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Abstract

We discuss D-branes of the topological A-model (A-branes), which are believed to be closely
related to the Fukaya category. We give string theory arguments which show that A-branes are not
necessarily Lagrangian submanifolds in the Calabi–Yau: more general coisotropic branes are also
allowed, if the line bundle on the brane is not flat. We show that a coisotropic A-brane has a natural
structure of a foliated manifold with a transverse holomorphic structure. We argue that the Fukaya
category must be enlarged with such objects for the Homological Mirror Symmetry Conjecture to
be true.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let X be a weak Calabi–Yau manifold, i.e. a complex manifold withc1(X) = 0 which
admits a Kähler metric. Given a Ricci-flat Kähler metricG on X, and a B-field (a class
in H2(X,R)), one can canonically construct anN = 2 supersymmetric sigma-model with
“target” X. On physical grounds, the quantized version of this model hasN = 2 super-
conformal symmetry and describes propagation of closed strings onX. In this note we set
B = 0 for simplicity. According to Calabi’s conjecture proved by Yau, we can parametrize

∗ Corresponding author.
E-mail addresses: kapustin@theory.caltech.edu (A. Kapustin), orlov@mi.ras.ru (D. Orlov).

0393-0440/$ – see front matter © 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0393-0440(03)00026-3



A. Kapustin, D. Orlov / Journal of Geometry and Physics 48 (2003) 84–99 85

G by the cohomology class of its Kähler formω. A weak Calabi–Yau manifold equipped
with a Kähler formω will be called a physicist’s Calabi–Yau.

It sometimes happens that two different physicist’s Calabi–Yau manifolds(X, ω) and
(X′, ω′) give rise to a pair ofN = 2 superconformal field theories (SCFTs) related by
a mirror morphism[1,2]. A mirror morphism ofN = 2 SCFT is an isomorphism of the
underlyingN = 1 SCFT which acts on theN = 2 super-Virasoro algebra as a mirror
involution[3,4]. In this case, one says that(X, ω) and(X′, ω′) are mirror to each other. (For
a concise explanation of the notions involved and further references, see[5]. An algebraically
minded reader may find it useful to consult Ref.[6] for a careful definition ofN = 2 SCFTs
and their morphisms.)

A long-standing problem is to understand the mirror relation from a mathematical view-
point, i.e. without a recourse to the ill-defined procedure of quantizing a sigma-model.
A fascinating conjecture has been put forward by Kontsevich[7]. He observed that to
any physicist’s Calabi–Yau(X, ω), one can associate two triangulated categories: the
well-known bounded derived category of coherent sheavesDb(X) and the still mysteri-
ous Fukaya categoryDF(X). Objects of the categoryDb(X) are bounded complexes of
coherent sheaves. Objects of the Fukaya category are (roughly speaking) vector bundles
on Lagrangian submanifolds ofX equipped with unitary flat connections. The Homolog-
ical Mirror Symmetry Conjecture (HMSC) asserts[7] that if two algebraic physicist’s
Calabi–Yau manifolds(X, ω) and(X′, ω′) are mirror to each other, thenDb(X) is equiva-
lent toDF(X′), andDF(X) is equivalent toDb(X′). So far this conjecture has been proved
only for elliptic curves[8].

From a physical viewpoint, complexes of coherent sheaves are D-branes of the topolog-
ical B-model (B-branes). We remind that the B-model of a physicist’s Calabi–Yau(X, ω)

is a topological “twist” of the correspondingN = 2 SCFT[9]. The twisted theory is
a two-dimensional topological field theory whose correlators do not depend onω. Mor-
phisms between the objects ofDb(X) are identified with the states of the topological string
stretched between pairs of B-branes, and the compositions of morphisms are computed by
the correlators of the B-model. This correspondence has been intensively discussed in the
physics literature (see e.g. Refs.[10–13] and references therein), and will be taken as a
starting point here.

An N = 2 SCFT has another twist, called the A-twist[9]. The corresponding topolog-
ical field theory (the A-model) is insensitive to the complex structure ofX, but depends
non-trivially on the symplectic formω. D-branes of the A-model are called A-branes. Mirror
morphisms exchange A- and B-twists and A- and B-branes. Thus from a physical viewpoint
the mirror ofDb(X) is the category of A-branes onX′.

It can be shown that any object of the Fukaya category gives rise to an A-brane. Moreover,
the recipe for computing morphisms between such A-branes can be derived heuristically
in the path integral formalism, and it reproduces the definition of morphisms in the Fukaya
category[14]. Therefore, the majority of researchers in the field assumed that the mirror
relation between the categories of A- and B-branes is essentially a restatement of the HMSC
in physical terms.1

1 In fact, the calculation of morphisms between Lagrangian A-branes in Ref.[14] preceded the formulation of
the HMSC and served as an important motivation for it.
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In this note, we will argue that this is not the case, because A-branes are not necessarily
Lagrangian submanifolds inX. This was mentioned already in one of the first papers on
the subject[15], but the general conditions for a D-brane to be an A-brane have not been
determined there. InSection 3, we will show that a coisotropic submanifold ofX with a
unitary line bundle on it is an A-brane if the curvature of the connection satisfies a certain
algebraic condition. We remind that a submanifoldY of a symplectic manifold(X, ω) is
called coisotropic if the skew-complement ofTY ⊂ TX|Y with respect toω is contained in
TY. In the physical language, a coisotropic submanifold is a submanifold locally defined by
first-class constraints. One can easily see that the dimension of a coisotropic submanifold is
at least half the dimension ofX, and that a middle-dimensional coisotropic submanifold is
the same thing as a Lagrangian submanifold. Thus we show that the category of A-branes
contains, besides Lagrangian A-branes, A-branes of larger dimension.

