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Derived categories of coherent sheaves

and equivalences between them

D. O. Orlov

Abstract. This paper studies the derived categories of coherent sheaves on smooth
complete algebraic varieties and equivalences between them. We prove that every
equivalence of categories is represented by an object on the product of the varieties.
This result is applied to describe the Abelian varieties and K3 surfaces that have
equivalent derived categories of coherent sheaves.
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Introduction

The main objects of study in algebraic geometry are algebraic varieties (or
schemes) and morphisms between them. Every algebraic variety X is a ringed
topological space and thus has a topology (usually the Zariski topology) and a
sheaf of rings of regular functions OX .
To a large extent, the study of an algebraic variety is the study of sheaves on

it. Since the space is ringed, the natural sheaves are sheaves of OX -modules on it,
among which the quasi-coherent and coherent sheaves are distinguished by their
algebraic nature. Recall that a sheaf of OX -modules is quasi-coherent if it is locally
representable as the cokernel of a homomorphism of free sheaves, and coherent if
these free sheaves are of finite rank. (Locally free sheaves on a variety correspond
one-to-one with vector bundles, and we therefore use these terms interchangeably
in what follows.)
Thus, corresponding to every algebraic variety X we have the Abelian categories

coh(X) of coherent sheaves and Qcoh(X) of quasi-coherent sheaves. Morphisms
between varieties induce inverse image and direct image functors between these
Abelian categories. However, these functors are not exact, that is, do not take
exact sequences to exact sequences. This causes significant complications when
working with Abelian categories and non-exact functors between them. To preserve
functoriality, Cartan and Eilenberg [11] introduced the notion of derived functors
which give necessary corrections to non-exact functors. This technique was devel-
oped by Grothendieck in [15], which subsequently led to the introduction of the
new concepts: derived category and derived functors between them.
Derived categories, in contrast to Abelian categories, do not have short exact

sequences, and the kernels and cokernels of morphisms are not defined. However,
derived categories admit a certain internal structure, formalized by Verdier as the
notion of triangulated category [44].
Passing from Abelian categories to their derived categories allows us to solve

many problems related to difficulties arising in the study of natural functors.
Among the first examples, we mention the creation of the global intersection
theory and the proof of the Riemann–Roch theorem. These results, achieved by
Grothendieck and his co-authors [41], were made possible by the introduction of
the triangulated category of perfect complexes.
Another example relates to the introduction of perverse sheaves and to the estab-

lishment of the Riemann–Hilbert correspondence between holonomic modules with
regular singularities and constructible sheaves (see [3], [23]); this correspondence
only became possible on applying the notions and techniques of triangulated cate-
gories.
Many problems relating to the study of varieties require the study and descrip-

tion of the derived categories of coherent sheaves on them. In the simplest cases,
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when the variety is a point or a smooth curve, every object in the derived category of
coherent sheaves is isomorphic to a direct sum of some family of coherent sheaves

with suitable shifts; that is, every A ∈ Db(cohX) is isomorphic to
⊕k
i=1 Fi[ni],

where Fi are coherent sheaves. These examples reflect the fact that in these cases
the Abelian category has homological dimension � 1. However, for higher dimen-
sional varieties there are complexes that are not isomorphic in the derived category
to the sum of their cohomology. Thus, describing the derived category for varieties
of dimension greater than 1 is a difficult and interesting problem. The first steps
in this direction were made in [4] and [2], which described the derived category of
coherent sheaves on projective spaces, and subsequently allowed the technique to be
applied to the study the moduli space of vector bundles on P2 and P3. In particular,
these papers showed that the derived category of coherent sheaves Db(cohPn) on
projective space is equivalent to the derived category of finite-dimensional modules
over the finite-dimensional algebra A = End

(⊕i=n
i=0 O(i)

)
. This approach has been

perfected since then, and descriptions of the derived categories of coherent sheaves
on quadrics and on flag varieties have also been obtained ([20]–[22]).

Introducing the notions of exceptional family and semi-orthogonal decomposition
enabled one to formulate new principles for describing the derived categories of
coherent sheaves [5], [6]. It turned out that the existence of a complete exceptional
family always realizes an equivalence of the derived category of coherent sheaves
with the derived category of finite-dimensional modules over the finite-dimensional
algebra of endomorphisms of the given exceptional family [5]. The notion of semi-
orthogonal decomposition allowed us to describe the derived category of a blowup
in terms of the derived category of the variety that is blown up and that of the
subvariety along which the blowup occurs [34].

However, for many types of varieties, no description of the derived category is
possible. Nevertheless, the natural question can be posed roughly as follows: how
much information is preserved on passing from a variety to its derived category of
coherent sheaves? In fact it turns out that ‘almost all’ information is preserved
under this correspondence. In many cases one can even recover the variety itself
from its derived category of coherent sheaves, for example if the canonical (or
anticanonical) sheaf is ample [8].

For certain types of varieties one nevertheless finds examples in which two dis-
tinct varieties have equivalent derived categories of coherent sheaves. The first
example of two different varieties having equivalent derived categories of coherent
sheaves was found by Mukai [29]. He showed that this happens for every Abelian
variety and its dual variety. We generalized this construction in [38]: for any
Abelian variety, we introduced an entire class of Abelian varieties, all of which
have the same derived category of coherent sheaves. On the one hand, these exam-
ples show that there are varieties having equivalent derived category of coherent
sheaves; on the other hand, every class of varieties with equivalent derived cate-
gories of coherent sheaves is ‘small’ (it is finite in all the examples).

To obtain a complete classification of varieties with equivalent derived categories
of coherent sheaves, we need a description of the functors and equivalences between
them. It turns out that equivalences are always geometric in nature, that is, they
are represented by certain complexes of sheaves on the product of the varieties.
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We explain what we mean. In what follows we write Db(X) to denote the
bounded derived category of coherent sheaves on X. Any morphism f : X → Y
between smooth complete algebraic varieties induces two exact functors between
their bounded derived categories of coherent sheaves: the direct image functor
Rf∗ : D

b(X) −→ Db(Y ) and the inverse image functor Lf∗ : Db(Y ) −→ Db(X),
which is left adjoint to Rf∗. Moreover, every object E ∈ Db(X) defines an exact
tensor product functor ⊗L E : Db(X) −→ Db(X). We can use these standard
derived functors, to introduce a new large class of exact functors between the derived
categories Db(X) and Db(Y ).
Let X and Y be two smooth complete varieties over a field k. Consider the

Cartesian product X × Y , and write

X
p←− X × Y q−→ Y

for the projections of X×Y to X and Y respectively. Every object E ∈ Db(X×Y )
defines an exact functor ΦE from the derived category D

b(X) to the derived cate-
gory Db(Y ), given by

ΦE( · ) :=R·q∗(E ⊗L p∗( · )). (1)

Every functor of this type has left and right adjoint functors.
Thus, to every smooth complete algebraic variety one can assign its derived

category of coherent sheaves, and to every object E ∈ Db(X × Y ) on the product
of two such varieties one can assign an exact functor ΦE from the triangulated
category Db(X) to the triangulated category Db(Y ). This paper is devoted to the
study of this correspondence.
One of the first questions that arises in the study of derived categories of coherent

sheaves is the following: can every functor between these categories be represented
by an object on the product? that is, is it of the form (1)? In Chapter 3 we give
an affirmative answer to this question if the functor is an equivalence.
Two other central questions here are as follows:

1) When are the derived categories of coherent sheaves on two different smooth
complete varieties equivalent as triangulated categories?

2) What is the group of exact auto-equivalences of the derived category of
coherent sheaves on a given variety X?

Some results in this direction were already known. Exhaustive answers to the
above questions are known when the variety has ample canonical or anticanonical
sheaf: in [8] we proved that a smooth projective variety X with ample canonical (or
anticanonical) sheaf can be recovered from its derived category of coherent sheaves
Db(X); moreover, [8] also gives an explicit construction for recovering X. For
varieties of this type, the group of exact auto-equivalences can also be described.
We now describe the contents and structure of this paper. Most of the results

collected here can be found in some form in the papers [7], [8], [34], [35], and [37].
Chapter 1 collects material of a preliminary nature. We first give the definition of
triangulated category and recall the notions of an exact functor between triangu-
lated categories, the localization of a triangulated category with respect to a full
subcategory, and the general definition of derived functor for localized triangulated
categories. After this we define the homotopy category and the derived category



Derived categories of coherent sheaves 515

of an Abelian category, and we also discuss the properties of derived categories of
coherent and quasi-coherent sheaves on schemes and the functors between these
categories.
In Chapter 2 we introduce the class of functors between the bounded derived

categories of coherent sheaves on smooth complete algebraic varieties that are
representable by objects on products, and describe their main properties. Using
results from Chapter 3, we prove that, if two smooth projective varieties X and Y
have equivalent derived categories, then there exists an isomorphism between the
bigraded algebras HA(X) and HA(Y ) defined by the following formula:

HA(X) =
⊕
i,k

HAi,k(X) =
⊕
i,k

⊕
p+q=i

Hp(X,

q∧
TX ⊗ ωkX),

where TX is the tangent bundle and ωX the canonical bundle of X (Theorem 2.1.8
and Corollary 2.1.10).
In the second section of Chapter 2 we present a whole class of pairs of vari-

eties having equivalent derived categories of coherent sheaves. These examples are
interesting in that the varieties that arise are birationally isomorphic (but not iso-
morphic in general) and are related by a birational transformation called a flop. In
particular, these examples show that we cannot weaken the condition of ampleness
of the canonical (or anticanonical) class in the theorem on recovering X fromD(X).
Let Y be a smoothly embedded closed subvariety in a smooth complete algebraic

varietyX such that Y ∼= Pk with normal bundleNX/Y ∼= OY (−1)⊕(l+1). We assume
that l � k and write X̃ to denote the blowup of X with centre along Y . In this case
the exceptional divisor Ỹ is isomorphic to the product of projective spaces Pk ×Pl.
There is a blowdown of X̃ such that Ỹ projects to the second factor Pl. Consider
the diagram of projections

X
π←− X̃ π+−→ X+.

The birational map fl: X ��� X+ is the simplest example of a flip or flop; it is a
flip for l < k and a flop for l = k.
The main theorem of this section relates the derived categories of coherent

sheaves on the varieties X and X+. It asserts that for any line bundle L on X̃, the
functor

Rπ∗(Lπ
+∗( · ) ⊗L) : Db(X+) −→ Db(X)

is fully faithful, and for k = l this functor is an equivalence.
Chapter 3 is central. It is concerned with proving that every equivalence between

derived categories of coherent sheaves on smooth projective varieties is represented
by an object on the product. This assertion allows us to describe equivalences
between derived categories of coherent sheaves and to answer the question of when
two different varieties have equivalent derived categories of coherent sheaves.
In fact, in this chapter we prove a more general assertion: namely, that any func-

tor between bounded derived categories of coherent sheaves on smooth projective
varieties that is fully faithful and has an adjoint functor can be represented by an
object E on the product of these varieties; that is, it is isomorphic to the func-
tor ΦE defined by the rule (1). Moreover, the object E representing it is uniquely
determined up to isomorphism (Theorem 3.2.1).
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In Chapter 4 we study the derived categories of coherent sheaves on K3 surfaces.
For any K3 surface S, the cohomology lattice H∗(S,Z) has a symmetric bilinear
form defined by the rule

(u, u′) = r · s′ + s · r′ − α · α′ ∈ H4(S,Z) ∼= Z

for any pair u = (r, α, s), u′ = (r′, α′, s′) ∈ H0(S,Z) ⊕ H2(S,Z) ⊕ H4(S,Z). The
cohomology lattice H∗(S,Z) with the bilinear form ( · , · ) is called the Mukai lattice
and denoted by H̃(S,Z).

The lattice H̃(S,Z) admits a natural Hodge structure. In the present case, by
Hodge structure, we mean that we fix a distinguished one-dimensional subspace
H2,0(S) in the space H̃(S,C). We say that the Mukai lattices of two K3 surfaces
S1 and S2 are Hodge isometric if there is an isometry between them taking the
one-dimensional subspace H2,0(S1) to H

2,0(S2).
The main theorem of this chapter (Theorem 4.2.1) asserts that the derived cat-

egories Db(S1) and D
b(S2) of coherent sheaves on two K3 surfaces over the field

C are equivalent as triangulated categories if and only if there is a Hodge isometry

f : H̃(S1,Z)
∼−→ H̃(S2,Z) between their Mukai lattices. This theorem has another

version in terms of lattices of transcendental cycles (Theorem 4.2.4).
In view of the Torelli theorem for K3 surfaces [39], [27], which says that a K3

surface can be recovered from the Hodge structure on its second cohomology, we
obtain an answer in terms of Hodge structures to the question of when the derived
categories of coherent sheaves on two K3 surfaces are equivalent.
In Chapter 5 we study the derived categories of coherent sheaves on Abelian

varieties and their groups of auto-equivalences. Let A be an Abelian variety and

Â the dual Abelian variety. As proved in [29], the derived categories of coherent

sheaves Db(A) and Db(Â) are equivalent, and the equivalence, called the Fourier–
Mukai transform, can be given by means of the Poincaré line bundle PA on the

product A× Â by the rule (1): F �→ R·p2∗(PA ⊗ p∗1(F )).
This construction of Mukai was generalized in [38] as follows. Consider two

Abelian varieties A and B and an isomorphism f between the Abelian varieties
A× Â and B × B̂. Write f in the matrix form

f =

(
x y
z w

)
,

where x stands for a homomorphism from A to B, y from Â to B, and so on. We
say that the isomorphism f is isometric if its inverse has the form

f−1 =

(
ŵ −ŷ
−ẑ x̂

)
.

We define U(A × Â, B × B̂) to be the set of isometric isomorphisms f . If B = A,
then we denote this set by U(A× Â); note that it is a subgroup of Aut(A × Â).
We proved in [38] that if there is an isometric isomorphism between A × Â

and B × B̂ for two Abelian varieties A and B over an algebraically closed field,



Derived categories of coherent sheaves 517

then the derived categories of coherent sheaves Db(A) and Db(B) are equivalent.
In Chapter 5 we prove that these conditions are equivalent over an algebraically
closed field of characteristic zero; that is, the derived categories Db(A) and Db(B)

are equivalent if and only if there is an isometric isomorphism from A×Â to B×B̂.
In fact, the “only if” part holds over an arbitrary field (Theorem 5.1.16). As a
corollary, we see that there are only finitely many non-isomorphic Abelian varieties
whose derived categories are equivalent to Db(A) for a given Abelian variety A
(Corollary 5.1.17).
Representing equivalences by objects on the product, we construct a map from

the set of all exact equivalences between Db(A) and Db(B) to the set of isometric

isomorphisms from A × Â to B × B̂. We then prove that this map is functorial
(Proposition 5.1.12). In particular, we obtain a homomorphism from the group of

exact auto-equivalences ofDb(A) to the group U(A×Â) of isometric automorphisms
of A × Â.
In § 5.2 we describe the kernel of this homomorphism, which turns out to be

isomorphic to the direct sum of Z and the group of k-valued points of A × Â
(Proposition 5.2.3). Technically, this description is based on the fact that the
object on the product of Abelian varieties that defines the equivalence is in fact a
sheaf, up to a shift in the derived category (Proposition 5.2.2).
In the final § 5.3, under the assumption that the ground field is algebraically

closed and char(k) = 0, we give another proof of the assertion in [38]; this proof
uses results in [30] describing semi-homogeneous bundles on Abelian varieties. In
particular, we obtain a description of the group of auto-equivalences as an exact
sequence

0 −→ Z⊕ (A× Â)k −→ AuteqDb(A) −→ U(A× Â) −→ 1.

CHAPTER 1

Preliminaries

1.1. Triangulated categories and exact functors. A detailed treatment of
the facts collected in this chapter may be found in [14], [24], [25], and [44]. The
notion of triangulated category was first introduced by Verdier in [44]. Let D be
some additive category. We define a structure of triangulated category on D by
giving the following data:

a) an additive shift functor [1] : D −→ D which is an auto-equivalence;
b) a class of distinguished (or exact) triangles

X
u−→ Y v−→ Z w−→ X[1]

that must satisfy the following set of axioms T1–T4.

T1. a) For any object X the triangle X
id−→ X −→ 0 −→ X[1] is distinguished.

b) If a triangle is distinguished, then any isomorphic triangle is also distin-
guished.
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c) Any morphismX
u−→ Y inD can be completed to a distinguished triangle

X
u−→ Y v−→ Z w−→ X[1].

T2. A triangle X
u−→ Y v−→ Z w−→ X[1] is distinguished if and only if the

triangle

Y
v−→ Z w−→ X[1] −u[1]−→ Y [1]

is distinguished.
T3. Given two distinguished triangles and two morphisms between their first
and second terms that form a commutative square, this diagram can be
completed to a morphism of triangles:

T4. For any pair of morphisms X
u−→ Y v−→ Z there is a commutative diagram

X
u−−−−→ Y

x−−−−→ Z′ −−−−→ X[1]∥∥∥ v

� �w ∥∥∥
X −−−−→ Z

y−−−−→ Y ′
w′−−−−→ X[1]� �t �u[1]

X′ X′
r−−−−→ Y [1]�r �

Y [1]
x[1]−−−−→ Z′[1]

in which the top two rows and the two central columns are distinguished
triangles.

Let D be a triangulated category. We say that a full additive subcategory N ⊂ D
is a triangulated subcategory if it is closed under the shift functor and under taking
the mapping cone of morphisms; that is, if two objects of some triangle

X −→ Y −→ Z −→ X[1]

belong to N, then so does the third object. We now describe the type of functors
between triangulated categories that it makes sense to consider.

Definition 1.1.1. We say that an additive functor F : D −→ D′ between two
triangulated categories D and D′ is exact if

a) F commutes with the shift functor, that is, there is a given isomorphism of
functors

tF : F ◦ [1]
∼−→ [1] ◦ F,

b) F takes each distinguished triangle in D to a distinguished triangle in D′

(where we use the isomorphism tF to replace F (X[1]) by F (X)[1]).
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It follows at once from the definition that the composite of two exact functors is
again exact. Another property we need concerns adjoint functors.

Lemma 1.1.2 ([6], [8]). If a functor G : D′ −→ D is left (or right) adjoint to an
exact functor F : D −→ D′, then G is also exact.
We define and describe the main properties of a Serre functor, the abstract

definition of which was given in [6] (see also [8]).

Definition 1.1.3. LetD be a k-linear category with finite-dimensional Hom-spaces
between objects. A covariant functor S : D → D is a Serre functor if it is an
equivalence of categories, and there exists a bifunctorial isomorphism

ϕA,B : HomD(A,B)
∼−→ HomD(B, SA)∗ for any objects A,B ∈ D.

Lemma 1.1.4 [8]. Any equivalence of categories Φ: D −→ D′ commutes with Serre
functors; that is, there exists a natural isomorphism of functors Φ ◦ S ∼−→ S′ ◦ Φ,
where S and S′ are Serre functors for the categories D and D′ respectively.

If we have two Serre functors for the same category, then they are isomorphic,
and this isomorphism commutes with the bifunctorial isomorphisms ϕA,B in the
definition of Serre functor. Indeed, let S and S′ be two Serre functors for
the category D. Then for any object A in D there is a natural isomorphism

Hom(A,A) ∼= Hom(A, SA)∗ ∼= Hom(SA, S′A).
Considering the image of the identity morphism idA under this identification, we
obtain a morphism SA −→ S′A, which gives an isomorphism S ∼−→ S′.
Thus, a Serre functor for a category D (if it exists) is uniquely determined

(up to isomorphism). In what follows, we will be interested in Serre functors for
triangulated categories.

Lemma 1.1.5 [6]. A Serre functor for a triangulated category is exact.

We recall the definition of localization of a category and, in particular, the local-
ization of a triangulated category with respect to a full triangulated subcategory
(see [13]). Let C be a category and Σ a class of morphisms in C; the localization of
C with respect to Σ has a good description if Σ admits a calculus of left fractions;
that is, if the following properties hold:

L1. All the identity morphisms of the category belong to Σ.
L2. The composite of any two morphisms in Σ again belongs to Σ.

L3. Each diagram of the form X′
s←− X u−→ Y with s ∈ Σ can be completed to

a commutative square

with t ∈ Σ.
L4. If f and g are two morphisms, and there exists a morphism s ∈ Σ satisfying
fs = gs, then there also exists t ∈ Σ such that tf = tg.
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If Σ admits a calculus of left fractions, then the category C[Σ−1] can be described
as follows. The objects of C[Σ−1] are just those of C. The morphisms from X to Y
are equivalence classes of diagrams (s, f) in C of the form

X
f−→ Y ′ s←− Y with s ∈ Σ,

where two diagrams (f, s) and (g, t) are equivalent if they fit into a commutative
diagram

with r ∈ Σ.
The composite of two morphisms (f, s) and (g, t) is the morphism (g′f, s′t) con-

structed using the square of axiom L3:

One sees readily that C[Σ−1] constructed in this way is indeed a category (with
morphisms between objects forming a set), and that the canonical functor

Q : C −→ C[Σ−1] defined by X �→ X, f �→ (f, 1)

inverts all morphisms in Σ, and is universal in this sense (see [13]).
Consider a full subcategory B ⊂ C and write Σ ∩ B for the class of morphisms

in B also belonging to Σ. We say that B is right cofinal in C with respect to Σ if
for any s : X −→ X′ in Σ with X ∈ B there is a morphism f : X′ −→ Y such that
fs ∈ Σ ∩B.
Lemma 1.1.6 ([17], [25]). The class Σ ∩B also admits a calculus of left fractions
and, if B is right cofinal in C with respect to Σ, the canonical functor

B[(Σ ∩B)−1] −→ C[Σ−1]

is fully faithful.

We recall the definition of fully faithful functor.
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Definition 1.3. We say that a functor F : C −→ D is fully faithful if the natural
map

Hom(X, Y ) −→ Hom(FX, FY )
is a bijection for any two objects X, Y ∈ C.
Now let D be a triangulated category and N a full triangulated subcategory. We

write Σ for the class of morphisms s in D that fit in an exact triangle

N −→ X s−→ X′ −→ N [1],

with N ∈ N, and call Σ the multiplicative system associated with the subcategory
N. It follows from the general theory of localization that there exists an additive
category D[Σ−1] and an additive localization functor Q : D −→ D[Σ−1]. We can
give the category D[Σ−1] the shift functor induced by [1] : D −→ D. Moreover,
we define distinguished triangles in D[Σ−1] to be the triangles isomorphic to the
images of distinguished triangles in D under the localization. We set

D/N := D[Σ−1].

Proposition 1.1.8. Giving D/N the structure described above makes it into a
triangulated category, and makes Q : D −→ D/N into an exact functor.
Note that in our situation the system Σ admits a calculus of left (and right)

fractions, so that the category D/N admits a good description as given above.
Following Deligne [12] (see also [25]), we now describe the general construction of
derived functors for the localizations of triangulated categories. Let C and D be
triangulated categories and F : C −→ D an exact functor. Let M ⊂ C and N ⊂ D
be full triangulated categories. Since we do not assume that FM ⊂ N, the functor
F does not induce any functor from C/M to D/N. However, there may exist a
certain canonical approximation to an induced functor, namely, an exact functor
RF : C/M −→ D/N, and a morphism of exact functors can: QF −→ (RF )Q. The
construction proceeds as follows. Write Σ for the multiplicative system associated
with the subcategory M. Let Y be an object of C/M. We define a contravariant
functor rFY from D/N to the category of Abelian groups by the following rule:
the value of rFY (X) at an object X ∈ D/N is the equivalence classes of pairs (s, f)

Y
s−→ Y ′, X

f−→ FY ′,

with s ∈ Σ and f a morphism inD/N. Two such pairs (s, f) and (t, g) are equivalent
if there exist commutative diagrams in C and D/N of the form
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with r ∈ Σ. If the functor rFY is representable, we define RFY as the object that
represents it, and say that the right derived functor RF is defined on Y . In this
case we have an isomorphism

Hom(X,RFY ) ∼= rFY (X).

One sees readily that a morphism of functors rFα : rFY −→ rFZ is defined for
any morphism α : Y −→ Z in C/M. Now if the derived functor RF is defined
on both Y and Z, the morphism RFα is also defined. This makes RF a functor
W −→ D/N on some full subcategoryW ⊂ C/M, consisting of the objects on which
RF is defined.

Proposition 1.1.9 [12]. Suppose that

X −→ Y −→ Z −→ X[1]

is a distinguished triangle in C/M and RF is defined on X and Z. Then it is also
defined on Y , and takes the given triangle into a distinguished triangle of D/N.
Thus, W is a triangulated subcategory in C/M and RF : W −→ D/N is an exact
functor.

It follows at once from the construction of the derived functor that there is a
canonical morphism can: QFY −→ (RF )QY for any object Y ∈ C (provided, of
course, that RF is defined on QY ∈ C/M). All these morphisms define a natural
transformation of triangulated functors can: QF |W −→ (RF )Q|W.
The left derived functor LF is defined in the dual way: for Y ∈ C/M, we define

a covariant functor lFY whose value at X ∈ D/N is the equivalence classes of pairs
(s, f),

Y ′
s−→ Y, FX′

f−→ Y,
with s ∈ Σ and f a morphism in D/N. Then LFY (if it exists) is the object rep-
resenting the functor lFY ; that is, Hom(LFY,X) ∼= lFY (X). There is a canonical
morphism can: LFQY −→ QFY .
Suppose that the functor F : C −→ D takes the subcategory M into N. In this

case the derived functors RF and LF are both isomorphic to the canonical functor
C/M −→ D/N induced by F .
Let j : V ↪→ C be the inclusion of a full triangulated subcategory which is right

cofinal with respect to Σ. By Lemma 1.1.6 the induced functor V/(V∩M)−→ C/M
is fully faithful. We denote it by Rj.

