DERIVED CATEGORIES OF COHERENT SHEAVES AND MOTIVES.

DMITRI ORLOV

The bounded derived category of coherent sheaves $\mathbf{D}^{b}(X)$ is a natural triangulated category which can be associated with an algebraic variety X. It happens sometimes that two different varieties have equivalent derived categories of coherent sheaves $\mathbf{D}^{b}(X) \simeq \mathbf{D}^{b}(Y)$. There arises a natural question: can one say anything about motives of X and Y in that case? The first such example (see [4]) – abelian variety A and its dual \hat{A} – shows us that the motives of such varieties are not necessary isomorphic. However, it seems that the motives with rational coefficients are isomorphic

Recall a definition of the category of effective Chow motives $CH^{eff}(k)$ over a field k. The category $\operatorname{CH}^{\operatorname{eff}}(k)$ can be obtained as the pseudo-abelian envelope (i.e. as formal adding of cokernels of all projectors) of a category, whose objects are smooth projective schemes over k, and the group of morphisms from X to Y is the sum $\bigoplus_{X_i} A^m(X_i \times Y)$ (over all connected components X_i) of the groups of cycles of codimension $m = \dim Y$ on $X_i \times Y$ modulo rational equivalence (see [3, 1]). In [7] Voevodsky introduced a triangulated category of geometric motives $\mathrm{DM}^{\mathrm{eff}}_{\mathrm{gm}}(k)$. He started with an additive category $\mathrm{SmCor}(k)$, objects of which are smooth schemes of finite type over k, and the group of morphisms from X to Y is the free abelian group generated by integral closed subschemes $Z \subset X \times Y$ such that the projection on X is finite and surjective onto a connected component of X. There is a natural embedding $[-]: Sm(k) \rightarrow SmCor(k)$ of the category Sm(k) of smooth schemes of finete type over k. The category SmCor(k) is additive and one has $[X \coprod Y] = [X] \oplus [Y]$. Further, he considered the quotient of the homotopy category $\mathcal{H}^{b}(\mathrm{SmCor}(\mathsf{k}))$ of bounded complexes by minimal thick triangulated subcategory T, which contains all objects of the form $[X \times \mathbb{A}^1] \to [X]$ and $[U \cap V] \to [U] \oplus [V] \to [X]$ for any open covering $U \cup V = X$. Triangulated category $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathsf{k})$ is defined as the pseudo-abelian envelope of the quotient category $\mathcal{H}^{b}(\mathrm{SmCor}(\mathsf{k}))/T$ (see [7, 1]).

There exists a canonical functor $\operatorname{CH}^{\operatorname{eff}}(\mathsf{k}) \to \operatorname{DM}^{\operatorname{eff}}_{\operatorname{gm}}(\mathsf{k})$, which is a full embedding if k admits resolution of singularities ([7, 4.2.6]). Thus, it doesn't matter in which category (in $\operatorname{CH}^{\operatorname{eff}}(\mathsf{k})$ or in $\operatorname{DM}^{\operatorname{eff}}_{\operatorname{gm}}(\mathsf{k})$) motives of smooth projective varieties are considered. Denote the

This work was done with a partial financial support from grant RFFI 05-01-01034, from the President of RF young Russian scientists award MD-2731.2004.1, from grant CRDF Award No RUM1-2661-MO-05, and from the Russian Science Support Foundation.

motive of a variety X by M(X), and its motive in the category of motives with rational coefficients $DM_{gm}^{eff}(\mathbf{k}) \otimes \mathbb{Q}$ (and in $CH^{eff}(\mathbf{k}) \otimes \mathbb{Q}$) by $M(X)_{\mathbb{Q}}$.

Conjecture 1. Let X and Y be smooth projective varieties, and let $\mathbf{D}^{b}(X) \simeq \mathbf{D}^{b}(Y)$. Then the motives $M(X)_{\mathbb{Q}}$ and $M(Y)_{\mathbb{Q}}$ are isomorphic in $\mathrm{CH}^{\mathrm{eff}}(\mathsf{k}) \otimes \mathbb{Q}$ (and in $\mathrm{DM}^{\mathrm{eff}}_{\mathrm{gm}}(\mathsf{k}) \otimes \mathbb{Q}$)

Conjecture 2. Let X and Y be smooth projective varieties and let $F : \mathbf{D}^b(X) \to \mathbf{D}^b(Y)$ be a fully faithful functor. Then the motive $M(X)_{\mathbb{Q}}$ is a direct summand of the motive $M(Y)_{\mathbb{Q}}$.