In Section 4, we explore the geometric interpretation of the algebraic condition on the
curvature of the line bundle. We will see that an A-brane is naturally afoliated manifold
with a transverse holomorphic structure. The notion of transverse holomorphic structure
is a generalization of the notion of complex structure to foliated manifolds. If the space of
leaves of a foliated manifoldY is a smooth manifold, a transverse holomorphic structure on
Y is simply a complex structure on the space of leaves. The general definition is given in
Section 4. In addition to being transversely holomorphic, a coisotropic A-brane also carries
a transverse holomorphic symplectic form.

In the case of a Lagrangian A-brane, the foliation has codimension zero, there are no
transverse directions, and the transverse holomorphic structure is not visible. In general,
the foliation is determined by the restriction ofω to Y , while the transverse holomorphic
structure comes from the curvature of the line bundle on the brane.

Interestingly, to prove that an A-brane has a natural transverse holomorphic structure, one
needs to use some facts from bihamiltonian geometry. The subject matter of bihamiltonian
geometry is manifolds equipped with two compatible (in a sense explained below) Poisson
structures. In our case, the underlying manifold is foliated, and one is dealing with transverse
Poisson structures. (If the space of leaves is a manifold, specifying a transverse Poisson
structure is the same as specifying an ordinary Poisson structure on the space of leaves.)
One of the transverse Poisson structures arises from the symplectic formω in the ambient
spaceX, and the other one from the curvature of the line bundle onY .

Our understanding of the category of A-branes is far from complete. Nevertheless, it
is clear that generally it includes objects other than Lagrangian submanifolds with flat
vector bundles. (There are certain special, but important, cases where there seem to be
no non-Lagrangian A-branes, like the case of an elliptic curve, or a simply connected
Calabi–Yau 3-fold.) Therefore, the Fukaya category must be enlarged with coisotropic
A-branes for the HMSC to be true. (This is somewhat reminiscent of the remark made in
Ref. [7] that Lagrangian foliations may need to be included in the Fukaya category.) This
is discussed in more detail inSection 5.

Since our arguments are ultimately based on non-rigorous physical reasoning, a skeptic
might not be convinced that the HMSC needs serious modification. To dispel such doubts,
we discuss inSection 2mirror symmetry for tori and show that under mild assumptions the
usual Fukaya category cannot capture the subtle behavior ofDb(X) under the variation of
complex structure. Inclusion of coisotropic A-branes seems to resolve the problem.
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2. Why Lagrangian submanifolds are not enough

In this section, we give some examples which show that the Fukaya category must be
enlarged with non-Lagrangian objects for the HMSC to be true. We will exhibit a mirror
pair of tori such that mirror symmetry takes a holomorphic line bundle (a B-brane) on the
first torus to a complex line bundle on the second torus. This means that the latter line bundle
is an A-brane.

It is well known that the derived category of coherent sheaves behaves in a very non-trivial
manner under a variation of complex structure, and at special loci in the moduli space of
complex structures it can become “larger.” This is easy to see on the level of the Grothendieck
group ofDb(X), which we denote byK0(D

b(X)). There is a map

ch :K0(D
b(X)) ⊗ Q → H∗(X,Q)

called the Chern character. The image of this map is contained in the intersection of
H∗(X,Q)with ⊕pH

p,p(X) in the complex cohomology groupH∗(X,C)and, by the Hodge
Conjecture, should coincide with this intersection.

Let us denote byNS(X) the Neron–Severi group ofX which, by definition, is the image
of a natural map from the Picard group Pic(X) to H2(X,Z). Then we haveNS(X) ⊗ Q =
Im(ch)∩H2(X,Q), and therefore Im(ch) contains a subring generated by the Neron–Severi
group.

One can see from examples that the image of the map ch can change under a variation
of complex structure; in particular, the dimension of Im(ch) can jump if, e.g. the dimension
of the Neron–Severi group jumps.

The “jumping” phenomenon can be easily observed in the case of abelian varieties. Let
Eτ be an elliptic curve with a Teichmüller parameterτ. It has a structure of an algebraic
group. Lete be the identity point of this group. It can be checked that any endomorphism
of Eτ that sends the pointe to itself is an endomorphism of the algebraic group. Such
endomorphisms form a ring which containsZ as a subring and for a “generic” elliptic curve
coincides with it. However, the ring ofe-preserving endomorphisms ofEτ can be bigger
thanZ. In this case, one says that the elliptic curveEτ possesses a complex multiplication. It
can be shown thatEτ has a complex multiplication iffτ is a root of a quadratic polynomial
with integral coefficients. For example, the elliptic curve withτ = i is an example of a
curve with a complex multiplication.