Lemma 1.1.10. For any object V ∈ V the functor RF is defined on V if and only
if R(Fj) is defined on V , and there is an isomorphism of functors R(Fj)V

∼−→
RFRjV .

We now describe conditions under which the right derived functor is defined on
the entire category C.

Definition 1.1.11. An object Y ∈ C is said to be (right) F -split with respect to
M and N if RF is defined on Y and the canonical morphism QFY −→ (RF )QY
is an isomorphism.

The following lemma gives a characterization of F -split objects.
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Lemma 1.1.12. An object Y ∈ C is F -split if and only if for any morphism
s : Y −→ Y ′ in Σ the morphism QFs admits a retraction, that is, there exists a
p : QFY ′ −→ QFY such that p ◦QFs = id.
We say that C admits enough F -split objects (with respect to M and N) if for

any Y ∈ C there exists a morphism s : Y −→ Y0 in Σ such that Y0 is F -split. In
this case RF is defined on the entire category C/M, and there are isomorphisms

RFY
∼−→ RFY0 ∼←− FY0.

To conclude this section we say a few words on adjoint functors. Suppose that a
functor F has a left adjoint G : D −→ C and assume that the derived functors RF
and LG exist (that is, that they are everywhere defined). Then LG is again a left
adjoint to RF , and hence there are functorial isomorphisms

Hom(LGX, Y ) ∼= Hom(X,RFY ) for X ∈ D/N and Y ∈ C/M. (2)

1.2. Derived categories and derived functors. Let A be an additive category.
We write C(A) to denote the category of differential complexes. Its objects are the
complexes

M · = ( · · · −→Mp dp−→Mp+1 −→ · · · ) with Mp ∈ A for p ∈ Z, and d2 = 0,

and the morphisms f : M · −→ N · are families of morphisms fp : Mp −→ Np in A
that commute with the differentials; that is,

dNf
p − fp+1dM = 0 for any p.

We write C+(A), C−(A) and Cb(A) for the full subcategories of C(A) formed
by complexes M · for which Mp = 0 for all p � 0, respectively for all p � 0,
respectively for all p� 0 and all p� 0.
We say that a morphism of complexes f : M · −→ N · is null-homotopic if fp =

dNh
p + hp+1dM for all p ∈ Z for some family of morphisms hp : Mp+1 −→ Np. We

define the homotopy category H(A) to be the category having the same objects as
C(A) and the morphisms inH(A) are classes f of morphisms f between complexes
modulo null-homotopic morphisms.
We define the shift functor [1] :H(A) −→ H(A) by the rule

(M [1])p =Mp+1, dM [1] = −dM .

We define a standard triangle in H(A) to be a sequence

L
f−→M g−→ Cf h−→ L[1],

where f : L −→ M is some morphism of complexes, Cf = M ⊕ L[1] is a graded
object of C(A), with the differential

dCf =

(
dM f
0 −dL

)
,

g is the canonical embedding M −→ Cf , and −h the canonical projection. As
usual, Cf is called the mapping cone of f .
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Lemma 1.2.1. The category H(A) with [1] as shift functor and the class of tri-
angles isomorphic to standard triangles as distinguished triangles is a triangulated
category.

We write H+(A), H−(A) and Hb(A) for the images in H(A) of the categories
C+(A), C−(A) and Cb(A) respectively. These categories are also triangulated.
Suppose now that A is an Abelian category. To define the derived category of
an Abelian category, we must recall the notions of acyclic complex and of quasi-
isomorphism. For any complex N · and each p ∈ Z, the cohomology Hp(N ·) ∈ A
is defined as Ker dp/ Imdp−1. Thus, for any integer p we have an additive functor
Hp : C(A) −→ A taking a complex N · to its pth cohomology Hp(N ·) ∈ A.
We say that a complex N · ∈ C(A) is acyclic at the nth term if Hn(N ·) = 0, and

simply acyclic if all its cohomology vanishes, Hn(N ·) = 0 for n ∈ Z. We denote by
N the full subcategory of H(A) consisting of all acyclic complexes. The following
lemma is practically obvious.

Lemma 1.2.2. The subcategory N is a full triangulated subcategory of H(A).

We say that a morphism f : X −→ Y in H(A) is a quasi-isomorphism if its
mapping cone is an acyclic complex. In other words, f is a quasi-isomorphism if
the map it induces on cohomology is an isomorphism. Let Quis be the multiplicative
system associated with N, that is, the system consisting of all quasi-isomorphisms.

Definition 1.2.3. The derived category D(A) of an Abelian category A is defined
as the localization of the homotopy category H(A) with respect to the subcategory
of all acyclic complexes, that is,

D(A) := H(A)/N = H(A)[Quis−1].

For ∗ ∈ {+,−, b}, we define the corresponding derived category D∗(A) in the same
way as the localization H∗(A)/(H∗(A) ∩N).
Lemma 1.2.4. For ∗ ∈ {+,−, b}, the canonical functors

D∗(A) −→ D(A)

define equivalences with the full subcategories of D(A) formed by complexes that are
acyclic respectively for n� 0, for n� 0, and for n� 0 and n� 0. The subcate-
goryH+(A) is right cofinal in H(A) with respect to the class of quasi-isomorphisms,
and H−(A) is left cofinal.

Suppose that the Abelian category A has enough injective objects; that is, every
object embeds in an injective. We denote by I the full subcategory of A consisting
of the injective objects. In this case, one can prove that the composite functor

H+(I) −→ H+(A) Q−→ D+(A)

is an equivalence of categories (see [17]). Similarly, if an Abelian category A has
enough projectives, then the composite functor

H−(P) −→ H−(A) Q−→ D−(A)

is an equivalence, where P in A is the full subcategory of projectives.
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Let F : A −→ B be an additive functor (not necessarily exact) between Abelian
categories. Then F induces in an obvious way an exact functor H(A) −→ H(B),
which we denote by the same symbol F . The general construction of (right) derived
functor described in the previous section gives a functor RF , defined on a certain
full triangulated subcategory ofD(A), and taking values inD(B). The same applies
to the left derived functor. We define the nth right (respectively left) derived functor
of F as the cohomology

RnFX = Hn(RFX) (respectively LnFX = H
−n(LFX)) for n ∈ Z.

In applications, the right adjoint functor usually turns out to be well defined on the
subcategory D+(A). Using Lemmas 1.1.10 and 1.2.4, we can say that the restric-
tion of the functor RF to D+(A) coincides with the derived functor of the
restriction of F to H+(A) ⊂ H(A).
We now describe the conditions under which the right derived functor RF is

defined on the entire category D+(A). We say that a full additive subcategory
R ⊂ A is right adapted to a functor F if
a) F takes acyclic complexes in C+(R) to acyclic ones;
b) every object of A embeds in some object of R.

We say that the objects of R are right F -acyclic. If there exists a subcategory R
right adapted to F , one often says that A has enough (right) F -acyclic objects.
Suppose that F : A −→ B is a functor for which a right adapted subcategory

R ⊂ A exists. Applying Lemma 1.1.12, one checks readily that every right bounded
complex of objects in R is right F -split. From condition b) one deduces that for
each object X ∈ H+(A) there is a quasi-isomorphism X −→ X′ with X′ ∈ H+(R).
As a corollary, we see that the canonical functor

H+(R)[Quis−1] −→ D+(A)

is an equivalence of triangulated categories.

Lemma 1.2.5. Suppose that F is a functor for which a right adapted subcategory
R ⊂ A exists. Then the functor RF is defined on D+(A), and for any left bounded
complex X there is an isomorphism RFX

∼−→ X′, where X −→ X′ is a quasi-
isomorphism with X′ ∈H+(A).

If A has enough injectives, then the full subcategory I ⊂ A consisting of all
injectives is right adapted to every additive functor. In this case we can compute
the right derived functor RFX by applying F to an injective resolution X′ of the
complex X.
Dually,one can introduce the notion of subcategory left adapted to a functorF .

If such a subcategory exists, the left derived functor LF : D−(A) −→ D(B) is
defined.

1.3. Derived categories of sheaves on schemes. Several Abelian categories
of sheaves can be assigned to any scheme. Let X be a scheme over a field k, with
structure sheaf OX . We denote by OX -Mod the Abelian category of all sheaves
of OX -modules in the Zariski topology. The category OX -Mod has all limits and
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colimits, and has a set of generators. Direct colimits are exact. For this reason,
the category OX -Mod is a Grothendieck Abelian category, and has enough injectives
(see [15], [42], Exp. IV).
From now on, we consider only Noetherian schemes (although many of the facts

treated below also hold in the more general situation). We denote by Qcoh(X)
the full Abelian subcategory of OX-Mod consisting of quasi-coherent sheaves. On
a Noetherian scheme X every quasi-coherent sheaf is the direct colimit of its sub-
sheaves of finite type (see [16], EGA1, 9.4). In this case the category Qcoh(X) has
a set of generators and is a Grothendieck Abelian category, and thus has enough
injectives.
The third category that we can assign to a scheme X is the category of coher-

ent sheaves coh(X); it is a full Abelian subcategory of Qcoh(X). Although the
definition of (quasi-)coherent sheaves is local, in fact they do not depend on
the topology. We could, for example, consider not just the Zariski topology but
also, say, the etale or flat topology. In this case, although the notion of sheaf of
OX -modules depends on the choice of topology, (quasi-)coherent sheaves do not (see
[36]). In particular, for an affine scheme X, the category Qcoh(X) is equivalent to
the category of modules over the algebra corresponding to X.
In what follows we will focus on the category of coherent sheaves, and, more

precisely, on the derived category of coherent sheaves. However, since coh(X) does
not have enough injectives, in constructing derived functors we make use of the
categories Qcoh(X) and OX -Mod.
For a Noetherian scheme X, the full embedding of Abelian categories Qcoh(X) ↪→

OX -Mod takes injectives to injectives. From this, we can deduce by a simple
procedure (see [17], I.4.6, [43], Appendix B) that the triangulated subcategory
H+(Qcoh) is right cofinal in the triangulated categoryH+(OX -Mod). Thus, apply-
ing Lemma 1.1.6, we obtain the following assertion.

Proposition 1.3.1 ([17], [41], Exp. II). If X is a Noetherian scheme, the canonical
functor

D+(Qcoh(X)) −→ D+(OX -Mod)
is fully faithful and defines an equivalence with the full subcategory

D+(OX -Mod)Qcoh ⊂D+(OX -Mod)

consisting of complexes with quasi-coherent cohomology.

Under additional conditions on the scheme we can also prove the analogous
assertion for unbounded derived categories.

Proposition 1.3.2 ([41], Exp. II). If X is a finite-dimensional Noetherian scheme,
then the canonical functor

D(Qcoh(X)) −→ D(OX-Mod)

is fully faithful and defines an equivalence with the full subcategory

D(OX -Mod)Qcoh ⊂ D(OX-Mod),

which consists of complexes with quasi-coherent cohomology.
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The proof makes use of the fact that the embedding functor has a right adjoint
Q : OX -Mod −→ Qcoh(X), and for finite-dimensional schemes this functor has
finite cohomological dimension (see [41], II.3.7).
We now consider the embedding of Abelian categories coh(X) ⊂ Qcoh(X).

Assertions similar to those just described are also known for the canonical functor
between derived categories; however, these assertions relate only to right bounded
derived categories.

Proposition 1.3.3 ([41], Exp. II). For a Noetherian scheme X, the canonical
functor

D−(coh(X)) −→ D−(Qcoh(X))

is fully faithful and gives an equivalence with the full subcategory D−(Qcoh(X))coh.

Combining this proposition with Propositions 1.3.1 and 1.3.2, we obtain the
following corollary.

Corollary 1.3.4 ([41], Exp. II). Let X be a Noetherian scheme (respectively, a
finite-dimensional Noetherian scheme). Then the canonical functor

Db(coh(X)) −→ Db(OX -Mod) (respectively D−(coh(X)) −→ D−(OX -Mod))

is fully faithful and defines an equivalence with the full subcategory

Db(OX -Mod)coh (respectively D−(OX -Mod)coh).

We now describe the main derived functors between the derived categories of
sheaves on schemes. Let f : X −→ Y be a morphism of Noetherian schemes. There
exists an inverse image functor

f∗ : OY -Mod −→ OX -Mod,

which is right exact. Since OY -Mod has enough flat OY -modules and they are
f∗-acyclic, it follows that the left derived functor

Lf∗ : D−(OY -Mod) −→ D−(OX -Mod)

is defined. One proves readily that Lf∗ takes the categories D−(OY -Mod)Qcoh and
D−(OY -Mod)coh toD

−(OX -Mod)Qcoh andD
−(OX -Mod)coh respectively. Thus, for

finite-dimensional Noetherian schemes we obtain a derived inverse image functor
Lf∗ on right bounded derived categories of quasi-coherent and coherent sheaves.
If f∗ has finite cohomological dimension (in which case we say that f has finite

Tor-dimension), we can extend the derived functor Lf∗ to the unbounded derived
categories. Moreover, if f has finite Tor-dimension, the derived inverse image func-
tor takes the bounded derived category to the bounded derived category. In par-
ticular, we have the functor

Lf∗ : Db(OY -Mod)coh −→ Db(OX -Mod)coh.



528 D. O. Orlov

Let E,F ∈ C(OX -Mod) be two complexes of OX -modules. We define the tensor
product E⊗ F as the complex associated to the double complex Ep ⊗ Fq , that is,

(E⊗ F)n =
∑
p+q=n

Ep ⊗ Fq,

with the differential d = dE + (−1)ndF. A homotopy between morphisms of com-
plexes extends to the tensor product, and we obtain a functor

E⊗ : H(OX -Mod) −→ H(OX -Mod).
Suppose now that E ∈ C−(OX -Mod). The category H−(OX -Mod) has enough
objects that are left split with respect to the functor E⊗ ; indeed, right bounded
complexes of flat OX -modules have this property. Therefore, there exists a left
derived functor

E ⊗L : D−(OX -Mod) −→ D−(OX -Mod).
If E1 and E2 are quasi-isomorphic, then E1 ⊗L and E2 ⊗L are isomorphic. In fact,
we obtain a functor in two variables

⊗L: D−(OX -Mod)×D−(OX -Mod) −→ D−(OX -Mod),
which is exact with respect to both arguments. The derived functor of the tensor
product is obviously associative and symmetric.
Suppose that an object E has finite Tor-dimension, that is, E is quasi-isomorphic

to a bounded complex of flat OX -modules. Then, on the one hand, E ⊗L extends to
the unbounded derived category, and on the other, by restriction we obtain a functor
from the bounded derived category to itself. We obtain the functors

E ⊗L : D(OX-Mod) −→ D(OX -Mod), E ⊗L : Db(OX -Mod) −→ Db(OX -Mod).
Note that if E is inD−(OX -Mod)coh (respectively D

−(OX -Mod)Qcoh), then E ⊗L
takes objects with (quasi-)coherent cohomology to objects with (quasi-)coherent
cohomology.
Let f : X −→ Y be a morphism of Noetherian schemes. The direct image functor

f∗ : OX-Mod −→ OY -Mod
is left exact. Since the category of OX -modules has enough injectives, it follows
that the right derived functor

Rf∗ : D
+(OX -Mod) −→ D+(OX -Mod)

exists. Moreover, in this case, Rf∗ takes the subcategory D
+(OX -Mod)Qcoh to the

subcategory D+(OY -Mod)Qcoh.
If in addition, f∗ has finite cohomological dimension, then Rf∗ can be extended

to the category of unbounded complexes. This holds, for example, if X is a finite-
dimensional Noetherian scheme. On the other hand, in this case (that is, when f∗
has finite cohomological dimension), the right derived functor between the bounded
derived categories

Rf∗ : D
b(OX -Mod) −→ Db(OX -Mod)

exists.
For the right derived functor to be defined between derived categories of coherent

sheaves, we need additional conditions on the morphism.
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Proposition 1.3.5 ([16], III, 3.2.1, [17]). Suppose that f : X −→ Y is a proper
morphism of Noetherian schemes. Then the functor Rf∗ takes the subcategory
D+(OX -Mod)coh to the subcategory D

+(OY -Mod)coh. If in addition, X is finite-
dimensional, then the analogous assertion holds for the bounded and unbounded
derived categories.

Let E,F ∈ C(OX -Mod) be two complexes of OX -modules. We define a complex
Hom·(E,F) by the rule

Homn(E,F) =
∏
p

Hom(Ep,Fp+n)

with the differential d = dE + (−1)n+1dF. A homotopy between morphisms of
complexes extends to the local Hom, and we obtain a bifunctor

Hom : H(OX -Mod)
op ×H(OX -Mod) −→ H(OX -Mod).

Since every left bounded complex has an injective resolution, we obtain a derived
bifunctor

RHom : D(OX-Mod)
op ×D+(OX -Mod) −→ D(OX -Mod).

In this situation we define the local hyper-Ext

Exti(E,F) := Hi(RHom(E,F)).

For a Noetherian scheme X, if E and F are (quasi-)coherent OX -modules, then the

sheaves Ext i(E,F) are also (quasi-)coherent for any i � 0.
Now if E ∈ D−(OX -Mod)coh and F ∈ D+(OX -Mod)coh, then RHom(E,F)

belongs to D(OX-Mod)coh.
We describe the main properties and relations between the derived functors

introduced in this section. Consider two morphisms f : X → Y and g : Y → Z.
In this situation we have two functors L(gf)∗ and Lf∗Lg∗ from D−(OZ -Mod) to
D−(OX -Mod). Then the natural transformation

L(gf)∗
∼−→ Lf∗Lg∗

is an isomorphism. The proof of this assertion follows from the fact that the functor
g∗ takes flat OZ -modules to flat OY -modules (see, for example, [17]).
In the same way, we have an isomorphism

R(gf)∗ −→ Rg∗Rf∗

of functors from D+(OX -Mod) to D
+(OZ -Mod). This assertion follows from the

fact that f∗ takes injective sheaves to flabby sheaves on Y , which in turn are g∗-
acyclic (see [17]).
The other relations that we use fairly frequently are called the projection formula

and flat base change.
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Proposition 1.3.6 ([17], II.5.6). Let f : X → Y be a morphism between finite-
dimensional Noetherian schemes. Then for any objects E ∈ D−(OZ -Mod) and
F ∈ D−(OX -Mod)Qcoh there is a natural isomorphism of functors

Rf∗E ⊗LF
∼−→ Rf∗(E ⊗LLf∗F). (3)

Proposition 1.3.7 ([17], II.5.12). Let f : X → Y be a morphism of finite type
between finite-dimensional Noetherian schemes and g : Y ′ → Y a flat morphism.
We consider the Cartesian square

X ×Y Y ′
g′−−−−→ X

f′
� �f
Y ′

g−−−−→ Y

.

In this situation there is a natural isomorphism of functors

Lg∗Rf∗E
∼−→ Rf ′∗Lg′∗E for any E ∈ D(OX-Mod)Qcoh. (4)

We state another relation that we need.

Proposition1.3.8 ([17], II.5.16). Let E be a bounded complex of locally free sheaves of
finite rank on a Noetherian scheme X. Then the following natural isomorphisms
of functors

RHom(F, G) ⊗LE ∼−→ RHom(F,G ⊗LE) ∼−→ RHom(F ⊗LE∨,G) (5)

hold for any F ∈ D−(OX -Mod), G ∈ D+(OX -Mod), where E∨ :=RHom(E,OX).

CHAPTER 2

Categories of coherent sheaves and functors between them

2.1. Basic properties of categories of coherent sheaves. From now on,
we consider only bounded derived categories of coherent sheaves on smooth com-
plete algebraic varieties. For brevity, we always write simply Db(X) instead of
Db(coh(X)). Moreover, we omit the symbol of derived functor if the functor is
exact, for example, for inverse image under a flat morphism or for tensor product
by a locally free sheaf.
For a smooth complete varietyX of dimension n the bounded derived category of

coherent sheaves admits a Serre functor (see Definition 1.1.3), given by ( · )⊗ωX [n],
where ωX is the canonical sheaf (see [6]). Thus, we have an isomorphism

Hom(E,F) = Hom(F,E⊗ ωX [n])∗ (6)

for any pair of objects E,F ∈ Db(X).
As shown in the previous section, every morphism f : X → Y between smooth

complete algebraic varieties induces two exact functors, the direct image functor
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Rf∗ : D
b(X) −→ Db(Y ) and inverse image functor Lf∗ : Db(Y ) −→ Db(X), and

these functors are mutually adjoint. Moreover, each object E ∈ Db(X) defines the
exact tensor product functor ⊗LE : Db(X) −→ Db(X).
We can use these standard derived functors to introduce a large new class of

exact functors between the derived categories Db(X) and Db(Y ).
Let X and Y be two smooth complete varieties over a field k, of dimension n

and m respectively. Consider the Cartesian product X × Y and write p and q for
the projections of X × Y to X and Y respectively:

X
p←− X × Y q−→ Y.

Every object E ∈ Db(X × Y ) determines an exact functor ΦE from the derived
category Db(X) to the derived category Db(Y ), defined by the formula

ΦE( · ) :=R·q∗(E ⊗L p∗( · )). (7)

Moreover, to the same object E ∈ Db(X × Y ) one can assign another functor ΨE
from the derived category Db(Y ) to the derived category Db(X), defined by a rule
similar to (7):

ΨE( · ) :=Rp∗(E ⊗L q∗( · )).

One checks readily that the functor ΦE has both left and right adjoint functors.

Lemma 2.1.1. The functor ΦE has left and right adjoint functors Φ
∗
E and Φ

!
E

respectively, defined by the formulae

Φ∗E
∼= ΨE∨⊗q∗ωY [m] and Φ!E

∼= ΨE∨⊗p∗ωX[n]. (8)

Here ωX and ωY are the canonical sheaves on X and Y respectively, and E
∨ is a

convenient notation for RHom(E,OX×Y ).

Proof. We give the proof for the left adjoint functor. It comes from the following
sequence of isomorphisms:

Hom(A,Rq∗(E ⊗L p∗B)) ∼= Hom(q∗A,E ⊗L p∗B)
∼= Hom(p∗B,E∨ ⊗L q∗A⊗ ωX×Y [n+m])∗

∼= Hom(B,Rp∗(E∨ ⊗L q∗(A ⊗ ωY [m]))⊗ ωX [n])∗

∼= Hom(Rp∗(E∨ ⊗L q∗(A ⊗ ωY [m])), B).

Here we have used the adjunction between direct and inverse image functors, Serre
duality (6) (twice), and also formula (5).

We note that, of course, any diagram of the form

X
p←− Z q−→ Y

and any object E ∈ Db(Z) can be assigned a functor from the derived category of
coherent sheaves on X to the derived category of coherent sheaves on Y , given by a
formula similar to (7). However, any functor of this kind is isomorphic to a functor
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of the form (7), with the object R(p, q)∗E on X × Y , where (p, q) is the canonical
morphism from Z to the direct product X × Y .
Now let X, Y and Z be three smooth complete varieties and E, F and G objects

of the derived categories Db(X × Y ), Db(Y × Z) and Db(X × Z) respectively.
Consider the following diagram of projections:

The objects E, F and G define three functors,

ΦE : D
b(X) −→ Db(Y ), ΦF : Db(Y ) −→ Db(Z), ΦG : Db(X) −→ Db(Z),

given by formula (7), that is,

ΦE := Rπ
2
12∗(E ⊗

L π112
∗
( · )), ΦF := Rπ

3
23∗(F ⊗

L π223
∗
( · ))

and ΦG :=Rπ
3
13∗(G ⊗Lπ113

∗
( · )).

We consider the object p∗12E ⊗L p∗23F ∈ Db(X×Y ×Z), which we always denote
by E �

Y
F in what follows. The following assertion gives the composition rule for the

exact functors between derived categories represented by objects on the product.

Proposition 2.1.2. The composite of functors ΦF◦ΦE is isomorphic to the functor
ΦG represented by

G = Rp13∗
(
E�
Y
F
)
. (9)

The proof is a direct verification.
Thus, to each smooth complete algebraic variety we assign its derived category

of coherent sheaves, and to every object E ∈ Db(X × Y ) on the product of two
varieties we assign an exact functor ΦE from the triangulated category D

b(X) to
the triangulated category Db(Y ), with the composition law give just described.
The following problems are fundamental to understanding this correspondence:

1) When are the derived categories of coherent sheaves on two different smooth
complete algebraic varieties equivalent as triangulated categories?

2) What is the group of exact auto-equivalences of the derived category of
coherent sheaves for a given variety X? (By this we mean the group
of isomorphism classes of exact auto-equivalences.)

3) Is every exact functor between derived categories of coherent sheaves rep-
resented by an object on the product, that is, of the form (7)?

Some results in this direction are already known. For example, one can give
definitive answers to the first two questions when the variety has ample canonical
or anticanonical sheaf.
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Theorem 2.1.3 [8]. Let X be a smooth projective variety whose canonical (or
anticanonical) sheaf is ample. Suppose that the category Db(X) is equivalent as
a triangulated category to the derived category Db(X′) for some smooth algebraic
variety X′. Then X′ is isomorphic to X.

