas, it easily follows that the map from the space
of deformations ta7%1(X) descends to a well-defined map from £ttt #%1(X), and that

the latter map is an isomorphism of real vector spaces, as claimed.

With these two examples in mind, it is not hard to guess the right graded vector space
for a general coisotropic A-brane.¥fis a foliated manifold with a transverse holomorphic
structure, recall that we denoted KY=(Y) the sheaf of complex functions an which
are locally constant along the leaves of the foliation and holomorphic in the transverse
directions. We propose that the space of endomorphisms of a coisotropic Aibisutiee
cohomology of the shed £(Y).

It is trivial to see that our proposal is consistent with the two extreme cases considered
above. For a Lagrangian A-bran@(Y) is simply the sheaf of locally constant complex
functions onY, and its cohomology coincides with the de Rham cohomology.dfor
Y = X Ox(Y) is the sheaf of holomorphic functions an (with respect to the complex
structure/), and we again get agreement.

It would be very interesting to understand how to go beyond the “classical” approxima-
tion, as well as how to define morphisms between different coisotropic A-branes. At first
sight, no suitable complex whose cohomology one could compute presents itself. Perhaps
this is simply a lack of imagination on our part.

In general, it appears that a geometric definition of the category of A-branes is very
cumbersome. Finding such a definition is akin to trying to define the category of holomorphic
vector bundles on a complex manifold using the zeros and poles of their meromorphic
sections. A more promising approach is to look for an algebraic definition of A-branes, e.g.
as modules over some non-commutative algebra associated to a symplectic m&nifold
seems likely that this non-commutative algebra is related to the deformation quantization
of X. Similar ideas have been discussed in RE6,27]
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