Let Eτ be an elliptic curve with a complex multiplication. Consider ann-dimensional
abelian varietyA = En

τ with n ≥ 2. In this case, the derived categoryDb(A) is in a certain
sense much bigger than the derived category of a “generic” abelian variety. For a “generic”
abelian variety the Neron–Severi group isZ and, moreover,NS(A)⊗Q generates the whole
Im(ch). Thus the dimension of Im(ch) is equal ton + 1. For an abelian varietyEn

τ , where
Eτ is a “generic” elliptic curve, the dimension of the Neron–Severi group isn(n + 1)/2. If
the elliptic curve possesses a complex multiplication, then dimNS(A) = n2 and, moreover,
we have an equality

Im(ch) ⊗ C = ⊕
p
Hp,p.
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Thus in this case

dimQ Im(ch) =
(

2n

n

)
.

For example, forn = 2 if τ is generic, the Neron–Severi group has dimension 3 and is
generated by the divisors{pt} × Eτ,Eτ × {pt},∆, where∆ is the diagonal ofEτ × Eτ .
In contrast, whenEτ possesses complex multiplication,NS(A) has dimension 4, which
coincides with the dimension ofH1,1(A). It is generated by the divisors{pt} × Eτ,Eτ ×
{pt},∆, Γ , whereΓ ⊂ Eτ × Eτ is the graph of an additional endomorphism ofEτ .

Now let us look at the Fukaya category of a mirror torus. The mirror relation for abelian
varieties is well-understood[6,16] (see also[17]). In particular, it is known that for any
abelian variety A, one can find a symplectic formω such that for the pair(A, ω) there exists
a mirror-symmetric abelian varietyB with a symplectic formωB [16, Proposition 9.6.1].
Let DF(B, ωB) be the Fukaya category of the symplectic manifold(B, ωB). This category
essentially depends only on the symplectic formωB and does not depend on the complex
structure of the varietyB. This is mirror to the obvious fact that the derived category of
coherent sheaves does not depend on the symplectic form. By the HMSC the category
DF(B, ωB) should be equivalent to the derived categoryDb(A).

Furthermore, the mirror correspondence induces an isomorphism of the cohomology
vector spaces

β : H∗(A,Q)
∼→H∗(B,Q).

For abelian varieties, the isomorphismβ is described in Ref.[16]. It is natural to assume
thatβ is compatible with the conjectured equivalence between the derived categoryDb(A)

and the Fukaya categoryDF(B, ωB). This means that there should exist a mapφ from the
Grothendieck groupK0(DF(B, ωB))⊗Q to the cohomology groupH∗(B,Q) which closes
the commutative diagram

Under the mapφ a flat vector bundle on a Lagrangian submanifold goes to the corresponding
cycle in the middle-dimensional cohomology groupHn(B,Q) with a multiplicity equal to
the rank of the bundle.

Now note that classes of Lagrangian submanifolds in the middle-dimensional cohomol-
ogy group belong to the kernel of a surjective map

Hn(B,C)
·[ωB]→ Hn+2(B,C).

The dimension of the kernel is equal to(
2n

n

)
−
(

2n

n + 2

)
,
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which is less than the dimension of Im(ch). Therefore whenA = En
τ , whereEτ is an elliptic

curve with a complex multiplication, Lagrangian submanifolds inB with flat vector bundles
cannot generate the mirror ofDb(A), in contradiction with the HMSC.

To obtain some information on the mysterious mirror ofDb(A), let us describe the mirror
symmetry correspondence forA = En

τ more explicitly. In this case, mirror symmetry
is a T -duality. For simplicity we letτ = i, so thatEτ is a “square torus.” Consider a
decomposition of the latticeH1(A,Z) = Γ ⊕ Σ with basesΓ = 〈x1, . . . , xn〉 andΣ =
〈y1, . . . , yn〉 such that the complex structureIA takesxi toyi andyi to−xi. Let 〈l1, . . . , ln〉
be the dual basis in the dual latticeΓ ∗. A mirror manifold for the abelian varietyA can be
constructed byT -dualizing the directionsx1, . . . , xn. This means that the mirror manifold
B is a torus(Γ ∗ ⊕ Σ) ⊗ R/(Γ ∗ ⊕ Σ) equipped with a constant symplectic form:

ωB =
n∑

i=1

li ∧ yi.

(For simplicity we do not introduce a symplectic form onA and a complex structure onB.)
In this case, the mapβ is defined in the following way. LetT be a real 3n-dimensional

torusΠ ⊗ R/Π, whereΠ = Γ ⊕ Σ ⊕ Γ ∗. The torusT has natural projectionsp andq to
the toriA andB:

Let P be a complex line bundle onT defined by its first Chern class:

c1 · (P) =
n∑

i=1

xili.

The Chern character ch(P) ∈ H∗(T,Q) is equal to exp(c1(P)). According to[16], the map
β from H∗(A,Q) to H∗(B,Q) is given by the formula:

β(a) := q∗(ch(P) · p∗(a)).

(To define the mapq∗, we chose fundamental classes ofT andB and used the Poincare
duality between cohomology and homology groups). Using this formula, one can explicitly
calculate the subspaceβ(Im(ch)).

To demonstrate the existence of objects in the mirror ofDb(A) which are not Lagrangian
submanifolds, we letn = 2 for simplicity and consider a holomorphic line bundleL onA

whose first Chern class is equal to

c1 = x1 · x2 + y1 · y2.