The proof of this theorem given in [8] is constructive, and gives a method
for recovering a variety from its derived category of coherent sheaves. Moreover,
in the assumptions of the theorem one can assume that the derived categories
are equivalent only as graded categories rather than as triangulated categories
(see [8]).
In this situation one can also describe the group of exact auto-equivalences.

Theorem 2.1.4 [8]. Let X be a smooth projective variety whose canonical (or
anticanonical) sheaf is ample. Then the group of isomorphism classes of exact auto-
equivalences of the category Db(X) is generated by automorphisms of the variety,
twists by line bundles, and shifts in the derived category.

For any variety X the group AuteqDb(X) of exact auto-equivalences always
contains the subgroupG(X) which is the semidirect product of the normal subgroup
G1 = Pic(X)⊕Z and the subgroup G2 = AutX acting naturally on G1. Under this
inclusion G(X) ⊂ AuteqDb(X), the generator of Z goes to the shift functor [1], a
line bundle L ∈ Pic(X) goes to the functor ⊗L, and an automorphism f : X → X
induces the auto-equivalence Rf∗. We proved in [8] that, under the assumption
of Theorem 2.1.4, the group AuteqDb(X) of exact auto-equivalences equals G(X);
that is, in this case

AuteqDb(X) ∼= AutX � (Pic(X) ⊕ Z).

To study the problem of when two varieties have equivalent derived categories of
coherent sheaves and to describe their groups of auto-equivalences, it is desirable
to have explicit formulae for all exact functors. There is a conjecture that they
are always representable by objects on the product, that is, are of the form (7).
In the next chapter we give the proof of this conjecture for fully faithful functors
and, in particular, for equivalences. The whole of the next chapter is taken up with
the proof of this result. This will thus allow us to consider only functors of the
form (7) in studying equivalences between derived categories of coherent sheaves
on smooth projective varieties. Another problem that arises in connection with the
solution of these questions is the need for a criterion to determine whether a given
functor is an equivalence. To prove that a functor F is an equivalence, it is enough
to show that both F and its right (or left) adjoint are fully faithful functors (see
Definition 1.1.7).
There is a method to decide whether a functor ΦE : D

b(X) −→ Db(Y ) is fully
faithful.

Theorem 2.1.5 [7]. Let M and X be smooth projective varieties over an alge-
braically closed field of characteristic 0 and E ∈ Db(M × X). In this case the
functor ΦE is fully faithful if and only if the following orthogonality conditions
hold :

1) HomiX(ΦE(Ot1),ΦE(Ot2)) = 0 for all i and all t1 �= t2;
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2) Hom0X(ΦE(Ot),ΦE(Ot)) = k and Hom
i
X(ΦE(Ot),ΦE(Ot)) = 0 for any i /∈

{0, dimM}.
Here t, t1 and t2 are points of M , and Oti the corresponding skyscraper sheaves.

The assumptions of this theorem are in general rather difficult to verify; however,
the criterion works rather well when the object E on the product is a vector bundle.
Consider four smooth complete algebraic varieties X1, X2, Y1 and Y2. We take
two objects E1 and E2 belonging to the categories D

b(X1 × Y1) and Db(X2 × Y2)
respectively, and consider the object

E1 � E2 ∈ Db((X1 ×X2)× (Y1 × Y2)),

which is p∗13(E1) ⊗L p∗24(E2) by definition. As above (see (7)), the objects E1, E2,
and E1 � E2 define functors

ΦE1 : D
b(X1) −→ Db(Y1), ΦE2 : D

b(X2) −→ Db(Y2),
and ΦE1�E2 : D

b(X1 ×X2) −→ Db(Y1 × Y2).

We consider an object G ∈ Db(X1 × X2) and write H to denote the object
ΦE1�E2(G) ∈ Db(Y1 × Y2). To each of these two objects one can assign functors by
the rule (7):

ΦG : D
b(X1) −→ Db(X2) and ΦH : D

b(Y1) −→ Db(Y2).

Proposition 2.1.6. In the above notation there is an isomorphism of functors

ΦH ∼= ΦE2 ◦ ΦG ◦ΨE1 .

The proof follows at once from Proposition 2.1.2.

Now if Z1 and Z2 are two other smooth complete varieties and F1 and F2 objects
of Db(Y1 × Z1) and Db(Y2 × Z2) respectively, then there are also functors ΦF1 ,
ΦF2 , and ΦF1�F2 . By the rule (9) we can find objects G1 and G2 belonging to
Db(X1 × Z1) and Db(X2 × Z2) such that

ΦG1
∼= ΦF1 ◦ΦE1 and ΦG2

∼= ΦF2 ◦ ΦE2 .

A direct check shows that there is a natural relation

ΦF1�F2 ◦ ΦE1�E2 ∼= ΦG1�G2 . (10)

Using this, one readily proves the following assertion.

Proposition 2.1.7. Under the above conditions, assume that ΦE1 and ΦE2 are
fully faithful (respectively, are equivalences). Then the functor

ΦE1�E2 : D
b(X1 ×X2) −→ Db(Y1 × Y2)

is also fully faithful (respectively, an equivalence of categories).
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Proof. If F has a left adjoint F ∗ (say), then it is fully faithful if and only if the
composite F ∗F is isomorphic to the identity functor. The functors ΦEi have left
adjoints Φ∗Ei defined by (8). Since they are fully faithful, it follows that the com-
posites Φ∗Ei ◦ ΦEi are isomorphic to the identity functors, which are representable
by the structure sheaves of the diagonals ∆i ∈ Xi ×Xi. One sees readily that the
sheaf O∆1 � O∆2 is isomorphic to the structure sheaf of the diagonal O∆, where
∆ is the diagonal in (X1 ×X2) × (X1 ×X2). Using formula (10), we see that the
composite Φ∗

E1�E2 ◦ΦE1�E2 is represented by the structure sheaf of the diagonal ∆,
and is thus isomorphic to the identity functor. Thus, ΦE1�E2 is fully faithful. The
assertion concerning equivalences can be proved in a similar way.

Now assume that the functor ΦE : D
b(X) −→ Db(Y ) is an equivalence and that

F ∈ Db(X × Y ) is an object such that ΨF ∼= Φ−1E . By (8), we have isomorphisms

F ∼= E∨ ⊗ p∗ωX [n] ∼= E∨ ⊗ q∗ωY [m],

which imply at once that the dimensions n and m of the varieties X and Y are
equal.
Consider the functor

ΦF�E : D
b(X ×X) −→ Db(Y × Y ) (11)

and denote it by AdE. By Proposition 2.1.7 it is also an equivalence. Moreover,
by Proposition 2.1.6, for any object G ∈ Db(X × X) there is an isomorphism of
functors

ΦAdE(G)
∼= ΦE ◦ ΦG ◦ Φ−1E . (12)

Consider the special case when G is the structure sheaf of the diagonal O∆X ,
representing the identity functor. Thus, applying (12), we see that the functor AdE
takes the structure sheaf of the diagonal O∆X to the structure sheaf of the diagonal
O∆Y .
Consider the more general situation. We denote by iX and iY the embeddings

of the diagonals in X×X and Y ×Y respectively. We apply the functor AdE to the
object iX∗ω

k
X , where ωX is the canonical sheaf of X (as above). The object iX∗ω

k
X

represents the functor Sk [−nk], where S is the Serre functor of Db(X). Since every
equivalence commutes with Serre functors by Lemma 1.1.4, we see that

AdE(iX∗ω
k
X)
∼= iY ∗ωkY . (13)

Now for every variety X we define the bigraded algebra

HA(X) =
⊕
i,k

HAi,k(X) :=
⊕
i,k

ExtiX×X(O∆X , iX∗ω
k
X).

The algebra structure is defined here by composition of Ext’s, bearing in mind the
canonical identification

ExtiX×X(O∆X , iX∗ω
k
X)
∼= ExtiX×X(iX∗ωm, iX∗ωm+kX ).

To prove the next theorem, we need to apply the main result of Chapter 3, which
states that every equivalence is represented by an object on the product.
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Theorem 2.1.8. Let X and Y be smooth projective varieties whose derived cat-
egories of coherent sheaves are equivalent as triangulated categories. Then the
bigraded algebras HA(X) and HA(Y ) are isomorphic.

Proof. By Theorem 3.2.2, every equivalence F : Db(X)→ Db(Y ) is represented by
some object on the product, and is thus isomorphic to a functor of the form ΦE
for some E ∈ Db(X × Y ). Each equivalence of this kind defines an equivalence

AdE : D
b(X ×X) −→ Db(Y × Y ),

taking iX∗ω
k
X to iY ∗ω

k
Y . The equivalence AdE induces isomorphisms

ExtiX×X(O∆X , iX∗ω
k
X)
∼= ExtiY×Y (O∆Y , iY ∗ωkY ),

and hence an isomorphism of the bigraded algebras HA(X) and HA(Y ).

We note that one can obtain both the canonical and anticanonical algebras of
X from the bigraded algebra HA(X). Indeed,⊕

k�0
H0(X, ωkX) =

⊕
k�0
HA0,k(X) and

⊕
k�0
H0(X, ωkX) =

⊕
k�0
HA0,k(X).

Thus, Theorem 2.1.8 implies the following corollary.

Corollary 2.1.9. If the derived categories of coherent sheaves on two smooth pro-
jective varieties X and Y are equivalent, then the canonical (and anticanonical)
algebras of X and Y are isomorphic.

The statement of this corollary is very close to Theorem 2.1.3. However, we
should note that the proof of Theorem 2.1.3 given in [8] does not depend on the
main result of the next chapter and, moreover, is constructive. Also note that in
Theorem 2.1.3, we do not assume that the canonical (or anticanonical) sheaf of the
second variety X′ is ample; this follows from the proof of the theorem.
We can also describe all the other spaces HAi,k(X). In [40] it is proved that the

spectral sequence that computes

HAi,k(X) = Ext
i(O∆X , iX∗ωX)

in terms of the cohomology of O∆X restricted to the diagonal degenerates at the
term E2. In particular, there are isomorphisms

HAi,k(X) ∼=
⊕
p+q=i

Hp(X,

q∧
TX ⊗ ωkX), (14)

where TX is the tangent bundle to X. Moreover, this isomorphism turns into an
algebra isomorphism, that is,

HA(X) ∼=
⊕
i,k

⊕
p+q=i

Hp(X,

q∧
TX ⊗ ωkX)

as bigraded algebras. This relation and Theorem 2.1.8 imply the following corollary.
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Corollary 2.1.10. If the derived categories of coherent sheaves on two smooth
projective varietiesX and Y are equivalent, then there are vector space isomorphisms

⊕
p+q=i

Hp(X,

q∧
TX ⊗ ωk) ∼=

⊕
p+q=i

Hp(Y,

q∧
TY ⊗ ωk). (15)

In particular, we obtain isomorphisms between the verticals of the Hodge diamond :⊕
p−q=i

Hp(X,ΩqX)
∼=
⊕
p−q=i

Hp(Y,ΩqY ). (16)

Proof. The isomorphisms (15) follow at once from Theorem 2.1.8 and the equality
(14). The isomorphisms (16) are the special case k = 1 of (15).

The isomorphisms between the verticals of the Hodge diamond can also be
obtained in another way. Suppose that the ground field k is C.
For any element ξ ∈ H∗(X × Y,Q) we can define linear maps

vξ : H
∗(X,Q) −→ H∗(Y,Q) and wξ : H

∗(Y,Q) −→ H∗(X,Q)

by the formulae

vξ(−) = q∗(ξ · p∗(−)) and wξ(−) = p∗(ξ · q∗(−)). (17)

For these maps one can write out a composition formula similar to formula (9) for
the composition of functors. Let X, Y , and Z be three smooth complete varieties
and ξ and η elements of H∗(X × Y,Q) and H∗(Y × Z,Q) respectively. Then the
composite vη ◦ vξ coincides with the map vζ , where ζ ∈ H∗(X × Z,Q) is given by
the formula

ζ = pXZ∗
(
p∗Y Z(η) ∪ p∗XY (ξ)

)
.

To any functor of the form ΦE : D
b(X) −→ Db(Y ) we can assign a linear map

ϕE : H
∗(X,Q)→ H∗(Y,Q). For this, define an element ε ∈ H(X×Y,Q) by the rule

ε = p∗
√
tdX · ch(E) · q∗

√
tdY , (18)

where tdX and tdY are the Todd classes of X and Y respectively, and ch(E) is the
Chern character of E. We define the maps

ϕE(−) := vε(−) = q∗(ε · p∗(−)),
ψE(−) := wε(−) = p∗(ε · q∗(−)).

(19)

The next proposition follows immediately from the Grothendieck form of the
Riemann–Roch theorem.

Proposition 2.1.11. Suppose that ΦE : D
b(X) −→ Db(Z) is a composite ΦG ◦ΦF

for some
ΦF : D

b(X) −→ Db(Y ), ΦG : D
b(Y ) −→ Db(Z).

Then ϕE = ϕG ◦ ϕF.
This implies at once the following corollary.
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Corollary 2.1.12. If the functor ΦE : D
b(X) −→ Db(Z) is an equivalence, then

the map ϕE : H
∗(X,Q) → H∗(Y,Q) is an isomorphism, and its complexification

induces the isomorphisms (16) between the verticals of the Hodge diamond.

Proof. It follows from Proposition 2.1.11 that the quasi-inverse functor to ΦE
induces the inverse map of ϕE. Moreover, since the element ε ∈ H∗(X × Y,Q)
corresponds to an algebraic cycle by (18), one checks readily that the complexifi-
cation of ϕE preserves the verticals of the Hodge diamond.

In conclusion we observe also that every functor ΦE : D
b(X) −→ Db(Y ) induces

a map ΦE : K(X) −→ K(Y ) between the Grothendieck groups K(X) and K(Y ) of
the categories Db(X) and Db(Y ). Consider the map

ch ·
√
tdX : K(X) −→ H∗(X,Q)

that takes an element of K(X) to its Chern character times the square root of the
Todd class. Using the Riemann–Roch theorem, one can show that the diagram

K(X)
ΦE−−−−→ K(Y )

ch ·
√
tdX

� �ch ·√tdY
H∗(X,Q)

ϕE−−−−→ H∗(Y,Q)

is commutative.

2.2. Examples of equivalences: flopping birational transformations. In
this section we present an entire class of examples of pairs of smooth varieties for
which the derived categories of coherent sheaves are equivalent. Examples of such
varieties were of course already known (the first example is an Abelian variety and
its dual, considered by Mukai [29]). The principal difference with the examples
treated in this section is that here we obtain pairs of (in general non-isomorphic)
varieties related by a birational transformation which is a flop. It also follows from
our examples that the conditions on the (anti-)canonical sheaf in Theorem 2.1.3
cannot be weakened.
To start this section we recall the definitions of admissible subcategories and

semi-orthogonal decompositions (see [5], [6]).

Definition 2.2.1. Let B be a full additive subcategory of an additive category A.
By the right orthogonal to B in A we mean the full subcategory B⊥ ⊂ A consisting
of all objects C such that Hom(B,C) = 0 for any B ∈ B. The left orthogonal ⊥B
is defined dually.

Note that, if B is a triangulated subcategory in a triangulated category A, then
⊥B and B⊥ are also triangulated subcategories.

Definition 2.2.2. Let I : N −→ D be an embedding of a full triangulated sub-
category in a triangulated category D. We say that N is right admissible (or left
admissible) if the embedding functor I has a right adjoint P : D −→ N (respectively
left adjoint).
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For a subcategory N, the property of being right admissible (or left admissible) is
equivalent to the following property, stated in terms of orthogonals: for any object
X ∈ D, there is a distinguished triangle N → X → M with N ∈ N and M ∈ N⊥
(respectively, M → X → N with M ∈ ⊥N and N ∈ N). We say simply that a
subcategory is admissible if it is both right and left admissible.
If N ⊂ D is an admissible subcategory, we say that D admits a semi-orthogonal

decomposition of the form 〈N⊥,N〉 or 〈N,⊥N〉. This process of decomposition can
sometimes be extended further, decomposing the subcategory N or its orthogonals.
We give the general definition of semi-orthogonal decomposition.

Definition 2.2.3. A sequence (N0, . . . ,Nn) of admissible subcategories of a trian-
gulated category D is said to be semi-orthogonal if Nj ⊂ N⊥i for all 0 � j < i � n.
We say that a semi-orthogonal sequence is complete if it generates the category D,
that is, the minimal triangulated subcategory in D containing all the Ni coincides
with D. In this case this sequence is called a semi-orthogonal decomposition of the
category D and is represented as follows:

D = 〈N0, . . . ,Nn〉.

The simplest example of a semi-orthogonal decomposition is when D has a com-
plete exceptional family.

Definition 2.2.4. We say that an object E in a triangulated category D is excep-
tional if Homi(E,E) = 0 for i �= 0 and Hom(E,E) = k. An ordered family
(E0, . . . , En) of exceptional objects is called a complete exceptional family if it gen-
erates D and Hom·(Ei, Ej) = 0 for i > j.

The best-known example of a complete exceptional family is provided by pro-
jective space.

Example 2.2.5 [2]. On projective space PN , given any i ∈ Z, the family

(O(i), . . . ,O(i+N))

is exceptional and complete. In particular, we obtain that the derived category of
coherent sheaves Db(PN ) is equivalent to the derived category of finite-dimensional

modules over the finite-dimensional algebra End
(⊕N

j=0 O(j)
)
of endomorphisms of

the exceptional family.

Similar decompositions exist for some other varieties, for example, for quadrics
and flag varieties [20]–[22].
We now present some facts we need on blowups and the behaviour of the derived

categories of coherent sheaves under blowups. All these results are contained in
the paper [34] (see also [7]). Let X be a smooth complete algebraic variety and

Y ⊂ X a smoothly embedded closed subvariety of codimension r. We denote by X̃
the blowup of X with centre along Y . The variety X̃ is also smooth, and there is
a commutative diagram:

Ỹ
j−−−−→ X̃

p

� �π
Y

i−−−−→ X



540 D. O. Orlov

with i and j closed embeddings and p : Ỹ → Y the projective bundle of the excep-
tional divisor of Ỹ over the centre Y of the blowup; in particular, p is a flat mor-

phism. We recall that Ỹ ∼= P(NX/Y ), where NX/Y is the normal bundle to Y in X.
We denote by OỸ (1) the canonical relatively ample line bundle on Ỹ = P(NX/Y ).
It is well known that this bundle is isomorphic to the restriction of the line bundle

O(−Ỹ ) to Ỹ .
Proposition 2.2.6 [34]. The derived inverse image functors

Lπ∗ : Db(X) −→ Db(X̃) and p∗ : Db(Y ) −→ Db(Ỹ )

are fully faithful.

Proof. The projection formula (3) gives an isomorphism

Hom(Lπ∗F,Lπ∗G) ∼= Hom(F,Rπ∗Lπ∗G) ∼= Hom(F,Rπ∗OỸ ⊗
LG)

for F,G ∈ Db(X). Similarly for p∗. Combining these with Rπ∗OX̃ ∼= OX and
Rp∗OỸ = OY gives the proof.

Proposition 2.2.7 ([34], [7]). For any invertible sheaf L on Ỹ , the functor

Rj∗(L⊗ p∗( · )) : Db(Y ) −→ Db(X̃)

is fully faithful.

Proof. To prove that the functor is fully faithful, it is enough to show that conditions
1)–2) of Theorem 2.1.5 hold. For any closed point y ∈ Y the image Φ(Oy) is the
structure sheaf of the corresponding fibre of the map p, viewed as a sheaf on X̃.
Since the fibres over distinct points are disjoint, the orthogonality condition 1) of
Theorem 2.1.5 is satisfied.
Consider the structure sheaf OF of some p-fibre F ⊂ Ỹ . We have an isomorphism

Homi(j∗OF , j∗OF ) ∼= Homi(Lj∗j∗OF ,OF ).

In the derived category Db(Ỹ ) we have a distinguished triangle

OF ⊗OỸ (1)[1] −→ Lj
∗j∗OF −→ OF ,

where OỸ (1) is the relatively ample line bundle on Ỹ , isomorphic to O(−Ỹ )|Ỹ . The
fibre of F is a projective space, and the restriction of OỸ (1) to F is isomorphic to
O(1). Thus,

Homi(OF ⊗ OỸ (1),OF ) = 0
for all i. Hence,

Homi(j∗OF , j∗OF ) ∼= Homi(OF ,OF ).
Therefore, condition 2) of Theorem 2.1.5 also holds.

We writeD(X) for the full triangulated subcategory ofDb(X̃) which is the image

of Db(X) under Lπ∗, and D(Y )k for the full subcategory in D
b(X̃) which is the

image of Db(Y ) under Rj∗(OỸ (k) ⊗ p∗( · )), where OỸ (k) = OỸ (1)⊗k and OỸ (1)
is the canonical relatively ample line bundle on Ỹ = P(NX/Y ). It follows from

Propositions 2.2.6 and 2.2.7 that D(X) ∼= Db(X) and D(Y )k ∼= Db(Y ).
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Theorem 2.2.8 [34]. The sequence of admissible subcategories〈
D(Y )−r+1, . . . , D(Y )−1, D(X)

〉
is semi-orthogonal, and it gives a semi-orthogonal decomposition of the category

Db(X̃).

This theorem provides a description of the derived category of the blowup X̃
in terms of the blown up variety X and the centre of the blowup Y . Using this
description of the derived category of a blowup, we now study the behaviour of the
derived category under the simplest flipping and flopping transformations. Consider
the following example.
Let Y be a smoothly embedded closed subvariety in a smooth complete algebraic

variety X such that Y ∼= Pk with the normal bundle NX/Y ∼= OY (−1)⊕(l+1). We
suppose that l � k.
Write X̃ for the blowup of X along the centre Y . In this case the exceptional

divisor Ỹ is isomorphic to the product of projective spaces Pk × Pl. Moreover, in
this situation we have the following description of the normal sheaf to Ỹ in X̃:

NX̃/Ỹ = OX̃(Ỹ )|Ỹ
∼= O(−1;−1),

where O(−1;−1) := p∗1OPk(−1) ⊗ p∗2OPl(−1). These facts allow us to assert that
there is a blowdown of X̃ under which Ỹ projects to the second factor Pl. This
blowdown exists in the analytic category, and its result is a smooth variety X+

which in general may not be algebraic. We assume that X+ is algebraic. All the
geometry described above is contained in the following diagram:

(20)

The birational map fl: X −→ X+ is the simplest example of a flip or flop. It is
a flip for l < k and a flop for l = k. In what follows, we need a formula for the
restriction of the canonical sheaf ωX̃ to the divisor Ỹ . For the blowup of a smooth
subvariety we obtain

ωX̃
∼= π∗ωX ⊗OX̃(lỸ ).

The adjunction formula gives

ωX |Y ∼= ωY ⊗
l+1∧
N∗X/Y

∼= OY (l− k).

Combining these facts together, we obtain the isomorphism

ωX̃ |Ỹ
∼= (π∗ωX ⊗ OX̃(lỸ ))|Ỹ ∼= p

∗(ωX |Y )⊗ OX̃(lỸ )|Ỹ ∼= O(−k;−l). (21)

The main theorem of this section relates the derived categories of coherent
sheaves on X and X+.
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Theorem 2.2.9. Let L be a line bundle on X̃. In the above notation, the functor

Rπ∗(Lπ
+∗( · )⊗ L) : Db(X+) −→ Db(X)

is fully faithful.

Proof. We first consider the restriction of L to Ỹ . Since Ỹ = Pk × Pl, it follows
that L|Ỹ

∼= O(a; b) for some integers a and b.
We must show that for any pair A,B ⊂ Db(X+) the composite map

Hom(A,B)
∼−→ Hom(Lπ+∗A,Lπ+∗B)
−→ Hom(Rπ∗(Lπ+∗A ⊗L),Rπ∗(Lπ+∗B ⊗ L)) (22)

is an isomorphism. Using adjunction of the functors, we obtain an isomorphism

Hom(Rπ∗(Lπ
+∗A ⊗L),Rπ∗(Lπ+∗B ⊗ L))

∼= Hom(Lπ∗Rπ∗(Lπ+∗A⊗L),Lπ+∗B ⊗ L).

Consider the distinguished triangle

Lπ∗Rπ∗(Lπ
+∗A⊗ L) −→ Lπ+∗A ⊗L −→ A. (23)

Thus, to prove that the composite (22) is an isomorphism, it is necessary and
sufficient to show that

Hom(A,Lπ+∗B ⊗ L) = 0. (24)

Since by Proposition 2.2.6 the composite Rπ∗Lπ
∗ is isomorphic to the identity

functor, by applying the functor Rπ∗ to the distinguished triangle (23) we see that
Rπ∗A = 0. Thus, Hom(Lπ

∗C,A) = 0 for any object C ∈ Db(X+). Hence, A
belongs to the subcategory D(X)⊥ .
Theorem 2.2.8 implies the semi-orthogonal decomposition

D(X)⊥ =
〈
D(Y )−l, . . . , D(Y )−1

〉
.

Since Y is a projective space, it follows from Example 2.2.5 that each D(Y )−i
admits a complete exceptional family. Collecting these families, we obtain a com-
plete exceptional family in D(X)⊥ . The following family will be convenient for our
purposes:

D(X)⊥ =
〈
Rj∗O(a− k;−l), . . . . . . Rj∗O(a;−l),
Rj∗O(a− k + 1;−l+ 1), . . . . . . Rj∗O(a + 1;−l+ 1),

...
...