Such a holomorphic line bundle exists becausec1 ∈ H1,1(A). The moduli space of such
holomorphic line bundles is a homogeneous space over Pic0(A), the kernel of the natural
map from Pic(A) to NS(A). More explicitly,L is of the formO(−D) ⊗ N, whereN ∈
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Pic0(A),D = Γ −{pt}×E−E×{pt}, andΓ is the graph of the automorphism ofE given
by multiplication byi. A direct calculation shows that

β(ch(L)) = (1; y1 · y2 − l1 · l2; −y1 · y2 · l1 · l2) ∈ Heven(B,Q).

We see thatβ(ch(L)) coincides with the Chern character ch(M) of a complex line bundle
M onB with the first Chern class equal to

c1(M) = y1 · y2 − l1 · l2.
Therefore, it is natural to expect that the complex line bundleM (with an unitary connection)
is an object of the mirror ofDb(A), and that the invertible coherent sheafL goes to the line
bundleM under the mirror symmetry correspondence described above. In physical terms,
this shows that the mirror of a D4-brane of type B with a flux wrapped on a 4-torus can be
a D4-brane of type A with a flux wrapped on the mirror torus.

One can check that in this case the subspaceβ(Im(ch)) consists of the elements(r; c; s) ∈
Heven(B,Q) such that

c · ωB = 0, s = 1
2rω

2
B. (1)

Similarly, for anyn > 2 we can find elements ofβ(Im(ch)) which do not belong to the
middle cohomology group ofB and therefore correspond to non-Lagrangian objects of the
mirror of Db(A).

One may ask how general this phenomenon is. It does not occur for odd-dimensional
Calabi–Yau manifolds which are complete intersections in projective spaces. But it seems
that for even-dimensional Calabi–Yau (e.g. for K3 surfaces) or for more general odd-
dimensional Calabi–Yau the situation is similar to that for abelian varieties, i.e. non-
Lagrangian A-branes appear at special points in the moduli space of symplectic structures.

3. World-sheet approach to A-branes

This section assumes some familiarity with supersymmetric sigma-models (on the clas-
sical level) and superconformal symmetries. LetX be a Käler manifold with metricG and
Kähler formω. The complex structure onX is given byI = G−1ω. The supersymmet-
ric sigma-model with targetX classically has(2,2) superconformal symmetry. Quantum
anomaly destroys this symmetry unlessc1(X) = 0.

Let j : Y → X be a submanifold inX, andE be a line bundle onY with a unitary
connection. Our goal is to derive the necessary and sufficient conditions for a pair(Y,E) to
be a D-brane of type A. We will find that these conditions depend onω, but are not sensitive
to the complex structure onX, as expected on general grounds.

LetW be an open string world-sheet, i.e. a Riemann surface with a boundary. The fields of
the sigma-model consist of a smooth mapΦ :W→ X, and sectionsψ, ψ̄ ofΦ∗(TX)⊗ΠS±.
HereS± are semi-spinor line bundles onW, andΠ is the parity-reversal functor. In the
physical language,Φ is a bosonic field, whileψ andψ̄ are fermionic fields. The precise
form of the action is unimportant for our purposes; what is important is that the action has
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(2,2) superconformal symmetry. In particular, the supercurrentsQ±, Q̄± are given by

Q± = i

4
√

2
G(ψ, ∂Φ) ± 1

4
√

2
ω(ψ, ∂Φ), Q̄± = i

4
√

2
G(ψ̄, ∂̄Φ) ± 1

4
√

2
ω(ψ̄, ∂̄Φ),

and theU(1) R-currents are given by

J = i

2
ω(ψ,ψ), J̄ = − i

2
ω(ψ̄ψ̄).

Supercurrents andR-currents are sections of powers of the semi-spinor bundles.
Consider open strings ending onY , i.e. mapsΦ such that some or all of the components

of ∂W are mapped toY . For example, we may consider the situation whereW is an upper
half-plane, and∂W is the real axis. Then the mapΦ, and the sectionsψ, ψ̄ must satisfy on
the boundaryz = z̄ the following conditions:

∂Φ = R(∂̄Φ), (2)

ψ = R(ψ̄). (3)

HereR is an endomorphism of the restriction ofTX to Y . Furthermore,R can be expressed
in terms ofG and the curvature of the line bundleE. To write it down, we will use the metric
G to decomposeTX|Y asNY ⊕ TY. R preserves this decomposition and has the form:

R = (−idNY) ⊕ (g − F)−1(g + F). (4)

Hereg is the restriction ofG to Y , andF the curvature 2-form of the line bundleE. (We
use the physical convention in whichF is real.)

The physical meaning of this formula is very simple. Recall that the boundary of the
string world-sheetW is the trajectory of a string end-point, and that the string end-point is
charged with respect to the gauge field on the brane[18]. Thus for non-zeroF , there is a
Lorenz force acting on the end-point.Eqs. (2) and (4)say that the velocity of the end-point
is tangent toY , and that the Lorenz force acting on it is balanced by the string tension.
Eq. (3)arises from the requirement ofN = 1 world-sheet supersymmetry.