Rj∗O(a− k + l− 1;−1), . . . . . . Rj∗O(a + l− 1;−1)
〉
.
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We can now regroup this exceptional sequence to obtain a semi-orthogonal
decomposition of D(X)⊥ of the form

D(X)⊥ = 〈B,A〉,

where A and B are the subcategories generated by Rj∗O(i; s) with i � a and
with i < a respectively. For 1 � i � k and 1 � s � l, the objects Rj∗O(a − i;−s)
belong simultaneously to the subcategories D(X)⊥ andD(X+)⊥⊗L. In particular,
B ⊂ D(X)⊥ ∩ (D(X+)⊥ ⊗ L). Applying Hom to the distinguished triangle (23),
we obtain

Hom(A,Rj∗O(a− i;−s)) = 0 for 1 � i � k and 1 � s � l.

Since A ∈ D(X)⊥ and A is orthogonal to the subcategory B, it follows at once
that A ∈ A. Now note that if the object Rj∗O(a+ i; s) belongs to the subcategory
A, then i satisfies the inequalities 0 � i < l. Taking account of the formula (21)
for the canonical class ωX̃ |Ỹ

∼= O(−k;−l) and of the condition l � k, we see that
A⊗ ωX̃ ⊂ D(X+)⊥ ⊗L. Hence, for any object B ∈ Db(X+) we have

Hom(Lπ+∗B ⊗L, A⊗ ωX̃) = 0.

Applying Serre duality (6) gives the desired equality Hom(A,Lπ+∗B ⊗L) = 0
immediately.

Theorem 2.2.10. In the above notation, if l = k (and thus fl is a flop), the functor
Rπ∗(Lπ

+∗( · )⊗ L) is an equivalence of triangulated categories.
Proof. By the previous theorem, the functor in question is fully faithful. Its left
adjoint is of the form Rπ+∗ (Lπ

∗( · )⊗L′), where L′ = L−1 ⊗ωX̃ ⊗ π+∗ω
−1
X+
. Thus,

it is also fully faithful by the previous theorem. This proves that both functors are
equivalences.

We note that the proof of the above assertions remains valid if a flop is carried out
simultaneously in some finite set Y1, . . . , Ys of disjoint subvarieties, each satisfying
the condition of the theorems. This simple remark is essential in connection with
our assumption that the variety X+ we obtain is algebraic. The point is that there
are many examples in which birational transformations of the above kind carried
out in just one of the subvarieties Yi lead to non-algebraic varieties, whereas a
flip (or flop) carried out simultaneously in the whole set gives a variety which is
algebraic.
A second remark is that the flopped varieties X and X+ of Theorem 2.2.10

are of course not isomorphic in general; flops often occur in birational geometry,
for example, in the construction used to describe Fano threefolds by the method
known as double projection from a line (see [19], § 8). Suppose that we have a
Fano threefold V of index 1 with PicV = Z embedded in projective space by its
anticanonical system. Then the blowup of this variety in a line gives a variety
X whose anticanonical class is ‘almost’ ample; that is, the map defined by its
anticanonical system contracts a certain set of curves on this variety, namely the
proper transforms of the lines on V meeting the blown up line. In many examples
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these curves have the normal sheaf O(−1)⊕O(−1), which puts us in the situation of
our theorem. Making simultaneous flops in these curves gives a variety X+ that is
not isomorphic to X; however, by Theorem 2.2.10, it has the same derived category
of coherent sheaves. In particular, this example shows that the ampleness condition
on the anticanonical class in Theorem 2.1.3 on recovering X from Db(X) cannot
be weakened. There are similar examples for varieties of general type arising in the
minimal model programme.
These results have another natural generalization. Suppose that a smooth sub-

variety Y in a smooth complete algebraic variety X is the projectivization of a
vector bundle E of rank k+1 over a smooth variety Z, that is, Y ∼= P(E)→ Z. We
also assume that the normal bundle NX/Y when restricted to the fibre of the map

Y → Z is isomorphic to OPk (−1)⊕(l+1). We again assume that l � k. Denoting by
X̃ the blowup of X with centre along Y , we again obtain a diagram of the form
(20), where Y + is the projectivization of a bundle of rank l + 1 over Z. In this
situation we can assert that the analogues of Theorems 2.2.9 and 2.2.10 remain
valid.
Other similar examples arise when X is a threefold and Y is a rational curve

satisfying Y ·KX = 0. In this case the normal bundle on Y can be of the form
O(−1) ⊕ O(−1), O⊕O(−2) or O(1) ⊕ O(−3). In each of these cases there exists a
flopping birational transformation, fl : X ��� X+. Moreover, in each of these cases
the derived categories of coherent sheaves of X and X+ are equivalent. The first
case is a special case of Theorem 2.2.10. The second case was treated in [7]. More
recently, the equivalence of categories was proved in all these cases together in [10].

CHAPTER 3

Fully faithful functors between derived categories

3.1. Postnikov diagrams and their convolutions. In this section we con-
sider Postnikov diagrams in triangulated categories and find conditions under which
a Postnikov diagram admits a convolution and this convolution is uniquely deter-
mined.

Let X· = {Xc d
c

−→ Xc+1 dc+1−−−→ · · · −→ X0} with c < 0 be a bounded complex of
objects in a triangulated category D. This means that all the composites di+1 ◦ di
vanish.
By definition, a left Postnikov system associated with X· is a diagram of the

form
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in which the triangles marked with � are all distinguished, and those marked with
� are all commutative (that is, jk ◦ ik = dk). An object E ∈ ObD is called a left
convolution of the complex X· if there is a left Postnikov system associated with
X· such that E = Y 0. We denote by Tot(X·) the class of all convolutions of the
complex X·. Postnikov systems and their convolutions are obviously stable under
exact functors between triangulated categories.
Note that the class Tot(X·) may contain many non-isomorphic objects, or may

also be empty. In what follows we shall describe a sufficient condition for the class
Tot(X·) to consist of a single object up to isomorphism. The following lemma was
proved in [3].

Lemma 3.1.1. Let g be a morphism between objects Y and Y ′ that are in turn
included into distinguished triangles:

If v′gu = 0, then there exist morphisms f : X → X′ and h : Z → Z′ such that the
triple (f, g, h) is a morphism of triangles.
Suppose in addition that Hom(X[1], Z′) = 0. Then the morphisms f and h

(respectively making the first and second squares of the diagram commute) are
uniquely determined by these conditions.

We now prove two lemmas that generalize the previous lemma to Postnikov
diagrams.

Lemma 3.1.2. Let X· = {Xc dc−→ Xc+1 dc+1−−−→ · · · −→ X0} be a bounded complex
of objects in a triangulated category D. Suppose that it satisfies

Homi(Xa, Xb) = 0 for i < 0 and for all a < b. (25)

Then a convolution of X· exists, and all convolutions are (non-canonically) iso-
morphic.
Suppose in addition that

Homi(Xa, Y 0) = 0 for i < 0 and for all a (26)

holds for some convolution Y 0 (and therefore for any convolution). Then all con-
volutions of X· are canonically isomorphic.

Lemma 3.1.3. Let X·1 and X
·
2 be bounded complexes satisfying condition (25) and

(fc, . . . , f0) a morphism between these complexes:

Xc1
dc1−−−−→ Xc+11 −−−−→ · · · −−−−→ X01�fc �fc+1 �f0

Xc2
dc2−−−−→ Xc+12 −−−−→ · · · −−−−→ X02

.
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Suppose that
Homi(Xa1 , X

b
2) = 0 for i < 0 and for a < b. (27)

Then for each convolution Y 01 of X
·
1 and for each convolution Y

0
2 of X

·
2 there is

a morphism f : Y 01 → Y 02 that commutes with the morphism f0. If in addition we
have

Homi(Xa1 , Y
0
2 ) = 0 for i < 0 and for any a, (28)

then this morphism is uniquely determined.

Proof. We prove both lemmas at the same time by induction based on Lemma 3.1.1.
Let Y c+1 be the mapping cone of the morphism dc,

Xc
dc−→ Xc+1 α−→ Y c+1 −→ Xc[1]. (29)

By assumption, dc+1 ◦ dc = 0 and Hom(Xc[1], Xc+2) = 0. Thus, there is a unique
morphism dc+1 : Y c+1 → Xc+2 such that dc+1 ◦ α = dc+1. Consider the composite

dc+2 ◦ dc+1 : Y c+1 −→ Xc+3.

It is known that dc+2 ◦ dc+1 ◦ α = dc+2 ◦ dc+1 = 0; moreover, we have the equality
Hom(Xc[1], Xc+3) = 0. This immediately implies that the composite dc+2 ◦ dc+1
also vanishes.
Considering the distinguished triangle (29), we see that

Homi(Y c+1, Xb) = 0

for i < 0 and b > c + 1. Thus, the complex Y c+1 −→ Xc+2 −→ · · · −→ X0 also
satisfies (25). This complex has a convolution by induction. Thus, X· also has a
convolution, and hence the class Tot(X·) is not empty.
We now show that, under condition (27), every morphism of complexes extends

to a morphism of Postnikov systems. Consider the mapping cones Y c+11 and Y c+12

of the morphisms dc1 and d
c
2. There is a morphism gc+1 : Y

c+1
1 → Y c+12 completing

the pair (fc, fc+1) to a morphism of triangles,

Xc1
dc1−−−−→ Xc+11

α−−−−→ Y c+11 −−−−→ Xc1[1]�fc �fc+1 �gc+1 �fc[1]
Xc2

dc2−−−−→ Xc+12
β−−−−→ Y c+12 −−−−→ Xc2[1]

.

As already shown above, there exist morphisms dc+1i : Y c+1i → Xc+2i for i = 1, 2,
which are uniquely determined. Consider the diagram

Y c+11

dc+11−−−−→ Xc+21�gc+1 �fc+2
Y c+12

dc+12−−−−→ Xc+22

.
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We prove that the square is commutative. Indeed, write h = fc+2◦dc+11 −dc+12 ◦gc+1
for the difference. We have the equality h ◦α = fc+2 ◦ dc+11 − dc+12 ◦ fc+1 = 0. And
by the assumption of the lemma, Hom(Xc1[1], X

c+2
2 ) = 0. This implies immediately

that h = 0.
Thus, we obtain a morphism of complexes

Y c+11

dc+11−−−−→ Xc+21 −−−−→ · · · −−−−→ X01�gc+1 �fc+2 �f0
Y c+12

dc+12−−−−→ Xc+22 −−−−→ · · · −−−−→ X02

.

These complexes satisfy conditions (25) and (27). By the induction assumption, a
morphism between these complexes extends to a morphism between the Postnikov
systems. We thus obtain a morphism between the Postnikov systems associated
with X·1 and X

·
2.

Moreover, one sees that, if all morphisms fi are isomorphisms, then the morphism
between the Postnikov systems is also an isomorphism. Hence, if condition (25)
holds, all objects in Tot(X·) are isomorphic.
In conclusion, consider a morphism between the distinguished triangles taking

part in the Postnikov diagrams,

Y −11
j1,−1−−−−→ X01

i1,0−−−−→ Y 01 −−−−→ Y −11 [1]�g−1 �f0 �g0 �g−1[1]
Y −12

j2,−1−−−−→ X02
i2,0−−−−→ Y 02 −−−−→ Y −12 [1]

.

If the complexes X·i satisfy condition (28) (that is, Hom
i(Xa1 , Y

0
2 ) = 0 for i < 0 and

for all a), then Hom(Y −11 [1], Y
0
2 ) = 0. By Lemma 3.1.1, the morphism g0 is defined

uniquely. This completes the proof of the lemmas.

3.2. Fully faithful functors between derived categories of coherent
sheaves. Let X and M be two smooth complete varieties over some field k. As
before, we denote byDb(X) andDb(M) the bounded derived categories of coherent
sheaves on X and M respectively. We proved above that these categories have the
structure of triangulated categories.
Consider the product M ×X and write p and π for the projections of M ×X to

M and X respectively:

M
p←−M ×X π−→ X.

For every object E ∈ Db(M ×X) we defined an exact functor ΦE from Db(M) to
Db(X) by (7):

ΦE( · ) :=Rπ∗(E ⊗L p∗( · )). (30)

The functor ΦE has left and right adjoint functors Φ
∗
E and Φ

!
E respectively, given

by the formulae (8),

Φ∗E( · ) = Rp∗(E∨ ⊗Lπ∗(ωX [dimX]⊗ ( · ))),
Φ!E( · ) = ωM [dimM ]⊗Rp∗(E∨ ⊗L ( · )),

where ωX , ωM are the canonical sheaves ofX andM and E
∨ :=R·Hom(E,OM×X).
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To study the problem of when two varieties have equivalent derived categories of
coherent sheaves, and to describe their groups of auto-equivalence, it is desirable to
have explicit formulae for all exact functors. There is a conjecture that they can all
be represented by objects on the product, that is, are of the form (30). However,
at present it is not known whether or not this assertion is true. Nevertheless, it
turns out that a special case of this conjecture is valid. Namely, if a functor is
fully faithful and has an adjoint functor, it can be represented by an object on the
product. The present chapter is devoted to the proof of this fact. More exactly,
the main theorem of this chapter is as follows.

Theorem 3.2.1. Let F be an exact functor from the category Db(M) to the cat-
egory Db(X), where M and X are smooth projective varieties. Suppose that F
is fully faithful and has a right (or left) adjoint functor. Then there is an object
E ∈ Db(M ×X) such that F is isomorphic to the functor ΦE defined by (30), and
the object E is determined uniquely up to isomorphism.

It follows at once that every equivalence is representable by an object on the
product, because every equivalence has an adjoint, which coincides with a quasi-
inverse functor.

Theorem 3.2.2. Let M and X be two smooth projective varieties. Suppose that
an exact functor F : Db(M)

∼−→ Db(X) is an equivalence of triangulated categories.
Then there exists an object E ∈ Db(M ×X), unique up to isomorphism, such that
F is isomorphic to the functor ΦE

These results allow us to describe all equivalences between derived categories
of coherent sheaves, and answer the question of when two distinct varieties have
equivalent derived categories of coherent sheaves.
Before starting on the proof of these theorems, we make a remark. Let F be

an exact functor from Db(M) to Db(X). We write F ∗ and F ! respectively for the
left and right adjoint functors of F , assuming that they exist. If a left adjoint F ∗

exists, the right adjoint F ! also exists, and is defined by the formula

F ! = SM ◦ F ∗ ◦ S−1X ,

where SX and SM are Serre functors of the categories D
b(X) and Db(M). These

functors exist and are equal to ( · )⊗ωX [dimX] and ( · )⊗ωM [dimM ] respectively
(see (6)).
Let F be an exact functor from a derived category Db(A) to a derived category

Db(B). We say that F is bounded if there exist z ∈ Z and n ∈ N such that the
cohomology Hi(F (A)) vanishes for i /∈ [z, z + n] and for any object A ∈ A.
Lemma 3.2.3. Let M and X be projective varieties and M a smooth variety. If
an exact functor F : Db(M) −→ Db(X) has a left adjoint, then F is bounded.
Proof. We denote by G : Db(X) −→ Db(M) the left adjoint of F and choose a
very ample line bundle L on X. It defines an embedding i : X ↪→ PN . For any
k < 0, the sheaf O(k) on PN has a right resolution in terms of the sheaves O(j) for
j = 0, 1, . . . , N , of the form

O(k)
∼−→
{
V0 ⊗ O −→ V1 ⊗ O(1) −→ · · · −→ VN ⊗ O(N) −→ 0

}
,
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where all the Vj are vector spaces [2]. Restricting this resolution to X gives a
resolution of the sheaf Lk in terms of the sheaves Lj for j = 0, 1, . . . , N . Since
for any j = 0, 1, . . . , N the non-zero cohomology of the objects G(Lj) belong to
some interval, one can find an integer z′ and a positive integer n′ such that the
cohomology H l(G(Lk)) vanishes for all k � 0 and for l /∈ [z′, z′ + n′]. This follows
at once from the existence of a spectral sequence

Ep,q1 = Vp ⊗Hq(G(Lp)) =⇒ Hp+q(G(Li)).
Let A ∈ Db(M) be some object. Since L is ample, it follows that, if for a chosen

j we have Homj(Li, F (A)) = 0 for any i � 0, then the cohomology Hj(F (A))
vanishes. By assumption, G is left adjoint to F . Hence,

Homj(Li, F (A)) ∼= Homj(G(Li), A).
Now consider a sheaf F on M . Since for all i < 0 the cohomology of the objects

G(Li) is concentrated in the interval [z′, z′+n′], it follows that Homj(G(Li),F) = 0
for any i < 0 and j /∈ [−z′ − n′,−z′ + dimM ]. (Here we use the fact that the
homological dimension of the category coh(M) is equal to dimM .) Hence, for
the same values of j we have Hj(F (F)) = 0 for any sheaf F. Therefore, the functor
F is bounded.

Remark 3.2.4. After shifting F in the derived category if necessary, we assume from
now on and throughout this chapter that for any sheaf F on M the cohomology
Hi(F (F)) is non-zero only for i ∈ [−a, 0], where a is a fixed positive integer.
3.3. Construction of the object representing a fully faithful functor. In
this section, starting from an exact fully faithful functor F , we construct a certain
object E ∈ Db(M×X); in the next section, we prove that the functors F and ΦE are
isomorphic. The construction of E proceeds in a number of steps. We first consider
a closed embedding j : M ↪→ PN and construct a certain object E′ ∈ Db(PN ×X).
We then prove that E′ in fact comes from the subvariety M × X, that is, there
exists an object E ∈ Db(M ×X) such that E′ = RJ∗E, where J = (j × id) is the
closed embedding M ×X in PN ×X.
We choose a very ample line bundle L on M such that Hi(Lk) = 0 for all k > 0

and all i �= 0, and write j for the closed embedding of M in PN defined by L.
The product PN × PN has a so-called resolution of the diagonal (see [2]). This

is a complex of sheaves of the form:

0 −→ O(−N) � ΩN (N) d−N−−−→ O(−N + 1) � ΩN−1(N − 1)

−→ . . . −→ O(−1) � Ω1(1) d−1−−−→ O � O. (31)
This complex is a resolution of the structure sheaf O∆, where ∆ is the diagonal of
the product PN × PN .
Write F ′ for the functor from Db(PN ) to Db(X) obtained as the composite

F ◦ Lj∗, and consider the diagram of projections

PN ×X π′−−−−→ X

q

�
PN

.
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Write

d′−i ∈ HomPN×X
(
O(−i) � F ′(Ωi(i)), O(−i + 1) � F ′(Ωi−1(i− 1))

)
for the image of the morphism d−i under the following composite map:

Hom
(
O(−i) � Ωi(i), O(−i+ 1) � Ωi−1(i− 1)

)
∼−→ Hom

(
O � Ωi(i), O(1) � Ωi−1(i− 1)

)
∼−→ Hom

(
Ωi(i), H0(O(1)) ⊗Ωi−1(i− 1)

)
−→ Hom

(
F ′(Ωi(i)), H0(O(1)) ⊗ F ′(Ωi−1(i− 1))

)
∼−→ Hom

(
O � F ′(Ωi(i)), O(1) � F ′(Ωi−1(i− 1))

)
∼−→ Hom

(
O(−i) � F ′(Ωi(i)), O(−i+ 1) � F ′(Ωi−1(i− 1))

)
.

One sees readily that the composite d′−i+1 ◦ d′−i vanishes. Hence, we can consider
the following bounded complex of objects of the derived category Db(PN ×X):

C· :=
{
O(−N) � F ′(ΩN(N))

d′−N−−−→ · · ·

−→ O(−1) � F ′(Ω1(1))
d′−1−−→ O � F ′(O)

}
. (32)

For l < 0 we have

Homl
(
O(−i) � F ′(Ωi(i)), O(−k) � F ′(Ωk(k))

)
∼= Homl

(
O � F ′(Ωi(i)), H0(O(i− k)) ⊗ F ′(Ωk(k))

)
∼= Homl

(
j∗(Ωi(i)), H0(O(i − k)) ⊗ j∗(Ωk(k))

)
= 0.

Thus, by Lemma 3.1.2, C· has a convolution, and all convolutions are isomorphic.

Write E′ for a convolution of C· and γ0 for the morphism O � F ′(O)
γ0−→ E′. (In

fact, we see below that all convolutions of C · are canonically isomorphic.) Now let
ΦE′ be the functor from D

b(PN ) to Db(X) defined by (7).

Lemma 3.3.1. For all k ∈ Z there are canonical isomorphisms

fk : F
′(O(k))

∼−→ ΦE′(O(k)),

and these isomorphisms are functorial ; that is, for any α : O(k)→ O(l) the diagram

F ′(O(k))
F ′(α)−−−−→ F ′(O(l))

fk

� fl

�
ΦE′(O(k))

ΦE′(α)−−−−→ ΦE′(O(l))

is commutative.

Proof. Assume first that k � 0 and consider the resolution (31) of the diagonal
∆ ⊂ PN × PN . Tensor it by O(k) � O, then take its direct image under the
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projection to the second factor. As a result we obtain the following resolution of
the sheaf O(k) on projective space PN :{
H0(O(k−N))⊗ΩN (N)−→· · ·−→H0(O(k−1))⊗Ω1(1)−→H0(O(k))⊗O

}
δk−→O(k).

since F ′ is exact by assumption, it follows that F ′(O(k)) is a convolution of the
complex

H0(O(k−N))⊗F ′(ΩN(N))−→· · ·−→H0(O(k−1))⊗F ′(Ω1(1))−→H0(O(k))⊗F ′(O)

of objects of the category Db(X). We denote this complex by D·k.
Recall now that, by construction, E′ is a convolution of the complex C· (32).

Consider the complex C·k := q
∗O(k) ⊗ C· on PN × X. Then q∗O(k) ⊗ E′ is a

convolution of C·k. And there is a morphism γk : O(k) � F ′(O) −→ q∗O(k) ⊗ E′
canonically obtained from γ0. The complex π

′
∗(C

·
k), the direct image of (C

·
k) under

the projection to the second factor, is canonically isomorphic to D·k. Thus, we see
that the objects F ′(O(k)) and ΦE′(O(k)) :=Rπ

′
∗(q
∗O(k)⊗E′) are both convolutions

of the same complex D·k.
By assumption, the functor F is full and faithful. Hence, for locally free sheaves

G and H on PN we have the equality

Homi(F ′(G), F ′(H)) = Homi(j∗(G), j∗(H)) = 0 for i < 0.

This implies in particular that the complex D·k satisfies conditions (25) and (26) of
Lemma 3.1.2. Hence, by the lemma, there exists a uniquely defined isomorphism
fk : F

′(O(k))
∼−→ ΦE′(O(k)) that makes the following diagram commutative:

H0(O(k)) ⊗ F ′(O) F ′(δk)−−−−→ F ′(O(k))

id

� �fk
H0(O(k)) ⊗ F ′(O) Rπ′∗(γk)−−−−−→ ΦE′(O(k))

.

We now prove that these isomorphisms are functorial. For any α : O(k) → O(l)
there are commutative squares of the form

H0(O(k)) ⊗ F ′(O) F ′(δk)−−−−→ F ′(O(k))

H0(α)⊗id
� �F ′(α)

H0(O(l)) ⊗ F ′(O) F ′(δl)−−−−→ F ′(O(l))

and

H0(O(k)) ⊗ F ′(O) Rπ′∗(γk)−−−−−→ ΦE′(O(k))

H0(α)⊗id
� �ΦE′(α)

H0(O(l)) ⊗ F ′(O) Rπ′∗(γl)−−−−−→ ΦE′(O(l))

.
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These three commutative squares imply the following equalities:

fl ◦ F ′(α) ◦ F ′(δk) = fl ◦ F ′(δl) ◦ (H0(α)⊗ id) = Rπ′∗(γl) ◦ (H0(α)⊗ id),
ΦE′(α) ◦ fk ◦ F ′(δk) = ΦE′(α) ◦Rπ′∗(γk) = Rπ′∗(γl) ◦ (H0(α)⊗ id).

The complexes D·k and D
·
l satisfy the conditions of Lemma 3.1.3, and hence, there

is a unique morphism h : F ′(O(k)) → ΦE′(O(l)) for which

h ◦ F ′(δk) = Rπ′∗(γl) ◦ (H0(α)⊗ id).

Thus, the morphism h coincides simultaneously with fl◦F ′(α) and with ΦE′(α)◦fk,
which implies that these two are equal.
Now consider the case k < 0. Take the right resolution

O(k)
∼−→
{
V k0 ⊗O −→ · · · −→ V kN ⊗O(N)

}
of the sheaf O(k) on PN . Applying Lemma 3.1.3 again,we see that the morphism of
complexes

V k0 ⊗ F ′(O) −−−−→ · · · −−−−→ V kN ⊗ F ′(O(N))

id⊗f0
�	 id⊗fN

�	
V k0 ⊗ΦE′(O) −−−−→ · · · −−−−→ V kN ⊗ ΦE′(O(N))

gives a uniquely defined morphism fk : F
′(O(k)) −→ ΦE′(O(k)). A direct check

(which we omit) shows that these morphisms are functorial.

Remark 3.3.2. We note that the object E′ ∈ Db(PN × X) constructed from the
functor F is uniquely determined.
We now prove the existence of an object in the category E ∈ Db(M × X) such

that RJ∗E ∼= E′, where, as above, J is the embedding of M ×X in PN ×X.
Let L be a very ample line bundle on M and j : M ↪→ PN the embedding into

projective space it defines. We denote by A the graded algebra
⊕∞
i=0H

0(M,Li).
Set B0 = k and B1 = A1. For m � 2, we define Bm by the rule

Bm = Ker
(
Bm−1 ⊗ A1

um−1−−−→ Bm−2 ⊗ A2
)
, (33)

where um−1 is the natural map defined by induction.

Definition 3.3.3. We say that an algebra A is an n-Koszul algebra if the sequence
of right A-modules

Bn ⊗k A −→ Bn−1 ⊗k A −→ · · · −→ B1 ⊗k A −→ A −→ k −→ 0

is exact. An algebra is called a Koszul algebra if it is an n-Koszul algebra for any n.

Suppose that A is an n-Koszul algebra. We set R0 = OM and for m � 1 we
write Rm for the kernel of the canonical morphism

Bm ⊗OM −→ Bm−1 ⊗L
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defined by the natural embedding Bm −→ Bm−1 ⊗ A1. Using (33), we obtain
a canonical morphism Rm −→ A1 ⊗ Rm−1 (in fact, one checks that there is an
isomorphism Hom(Rm, Rm−1) ∼= A∗1).
Moreover, if A is an n-Koszul algebra, then the following complex of sheaves is

exact for m � n:

0 −→ Rm −→ Bm⊗OM −→ Bm−1⊗L −→ · · · −→ B1⊗Lm−1 −→ Lm −→ 0. (34)

On the projective space PN there is an exact complex of the form

0 −→ Ωm(m) −→
m∧
A1 ⊗ O −→

m−1∧
A1 ⊗O(1) −→ · · · −→ O(m) −→ 0. (35)

There is a canonical map fm : j
∗Ωm(m) −→ Rm. Indeed, since A is commutative,

there are natural embeddings
∧i
A1 ⊂ Bi. Therefore, there exists a morphism from

the complex (35) restricted to M to the complex (34), and hence a canonical map
fm : j

∗Ωm(m) −→ Rm.
It is known that for any n there exists an l such that the Veronese algebra

Al =
⊕∞
i=0 H

0(M,Lil) is n-Koszul; moreover, it was proved in [1] that the alge-
bra Al is in fact a Koszul algebra for l � 0.
However, in what follows, along with the n-Koszul property of the Veronese

algebra, we need some additional properties. Namely, using the technique of [18]
and replacing the sheaf L by a sufficiently high power Lj, one can prove the following
assertion.

Proposition 3.3.4. For any integer n there is a very ample line bundle L such
that

1) the algebra A is an n-Koszul algebra, that is, the sequence

Bn ⊗k A −→ Bn−1 ⊗k A −→ · · · −→ B1 ⊗k A −→ A −→ k −→ 0

is exact ;
2) the complex of sheaves on M given by

Ak−n ⊗Rn −→ Ak−n+1 ⊗Rn−1 −→
· · · −→ Ak−1 ⊗ R1 −→ Ak ⊗ R0 −→ Lk −→ 0

is exact for any k � 0 (if k − i < 0, then Ak−i = 0 by definition);
3) the complex of sheaves on M ×M of the form

L−n � Rn −→ · · · −→ L−1 � R1 −→ OM � R0 −→ O∆
is exact, that is, it gives an n-resolution of the diagonal on M ×M .

The proof of this proposition is given in § 3.5.
Write Tk for the kernel of the canonical morphismAk−n⊗Rn −→ Ak−n+1⊗Rn−1.

In view of property 2) of Proposition 3.3.4 and the fact that Extn+1(Lk, Tk) = 0
for n� 0, we see that every convolution of the complex

Ak−n ⊗Rn −→ Ak−n+1 ⊗Rn−1 −→ · · · −→ Ak ⊗ R0
is canonically isomorphic to Tk[n]⊕ Lk.
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The canonical morphisms Rk −→ A1 ⊗Rk−1 induce morphisms

L−k � F (Rk) −→ L−k+1 � F (Rk−1).

This follows from the existence of isomorphisms

Hom(L−k � F (Rk),L−k+1 � F (Rk−1)) ∼= Hom(F (Rk),H0(L)⊗ F (Rk−1))
∼= Hom(Rk, A1 ⊗ Rk−1).

Moreover, we have the following complex of objects in the category Db(M ×X):

L−n � F (Rn) −→ · · · −→ L−1 � F (R1) −→ OM � F (R0). (36)

By Lemma 3.1.2, the complex (36) has a convolution, and all its convolutions
are isomorphic. We denote this convolution by G ∈ Db(M ×X).
For any k � 0 the object Rπ∗(G⊗ p∗(Lk)) is a convolution of the complex

Ak−n ⊗ F (Rn) −→ Ak−n+1 ⊗ F (Rn−1) −→ · · · −→ Ak ⊗ F (R0). (37)

On the other hand, the object F (Tk[n]⊕Lk) is also a convolution of this complex,
obviously satisfying the condition of Lemma 3.1.2. Hence, there is an isomorphism
Rπ∗(G⊗ p∗(Lk)) ∼= F (Tk[n]⊕ Lk).
It follows from Lemma 3.2.3 and Remark 3.2.4 that for all k > 0 the non-

trivial cohomology sheaves Hi(Rπ∗(G⊗p∗(Lk))) = Hi(F (Tk)[n])⊕Hi(F (Lk)) are
concentrated in the union [−n− a,−n] ∪ [−a, 0] (where a is the number defined in
Remark 3.2.4). Since L is ample, it follows that the cohomology sheaves Hi(G)
are also concentrated in [−n− a,−n] ∪ [−a, 0]. We can assume that n > dimM +
dimX + a. Since the category of coherent sheaves on M × X has homological
dimension dimM + dimX, we see in this case that G ∼= C ⊕ E, where E, C are
objects of Db(M × X) for which Hi(E) = 0 for i /∈ [−a, 0] and Hi(C) = 0 for
i /∈ [−n− a,−n]. Hence, in particular, Rπ∗(E⊗ p∗(Lk)) ∼= F (Lk). Note that since
the object G is uniquely determined as the convolution of the complex (36), the
object E is also uniquely determined up to isomorphism.
We now show that there is an isomorphism RJ∗E ∼= E′. For this, we consider

the map of complexes over Db(PN ×X),

O(−n) � F ′(Ωn(n)) −−−−→ · · · −−−−→ O � F ′(O)�can�F(fn) �can�F(f0)
Rj∗L

−n � F (Rn) −−−−→ · · · −−−−→ Rj∗OM � F (R0)

.

Applying Lemma 3.1.3, we obtain the existence of a morphism ϕ : K −→ RJ∗G
between the convolutions.
If N > n, then the object K is not isomorphic to E′, but there is a distinguished

triangle
S −→ K −→ E′ −→ S[1].
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As above, we can show that the cohomology sheaves Hi(S) are non-zero only for
i ∈ [−n− a,−n]. This implies that Hom(S,RJ∗E) = 0 and Hom(S[1],RJ∗E) = 0,
because the cohomology RJ∗E is concentrated in the closed interval [−a, 0]. This
implies the existence of a unique morphism ψ : E′ −→ RJ∗E such that the following
diagram is commutative:

K
ϕ−−−−→ RJ∗G� �

E′
ψ−−−−→ RJ∗E

.

As we know,

Rπ′∗(E
′ ⊗ q∗(O(k))) ∼= F (Lk) ∼= Rπ∗(E⊗ p∗(Lk)).

Write ψk for the morphisms Rπ
′
∗(E

′ ⊗ q∗(O(k))) −→ Rπ∗(E ⊗ p∗(Lk)) induced
by ψ. The ψk fit into a commutative diagram

SkA1 ⊗ F (O)
can−−−−→ F (Lk)

∼−−−−→ Rπ′∗(E
′ ⊗ q∗(O(k)))

can

� �ψk
Ak ⊗ F (O)

can−−−−→ F (Lk)
∼−−−−→ Rπ∗(E⊗ p∗(Lk))

.

This implies that the morphisms ψk are isomorphisms for any k � 0. Hence, ψ is
also an isomorphism. Thus, we have proved the following assertion.

Proposition 3.3.5. There is an object E ∈ Db(M × X) such that RJ∗E ∼= E′,
where E′ is the object of Db(PN ×X) constructed in § 3.3; and this E is unique up
to isomorphism

3.4. Proof of the main theorem. In the previous section, starting from a fully
faithful functor F between the derived categories of coherent sheaves on varieties
M and X, we constructed an object E on the product M ×X, and thus obtained
a new functor ΦE. The main objective of the present section is to show that these
two functors F and ΦE are isomorphic. For this, we must construct a natural
transformation between these functors which is an isomorphism. By construction,
the transformation is already given on an ample sequence of line bundles on M .
Our task is to extend this transformation to the entire derived category.
We start by proving some assertions on Abelian categories that we need below.

Let A be a k-linear Abelian category (in what follows we always consider Abelian
categories that are k-linear).

Definition 3.4.1. We say that a sequence of objects {Pi | i ∈ Z�0} (with negative
indices) in an Abelian category A is ample if for every object X ∈ A there exists
an integer N such that the following conditions hold for any index i < N :

a) the canonical morphism Hom(Pi, X)⊗ Pi −→ X is surjective,
b) Extj(Pi, X) = 0 for all j �= 0,
c) Hom(X,Pi) = 0.
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Example 3.4.2. For L an ample line bundle on a projective variety, the sequence
{Li | i ∈ Z�0} is ample in the Abelian category of coherent sheaves.

Lemma 3.4.3. Let {Pi} be an ample sequence in an Abelian category A. If an
object X in the category Db(A) satisfies the equality

Hom·(Pi, X) = 0 for all i� 0,

then X is the zero object.

Proof. It follows from the definition of ampleness that

Hom(Pi, H
k(X)) ∼= Homk(Pi, X) = 0 for i� 0.

However, the morphism Hom(Pi, H
k(X)) ⊗ Pi −→ Hk(X) must be surjective for

i� 0. Hence, Hk(X) = 0 for all k. This means that X is the zero object.

Lemma 3.4.4. Let A be an Abelian category of finite homological dimension and
{Pi} an ample sequence in A. If an object X ∈ Db(A) is such that Hom·(X,Pi) = 0
for any i� 0, then X is the zero object.

Proof. Suppose that the object X is non-trivial. After shifting X in the derived
category if necessary, we can assume that the rightmost non-zero cohomology of
X is H0(X). Consider the canonical morphism X −→ H0(X). For some i1, there
exists a surjective map P⊕k1i1

−→ H0(X); write Y1 for its kernel. By assumption,
Hom·(X,Pi1) = 0, and hence also Hom

1(X, Y1) �= 0. Next, take a surjective map
P⊕k2i2

−→ Y1, which exists for some i2 � 0, and write Y2 for its kernel. The con-
dition Hom·(X,Pi2) = 0 again gives Hom

2(X, Y2) �= 0. Continuing this procedure,
we obtain a contradiction to the finite homological dimension of A.

Lemma 3.4.5. Let A and B be Abelian categories and suppose that A has finite
homological dimension. Let {Pi} be an ample sequence in A. Suppose that F is an
exact functor from Db(A) to Db(B) that has right and left adjoint functors F ! and
F ∗ respectively. If the maps

Homk(Pj, Pi)
∼−→ Homk(F (Pj), F (Pi))

are isomorphisms for j < i and for all k, then F is fully faithful.

Proof. Consider the canonical morphism fi : Pi −→ F !F (Pi) and the distinguished
triangle

Pi
fi−→ F !F (Pi) −→ Ci −→ Pi[1].

By assumption, for j < i we have isomorphisms

Homk(Pj, Pi)
∼−→ Homk(F (Pj), F (Pi)) ∼= Homk(Pj, F !F (Pi)).

Hence, Hom·(Pj , Ci) = 0 for j < i. By Lemma 3.4.3, Ci = 0. Thus, fi is an
isomorphism.
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For an arbitrary object X we now consider the canonical map gX :F
∗F (X)−→X

and the distinguished triangle

F ∗F (X)
gX−−→ X −→ CX −→ F ∗F (X)[1].

There is a sequence of isomorphisms

Homk(X,Pi)
∼−→ Homk(X,F !F (Pi)) ∼= Homk(F ∗F (X), Pi).

This implies that Hom·(CX , Pi) = 0 for all i. By Lemma 3.4.4 we get that CX = 0.
Thus, gX is an isomorphism. Therefore, F is fully faithful.

We now state and prove the main proposition of this section, which we need in
the proof of Theorem 3.2.1, the main result of this chapter. The proposition is also
of independent interest.
Let A be an Abelian category with an ample sequence {Pi | i ∈ Z�0}. Write j

for the embedding of the full subcategory C with objects ObC := {Pi | i ∈ Z�0}
into Db(A). In this situation, given a functor F : Db(A) −→ Db(A), one proves
that, if there exists an isomorphism of F |C with the identity functor on C, then this

transformation extends to an isomorphism on the entire category Db(A).

Proposition 3.4.6. Let A be an Abelian category and {Pi | i ∈ Z�0} an ample
sequence in A. Write j for the embedding of the full subcategory C with objects
ObC := {Pi | i ∈ Z�0} into Db(A). Let F : Db(A) −→ Db(A) be some auto-
equivalence. Suppose that there exists an isomorphism of functors f : j

∼−→ F |C.
Then f extends to an isomorphism id

∼−→ F on the entire category Db(A).

Proof. First, since F commutes with direct sums, the transformation f extends
componentwise to direct sums of objects in the category C. We note that an object
X ∈ Db(A) is isomorphic to an object of A if and only if Homj(Pi, X) = 0 for j �= 0
and all i� 0. It follows that in this case the object F (X) is also isomorphic to an
object of A, because

Homj(Pi, F (X)) ∼= Homj(F (Pi), F (X)) ∼= Homj(Pi, X) = 0

for j �= 0 and for all i� 0.
Step 1. Let X be an object of the category A. We fix a surjective morphism
v : P⊕ki −→ X. There exists an isomorphism fi : P⊕ki

∼−→ F (P⊕ki ) together with
two distinguished triangles

Y
u−−−−→ P⊕ki

v−−−−→ X −−−−→ Y [1]�fi
F (Y )

F(u)−−−−→ F (P⊕ki )
F(v)−−−−→ F (X) −−−−→ F (Y )[1]

.

Let us prove that F (v) ◦ fi ◦ u = 0. For this, consider a surjective morphism
w : P⊕lj −→Y ; it is enough to show that F (v)◦fi ◦u◦w=0. Let fj : P⊕lj

∼−→F (P⊕lj )
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be the canonical isomorphism. Using the commutation relations for fi and fj , we
obtain the equalities

F (v) ◦ fi ◦ u ◦ w = F (v) ◦ F (u ◦ w) ◦ fj = F (v ◦ u ◦ w) ◦ fj = 0.

Since Hom(Y [1], F (X)) = 0, there is a unique morphism fX : X −→ F (X) com-
muting with fi by Lemma 3.1.1.
Now consider the mapping cone CX of fX . Using the isomorphisms

Hom(Pi, X) ∼= Hom(F (Pi), F (X)) ∼= Hom(Pi, F (X)),

we see that Homj(Pi, CX) = 0 for all j and i� 0. Hence, CX = 0 by Lemma 3.4.3,
and fX is an isomorphism.

Step 2. We now show that fX does not depend on the choice of the covering
v : P⊕ki −→ X. Consider two such surjective morphisms v1 : P⊕k1i1

−→ X and
v2 : P

⊕k2
i2
−→ X. We can always fix up two surjective morphisms w1 : P⊕lj −→ P

⊕k1
i1

and w2 : P
⊕l
j −→ P

⊕k2
i2
such that the following diagram is commutative:

P⊕lj
w2−−−−→ P⊕k2i2�w1 �v2

P⊕k1i1

v1−−−−→ X

.

It is obviously enough to check that the transformations fX constructed from v1
and v1 ◦ w1 coincide. For this, consider the commutative diagram

P⊕lj
w1−−−−→ P⊕k1i1

v1−−−−→ X�fj �v2 �fX
F (P⊕lj )

F(w1)−−−−→ F (P⊕k1i1
)
F(v1)−−−−→ F (X)

.

Here the isomorphism fX is constructed from v1. Both squares of the diagram
commute. Since there only exists one morphism from X to F (X) that commutes
with fj , it follows that the morphism fX constructed from v1 coincides with that
constructed from v1 ◦ w1.
Step 3. Now we have to check that the morphisms fX define a natural transfor-

mation of functors on A. That is, for any morphism X
ϕ−→ Y , we must prove

that
fY ◦ ϕ = F (ϕ) ◦ fX .

Consider a surjective morphism P⊕lj
v−→ Y . We choose an index i � 0 and a

surjective morphism P⊕ki
u−→ X such that the composite ϕ ◦ u lifts to a morphism

ψ : P⊕ki −→ P⊕lj . This is possible because for i � 0 the map Hom(P⊕ki , P⊕lj ) →
Hom(P⊕ki , Y ) is surjective. We obtain a commutative square

P⊕ki
u−−−−→ X�ψ �ϕ

P⊕lj
v−−−−→ Y

.
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We write h1 and h2 for the composites fY ◦ϕ and F (ϕ) ◦ fX respectively. We have
the equalities

h1 ◦ u = fY ◦ ϕ ◦ u = fY ◦ v ◦ ψ = F (v) ◦ fj ◦ ψ = F (v) ◦ F (ψ) ◦ fi

and

h2◦u = F (ϕ)◦fX◦u = F (ϕ)◦F (u)◦fi = F (ϕ◦u)◦fi = F (v◦ψ)◦fi = F (v)◦F (ψ)◦fi.

Thus, for t = 1, 2 the morphisms ht make the following diagram commute:

Z −−−−→ P⊕ki
u−−−−→ X −−−−→ Z[1]

F(ψ)◦fi
� �ht

F (W ) −−−−→ F (P⊕lj )
F(v)−−−−→ F (Y ) −−−−→ F (W )[1]

.

Since Hom(Z[1], F (Y )) = 0, it follows from Lemma 3.1.1 that h1 = h2. Thus,
fY ◦ ϕ = F (ϕ) ◦ fX .
Step 4. We define a transformation fX[n] : X[n] −→ F (X[n]) ∼= F (X)[n] for any
X ∈ A by the formula

fX[n] = fX [n].

One proves readily that the transformations defined in this way commute with
any morphism u ∈ Extk(X, Y ). Indeed, every element u ∈ Extk(X, Y ) can be
represented as a composite u = u0u1 · · ·uk of certain elements ui ∈ Ext1(Zi, Zi+1),
where Z0 = X and Zk = Y . Thus, it is enough to verify that fX[n] commutes with

elements u ∈ Ext1(X, Y ). For this, consider the diagram

Y −−−−→ Z −−−−→ X
u−−−−→ Y [1]

fY

� �fZ �fY [1]
F (Y ) −−−−→ F (Z) −−−−→ F (X) F(u)−−−−→ F (Y )[1]

.

By one of the axioms of triangulated category, there is a morphism h : X →
F (X) such that (fY , fZ , h) is a morphism of triangles. On the other hand, since
Hom(Y [1], F (X)) = 0, it follows from Lemma 3.1.1 that the morphism h is uniquely
determined by the condition that it commutes with fZ . However, fX also commutes
with fZ . Hence, h = fX , and thus

fY [1] ◦ u = F (u) ◦ fX .

Step 5. We carry out the final part of the proof by induction on the length of
the interval to which the non-trivial cohomology of the object belongs. For this,
consider the full subcategory jn : Dn ↪→ Db(A) of Db(A) consisting of objects with
non-trivial cohomology in some interval of length n (the interval is not fixed). We
now prove that there is a unique extension of the natural transform f to a natural



560 D. O. Orlov

functorial isomorphism fn : jn −→ F |Dn . We have already proved this above for
n = 1, as the basis of the induction.
Now to prove the inductive step, suppose that the assertion is already proved

for some n = a � 1. Let X be an object of Da+1, and suppose for definiteness
that the cohomology Hp(X) is non-trivial for p ∈ [−a, 0]. We take Pi in the ample
sequence, where i is a sufficiently negative index such that

a) Homj(Pi, H
p(X)) = 0 for all p and j �= 0,

b) there exists a surjective morphism u : P⊕ki −→ H0(X),
c) Hom(H0(X), Pi) = 0.

(38)

It follows from a) and the standard spectral sequence that there is an isomorphism

Hom(Pi, X)
∼−→ Hom(Pi, H0(X)). Thus, there is a morphism v : P⊕ki −→ X whose

composite with the canonical morphism X −→ H0(X) coincides with u. Consider
the distinguished triangle

Y [−1] −→ P⊕ki
v−→ X −→ Y.

Since the object Y belongs to Da, it follows from the induction assumption that
the isomorphism fY already exists and commutes with fi. We have the diagram

(39)

Next, the sequence of isomorphisms

Hom(X,F (P⊕ki ))
∼= Hom(X,P⊕ki ) ∼= Hom(H0(X), P

⊕k
i ) = 0

allows us to apply Lemma 3.1.1 with g = fY , and it follows from this that there
is a unique morphism fX : X −→ F (X) completing the diagram to a morphism of
triangles. It is obvious that fX is in fact an isomorphism, because fi and fY are.

Step 6. We now have to prove that the isomorphism fX does not depend on the
choice of i and u. Suppose that we are given two surjective morphisms u1 : P

⊕k1
i1
−→

H0(X) and u2 : P
⊕k2
i2
−→ H0(X) satisfying a), b) and c). Then we can choose a

sufficiently negative index j and surjective morphisms w1 and w2 that make the
diagram

P⊕lj
w2−−−−→ P⊕k2i2�w1 �u2

P⊕k1i1

u1−−−−→ H0(X)

commute. Write v1 : P
⊕k1
i1

−→ X and v2 : P⊕k2i2
−→ X for the morphisms cor-

responding to u1 and u2. Since Hom(Pj , X)
∼−→ Hom(Pj, H0(X)), we see that

v2w2 = v1w1.
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There is a morphism ϕ : Yj −→ Yi1 such that the triple (w1, id, ϕ) is a morphism
of triangles

P⊕lj
v1◦w1−−−−→ X y−−−−→ Yj −−−−→ P⊕lj [1]

w1

� �id �ϕ �w1[1]
P⊕k1i1

v1−−−−→ X y1−−−−→ Yi1 −−−−→ P⊕k1i1
[1]

,

that is, ϕy = y1.
Since Yj and Yi1 only have non-trivial cohomology in the interval [−a,−1], by

induction we have the following commutative square:

Yj
ϕ−−−−→ Yi1

fYj

� �fYi1
F (Yj)

F(ϕ)−−−−→ F (Yi1)

.

Write fjX , f
i1
X and f

i2
X for the morphisms constructed by the above rule; these

can be completed to a commutative diagram (39) for v = v1w1, v = v1 and v = v2
respectively. We have already proved in Lemma 3.1.1 above that the morphism f i1X
is uniquely determined by the condition

F (y1)f
i1
X = fYi1 y1.

On the other hand, we have the relations

F (y1)f
j
X = F (ϕy)f

j
X = F (ϕ)F (y)f

j
X = F (ϕ)FYjy = fYi1ϕy = fYi1 y1,

which imply at once that fjX = f
i1
X . In the same way we get f

j
X = f

i2
X . Hence,

the morphism fX does not depend on the choices of the index i and the morphism
u : P⊕ki −→ H0(X), and is thus absolutely uniquely defined.
Step 7. We have thus obtained an extension of fa to Da+1. It remains to show that
this extension is again a natural transformation from ja+1 to F |Da+1 ; that is, that
for any morphism ϕ : X −→ Y with X and Y in Da+1, we obtain a commutative
diagram

X
ϕ−−−−→ Y

fX

� �fY
F (X)

F(ϕ)−−−−→ F (Y )

. (40)

We will reduce this problem to the case in which both objects X and Y belong
to Da. There are two cases.

Case 1. We consider the case when the highest non-trivial cohomology of the
object X (which we can assume to be H0(X) without loss of generality) has
index strictly greater than that for Y . As above, we take a surjective morphism
u : P⊕ki −→ H0(X) satisfying a), b) and c) and construct a lift of u to a mor-
phism v : P⊕ki −→ X. We have a distinguished triangle

P⊕ki
v1−−−−→ X α−−−−→ Z −−−−→ P⊕ki [1].



562 D. O. Orlov

If i is sufficiently negative, then Hom(P⊕ki , Y ) = 0. Applying Hom(−, Y ) to this
triangle, we see that there exists a morphism ψ : Z −→ Y for which ϕ = ψα. It is
known that the isomorphism fX constructed above satisfies the relation

F (α)fX = fZα.

If we assume that
F (ψ)fZ = fY ψ,

then we obtain

F (ϕ)fX = F (ψ)F (α)fX = F (ψ)fZα = fY ψα = fY ϕ.

This means that, to check that the square (40) is commutative, we can replace
X by Z. But the upper bound for the non-trivial cohomology of Z is one less than
for X. Moreover, one can see that, if X belongs to Dk with k > 1, then Z belongs
to Dk−1, and, if X belongs to D1, then Z also belongs to D1, but the index for its
non-trivial cohomology is one less than for X.

Case 2. We now consider the other case: the highest non-trivial cohomology of Y
(which we can again assume to be H0(Y )) has index greater than or equal to that
of X. Take a surjective morphism u : P⊕ki −→ H0(Y ) satisfying conditions a), b)
and c) and construct a morphism v : P⊕ki −→ Y , which is uniquely determined
by u. Consider the distinguished triangle

P⊕ki
v−−−−→ Y β−−−−→ W −−−−→ P⊕ki .