It is easy to check thatR satisfies

RtGR = G,

i.e. R is an orthogonal transformation ofTX|Y . This implies that on the boundary the
left-moving and right-movingN = 1 supercurrents are equal:

Q+ + Q− = Q̄+ + Q̄−.

Thus such a boundary condition automatically preservesN = 1 superconformal symmetry
and therefore corresponds to a D-brane[18].

Boundary conditions for a topologically twisted sigma-model must in addition preserve
N = 2 superconformal symmetry[14]. This can be achieved in two inequivalent ways:
either we must have

Q± = Q̄±, J = J̄ ,
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or

Q± = Q̄∓, J = −J̄

on the boundary. In the first case, we say that we have a B-type boundary condition, while in
the second case we have an A-type boundary condition. One can show that a B-type boundary
condition corresponds to a B-brane, while an A-type boundary condition corresponds to an
A-brane[14].

It is easy to see thatR corresponds to a B-type boundary condition if and only ifRtωR =
ω. SinceR is orthogonal, this is equivalent to saying thatR commutes with the complex
structureI = G−1ω. The latter condition obviously implies thatY is a complex submanifold
in X, and, less obviously, thatF is of type (1,1). Thus a B-brane is a complex submanifold
in X with a holomorphic line bundle. This is the standard result[14,15].

On the other hand,R corresponds to an A-type boundary condition if and only if

RtωR = −ω. (5)

To analyze this equation, let us choose a basis inTX|Y in which the first dimRX − dimRY
vectors spanNY and the remaining dimRY vectors spanTY. Let ω−1 have the following
form in this basis:

ω−1 =
(

A B

−Bt C

)
,

whereA = −At, C = −Ct. Then the conditionequation (5)is equivalent to the following
conditions onA,B,C:

A = 0, (6)

BF = 0, (7)

gCg = FCF. (8)

The first condition means thatY is a coisotropic submanifold ofX. This implies thatω|Y has
a constant rank, and the dimension of the bundleLY = ker(ω|Y ) is equal to the codimension
of Y .

The second condition is equivalent to the statement that if we regard the 2-formF as
a bundle morphismTY → TY∗, then its restriction toLY vanishes. In other words, if we
denote byFY the quotient bundleTY/LY , thenF descends to a section ofΛ2FY∗. We will
denote this sectionf . The formω gives rise to another section ofΛ2FY∗, which we will
callσ. Obviously,σ is non-degenerate and makesFY into a symplectic bundle (i.e. a vector
bundle with a smoothly varying symplectic structure on the fibers).

Now let us analyze the third condition. The metricg provides a canonical splittingTY =
LY ⊕FY , and it is easy to see thatC is simply 0⊕ σ−1. The Kähler property of the metric
then implies

gCg = 0 ⊕ (−σ),

and therefore the third condition is equivalent to

fσ−1f = −σ.
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In other words, if we denote the endomorphismσ−1f : FY → FY by J , thenJ2 = −1.
ThusFY has a natural complex structure.2

An obvious consequence of the first condition is that dimRY−(1/2)dimRX is a non-negative
integer. The other two conditions imply that this integer is even. Indeed, the complex struc-
tureJ leads to the Dolbeault decomposition ofΛ2FY∗, and it is easy to see that bothσ and
f are forms of type(0,2)+ (2,0). Since both forms we non-degenerate, it follows that the
complex dimension ofFY must be even. This in turn implies that dimRY − (1/2)dimRX
is even.

For example, whenX is a four-dimensional manifold (T 4 or a K3 surface), an A-brane
can be either two-dimensional or four-dimensional. WhenX is six-dimensional, an A-brane
can be either three-dimensional or five-dimensional. Note that a Calabi–Yau 3-fold which
is a complete intersection in a projective space hasH5(X,Z) = 0, and therefore any
five-dimensional A-brane must be homologically trivial. This seems to suggest that all
A-branes are middle-dimensional in this case.

Let us consider two extreme cases. If dimRY = (1/2)dimRX, then the first condition
onY says thatY is Lagrangian. SinceLY = TY in this case, the second condition says that
F is zero, i.e. the line bundleE is flat. The third condition is vacuous in this case. Thus a
middle-dimensional A-brane is a Lagrangian submanifold with a flat unitary line bundle.
This is the standard result[14,15].

Another extreme case isY = X. In this caseLY is the zero vector bundle, and the first
two conditions are trivially satisfied. The bundleFY coincides withTX, and thus the third
condition says thatJ = ω−1F is an almost complex structure onX:

(ω−1F)2 = −id. (9)

We will see in the next section thatJ is integrable, and thusX is a complex manifold. Note
thatX has a complex structureI to begin with, but the topological A-model is insensitive
to it. Given an A-brane wrapping the wholeX, one can construct a new complex structure
J out ofω andF . It is necessarily different fromI, becauseω has type (1,1) with respect
to I and type(2,0) + (0,2) with respect toJ .

If X is compact, the 2-formF must have integer periods, and it is clear that the equation
(ω−1F)2 = −id can be satisfied only for very specialω. For example, ifX is a 4-torus
andω is generic, no line bundle onX can be an A-brane. Presumably, this implies that
generically all A-branes are Lagrangian submanifolds inX. But for some specialω there
appear additional A-branes with dimRY = 4.