(41)

Write ψ for the composite β ◦ ϕ.
If we now assume that

F (ψ)fX = fWψ,

then, since F (β)fY = fWβ, we obtain

F (β)(fY ϕ− F (ϕ)fX) = fWβϕ − f(βϕ)fX = fWψ − F (ψ)fX = 0. (42)

We again choose i to be sufficiently negative, so that the vanishing condition
Hom(X,P⊕ki ) = 0 is satisfied. Since F (P

⊕k
i ) is isomorphic to P

⊕k
i , we have the

equality Hom(X,F (P⊕ki )) = 0. Now applying Hom(X,F (−)) to the triangle (41),
we see that F (β) defines an embedding of Hom(X,F (Y )) into Hom(X,F (W )). It
now follows at once from (42) that fY ϕ = F (ϕ)fX .
Thus, to check that the square (40) is commutative, we can replace Y by an

object W that has upper bound of the non-trivial cohomology one less than Y . If
Y belongs to Dk with k > 1, then W belongs to Dk−1. If Y belongs to D1, then
W also belongs to D1, but has non-trivial cohomology of index one less than Y .
Suppose now that X and Y belong to the category Da+1 with a > 1. Depending

on which of the cases 1) or 2) is applicable, we can replace either X or Y by
an object that already belongs to Da. Repeating this procedure if necessary, we
can reduce the upper bound of the cohomology of this object until the other case
becomes applicable. Then we will be able to reduce the length of the non-trivial
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cohomology of the other object, and arrive at the situation in which both objects
already belong to Da. This is our induction step.
In conclusion we note that during our construction, the isomorphisms fX were

uniquely determined at each point. Hence, the natural transformation from id to
F that we have constructed is unique. This completes the proof of the proposition.

Proof of Theorem 3.2.1. 1) Existence. Starting from the functor F , we can use
Proposition 3.3.5 and Lemma 3.3.1 to construct an object E ∈ Db(M×X) for which
there exists an isomorphism of functors f : F |C

∼−→ ΦE|C on the full subcategory
C ⊂ Db(M) with Ob C = {Li | i ∈ Z}, where L is a very ample bundle on M for
which Hi(M,Lk) = 0 for k > 0 and i �= 0.
By Lemma 3.4.5, ΦE is fully faithful. Moreover, since there are isomorphisms

F !(f) : F ! ◦ F |C ∼= idC
∼−→ F ! ◦ ΦE|C,

Φ∗E(f) : Φ
∗
E ◦ F |C

∼−→ Φ∗E ◦ ΦE|C ∼= idC,

it follows again from Lemma 3.4.5 that the functors F ! ◦ ΦE and Φ∗E ◦ F are also
fully faithful. Since they are adjoint to one another, it follows that they are in fact
equivalences.
Consider again the isomorphism F !(f) : F ! ◦ F |C ∼= idC

∼−→ F ! ◦ ΦE|C on the
subcategory C. By Proposition 3.4.6, it extends to an isomorphism on the entire
category Db(M), that is, id

∼−→ F ! ◦ ΦE.
Since F ! is right adjoint to F , we obtain a morphism of functors f : F −→ ΦE

for which f |C = f . It remains to show that f is an isomorphism. Indeed, take the

mapping cone CZ of the canonical morphism fZ : F (Z) −→ ΦE(Z). Since F !(fZ)
is an isomorphism, we see that F !(Z) = 0. Hence, Hom(F (Y ), CZ) = 0 for any
object Y . Moreover, since F (Lk) ∼= ΦE(Lk) for all k, we obtain a sequence of
isomorphisms

Homi(Lk,Φ!E(CZ)) = Hom
i(ΦE(L

k), CZ) = Hom
i(F (Lk), CZ) = 0

for all k and i.
Applying Lemma 3.6 gives at once the equality Φ!E(CZ) = 0. It follows that

Hom(ΦE(Z), CZ) = 0. Therefore, the triangle for the morphism fZ must be split,
that is, F (Z) = CZ[−1] ⊕ ΦE(Z). However, we have already proved above that
Hom(F (Y ), CZ) = 0 for any Y , and hence also for Z[1]. However, this can only
happen if CZ = 0, and fZ is an isomorphism.

2) Uniqueness. The uniqueness of the object representing F in fact follows from
our construction, because each time we construct some object it is unique. However,
let us go through this once more. Suppose that there exist two objects E1 and E2 in
Db(M ×X) for which ΦE1 ∼= F ∼= ΦE2 . Consider the functor F ′ = Lj∗ ◦ F , where,
as above, j : M −→ PN is an embedding by a suitable very ample line bundle. The
objects RJ∗Ei for i = 1, 2 must both be convolutions of the complex (32)

C· :=
{
O(−N) � F ′(ΩN (N))

d′−N−−−→ · · · −→ O(−1) � F ′(Ω1(1))
d′−1−−→ O � F ′(O)

}
.

However, as we proved above, all convolutions of this complex are isomorphic by
Lemma 3.1.2. Thus, RJ∗E1 ∼= RJ∗E2. Applying Proposition 3.3.5, we now see that
the objects E1 and E2 are themselves also isomorphic.
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3.5. Appendix: the nnn-Koszul property of a homogeneous coordinate
algebra. The facts collected in this appendix are not original, and are well known
in one form or another. However, in the absence of a good reference, we are obliged
to present our own proof of the assertion used in the main text in the form we need
it. Here we mainly use the technique of [18].
Let X be a smooth projective variety and L a very ample line bundle on X

satisfying the additional condition Hi(X,Lk) = 0 for all k > 0 and i �= 0. We
write A for the homogeneous coordinate algebra of X with respect to L, that is,
A =

⊕∞
k=0H

0(X,Lk).

Consider the variety Xn for some n ∈ N. In what follows we write π(n)i for the

projection of Xn to the ith factor and π
(n)
ij for its projection to the product of

the ith and jth factors. Define a subvariety ∆
(n)
(i1,...,ik)(ik+1,...,im)

⊂ Xn as follows:

∆
(n)
(i1,...,ik)(ik+1,...,im)

:=
{
(x1, . . . , xn)

∣∣ xi1 = · · · = xik ; xik+1 = · · · = xm}.
For brevity, we write S

(n)
i instead of ∆

(n)
(n,n−1,...,i); obviously, S

(n)
i
∼= Xi.

Now set

T
(n)
i :=

i−1⋃
k=1

∆
(n)
(n,n−1,...,i)(k,k−1), Σ(n) :=

n⋃
k=1

∆
(n)
(k,k−1).

(By definition, T
(n)
1 and T

(n)
2 are the empty subset.) It is clear that T

(n)
i ⊂ S(n)i .

We write JΣ(n) for the ideal sheaf of the subscheme Σ
(n) ⊂ Xn and I(n)i for the

sheaf on Xn which is the kernel of the natural map O
S
(n)
i

−→ O
T
(n)
i

−→ 0.
Let us temporarily fix m and k � m. Let s be the embedding of the subvari-

ety S
(m)
k
∼= Xk−1×X into Xn, which by the definition of S(m)k is the identity on the

first k − 1 factors and the diagonal on the final kth factor. We write p for
the projection of S

(m)
k to Xk−1, which is the product of the first k − 1 factors.

Lemma 3.5.1. The sheaf I
(m)
1 is isomorphic to O

∆
(n)
(n,...,1)

; and I
(m)
k for k > 1 is

isomorphic to s∗p
∗(JΣ(k−1)). In particular, for k > 1 there are isomorphisms

a) Hj(Xm, I
(m)
k ⊗ (L � · · · � Li))
= Hj(Xk−1, JΣ(k−1) ⊗ (L � · · · � L)) ⊗Am−k+i for all i > 0;

b) Rjπ
(m)
1∗ (I

(m)
k ⊗ (O � L � · · ·� Li))
∼= Rjπ(k−1)1∗ (JΣ(k−1) ⊗ (O � L � · · · � L))⊗Am−k+i for all i > 0;

c) Rjπ
(m)
1m∗(I

(m)
k ⊗ (O � L � · · · � Li))
∼= Rjπ(k−1)1∗ (JΣ(k−1) ⊗ (O � L � · · · � L)) � Lm−k+i for all i.

Proof. The assertion that I
(m)
k is isomorphic to s∗p

∗(JΣ(k−1)) for k > 1 follows at

once from the definition of I
(m)
k and of the subschemes T

(m)
k and S

(m)
k . The rest

follows at once from this.

By induction on n, one sees readily that the complex

P ·n : 0 −→ JΣ(n) −→ I(n)n −→ I(n)n−1 −→ · · · −→ I
(n)
2 −→ I(n)1 −→ 0
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on Xn is exact. For example, for n=2 this complex is the short exact sequence on
X ×X,

P ·2 : 0 −→ J∆ −→ OX×X −→ O∆ −→ 0.

Lemma 3.5.2. Let X be a smooth projective variety with ample line bundle M.
Then for any positive integer k there exists an i such that the bundle L = Mi has
the following properties for all 1 < m � k:

a) Hj(Xm, JΣ(m) ⊗ (L � · · · � L)) = 0 for j �= 0;

b) Rjπ
(m)
1∗ (JΣ(m) ⊗ (O � L � · · · � L)) = 0 for j �= 0;

c) Rjπ
(m)
1m∗(JΣ(m) ⊗ (O � L � · · · � L � O)) = 0 for j �= 0.


 (43)

Proof. For any m, the line bundles M � · · · � M, O � M � · · · � M, and O �
M � · · · � M � O on Xm are ample, π(m)1 -ample, and π

(m)
1m -ample, respectively.

Therefore, for each of them there is an integer such that properties a), b), and c)
hold for all powers of these bundles larger than this integer. Take the maximum of
these numbers over all m � k, and denote it by i. Then properties a), b), and c)
also hold for L =Mi.

We introduce the following notation:

Bn := H
0(Xn, JΣ(n) ⊗ (L � · · · � L))

and Rn−1 :=R
0π
(n)
1∗ (JΣ(n) ⊗ (O � L � · · · � L)).

Proposition 3.5.3. Let L be a very ample bundle on a smooth projective variety
X satisfying condition (43) for all m with 1 < m � n+ dimX + 2. Then
1) A is an n-Koszul algebra, that is, the sequence

Bn ⊗k A −→ Bn−1 ⊗k A −→ · · · −→ B1 ⊗k A −→ A −→ k −→ 0

is exact ;
2) the complex of sheaves on X of the form

Ak−n ⊗Rn −→ Ak−n+1 ⊗Rn−1 −→
· · · −→ Ak−1 ⊗ R1 −→ Ak ⊗ R0 −→ Lk −→ 0

is exact for any k � 0 (if k − i < 0, then Ak−i = 0 by definition);
3) the complex of sheaves

L−n � Rn −→ · · · −→ L−1 � R1 −→ OM � R0 −→ O∆

on X×X is exact; that is, it gives an n-resolution of the diagonal of X×X.
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Proof. 1) First, combining Lemmas 3.5.1 and 3.5.2, for any 1 < m � n+dimX+2
we see that

1) H0(Xm, I
(m)
k ⊗ (L � · · · � Li))

= H0(Xk−1, JΣ(k−1) ⊗ (L � · · · � L)) ⊗Am−k+i = Bk−1 ⊗ Am−k+i;
2) Hj(Xm, I

(m)
k ⊗ (L � · · · � Li)) = 0 for j �= 0.

(44)

Consider the complexes P ·m ⊗ (L � · · · � L) for m � n+ dimX + 1. Applying H0
to them and using condition (44), we obtain the exact sequences

0 −→ Bm −→ Bm−1 ⊗k A1 −→ · · · −→ B1 ⊗k Am−1 −→ Am −→ 0

for any m � n+ dimX + 1.
We now set m = n + dimX + 1 and write W ·m for the complex

I(m)m −→ I(m)m−1 −→ · · · −→ I
(m)
2 −→ I(m)1 −→ 0,

which is a right resolution of JΣ(m) . We take the complex

W ·m ⊗ (L � · · · � L � Li)

and apply the functor H0 to it. We obtain the sequence

Bm−1 ⊗k Ai −→ Bm−2 ⊗k Ai+1 −→ · · · −→ B1 ⊗k Am+i−2 −→ Am+i−1 −→ 0.

It follows from (44), 2) that the cohomology of this complex equals

Hj(Xm, JΣ(m) ⊗ (L � · · · � L � Li)).

And (43), b) gives us that

Hj(Xm, JΣ(m) ⊗ (L � · · · � L � Li))

= Hj(X,R0π
(m)
m∗ (JΣ(m) ⊗ (L � · · · � L � O)) ⊗ Li).

Hence, this cohomology is trivial for j > dimX, and thus there is an exact sequence
of the form

Bn ⊗k Am−n+i−1−→Bn−1⊗k Am−n+i −→ · · ·−→B1 ⊗k Am+i−2−→Am+i−1−→0

for i � 1. However, the exactness for i � 1 has been proved above. Thus, A is an
n-Koszul algebra.
2) The proof is similar to that of 1). We have isomorphisms

1) R0π
(m)
1∗ (I

(m)
k ⊗ (O � L � · · · � L))

∼=R0π(k−1)1∗ (JΣ(k−1) ⊗ (O � L � · · · � L)) ⊗Am−k+1;
2) Rjπ

(m)
1∗ (I

(m)
k ⊗ (O � L � · · · � L)) = 0 for all j �= 0.

(45)
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Applying the functor R0π
(m)
1∗ to the complexes P ·m ⊗ (O � L � · · · � L) for

m � n+ dimX + 2, we obtain an exact complex of sheaves on X,

0 −→ Rm−1 −→ A1⊗Rm−2 −→ · · · −→ Am−2⊗R1 −→ Am−1⊗R0 −→ Lm−1 −→ 0

for m � n+ dimX + 2.
We consider the case m = n+ dimX + 2. Applying the functor R0π

(m)
1∗ to

W ·m ⊗ (O � L � · · · � L � Li),

gives the complex

Ai ⊗Rm−2 −→ · · · −→ Am+i−3 ⊗R1 −→ Am+i−2 ⊗ R0 −→ Lm+i−2 −→ 0.

By property (45), its cohomology is

Rjπ
(m)
1∗ (JΣ(m) ⊗ (O � L � · · · � L � Li))

∼= Rjp1∗(R0π(m)1m∗(JΣ(m) ⊗ (O � L � · · · � L � O)) ⊗ (O � Li)),

which is trivial for j > dimX. Thus, the sequence of sheaves

Ak−n ⊗Rn −→ Ak−n+1 ⊗ Rn−1 −→ · · · −→ Ak−1 ⊗ R1 −→ Ak ⊗R0 −→ Lk −→ 0

on X is exact for all k � 0.
3) Consider the complex W ·n+2 ⊗ (O � L � · · · � L � L−n) on Xn+2. Applying

R0π
(n+2)
1(n+2)∗ to it, we obtain the following complex on X ×X:

L−n � Rn −→ · · · −→ L−1 � R1 −→ OM � R0 −→ O∆. (46)

Recalling condition c) of Lemma 3.5.1 and condition (43), b), we see that its coho-
mology sheaves are isomorphic to

Rjπ
(n+2)
1(n+2)∗(JΣ(n+2) ⊗ (O � L � · · · � L � O))⊗ (O � L

−n),

which vanish for j > 0 by (43), c). That is, the complex (46) is exact.

CHAPTER 4

Derived categories of coherent sheaves on K3 surfaces

4.1. K3 surfaces and the Mukai lattice. This chapter is entirely taken up
with derived categories of coherent sheaves on K3 surfaces over the field of complex
numbers. The main question we are interested in, and answer in this chapter, is
as follows: when do two distinct K3 surfaces have equivalent categories of coherent
sheaves? As before, we view derived categories as triangulated categories, and
equivalences are understood as equivalences between triangulated categories.
We recall that for smooth projective varieties with ample canonical or anti-

canonical class there is a procedure (see Theorem 2.1.3) for recovering the variety
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from its derived category of coherent sheaves. However, for varieties of other types
this is a non-trivial question, and is especially interesting for varieties with trivial
canonical class.
We start with the main facts we need concerning K3 surfaces. Recall that a K3

surface is a smooth compact algebraic surface S with KS = 0 and H
1(S,Z) = 0.

These surfaces are actually simply connected. One can show that the second coho-
mology H2(S,Z) is torsion-free and is an even lattice of rank 22 with respect to the
intersection form. Moreover, it follows from the Noether formula that pg(S) = 1
and h1,1(S) = 20.
One of the main invariants of a K3 surface is its Néron–Severi group NS(S) ⊂

H2(S,Z), which coincides in this case with the Picard group Pic(S). The rank of
NS(S) is � h1,1 = 20. We write TS for the lattice of transcendental cycles which,
by definition, is the orthogonal complement to the Néron–Severi lattice NS(S) in
the second cohomology H2(S,Z).
We denote by tdS the Todd class of the surface S; this class is an element of

the form 1 + 2w in H∗(S,Q), where 1 ∈ H0(S,Z) is the identity of the cohomology
ring H∗(S,Z) and w ∈ H4(S,Z) is the fundamental cocycle of S. We consider the
positive square root

√
tdS = 1 + w; for any K3 surface it belongs to the integral

cohomology ring H∗(S,Z).
One introduces the Chern character for any coherent sheaf on S, and extends it

by additivity to the entire derived category of coherent sheaves. If F is an object
of Db(S), its Chern character

ch(F ) = r(F ) + c1(F ) +
1

2
(c21 − 2c2)

belongs to the integral cohomology H∗(S,Z). For any object F we define the element

v(F ) = ch(F ) ·
√
tdS ∈ H∗(S,Z)

and call it the vector associated with F (or the Mukai vector of F ).
We define a symmetric bilinear form on the cohomology lattice H∗(S,Z) by the

rule
(u, u′) = r · s′ + s · r′ − α · α′ ∈ H4(S,Z) ∼= Z

for any pair u = (r, α, s), u′ = (r′, α′, s′) ∈ H0(S,Z) ⊕ H2(S,Z) ⊕ H4(S,Z). The
cohomology lattice H∗(S,Z) together with this bilinear form ( · , · ) is called the
Mukai lattice and denoted by H̃(S,Z). Note that on H2 the bilinear form ( · , · )
differs from the usual intersection form by the minus sign. Thus, the Mukai lattice

H̃(S,Z) is isomorphic to the lattice U⊥ − H2(S,Z), where U is the hyperbolic
lattice

(
0 1

1 0

)
and ⊥ means orthogonal direct sum.

For any two objects F and G, the pairing (v(F ), v(G)) is by definition the com-
ponent in H4 of the element ch(F )∨ · ch(G) · tdS . Hence, by the Grothendieck
Riemann–Roch theorem we have the equality

(v(F ), v(G)) = χ(F,G) :=
∑
i

(−1)i dimExti(F,G).

The lattices H̃(S,Z) and TS admit natural Hodge structures. Here by a Hodge

structure we mean that the spaces H̃(S,C) and TS⊗C have a fixed one-dimensional
subspace H2,0(S).
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Definition 4.1.1. Let S1 and S2 be two K3 surfaces. We say that the Mukai
lattices of S1 and S2 (or their lattices of transcendental cycles) are Hodge isometric
if there is an isometry between the lattices that takes the one-dimensional subspace
H2,0(S1) to H

2,0(S2).

Let E inDb(S1×S2) be an arbitrary object of the derived category of the product.
Consider the algebraic cycle

ZE := p
∗√tdS1 · ch(E) · π∗√tdS2 (47)

on the product S1 × S2, where p and π are the projections in the diagram

S1 × S2 π−−−−→ S2
p

�
S1

.

In the case of K3 surfaces the cycle ZE, which is a priori rational, is in fact integral:

Lemma 4.1.2 [31]. For any object E ∈ Db(S1 × S2), both the Chern character
ch(E) and the cycle ZE are integral, that is, they belong to H

∗(S1 × S2,Z).
Thus, the cycle ZE defines a map from the integral cohomology lattice of S1 to

that of S2,
fZE : H∗(S1,Z) −→ H∗(S2,Z)

∪ ∪
α �−→ π∗(ZE · p∗(α))

. (48)

The following proposition is analogous to Theorem 4.9 in [31].

Proposition 4.1.3. For an object E, if the functor ΦE : D
b(S1) −→ Db(S2) is

fully faithful, then

1) fZE is an isometry between the lattices H̃(S1,Z) and H̃(S2,Z),
2) the inverse map of f coincides with the homomorphism

f ′ : H∗(S2,Z) −→ H∗(S1,Z)
∪ ∪
β �−→ p∗(Z

∨
E · π∗(β))

defined by the cycle

Z∨E = p
∗√tdS1 · ch(E∨) · π∗√tdS2 ,

where E∨ := R·Hom(E,OS1×S2).

Proof. The left and right adjoint functors to ΦE are isomorphic; they are given by
the formula

Φ∗E = Φ
!
E =Rp∗(E

∨ ⊗Lπ∗( · ))[2].

Since ΦE is fully faithful, it follows that the composite Φ
∗
E ◦ΦE is isomorphic to the

identity functor idDb(S1). The identity functor idDb(S1) is defined by the structure
sheaf O∆ of the diagonal ∆ ⊂ S1 × S1.
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By the projection formula and the Grothendieck Riemann–Roch theorem, one
finds that the composite f ′◦f is represented by the cycle p∗1

√
tdS1 ·ch(O∆)·p∗2

√
tdS1 ,

where p1 and p2 are the projections of S1×S1 to its factors. Using the Grothendieck
Riemann–Roch theorem again, we see that this cycle is equal to ∆. Hence, the
composite f ′ ◦ f is the identity map, and thus f is an isomorphism from H∗(S1,Z)
to H∗(S2,Z), because both groups are free Abelian groups of the same rank.
Write νS : S −→ SpecC for the structure morphism of S. Then we can express

the pairing (α, α′) on H̃(S,Z) as ν∗(α
∨ ·α′). It follows from the projection formula

that

(α, f(β)) = νS2,∗(α
∨ · π∗(π∗

√
tdS2 · ch(E) · p∗

√
tdS1 · p∗(β)))

= νS2,∗π∗(π
∗(α∨) · p∗(β) · ch(E) ·

√
tdS1×S2 )

= νS1×S2,∗(π
∗(α∨) · p∗(β) · ch(E) ·

√
tdS1×S2 )

for arbitrary α ∈ H∗(S2,Z) and β ∈ H∗(S1,Z). In the same way we see that

(β, f ′(α)) = νS1×S2,∗(p
∗(β∨) · π∗(α) · ch(E)∨ ·

√
tdS1×S2 ).

Hence, (α, f(β)) = (f ′(α), β). Since f ′ ◦ f is the identity map, it follows that

(f(α), f(α′)) = (f ′f(α), α′) = (α, α′).

Thus, f is an isometry.

4.2. The criterion for equivalence of derived categories of coherent
sheaves. In this section we give a criterion for the derived categories of coher-
ent sheaves on two K3 surfaces to be equivalent as triangulated categories. The
form of this criterion is very reminiscent of the Torelli theorem for K3 surfaces,
which says that two K3 surfaces S1 and S2 are isomorphic if and only if their
lattices of second cohomology are Hodge isometric, that is, there is an isometry

H2(S1,Z)
∼−→ H2(S2,Z)

whose extension to complex cohomology takes H2,0(S1) to H
2,0(S2) (see [39], [27]).

The main result of this chapter is as follows.

Theorem 4.2.1. Let S1 and S2 be two smooth projective K3 surfaces over the field
of complex numbers C. Then the derived categories of coherent sheaves Db(S1) and
Db(S2) are equivalent as triangulated categories if and only if there exists a Hodge

isometry f : H̃(S1,Z)
∼−→ H̃(S2,Z) between the Mukai lattices of S1 and S2.

There is another version of this theorem (Theorem 4.2.4) which may also be of
interest.
We break up the proof of Theorem 4.2.1 into two propositions. The proof of the

first proposition depends essentially on the main Theorem 3.2.1 of the preceding
chapter, since it uses the fact that every equivalence of derived categories can be
represented by an object on the product.
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Proposition 4.2.2. Let S1 and S2 be two K3 surfaces whose derived categories of
coherent sheaves are equivalent. Then there is a Hodge isometry between the lattices
of transcendental cycles TS1 and TS2 .

Proof. By Theorem 3.2.2, there is an object E on the product S1 × S2 that defines
the equivalence. It follows from Proposition 4.1.3 that fZE defines a Hodge isometry

between the Mukai lattices H̃(S1,Z) and H̃(S2,Z). Since the cycle Z is algebraic,
we obtain two isometries

falg : −NS(S1)⊥U
∼−→ −NS(S2)⊥U and fτ : TS1

∼−→ TS2 ,

where NS(S1) and NS(S2) are the Néron–Severi lattices and TS1 and TS2 the lattices
of transcendental cycles. It is obvious that fτ is a Hodge isometry.

The proof of the converse uses in an essential way the results of [31], which
studied moduli spaces of bundles on K3 surfaces, and it also uses Theorem 2.1.5,
which gave a criterion for a functor to be fully faithful (see [7]).

Proposition 4.2.3. Let S1 and S2 be two projective K3 surfaces. Suppose that
there exists a Hodge isometry

f : H̃(S2,Z)
∼−→ H̃(S1,Z).

Then the bounded derived categories of coherent sheaves Db(S1) and D
b(S2) are

equivalent.

Proof. We set v = f(0, 0, 1) = (r, l, s) and u = f(1, 0, 0) = (p, k, q). Without loss
of generality we can assume that r > 1. Indeed, a Mukai lattice has two types of
Hodge isometries. The first type is multiplication by the Chern character exp(m)
of a line bundle:

ϕm(r, l, s) =
(
r, l+ rm, s+ (m, l) +

r

2
m2
)
.