Let us show that this “jumping” phenomenon is mirror to the one described inSection 2.
Recall that inSection 2we considered a complex torusA of a very special kind (nth power
of an elliptic curve with a complex multiplication,n > 1). The Grothendieck group of
Db(A) and its image inH∗(A,Q) are unusually large. We also described a mapβ from the
rational cohomology ofA to the rational cohomology of its mirrorB, and showed that in
general the image ofβ does not lie in the middle-dimensional cohomology of the mirror
torus. For example, forn = 2 the image ofβ lies in the even cohomology, and it can happen

2 Note thatFY is both a complex bundle and a symplectic bundle, but it is not a unitary bundle. The symplectic
formσ on the fibers has type(0,2)+ (2,0) in the complex structureJ . ThusσJ = f is a skew-symmetric pairing,
rather than a Kähler metric.
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thatβ maps the Chern character of a coherent sheaf onA to an element which looks like
the Chern character of a complex vector bundle onB. We interpreted this as saying that the
mirror of a coherent sheaf onA can be a complex vector bundle onB. The Chern classes of
such a vector bundle are not arbitrary, but must satisfy certain constraints; forn = 2 these
constraints are given byEq. (1). When the rank of the bundle is 1, we can compare these
constraints with the algebraic constraint on the curvatureequation (9). The condition(9)
means that the rank of the matrixF + iω is half the dimension ofX. If we set dimRX = 2n,
then this implies thatn is even, and that then/2+ 1 exterior power ofF + iω vanishes. For
n = 2 the latter condition is equivalent to

F ∧ ω = 0, F ∧ F = ω ∧ ω.

On the level of cohomology, these conditions are the same asEq. (1) in the special case
r = 1. A similar argument can be made forn > 2.

4. The geometry of A-branes

In this section, we discuss the geometry of a general coisotropic A-brane. We will see
that it has some beautiful connections with bihamiltonian geometry and foliation theory.

A coisotropic submanifoldY of a symplectic manifoldX has several equivalent defini-
tions. The usual definition is that at any pointp ∈ Y the skew-orthogonal complement of
TYp is contained inTYp. Another popular definition is thatY is locally defined by first-class
constraints. In other words, locallyY can be represented as the zero-level of a finite set of
smooth functions onX all of whose Poisson brackets vanish onY .

For our purposes, yet another definition will be useful. A submanifoldY is coisotropic
if and only if the restriction ofω to Y has a constant rank, and its kernelLY ⊂ TY an
integrable distribution. This means that the commutator of any two vector fields inLY also
belongs toLY .

By the Frobenius theorem, this induces a foliation ofY such that the vector fields tangent
to the leaves of the foliation are precisely the vector fields inLY . The dimension of the
leaves is equal to the codimension ofY . We may callLY the tangent bundle of the foliation.
The quotient bundleFY = TY/LY is called the normal bundle of the foliation. (Elementary
notions from foliation theory that we will need can be found in Chapter 1 of Ref.[19].)

If we interpretY as a first-class constraint surface in a phase space of a mechanical
system, then the meaning of the above foliation can be understood as follows. First-class
constraints lead to gauge symmetries. A leaf inY is precisely an orbit of a point under all
gauge transformations. Formally, the reduced phase spaceYred describing gauge-invariant
degrees of freedom is the quotient ofY by gauge transformations. In other words,Yred is
the space of leaves of the foliation. However, this space in general does not have good
properties, e.g. it need not be a manifold, or even a Hausdorff topological space. Generally,
it is unclear how to define dynamics onYred.

Instead, Dirac instructed us to work with gauge-invariant observables onY , i.e. with
smooth functions onY which are locally constant along the leaves of the foliation. Such
functions form a sheafOF(Y), which we can regard as the structure sheaf of the foliated
manifoldY . It plays the role of the (generally non-existent) sheaf of smooth functions on
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the spaceYred. Similarly, the sheaf of sections ofFY locally constant along the leaves of
the foliation replaces the tangent sheaf ofYred. We will denote this sheafTF(Y).

An A-brane is a coisotropic submanifoldY with an additional structure: a unitary line
bundleE onY whose curvatureF satisfies certain constraints. As explained in the previous
section, this additional structure makesFY into a complex vector bundle with complex
structureJ . It is easy to see that bothF andω are constant along the leaves, i.e.

LuF = Luω = 0 ∀u ∈ Γ(LY).

ThusJ = σ−1f is also constant along the leaves. This means thatJ defines a transverse
almost complex (TAC) structure onY . TAC structure is an analog of almost complex struc-
ture for foliated manifolds. In the case whenYred is a manifold, giving a TAC structure on
Y is the same as giving an almost complex structure onYred.

The “foliated” analog of a complex manifold is a manifold with a transverse holomorphic
structure (see e.g.[20] for a definition and discussion). IfYred is a manifold, a transverse
holomorphic structure onY is simply a complex structure onYred. In general, the definition
goes as follows. A codimension 2q foliation on Y is specified locally by a submersion
f : U → R2q � Cq, whereU is a coordinate chart.3 On the overlap of two chartsU and
V , the two respective submersionsf andg are related by a transition diffeomorphismτ :
f(U ∩V) → g(U ∩V). A transverse holomorphic structure onY is specified by a collection
of charts coveringY such that all transition diffeomorphisms are bi-holomorphic.

The “foliated” analog of the sheaf of holomorphic functions is the sheaf of functions which
are locally constant along the leaves and holomorphic in the transverse directions. A remark-
able feature of this sheaf is that for a compactY all its cohomologies are finite-dimensional
[20,21]. Similarly, one can define transversely holomorphic bundles onY , and again for
compactY their sheaf cohomologies are finite-dimensional[20]. In general, properties of
compact transversely holomorphic manifolds are very similar to those of compact complex
manifolds.

It is easy to see that every transverse holomorphic structure gives rise to a TAC structure.
A TAC structure which arises in this way is called integrable. The integrability condition for
a TAC structure is the vanishing of the corresponding Nijenhuis torsion defined as follows.

Letu andv be local sections ofTF(Y). It is easy to see that the Lie bracket onTY, descends
to a Lie bracket onTF(Y), therefore the commutator [u, v] is well defined. The Nijenhuis
torsionT(J) is a section ofFY ⊗ Λ2FY∗ whose value onu, v is defined to be

T(J)(u, v) = [Ju, Jv] − J [Ju, v] − J [u, Jv] + J2[u, v].

In the case of a trivial foliation, this reduces to the standard definition of the Nijenhuis
torsion of an almost complex structure.

Obviously, an integrable TAC structure has a vanishing Nijenhuis torsion, because in
suitable coordinatesJ is constant. Conversely, by analogy with the classical case, one
expects that any TAC structure with a vanishing Nijenhuis torsion is integrable. Indeed, as
noted in Ref.[21], this is a special case of a theorem proved by Nirenberg[22]. Thus there
is a one-to-one correspondence between transverse holomorphic structures on a foliated
manifoldY and TAC structures onY with a vanishing Nijenhuis torsion.

3 A submersion is a smooth map whose derivative is surjective.
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A remarkable and non-obvious fact is that the TAC structureJ on an A-braneY is
automatically integrable. Let us give a proof of this fact for the extreme case whenY = X

and the foliation is trivial (i.e. each leaf is a point). It is easy to extend the proof to general
coisotropic A-branes.

First note that bothω andF are symplectic structures onX. Furthermore, sinceω−1F has
eigenvalues±i, ωt = ω + tF is non-degenerate for any realt, and therefore is a symplectic
structure as well. Hence its inverse is a Poisson structure for any realt. Now note that by
virtue of (ω−1F)2 = −id the inverse has a very simple form:

ω−1
t = (1 + t2)−1(ω1 + tF−1).

Thus any linear combination ofω−1 andF−1 is a Poisson structure onX. In the language
of bihamiltonian geometry[23,24], ω−1 andF−1 are compatible Poisson structures onX.
Now we can use the fundamental theorem of bihamiltonian geometry[23,24] which says
that if two Poisson structuresa andb are compatible, anda is non-degenerate, then the
endomorphisma−1b : TX → TX has a vanishing Nijenhuis torsion. This theorem implies
that the Nijenhuis torsion ofJ vanishes, and thereforeJ is integrable.

For a general coisotropic A-brane one can use the same argument, but all objects are
replaced by their foliated analogs:TX is replaced byFY , functions onX are replaced by
functions locally constant along the leaves, Poisson structures are replaced by transverse
Poisson structures, etc. One can check that the fundamental theorem of bihamiltonian ge-
ometry remains valid in the foliated case. In fact, the version of this theorem proved in
Ref. [23] (Theorem 3.12) is valid in a very general setting, where the exterior differential
complex of a smooth manifold is replaced by an arbitrary complex over a Lie algebra. The
statement we need is a special case of this theorem.

We have shown that if there exists an A-brane withY = X, thenJ = ω−1F is a complex
structure onX. Furthermore, one can easily see thatF + iω is a closed 2-form onX of type
(2,0) and maximal rank, i.e. a holomorphic symplectic form. Thus in the complex structure
J the manifoldX is a compact holomorphic symplectic manifold. If in additionX admits
a Kähler metric compatible withJ , thenX is necessarily hyperkähler[25]. In general,X
need not be hyperkähler for an A-brane withY = X to exist.

5. A-branes and homological mirror symmetry

We have shown that an A-brane is a coisotropic submanifold inX, and that it is naturally
a foliated manifold with a transverse holomorphic structure. Now let us see how this fits in
with the HMSC.

As explained inSection 1, the mirror of the derived category is the category of A-branes.
We have seen that in general the set of A-branes includes non-Lagrangian coisotropic branes,
and therefore the Fukaya category must be enlarged with such A-branes for the HMSC to
be true. Of course, in some special cases there may be no non-Lagrangian A-branes, and
the generalization we are proposing is vacuous. For example, there are no non-Lagrangian
A-branes on an elliptic curve for dimensional reasons. It also seems likely that there are no
non-Lagrangian A-branes on odd-dimensional Calabi–Yau which are complete intersections
in projective spaces, because any non-Lagrangian A-brane would be homologically trivial.
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Nevertheless, we believe that a uniform formulation of the HMSC for all weak Calabi–Yau
manifolds would be very illuminating. Let us see how one far one can go in this direction.