The second type is the transposition of r and s. Using these two types of permu-
tations, one can replace f in such a way that r becomes greater than 1.
The vector v ∈ U ⊥ −NS(S1) is obviously isotropic, that is, (v, v) = 0. In

his brilliant paper [31] Mukai proved that, in this case, there is a polarization A
on the K3 surface S1 such that the moduli space MA(v) of vector bundles whose
Mukai vector coincides with v and that are stable with respect to A is a smooth
projective K3 surface. Moreover, since there is a vector u ∈ U ⊥ −NS(S1) such
that (v, u) = 1, it follows that MA(v) is a fine moduli space. Hence, there exists a
universal bundle E on the product S1 ×MA(v).
The universal bundle E defines a functor ΦE : D

b(MA(v)) −→ Db(S1). One sees
readily that this functor satisfies the conditions of Theorem 2.1.5. Indeed, we have
ΦE(Ot) = Et, where Et is a stable bundle on S1 for which v(Et) = v. All the
sheaves Et are simple, and we of course have Ext

i(Et,Et) = 0 for i /∈ {0, 2}. This
gives condition 2) of Theorem 2.1.5.
Since the Et are stable, it follows that Hom(Et1 ,Et2) = 0. By Serre duality, also

Ext2(Et1 ,Et2) = 0. Since the vector v is isotropic, we also have Ext
1(Et1 ,Et2) = 0.
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Thus, the sheaves Et1 and Et2 are orthogonal for any two distinct points t1 and t2.
Theorem 2.1.5 gives us that the functor ΦE is fully faithful.
In fact, ΦE is not just fully faithful, but an equivalence of categories. This can

be shown by the following argument, which is based on the proof of Theorem 3.3
of [9]. Write D for the image of Db(MA(v)) in D

b(S1). Since it is an admissible
subcategory (see Definition 2.2.2), it admits right and left orthogonals; since the
canonical class of a K3 surface is trivial, it follows that these orthogonals coin-
cide. Thus, the semi-orthogonal decomposition of the form 〈D⊥,D〉 is completely
orthogonal. Consider a very ample line bundle L on MA(v). All the powers L

i are
indecomposable objects, and therefore belong to one or other of the subcategories
D or D⊥, and they all belong to the same one, because no pair of these objects
is completely orthogonal. However, the powers {Li} form an ample sequence (see
Definition 3.4.1). By Lemma 3.4.3, the orthogonal to a subcategory generated by
an ample sequence is 0. Thus, since D is non-trivial, it follows that D⊥ = 0. Hence,
ΦE is an equivalence.
Next, the cycle ZE defined by (47) induces a Hodge isometry

g : H̃(MA(v),Z)→ H̃(S1,Z)
for which g(0, 0, 1) = v = (r, l, s). Hence, f−1 ◦ g is also a Hodge isometry, and
takes (0, 0, 1) to (0, 0, 1). Thus, f−1 · g induces a Hodge isometry between the
second cohomology lattices of S2 and MA(v). Therefore, by the Torelli theorem
([39], [27]), S2 and MA(v) are isomorphic.

This proposition together with Proposition 4.1.3 prove Theorem 4.2.1. There is
another version of Theorem 4.2.1, which gives a criterion for equivalence of derived
categories in terms of the lattices of transcendental cycles.

Theorem 4.2.4. Let S1 and S2 be two smooth projective K3 surfaces over C.
Then the derived categories of coherent sheaves Db(S1) and D

b(S2) are equivalent as

triangulated categories if and only if there exists a Hodge isometry fτ : TS1
∼−→ TS2

between the lattices of transcendental cycles of S1 and S2.

This assertion is a corollary of Theorem 4.2.1 and the following proposition.

Proposition 4.2.5 [33]. Let ϕ1, ϕ2 : T −→ H be two primitive embeddings of the
lattice T into an even unimodular latticeH. Suppose that the orthogonal complement

N := ϕ1(T )
⊥ in H contains the hyperbolic lattice U =

(
0 1

1 0

)
as a sublattice. Then

ϕ1 and ϕ2 are equivalent, that is, there is an isometry γ of H such that ϕ1 = γϕ2.

Indeed, suppose that there is a Hodge isometry

fτ : TS2
∼−→ TS1 .

As we know, the orthogonal complement to the lattice of transcendental cycles TS
in the Mukai lattice H̃(S,Z) is isomorphic to the lattice −NS(S) ⊥ U. Thus, by
the previous proposition (Proposition 4.2.5), there is an isometry

f : H̃(S2,Z)
∼−→ H̃(S1,Z)

such that f |TS2 = fτ . Thus, the isometry f is also a Hodge isometry. Therefore,
by Theorem 4.2.1, the derived categories of coherent sheaves on S1 and S2 are
equivalent.
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CHAPTER 5

Abelian varieties

5.1. Equivalences between categories of coherent sheaves on Abelian
varieties. In this chapter we study derived categories of coherent sheaves on
Abelian varieties and their groups of auto-equivalences. Let A be an Abelian vari-
ety of dimension n over a field k. We write m : A × A → A for the composition
morphism, which is assumed to be defined over k, and e for the k-point which is
the identity of the group structure. For any k-point a ∈ A there is a translation
automorphism m( · , a) : A→ A, which we denote by Ta.
We write Â for the dual Abelian variety, which is the moduli space of line bundles

on A belonging to Pic0(A). Moreover, Â is a fine moduli space. Therefore, there

exists a universal line bundle P on the product A×Â, called the Poincaré bundle. It
is uniquely determined by the condition that for any k-point α ∈ Â the restriction
of P to A × {α} is isomorphic to the line bundle in Pic0(A) corresponding to α,
and, in addition, the restriction P|{e}×Â should be trivial.

Definition 5.1. In what follows we denote the line bundle on A corresponding to

a k-point α ∈ Â by Pα. Moreover, given a number of Abelian varieties A1, . . . , Am
and a k-point (α1, . . . , αm) ∈ Â1×· · ·×Âm, we denote by P(α1,...,αk) the line bundle
Pα1 � · · · � Pαk on the product A1 × · · · ×Ak.

For any homomorphism f : A→ B of Abelian varieties one defines a dual homo-
morphism f̂ : B̂ → Â. Pointwise, it acts by taking a point β ∈ B̂ to α ∈ Â if and
only if the line bundle f∗Pβ on A coincides with the bundle Pα.

The double dual or bidual Abelian variety
̂̂
A is naturally identified with A using

the Poincaré bundles on A × Â and on Â × ̂̂A. In other words, there is a unique
isomorphism κA : A

∼−→ ̂̂
A such that the pull-back of the Poincaré bundle PÂ under

the isomorphism 1× κA : Â×A
∼−→ Â× ̂̂A coincides with the Poincaré bundle PA,

that is, (1 × κA)∗PÂ ∼= PA. Thus, ̂ is an involution on the category of Abelian
varieties; that is, it is a contravariant functor whose square is isomorphic to the

identity functor: κ : id
∼−→ ̂̂.

The Poincaré bundle P gives an example of an exact equivalence between the
derived categories of coherent sheaves on two varieties A and Â that are not in
general isomorphic. Consider the projections

A
p←− A× Â q−→ Â

and the functor ΦP : D
b(A) −→ Db(Â) defined by (7):

ΦP( · ) = Rq∗(P⊗ p∗( · )).

The following proposition was proved in [29].
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Proposition 5.1.2 [29]. Let P be the Poincaré bundle on A× Â. Then the functor
ΦP : D

b(A) −→ Db(Â) is an exact equivalence, and there exists an isomorphism of
functors

ΨP ◦ ΦP ∼= (−1A)∗[n],

where (−1A) is the group inverse of A.

Remark 5.1.3. In [29] this assertion was proved for Abelian varieties over an alge-
braically closed field. However, it also holds over an arbitrary field because the
dual variety and the Poincaré bundle are always defined over the same field (see,
for example, [32]). And the assertion concerning the equivalence of categories will
follow from Lemma 5.1.9.
Consider a k-point (a, α) ∈ A × Â. To any such point one can assign a functor

from Db(A) to itself by the rule

Φ(a,α)( · ) := Ta∗( · ) ⊗ Pα = T ∗−a( · ) ⊗ Pα. (49)

The functor Φ(a,α) is represented by the sheaf

S(a,α) = OΓa ⊗ p∗2(Pα) (50)

on the product A × A, where Γa stands for the graph of the translation auto-
morphism Ta. The functor Φ(a,α) is obviously an auto-equivalence.

The set of all functors Φ(a,α) parametrized by A×Â can be collected into a single
functor from Db(A × Â) to Db(A × A) that takes the structure sheaf O(a,α) of a
point to S(a,α). (We note that this condition does not define the functor uniquely,

but only uniquely up to multiplication by a line bundle lifted from A× Â.)
We define the required functor ΦSA : D

b(A×Â) −→ Db(A×A) as the composite
of two other functors.
Consider the object PA = p

∗
14O∆ ⊗ p∗23P ∈ Db((A × Â) × (A × A)), and write

µA : A×A −→ A×A for the morphism taking (a1, a2) to (a1, m(a1, a2)). We obtain
two functors,

ΦPA : D
b(A × Â) −→ Db(A× A), RµA∗ : D

b(A× A) −→ Db(A ×A).

Definition 5.1.4. The functor ΦSA is the composite RµA∗ ◦ ΦPA .

Proposition 5.1.5. The functor ΦSA is an equivalence of categories. For any

k-point (a, α) ∈ A× Â it takes
a) the structure sheaf O(a,α) of (a, α) to the sheaf S(a,α) defined by (50),

b) the line bundle P(α,a) on A× Â to the object O{−a}×A ⊗ p∗2Pα[n].

Proof. By definition, ΦSA is the composite of the functors RµA∗ and ΦPA , which
are equivalences; this is obvious for the first functor and for the second it follows
from Propositions 2.1.7 and 5.1.2.
The functor ΦPA takes the structure sheaf O(a,α) of a point to OA×{a} ⊗ p∗1Pα.

Moreover, RµA∗ takes OA×{a} ⊗ p∗1Pα to OΓa ⊗ p∗1(Pα).
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In the same way, applying Proposition 5.1.2, we see that ΦPA takes the line
bundle P(α,a) to the object O{−a}×A⊗p∗2Pα[n], and RµA∗ takes O{−a}×A⊗p∗2Pα[n]
to itself.

Suppose that A and B are two Abelian varieties whose derived categories of
coherent sheaves are equivalent. Let us fix some equivalence. By Theorem 3.2.2,
it can be represented by an object on the product. Thus, there is an object E ∈
Db(A ×B) and an equivalence ΦE : Db(A) ∼−→ Db(B).
Consider the functor

AdE : D
b(A ×A) ∼−→ Db(B ×B),

defined by (11), which is an equivalence. And consider the composite of functors
Φ−1SB ◦AdE ◦ΦSA .

Definition 5.1.6. We denote by J(E) the object representing the functor

Φ−1SB ◦AdE ◦ΦSA.

Thus, we have the commutative diagram

Db(A × Â)
ΦSA−−−−→ Db(A× A)

ΦJ(E)

� �AdE
Db(B × B̂)

ΦSB−−−−→ Db(B × B)

. (51)

The following theorem allows us to compute the object J(E); it is the main tool
for describing Abelian varieties having equivalent derived categories of coherent
sheaves.

Theorem 5.1.7. There exists a homomorphism of Abelian varieties fE : A×Â −→
B×B̂ which is an isomorphism, and a line bundle LE on A×Â such that the object
J(E) is isomorphic to i∗(LE), where i is the embedding of A×Â in (A×Â)×(B×B̂)
as the graph of the isomorphism fE.

Before proceeding to the proof of the theorem, we state two lemmas that allow
us to assume that the field k is algebraically closed. We write k for the algebraic
closure of k, set X := X ×Spec(k) Spec(k), and write F for the inverse image of F
under the morphism X −→ X.

Lemma 5.1.8 [37]. Let F be a coherent sheaf on a smooth variety X. Suppose that
there exist a closed subvariety j : Z ↪→ X and an invertible sheaf L on Z such
that F ∼= j∗L. Then there exist a closed subvariety i : Y ↪→ X and an invertible
sheaf M on Y such that F ∼= i∗M and j = ⊂.

The next lemma tells us that the property that a functor is fully faithful (or an
equivalence) is stable under field extensions.
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Lemma 5.1.9 [37]. Let X and Y be smooth projective varieties over a field k and
E an object of the derived category Db(X × Y ). Consider a field extension F/k
and the varieties

X′ = X ×Spec(k) Spec(F ), Y ′ = Y ×Spec(k) Spec(F ).

Let E′ be the lift of E to the categoryDb(X′×Y ′). Then the functor ΦE : Db(X) −→
Db(Y ) is fully faithful (or an equivalence) if and only if ΦE′ : D

b(X′) −→ Db(Y ′)
is fully faithful (respectively, an equivalence).

Proof of Theorem 5.1.7. Using Lemmas 5.1.8 and 5.1.9, we can pass to the algebraic
closure of the field k.

Step 1. Write e ∈ A×Â and e′ ∈ B×B̂ for the closed points which are the identity
elements of the group structures. We consider the skyscraper sheaf Oe and evaluate
its image under the functor ΦJ(E). By definition,

ΦJ(E) = Φ
−1
SB
◦AdE ◦ΦSA .

By Proposition 5.1.5, the functor ΦSA takes Oe to the structure sheaf O∆(A) of the
diagonal in A×A. Since the structure sheaf of the diagonal represents the identity
functor, it follows from (12) that AdE(O∆(A)) is the structure sheaf O∆(B) of the
diagonal in B × B. In turn, this sheaf goes to the structure sheaf Oe′ under
the action of the functor Φ−1SB , by Proposition 5.1.5 again.

Step 2. Thus, we see that

J(E) ⊗LO{e}×(B×B̂) ∼= O{e}×{e′}.

It follows from this that there is an affine neighbourhood U = Spec(R) of e in the
Zariski topology such that the object J′ := J(E)|U×(B×B̂) is a coherent sheaf whose

support intersects the fibre {e} × (B × B̂) at the point {e} × {e′}. We recall that
the support of any coherent sheaf is a closed subset.

Consider now some affine neighbourhood V = Spec(S) of the point e′ in B× B̂.
The intersection of the support of J′ with the complement B × B̂ \ V is a closed
subset whose projection to A× Â is a closed subset not containing the point e.
Thus, reducing U if necessary, we can assume that it is still affine and the support

of J′ is contained in U × V . This means that there is a coherent sheaf F on U × V
such that j∗(F) = J

′, where j is the embedding of U × V into U × (B × B̂). We
denote byM the finitely generated R⊗S-module corresponding to the sheaf F, that
is, F = M̃ . Moreover, we note that M is a finitely generated R-module, because
the direct image under projection of a coherent sheaf J′ = j∗F is a coherent sheaf.
Let m be the maximal ideal of R corresponding to the point e. As we know,

M ⊗R R/m ∼= R/m.

Hence, there exists a homomorphism of R-modules ϕ : R −→ M which becomes
an isomorphism after tensoring with R/m. Thus, the supports of the coherent
sheaves Kerϕ and Cokerϕ do not contain the point e. Therefore, replacing U
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by a smaller affine neighbourhood of e disjoint from the supports of the sheaves
Kerϕ and Cokerϕ, we see that ϕ is an isomorphism. Hence, there is a subscheme

X(U) ⊂ U × (B× B̂) such that the projection X(U) −→ U is an isomorphism and

J′ = J(E)|U×(B×B̂)
∼= OX(U).

Step 3. We have thus proved that for any closed point (a, α) ∈ U ,

ΦJ(E)(O(a,α)) ∼= O(b,β)

for some closed point (b, β) ∈ B × B̂. If we now consider an arbitrary closed point
(a, α) ∈ A × Â, we can always express it as a sum (a, a′) = (a1, α1) + (a2, α2),
where the points (a1, α1) and (a2, α2) belong to U . Write (b1, β1) and (b2, β2) for
the images of these points under the functor ΦJ(E). As we know, the functor ΦSA
takes the structure sheaf O(a,α) to the sheaf S(a,α). We denote by G the object
AdE(S(a,α)). We compute it using (12). We have an isomorphism

ΦG ∼= ΦE ◦ Φ(a,α) ◦Φ−1E .

However, the functor Φ(a,α), equal by definition (49) to T
∗
a ( · )⊗Pα, can be expressed

as the composite Φ(a1,α1)Φ(a2,α2). We thus obtain a chain of isomorphisms

ΦG ∼= ΦE ◦ Φ(a,α) ◦ Φ−1E ∼= ΦE ◦ Φ(a1,α1) ◦ Φ
−1
E

∼= ΦE ◦ Φ(a2,α2) ◦ Φ−1E ∼= Φ(b1,β1) ◦ Φ(b2,β2) ∼= Φ(b,β),

where (b, β) = (b1, β1) + (b2, β2). Therefore, the object G is isomorphic to S(b,β).
We finally obtain

ΦJ(E)(O(a,α)) ∼= O(b,β) for any closed point (a, α) ∈ A× Â.

Now repeating the procedure of Step 2, for any closed point (a, a′) we can find a

neighbourhoodW and a subscheme X(W ) ⊂W ×(B×B̂) such that the projection
X(W ) −→ W is an isomorphism, and J|W×(B×B̂)

∼= OX(W) . Gluing all these
neighbourhoods together, we find a subvariety i : X ↪→ (A×Â)×(B×B̂) such that
the projection X −→ A × Â is an isomorphism, and the sheaf J(E) is isomorphic
to i∗L, where L is a line bundle on X. The subvariety X defines a homomorphism

from A × Â to B × B̂ which induces an equivalence of derived categories. Hence,
this homomorphism is an isomorphism.

In particular, it follows at once from the theorem that, if two Abelian varietiesA
and B have equivalent derived categories of coherent sheaves, then the varieties

A × Â and B × B̂ are isomorphic. We show below that this isomorphism must
satisfy a certain additional condition (see Proposition 5.1.15).
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Corollary 5.1.10. The isomorphism fE takes a k-point (a, α) ∈ A× Â to a point
(b, β) ∈ B × B̂ if and only if the equivalences

Φ(a,α) : D
b(A)

∼−→ Db(A), Φ(b,β) : D
b(B)

∼−→ Db(B),

defined by the formula (49) are related as follows:

Φ(b,β) ◦ ΦE ∼= ΦE ◦ Φ(a,α),

or, in terms of the objects,

Tb∗E⊗ Pβ ∼= T−a∗E⊗ Pα = T ∗aE⊗ Pα.

Proof. By Theorem 5.1.7, ΦJ(E) takes the structure sheaf O(a,α) of (a, α) to the
structure sheaf O(b,β) of (b, β) = fE(a, α). It follows from Proposition 5.1.5 that
ΦSA takes O(a,α) to S(a,α). In turn, the sheaf S(a,α) represents the functor

Φ(a,α) = Ta∗( · ) ⊗ Pα.

Now using diagram (51), we see that fE takes (a, α) to (b, β) if and only if S(b,β) ∼=
AdE(S(a,α)). Applying formula (12), we see that Φ(b,β) ∼= ΦE ◦ Φ(a,α) ◦ Φ−1E .

In what follows we need an explicit formula for the object J(E) in the special
case when A = B and the equivalence ΦE is equal to Φ(a,α) defined by the formula
(49).

Proposition 5.1.11. Let A = B. Consider the object S(a,α) on A×A representing
the equivalence Φ(a,α) given by (49). Then J(S(a,α)) is equal to ∆∗P(α,−a), where

∆ is the diagonal embedding of A× Â into (A× Â)× (A× Â) and P(α,a) is the line
bundle on A× Â defined in 5.1.1.

Proof. It follows from Proposition 5.1.5 that ΦSA takes O(a′,α′) to the sheaf S(a′,α′)
on A×A (50). Moreover, AdS(a,α) takes S(a′,α′) to itself because, by formula (12),
the object AdS(a,α)(S(a′,α′)) represents the functor

Φ(a,α) ◦Φ(a′,α′) ◦ Φ−1(a,α),

which is in turn isomorphic to Φ(a′,α′) because all such functors commute with one
another. Thus, we see that the functor defined by J(S(a,α)) takes the structure
sheaf of every point to itself, and thus the sheaf J(S(a,α)) is some line bundle L
concentrated on the diagonal.
Now to find the line bundle L, we ask where the functor sends the bundle P(α′,a′).

Applying Proposition 5.1.5 again, we see that the functor ΦSA takes P(α′,a′) to the
object O{−a′}×A ⊗ p∗2(Pα′)[n]. Next, one sees readily that this goes to the object
O{−a′+a}×A ⊗ p∗2(Pα′+α)[n] under the functor AdS(a,α) . Hence, under the action
of the functor given by the sheaf J(S(a,α)), the bundle P(α′,a′) goes to the bundle
P(α′+α,a′−a). That is, L is isomorphic to P(α,−a).
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For Abelian varieties A and B, write Eq(A,B) for the set of all exact equivalences
from Db(A) to Db(B) up to isomorphism. We introduce two groupoids A and D
(that is, categories in which all morphisms are invertible). In both, the objects are
Abelian varieties. The morphisms in A are isomorphisms between Abelian varieties
regarded as algebraic groups. The morphisms in D are exact equivalences between
the derived categories of coherent sheaves on Abelian varieties; that is,

MorA(A,B) := Iso(A,B) and MorD(A,B) := Eq(A,B).

Theorem 5.1.7 provides a map from the set Eq(A,B) to the set Iso(A×Â, B×B̂),
taking an equivalence ΦE to the isomorphism fE. We consider the map F fromD to
A that assigns to an Abelian variety A the variety A×Â and acts on the morphisms
as described above.

Proposition 5.1.12. The map F : D −→ A is a functor.
Proof. To prove the assertion, we need only show that F respects composition of
morphisms. Consider three Abelian varieties A, B, and C. Let E and F be objects
of Db(A× B) and Db(B × C) respectively, such that the functors

ΦE : D
b(A) −→ Db(B) and ΦF : D

b(B) −→ Db(C)

are equivalences. We denote by G the object of Db(A × C) that represents the
composite of these functors.
The relation (10) gives an isomorphism AdG ∼= AdF ◦AdE. Hence, we see that

ΦJ(F) ◦ΦJ(E) ∼= (Φ−1SA ◦AdF ◦ΦSA) ◦ (Φ
−1
SA
◦AdE ◦ΦSA) ∼= Φ−1SA ◦AdG ◦ΦSA ∼= ΦJ(G).

By Theorem 5.1.7, all the objects J(E), J(F), and J(G) are line bundles concentrated
on the graphs of the isomorphisms fE, fF, and fG, respectively. Thus, we obtain
the relation fG = fF · fE.
Corollary 5.1.13. Let A be an Abelian variety and ΦE an auto-equivalence of
the derived category Db(A). Then the correspondence ΦE �→ fE defines a group
homomorphism

γA : AuteqD
b(A) −→ Aut(A × Â).

Thus, there is a functor F : D −→ A. Our next objective is to describe this
functor. For this, we must determine which elements of Iso(A × Â, B × B̂) can be
realized as fE for some E, and also answer the question of when fE1 = fE2 holds
for two equivalences E1 and E2.

Consider an arbitrary morphism f : A×Â −→ B×B̂. It is convenient to represent
it as a matrix (

α β
γ δ

)
,

where α is a morphism from A to B, β from Â to B, γ from A to B̂, and δ from

Â to B̂. Each morphism f defines two other morphisms f̂ and f̃ from B × B̂ to
A× Â having the following matrix forms:

f̂ =

(
δ̂ β̂
γ̂ α̂

)
and f̃ =

(
δ̂ −β̂
−γ̂ α̂

)
.
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We define the set U(A×Â, B×B̂) to be the subset of Iso(A×Â, B×B̂) consisting
of f such that f̃ coincides with the inverse of f , that is,

U(A× Â, B × B̂) :=
{
f ∈ Iso(A× Â, B × B̂)

∣∣ f̃ = f−1}.
If B = A, then we denote this set by U(A × Â). We note that U(A × Â) is a
subgroup of Aut(A× Â).

Definition 5.1.14. We say that an isomorphism f : A× Â ∼−→ B× B̂ is isometric
if it belongs to U(A × Â, B × B̂).
Proposition 5.1.15. For any equivalence ΦE : D

b(A)
∼−→ Db(B) the isomorphism

fE is isometric.

Proof. Passing to the algebraic closure if necessary, we can assume that k is alge-

braically closed. To verify the equality f̃E = f
−1
E , it is enough to establish that

these morphisms coincide at closed points. Suppose that fE takes (a, α) ∈ A × Â
to (b, β) ∈ B × B̂. We must show that f̃E(b, β) = (a, α), or, equivalently, that
f̂E(−b, β) = (−a, α).
The isomorphism fE is given by the Abelian subvariety X ↪→ A × Â × B × B̂.

Hence, we must show that P(0,0,β,−b) ⊗ OX ∼= P(α,−a,0,0) ⊗ OX , or, equivalently,
that

J′ := P(−α,a,β,−b) ⊗ J(E)
is isomorphic to the sheaf J(E).
By Proposition 5.1.11, the functor given by J′ is the composite of the functors

represented by the objects J(S(−a,−α)), J(E), and J(S(b,β)). Thus, J
′ coincides with

J(E′), where E′ is the object of Db(A× B) representing the functor

Φ(b,β) ◦ ΦE ◦ Φ(−a,−α).

By Corollary 5.1.10, this composite is isomorphic to the functor ΦE. This means
that the object E′ is isomorphic to E, and hence J′ = J(E′) ∼= J(E).
As a corollary of Theorem 5.1.7 and Proposition 5.1.15 we get the following

result.