One immediately sees the following major difficulty. A Lagrangian A-brane can carry
a flat vector bundle of rankr higher than 1. From a physical viewpoint, such an A-brane
should be thought of asr coincident A-branes of rank 1. The same reasoning suggests that
there exist coisotropic A-branes with higher rank bundles. However, it is not clear to us what
the constraints on the connection are in this case, and whether a transverse holomorphic
structure arises again. Thus, we do not really understand all the objects in the enlarged
Fukaya category.

We will ignore this difficulty and try instead to say something about morphisms between
the objects we already know. Unfortunately, understanding morphisms between different
A-branes is not much easier than understanding A-branes with higher rank bundles: the
former question is just an “infinitesimal” form of the latter. Therefore, we will focus on the
endomorphisms of coisotropic A-branes.

To guess the right definition, let us look at the two extremes: Lagrangian A-branes and
A-branes wrapping the wholeX (i.e.Y = X). The space of endomorphisms of a Lagrangian
A-braneY is its Floer homologyHF∗(Y,C). This is hard to compute, but in many cases
it coincides with the de Rham cohomologyH∗(Y,C). From a physical viewpoint, the de
Rham cohomology is a classical approximation to the Floer homology; the two coincide
when there are no world-sheet instanton contributions to the path integral computing the
Floer differential[14].

Now suppose we have an A-braneY = X. This means that there exists a unitary line
bundle onX with a connection 1-formA whose curvatureF = dA satisfies

(ω−1F)2 = −id. (10)

As explained in the previous section, this implies thatJ = ω−1F is a complex structure on
X. On general grounds, endomorphisms of an A-brane must have the structure of a graded
vector space (in physical terms, the grading is given by the ghost charge). A natural guess
is the Dolbeault cohomologyH0,∗(X) with respect toJ .

As a simple check, note that degree one elements in the space of endomorphisms must
parametrize infinitesimal deformations of the A-brane. In the present case, a deformation
is a real 1-forma such that the curvature of the connection 1-formA + a satisfiesEq. (10)
up to terms quadratic ina. This is equivalent to the condition:

(da)J + J t(da) = 0,

i.e. da must be a form of type (1,1). If we denote bya′′ the (0,1) part ofa, then the latter
condition is equivalent tō∂a′′ = 0. Thusa′′ represents a class inH0,1(X). Sincea is real,
the (1,0) part ofa is determined bya′′ (is complex conjugate to it). Thus there is a natural
map from the space of deformations of an A-brane toH0,1(X).

We want to show that this map becomes one-to-one, if we quotient the space of deforma-
tions by deformations which are isomorphisms in the category of A-branes. Obviously, the
usual infinitesimal gauge transformationsa = df , wheref is a real function onX, induce
isomorphisms. However, this is not all. In the case of Lagrangian A-branes, it is known that a
flow along a Hamiltonian vector field onX induces an isomorphism in the Fukaya category,
and it is natural to assume that the same is true for more general coisotropic A-branes. Ifh
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is a smooth real function onX, andVh = ω−1 dh is the corresponding Hamiltonian vector
field, then the induced deformation of the connection 1-formA onX is

a = LVh
A = iVh

F + d(iVh
A),

whereLV is the Lie derivative alongV . Thus the most general deformationa which is an
isomorphism in the category of A-branes has the form:

a = iVh
F + df,

whereh andf are arbitrary smooth real functions onX. Taking into account the relation
J = ω−1F , this can be rewritten as

a = −J t dh + df = ∂(f − ih) + ∂̄(f + ih).

Let us denote by Ext1 the space of deformations of the A-brane modulo isomorphisms. (We
remind that we work in the “classical” approximation which neglects possible world-sheet
instanton effects.) From the above formulas, it easily follows that the map from the space
of deformations toH0,1(X) descends to a well-defined map from Ext1 toH0,1(X), and that
the latter map is an isomorphism of real vector spaces, as claimed.

With these two examples in mind, it is not hard to guess the right graded vector space
for a general coisotropic A-brane. IfY is a foliated manifold with a transverse holomorphic
structure, recall that we denoted byOF(Y) the sheaf of complex functions onY which
are locally constant along the leaves of the foliation and holomorphic in the transverse
directions. We propose that the space of endomorphisms of a coisotropic A-braneY is the
cohomology of the sheafOF(Y).

It is trivial to see that our proposal is consistent with the two extreme cases considered
above. For a Lagrangian A-brane,OF(Y) is simply the sheaf of locally constant complex
functions onY , and its cohomology coincides with the de Rham cohomology ofY . For
Y = XOF(Y) is the sheaf of holomorphic functions onX (with respect to the complex
structureJ), and we again get agreement.

It would be very interesting to understand how to go beyond the “classical” approxima-
tion, as well as how to define morphisms between different coisotropic A-branes. At first
sight, no suitable complex whose cohomology one could compute presents itself. Perhaps
this is simply a lack of imagination on our part.

In general, it appears that a geometric definition of the category of A-branes is very
cumbersome. Finding such a definition is akin to trying to define the category of holomorphic
vector bundles on a complex manifold using the zeros and poles of their meromorphic
sections. A more promising approach is to look for an algebraic definition of A-branes, e.g.
as modules over some non-commutative algebra associated to a symplectic manifoldX. It
seems likely that this non-commutative algebra is related to the deformation quantization
of X. Similar ideas have been discussed in Refs.[26,27].
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