Theorem 5.1.16. Let A and B be two Abelian varieties over a field k. If the
derived categories of coherent sheaves Db(A) and Db(B) are equivalent as triangu-

lated categories, then there is an isometric isomorphism between A× Â and B× B̂.
The converse holds for Abelian varieties over an algebraically closed field of

characteristic 0, as proved in [38]. We give another proof of this fact in § 5.3.
Corollary 5.1.17. For any Abelian variety A there are only finitely many non-
isomorphic Abelian varieties whose derived categories of coherent sheaves are equiv-
alent to Db(A) (as triangulated categories).

Proof. It was proved in [26] that, for any Abelian variety Z, there are only finitely
many Abelian varieties up to isomorphism admitting an embedding in Z as Abelian

subvarieties. Applying this assertion to Z = A × Â and using Theorem 5.1.16, we
obtain the desired result.
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5.2. Objects representing equivalences, and groups of auto-equivalences.
It follows from Propositions 5.1.12 and 5.1.15 that there exists a homomorphism

from the group AuteqDb(A) of exact auto-equivalences to the group U(A × Â)
of isometric automorphisms. In this section we describe the kernel of this homo-
morphism. As we know from Proposition 5.1.11, all the equivalences Φ(a,α)[n]
belong to the kernel. We show that the kernel consists exactly of these. To prove
this, we need an assertion which is of independent interest: we prove that for an
Abelian variety, if a functor of the form ΦE is an equivalence, then the object E on
the product is actually a sheaf, up to a shift in the derived category. We note that
this is false, for example, for K3 surfaces.

Lemma 5.2.1. Let E be an object on A×B defining an equivalence ΦE : Db(A) −→
Db(B). Consider the projection q : (A× Â)× (B × B̂) −→ A×B and write K for
the direct image Rq∗J(E), where J(E) is the object defined in 5.1.6. Then K is
isomorphic to the object E ⊗ (E∨|(0,0)), where E∨|(0,0) stands for the complex of
vector spaces which is the inverse image of the object R·Hom(E,OA×B) under the
embedding of the point (0, 0) into the Abelian variety A ×B.
Proof. Consider the Abelian variety

Z = (A× Â)× (A× A) × (B ×B) × (B × B̂)

and the object

H = p∗1234SA ⊗ p∗35E∨[n]⊗ p∗46E⊗ p∗5678S∨B [2n].

It follows from Proposition 2.1.2 on composition of functors and from diagram (51)
that J(E) ∼= p1278∗H, and hence the object K equals p17∗H. To evaluate the latter
object, we first consider the projection of Z to

V = A× (A× A)× (B × B) ×B,

and denote it by v. Now, to evaluate v∗H, we recall that the functor ΦSA is the
composite of ΦPA and RµA∗, where

PA = p
∗
14O∆ ⊗ p∗23P ∈ Db((A × Â)× (A× A)).

One sees readily that p134∗PA ∼= OTA [−n], where T ⊂ A× A× A is the subvariety
isomorphic to A and consisting of the points (a, 0, a). Next, taking into account the
equality µA(a1, a2) = (a1, m(a1, a2)), we can see that p134∗SA is also isomorphic to
OTA [−n]. We verify the equality p134∗S∨B [2n] = OTB in the same way.
Thus, we have

v∗H ∼= p∗123OTA ⊗ p∗24E∨ ⊗ p∗35E⊗ p∗456OTB
on V . Consider the embedding

j : A× A× B × B −→ V given by (a1, a2, b1, b2) �→ (a1, 0, a2, 0, b1, b2).

The object v∗H is isomorphic to j∗M, where

M = (E∨|(0,0)) ⊗ p∗12O∆A ⊗ p∗23E⊗ p∗34O∆B .

Finally, we see that K ∼= p14∗M ∼= (E∨|(0,0))⊗ E.
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Proposition 5.2.2. Let A and B be Abelian varieties and E an object of Db(A×B)
such that the functor ΦE : D

b(A)
∼−→ Db(B) is an exact equivalence. Then E has

only one non-trivial cohomology sheaf, that is, it is isomorphic to an object F[n],
where F is a sheaf on A× B.
Proof. Consider the projection

q : (A × Â)× (B × B̂) −→ A×B

and write q′ for its restriction to the Abelian subvariety X which is the support of
the sheaf J(E) and the graph of the isomorphism fE. By Theorem 5.1.7, J(E) equals
i∗(L), where L is a line bundle on X. We write K for the object R

·q∗J(E) =R
·q′∗L.

The morphism q′ is a homomorphism of Abelian varieties; set d = dimKer(q′).
Then dim Im(q′) = 2n − d, so that the cohomology sheaves Hj(K) are trivial for
j /∈ [0, d].
On the other hand, by Lemma 5.2.1, K is isomorphic to E⊗ (E∨|(0,0)).
After shifting E in the derived category if necessary, we can assume that the

rightmost non-zero cohomology sheaf of E is H0(E). Let H−i(E) for i � 0 be
the leftmost non-zero cohomology sheaf of E, and Hk(E∨) the highest non-zero
cohomology sheaf of E∨. Replacing E by T ∗(a,b)E if necessary, we can assume that

the point (0, 0) belongs to the support of Hk(E∨). Since the support of E coincides
with the support of K, it follows that the supports of all cohomology sheaves E
belong to Im(q′). In particular, we have the inequality codimSuppH−i(E) � d.
Hence, the cohomology sheaf of the object (H−i(E))∨[−i] of degree less than i+ d
is trivial.
The canonical morphism H−i(E)[i] −→ E induces a non-trivial morphism

E∨ −→ (H−i(E))∨[−i].

Since the indices of the non-trivial cohomology sheaves of the second object belong
to the ray [i+ d,∞), we see that k � i+ d, where, as above, Hk(E∨) is the highest
non-zero cohomology sheaf of E∨. Thus, the object

K = E∨|(0,0) ⊗ E (52)

has non-trivial cohomology sheaf with the same index k � i+d. On the other hand,
we already know that all the cohomology sheaves Hj(K) are trivial for j /∈ [0, d].
This is only possible if i = 0. Thus, the object E has only one non-trivial cohomology
sheaf, with index 0, and hence it is isomorphic to a sheaf.

We now consider the case B ∼= A. Let E be a sheaf on A×A such that ΦE is an
auto-equivalence. We want to describe all the sheaves E for which fE is the identity

map, that is, its graph X is the diagonal in (A× Â)× (A× Â). Thus, the object

K = E∨|(0,0) ⊗ E = R·q∗J(E)

is of the form ∆∗(M), where M is an object on A and ∆: A −→ A × A is the
diagonal embedding.
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We assume first that (0, 0) belongs to the support of E. Hence, E∨|(0,0) is a
non-trivial complex of vector spaces. Then the condition K = ∆∗(M) implies the
existence of a sheaf E on A such that E ∼= ∆∗(E). Hence, ΦE( · ) ∼= E ⊗ ( · ). Since
ΦE is an auto-equivalence, E is a line bundle. One sees readily that the condition
fE = id can only hold if E ∈ Pic0(A).
If (0, 0) does not belong to SuppE, we replace E by the sheaf E′ := T(a1,a2)∗E

in such a way that its support contains (0, 0). It follows from Proposition 5.1.11
that fE′ = fE. As shown above, there is an isomorphism E

′ ∼= ∆∗(E′), where
E′ ∈ Pic0(A). Hence, E ∼= T(a1−a2,0)∗∆∗(E′). We thus obtain the corollary.
Proposition 5.2.4. Let A be an Abelian variety. The kernel of the homomorphism

γA : AuteqD
b(A) −→ U(A × Â)

consists of the auto-equivalences of the form Φ(a,α)[i] = Ta∗( · ) ⊗ Pα[i], and hence
is isomorphic to the group Z ⊕ (A × Â)k, where (A × Â)k is the group of k-points
of the Abelian variety A× Â.
Corollary 5.2.4. Let A and B be two Abelian varieties and E1 and E2 objects
on the product A × B that define equivalences between their derived categories of
coherent sheaves. In this case if fE1 = fE2 , then

E2 ∼= Ta∗E1 ⊗ Pα[i]

for some k-point (a, α) ∈ A × Â.
5.3. Semi-homogeneous vector bundles. In the previous sections we showed
that an equivalence ΦE from D

b(A) to Db(B) induces an isometric isomorphism of

varieties A×Â and B×B̂. In this section we assume that the field k is algebraically
closed and char(k) = 0. Under these assumptions, using the technique of [30] and

the results of [7], we will show that every isometric isomorphism f : A×Â −→ B×B̂
can be realized in this way. The fact that the existence of an isometric isomorphism

between the varieties A × Â and B × B̂ implies the equivalence of the derived
categories Db(A) and Db(B) was proved in [38]. Thus, we will give another proof
of this fact.
We first recall that every line bundle L on an Abelian variety D gives a map

ϕL from D to D̂ that sends a point d to the point corresponding to the bundle
T ∗dL ⊗ L−1 ∈ Pic

0(D). This correspondence defines an embedding of NS(D) into

Hom(D, D̂). Moreover, it is known that the map ϕ : D −→ D̂ belongs to the image
of NS(D) if and only if ϕ̂ = ϕ.
Semi-homogeneous bundles on an Abelian variety allow us to generalize the

above phenomenon as follows. To every element of NS(D) ⊗ Q one assigns a cor-
respondence on D × D̂, and every such correspondence is obtained from a semi-
homogeneous bundle (see Proposition 5.3.6 and Lemma 5.1.10 below).
We first recall the definitions of homogeneous and semi-homogeneous bundles on

Abelian varieties and some facts concerning them.

Definition 5.3.1. A vector bundle E on an Abelian variety D is homogeneous if
T ∗d (E)

∼= E for every point d ∈ D.
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Definition 5.3.2. We say that a vector bundle F on an Abelian variety D is
unipotent if there is a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F

such that Fi/Fi−1 ∼= OD for all i = 1, . . . , n.
The following proposition characterizes homogeneous vector bundles.

Proposition 5.3.3 ([28], [30]). Let E be a vector bundle on an Abelian variety D.
Then the following conditions are equivalent :

(i) E is homogeneous,
(ii) there exist line bundles Pi ∈ Pic0(D) and unipotent bundles Fi such that
E ∼=

⊕
i(Fi ⊗ Pi).

Definition 5.3.4. A vector bundle E on an Abelian variety D is said to be semi-
homogeneous if for every point d ∈ D there exists a line bundle L on D such that
T ∗d (E)

∼= E⊗ L. (We note that, in this case, the bundle L belongs to Pic0(D).)
We recall that a vector bundle on a variety is simple if its endomorphism algebra

coincides with the field k.
The following assertion was proved in [30].

Proposition 5.3.5 ([30], Theorem 5.8). Let E be a simple vector bundle on an
Abelian variety D. Then the following conditions are equivalent :

(1) dimHj(D,End(E)) =
(
n
j

)
for any j, j = 0, . . . , n,

(2) E is a semi-homogeneous bundle,
(3) End(E) is a homogeneous bundle,
(4) there exists an isogeny π : Y −→ D and a line bundle L on Y such that
E ∼= π∗(L).

Let E be a vector bundle on an Abelian variety D. We write µ(E) for the

equivalence class
det(E)
r(E) in NS(D) ⊗Z Q. To every element µ =

[L]
l ∈ NS(D) ⊗Z Q,

and hence to each bundle E, we can assign a correspondence Φµ ⊂ D× D̂ given by
Φµ = Im

[
D

(l,ϕL)−−−−→ D × D̂
]
, where ϕL is the well-known map from D to D̂ that

takes d to the point corresponding to the bundle T ∗dL ⊗ L−1 ∈ Pic
0(D). If the

bundle is a line bundle L, we obtain the graph of the map ϕL : D −→ D̂. We write
q1 and q2 for the projections of Φµ to D and D̂ respectively.
The paper [30] contains a complete description of all simple semi-homogeneous

bundles.

Proposition 5.3.6 ([30], 7.10). Let µ =
[L]
l , where [L] is the equivalence class of

a bundle L in NS(D) and l a positive integer. Then

(1) there is a simple semi-homogeneous vector bundle E with slope µ(E) = µ;
(2) every simple semi-homogeneous vector bundle E′ with slope µ(E′) = µ is of
the form E⊗M for some line bundle M ∈ Pic0(D);

(3) we have the equalities r(E)2 = deg(q1) and χ(E)
2 = deg(q2).

The following assertion enables one to characterize all semi-homogeneous vector
bundles in terms of simple bundles.
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Proposition 5.3.7 ([30], 6.15, 6.16). Every semi-homogeneous vector bundle F
with slope µ has a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F

such that Ei = Fi/Fi−1 are simple semi-homogeneous vector bundles with the same
slope µ. Every simple semi-homogeneous bundle is stable.

The next two lemmas concerning semi-homogeneous bundles are direct corollaries
of the above assertions, and will be useful in what follows.

Lemma 5.3.8. Two simple semi-homogeneous bundles E1 and E2 with the same
slope µ are either isomorphic or orthogonal to each other ; that is, either E1 = E2
or

Exti(E1,E2) = 0 and Exti(E2,E1) = 0 for all i.

Proof. It follows from Proposition 5.3.6 that E2 ∼= E1⊗M, and hence Hom(E1,E2)
is a homogeneous bundle. By Proposition 5.3.3, every homogeneous bundle can be
represented as the sum of unipotent bundles twisted by line bundles in Pic0(D).
Therefore, either all the cohomologyHom(E1,E2) vanishes, and hence the bundles
E1 and E2 are orthogonal, or Hom(E1,E2) admits a non-zero section. In the last
case we obtain a non-zero homomorphism from E1 to E2. However, these two
bundles are stable and have the same slope. Thus, every non-zero homomorphism
is actually an isomorphism.

Lemma 5.3.9. Let E be a simple semi-homogeneous vector bundle on an Abelian
variety D. Then T ∗d (E)

∼= E⊗ Pδ if and only if (d, δ) ∈ Φµ.
Proof. We first show that for any point (d, δ) ∈ Φµ there is an isomorphism T ∗d (E) ∼=
E⊗Pδ. Indeed, set l = r(E) and L = det(E). By definition of Φµ, we know that we
can express (d, δ) = (lx, ϕL(x)) for some point x ∈ D. Since E is semi-homogeneous,
there is a line bundle M ∈ Pic0(D) such that

T ∗x (E)
∼= E⊗M. (53)

Equating determinants, we obtain the equality T ∗x (L)
∼= L ⊗M⊗l. By definition

of the map ϕL, this means that PϕL(x) = M
⊗l. On the other hand, iterating the

equality (53) l times, we obtain

T ∗lx(E)
∼= E⊗M⊗l = E⊗ PϕL(x).

Hence, T ∗d (E)
∼= E⊗ Pδ because (d, δ) = (lx, ϕL(x)).

Now for the converse. We introduce the subgroup Σ0(E) ⊂ D̂ given by the
condition

Σ0(E) :=
{
δ ∈ D̂

∣∣ E⊗ Pδ ∼= E}. (54)

Since E is semi-homogeneous, End(E) is homogeneous by Proposition 5.3.5. Thus,
End(E) can be represented as a sum

⊕
i(Fi ⊗ Pi), where all the Fi are unipotent.

Hence, H0(End(E) ⊗ P) �= 0 for at most r2 line bundles P ∈ Pic0(D). That is,
the order of the group Σ0(E) does not exceed r2. On the other hand, it is known
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that q2(Ker(q1)) ⊂ Σ0(E). Hence, we obtain the equalities ordΣ0(E) = r2 and
q2(Ker(q1)) = Σ

0(E).

We now assume that T ∗d (E)
∼= E ⊗ Pδ for some point (d, δ) ∈ D × D̂. Consider

a point δ′ ∈ D̂ such that (d, δ′) ∈ Φµ. As already proved above, there is then an
isomorphism T ∗d (E)

∼= E ⊗ Pδ′ . Hence, E ⊗ P(δ−δ′) ∼= E, and thus δ − δ′ ∈ Σ0(E).
However, since Σ0(E) = q2(Ker(q1)), it follows that the point (0, δ− δ′) belongs to
Φµ. Thus, the point (d, δ) also belongs to Φµ.

Let f be an isometric isomorphism. We now present a construction which shows
how to construct from f an object E on the product such that E defines an equiv-
alence of derived categories and for which fE coincides with f .

Construction 5.3.10. We fix an isometric isomorphism f : A× Â −→ B× B̂ and
write Γ for its graph. As above, we represent the isomorphism f in the matrix form

f =

(
x y
z w

)
.

Suppose that y : Â −→ B is an isogeny. In this case one assigns to the map f an
element g ∈ Hom(A× B, Â× B̂) ⊗Z Q of the form:

g =

(
y−1x −y−1
−ŷ−1 wy−1

)
.

The element g defines a certain correspondence on (A × B) × (Â × B̂). One sees
readily that the condition that f is isometric implies the equality ĝ = g. This
means that g in fact belongs to the image of NS(A × B) ⊗Z Q under its canonical
embedding into Hom(A×B, Â×B̂)⊗ZQ (see, for example, [32]). Hence, there exists
µ = [L]

l ∈ NS(A×B) such that Φµ coincides with the graph of the correspondence g.
Proposition 5.3.6 tells us that for any µ one constructs a simple semi-homogeneous
bundle E on A× B with slope µ(E) = µ.
We show presently that the functor ΦE from D

b(A) to Db(B) is an equivalence
and fE = f . However, first let us compare the graphs Γ and Φµ. If a point
(a, α, b, β) belongs to Γ, then

b = x(a) + y(α),

β = z(a) + w(α),
and hence

α = −y−1x(a) + y−1(b),
β = (z − wy−1x)(a) + wy−1(b).

Since f is isometric, we have the equality (z − wy−1x) = −ŷ−1. Thus, a point
(a, α, b, β) belongs to the graph Γ if and only if (a,−α, b, β) belongs to Φµ. There-
fore,

Φµ = (1A,−1Â, 1B, 1B̂)Γ.

In particular, since f is an isomorphism, it follows that the projections of Φµ to

A× Â and B × B̂ are isomorphisms.
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Proposition 5.3.11. Let E be the semi-homogeneous bundle on A×B constructed
from an isometric isomorphism f as just described. Then the functor ΦE : D

b(A)→
Db(B) is an equivalence.

Proof. We write Ea for the restriction of E to the fibre {a}×B. By Theorem 2.1.5,
to prove that the functor ΦE is fully faithful, it is enough to show that all the
bundles Ea are simple and mutually orthogonal for distinct points.
First note that by Proposition 5.3.6, the rank of E is equal to the square root of

the degree of the map Φµ −→ A× B, that is,
√
deg(β).

Since E is semi-homogeneous, we see at once that all the bundles Ea are also
semi-homogeneous. Moreover, the slope µ(Ea) of the restriction is equal to δβ

−1 ∈
NS(B) ⊗Q ⊂ Hom(B, B̂)⊗Q. For brevity we denote δβ−1 by ν, considering it as
an element of NS(B)⊗Q. By Proposition 5.3.6, there is a simple semi-homogeneous
bundle F on B with the given slope µ(F) = ν. Obviously, in this case the map Φν

is Im
[
Â

(β,δ)−−−→ B×B̂
]
. Since f is an isomorphism, it follows that Â

(β,δ)−→ B×B̂ is
an embedding. Hence, applying Proposition 5.3.6 again, we obtain the equality
r(F) =

√
deg(β) = r(Ea). Thus, the two bundles F and Ea are semi-homogeneous

and have the same slope and the same rank. Moreover, the bundle F is simple. It
follows from Propositions 5.3.7 and 5.3.6, (2) that Ea is also a simple bundle.
Next, it follows from Lemma 5.3.8 that for two points a1, a2 ∈ A, the bundles

Ea1 and Ea2 are either orthogonal or isomorphic. Suppose that they are isomorphic.
Since E is semi-homogeneous, it follows that

T ∗(a2−a1,0)E
∼= E⊗ P(α,β) (55)

for some point (α, β) ∈ Â× B̂. In particular, we obtain

Ea2 ⊗ Pβ ∼= Ea1 ∼= Ea2 .

Hence, Pβ ∈ Σ0(Ea) (see (54)).
By Lemma 5.3.9 and Proposition 5.3.6, the orders of the groups Σ0(E) and

Σ0(Ea) are equal to r
2. We claim that the natural map σ : Σ0(E) −→ Σ0(Ea) is

an isomorphism. Indeed, otherwise there would exist a point α′ ∈ Â such that
E ⊗ Pα′ ∼= E. Then (0, α′, 0, 0) ∈ Φµ by Lemma 5.3.9. This contradicts the fact
that the projection Φµ −→ B × B̂ is an isomorphism.
Now if σ is an isomorphism, there is a point α′ ∈ Â such that E⊗ P(α′,β) ∼= E.

It follows from (55) that

T ∗(a2−a1,0)E
∼= E⊗ P(α−α′,0).

By Lemma 5.3.9 this means that the point (a2 − a1, α − α′, 0, 0) belongs to Φµ.
Since the projection Φµ −→ B× B̂ is an isomorphism, we again obtain the equality
a2−a1 = 0. Thus, for two distinct points a1 and a2 the corresponding bundles Ea1
and Ea2 are orthogonal. Hence, the functor ΦE : D

b(A) −→ Db(B) is fully faithful.
For the same reason, the adjoint functor ΨE∨ is also fully faithful. Hence, ΦE is an
equivalence.
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Proposition 5.3.12. Let E be the semi-homogeneous bundle constructed from an
isometric isomorphism f : A× Â −→ B × B̂ as described above. Then fE = f .
Proof. We write X for the graph of the morphism fE. It follows from Corol-
lary 5.1.10 that the point (a, α, b, β) belongs to X if and only if

Tb∗E⊗ Pβ ∼= T ∗aE⊗ Pα,

which is equivalent to the equality

T ∗(a,b)E
∼= E⊗ P(−α,β).

Hence, by Lemma 5.3.9 we see that X = (1A,−1Â, 1B, 1B̂)Φµ, where µ = µ(E) is
the slope of E. On the other hand, by Construction 5.3.10, the graph Γ of f is also
equal to (1A,−1Â, 1B, 1B̂)Φµ. Thus, the isomorphisms fE and f coincide.
When constructing a bundle E from an isomorphism f , we assumed that the

map y : Â −→ B is an isogeny. If this is not the case, then we represent f as
the composite of two maps f1 ∈ U(A× Â, B × B̂) and f2 ∈ U(A× Â) for which y1
and y2 are isogenies. One sees readily that this is always possible. Now for any
map fi we find the corresponding object Ei, consider the composite of the functors
ΦEi , and take the object representing it. The assertions proved in this section
and in the previous ones can be collected in the form of the following theorems.

Theorem 5.3.13. Let A and B be two Abelian varieties over an algebraically closed
field of characteristic 0. Then the bounded derived categories of coherent sheaves
Db(A) and Db(B) are equivalent as triangulated categories if and only if there is

an isometric isomorphism f : A× Â ∼−→ B × B̂.
Theorem 5.3.14. Let A be an Abelian variety over an algebraically closed field of
characteristic 0. Then the group of exact auto-equivalences of the derived category
AuteqDb(A) fits in the following exact sequence of groups:

0 −→ Z⊕ (A× Â)k −→ AuteqDb(A) −→ U(A× Â) −→ 1.

Thus, the group AuteqDb(A) has a normal subgroup (A× Â)k which consists of
the functors of the form Ta∗( · ) ⊗ Pα, where (a, α) ∈ A × Â. The quotient by this
subgroup is a central extension of U(A× Â) by Z.
This central extension is described by a 2-cocycle, a formula for which can be

found in [37].

Example 5.3.15. Consider an Abelian variety A for which the endomorphism ring
End(A) is isomorphic to Z. Then the Néron–Severi group NS(A) is isomorphic

to Z. Write L andM for generators of NS(A) and NS(Â) respectively. The compos-

ite ϕM◦ϕL equalsN ·idA for some N > 0. In this case the group U(A×Â) coincides
with the congruence subgroup Γ0(N) ⊂ SL(2,Z). Next, let B be another Abelian
variety such that B × B̂ is isomorphic to A × Â. One sees readily that every iso-
morphism of this kind is isometric. The Abelian variety B can be represented as the

image of some morphism A
(k·id,mϕL)−−−−−−−→ A× Â. We can assume that gcd(k,m) = 1.
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We write ψ for the morphism from A to B defined in this way. The kernel of ψ is
Ker(mϕL)∩Ak. Since gcd(k,m) = 1, we have in fact Ker(ψ) = Ker(ϕL)∩Ak. On
the other hand, we have an inclusion Ker(ϕ) ⊂ AN . Thus, without loss of generality
we can assume that k is a divisor of N . Every divisor k of N induces an Abelian
variety of the form B := A/(Ker(ϕL) ∩Ak). Obviously, two distinct divisors of N
give non-isomorphic Abelian varieties. Moreover, one sees readily that an embed-
ding of B in A × Â splits if and only if gcd(k,N/k) = 1. Hence, the number of
Abelian varieties B such that Db(B) � Db(A) equals 2s, where s is the number
of prime divisors of N .
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Bois-Marie 1963–1964 (SGA 4), dirigé par M. Artin, A. Grothendieck et J. L. Verdier, avec

la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, vols. 1–3, Springer-Verlag
(Lecture Notes in Math., vols. 269, 270, 305), Berlin 1972–1973.

[43] R. Thomason and T. Trobaugh, “Higher algebraic K-theory of schemes and of derived
categories”, Grothendieck Festschrift, vol. III, Birkhäuser, Boston 1990, pp. 247–435.
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