The category $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathsf{k})$ has a tensor structure, and $\mathrm{M}(X) \otimes \mathrm{M}(Y) = \mathrm{M}(X \times Y)$. One defines the Tate object $\mathbb{Z}(1)$ to be the image of the complex $[\mathbb{P}^1] \to [\mathrm{Spec}(\mathsf{k})]$ placed in degree 2 and 3 and put $M(p) = M \otimes \mathbb{Z}(1)^{\otimes p}$ for any motive $M \in \mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathsf{k})$ and $p \in \mathbb{N}$. The triangulated category of geometric motives $\mathrm{DM}_{\mathrm{gm}}(\mathsf{k})$ is defined by formally inverting the functor $-\otimes \mathbb{Z}(1)$ on $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathsf{k})$. The important and nontrivial fact here is the statement that the canonical functor $\mathrm{DM}_{\mathrm{gm}}^{\mathrm{eff}}(\mathsf{k}) \to \mathrm{DM}_{\mathrm{gm}}(\mathsf{k})$ is a full embedding [7, 4.3.1]. Therefore, we can work in the category $\mathrm{DM}_{\mathrm{gm}}(\mathsf{k})$. Moreover (see [7]), for any smooth projective varieties X, Yand for any integer i there is an isomorphism

$$\operatorname{Hom}_{\operatorname{DM}_{\operatorname{gm}}(\mathsf{k})}(\operatorname{M}(X), \operatorname{M}(Y)(i)[2i]) \cong A^{m+i}(X \times Y), \quad \text{where} \quad m = \dim Y.$$

Suppose, one has a fully faithful functor $F : \mathbf{D}^{b}(X) \to \mathbf{D}^{b}(Y)$ between derived categories of coherent sheaves of two smooth projective varieties X and Y of dimension n and mrespectively. Any such functor has a right adjoint F^* by [2], and by Theorem 2.2 from [5] (see also [6, 3.2.1]) the functor F can be represented by an object on the product $X \times Y$, i.e. $F \cong \Phi_{\mathcal{A}}$, where $\Phi_{\mathcal{A}} = \mathbf{R}p_{2*}(p_1^*(-) \overset{\mathbf{L}}{\otimes} \mathcal{A})$ for some $\mathcal{A} \in \mathbf{D}^{b}(X \times Y)$. With any functor of the form $\Phi_{\mathcal{A}} : \mathbf{D}^{b}(X) \to \mathbf{D}^{b}(Y)$ one can associate an element $a \in A^*(X \times Y, \mathbb{Q})$ by the following rule

(1)
$$a = p_1^* \sqrt{\operatorname{td}_X} \cdot \operatorname{ch}(\mathcal{A}) \cdot p_2^* \sqrt{\operatorname{td}_Y},$$

where td_X and td_Y are Todd classes of the varieties X and Y. The cycle a has a mixed type. Let us consider its decomposition on the components $a = a_0 + \cdots + a_{n+m}$, where index is the codimension of a cycle on $X \times Y$. Each component a_q induces a map of motives

$$\alpha_q : \mathcal{M}(X)_{\mathbb{Q}} \to \mathcal{M}(Y)_{\mathbb{Q}}(q-m)[2(q-m)].$$

Thus the total cycle a gives a map $\alpha : \mathrm{M}(X)_{\mathbb{Q}} \to \bigoplus_{i=-m}^{n} \mathrm{M}(Y)_{\mathbb{Q}}(i)[2i]$. Now consider the object $\mathcal{B} \in \mathbf{D}^{b}(X \times Y)$ which represents the (left) adjoint functor F^{*} , i.e. $F^{*} \cong \Psi_{\mathcal{B}}$, where $\Psi_{\mathcal{B}} = \mathbf{R}p_{1*}(p_{2}^{*}(-) \overset{\mathbf{L}}{\otimes} \mathcal{B})$. One attaches to the object \mathcal{B} a cycle $b = b_{0} + \cdots + b_{n+m}$ defined by the same formula (1). The cycle b induces a map $\beta : \bigoplus_{i=-m}^{n} \mathrm{M}(Y)_{\mathbb{Q}}(i)[2i] \to \mathrm{M}(X)_{\mathbb{Q}}$.

Since the functor $\Phi_{\mathcal{A}}$ is fully faithful, the composition $\Psi_{\mathcal{B}} \circ \Phi_{\mathcal{A}}$ is isomorphic to the identity functor. Applying the Riemann-Roch-Grothendieck theorem, we obtain that the composition

$$\mathcal{M}(X)_{\mathbb{Q}} \xrightarrow{\alpha} \bigoplus_{i=-m}^{n} \mathcal{M}(Y)_{\mathbb{Q}}(i)[2i] \xrightarrow{\beta} \mathcal{M}(X)_{\mathbb{Q}}$$

is the identity map, i.e. $M(X)_{\mathbb{Q}}$ is a direct summand of $\bigoplus_{i=-m}^{n} M(Y)_{\mathbb{Q}}(i)[2i]$.

Assume now that dim $X = \dim Y = n$ and, moreover, suppose that the support of the object A also has the dimension n. Therefore, $a_q = 0$ when $q = 0, \ldots, n-1$, i.e. $a = a_n + \cdots + a_{2n}$. It is easily to see that in this case $b = b_n + \cdots + b_{2n}$ as well. This implies that the composition $\beta \cdot \alpha : M(X)_{\mathbb{Q}} \to M(X)_{\mathbb{Q}}$, which is the identity, coincides with $\beta_n \cdot \alpha_n$. Hence, $M(X)_{\mathbb{Q}}$ is a direct summand of $M(Y)_{\mathbb{Q}}$. Furthermore, since the cycles a_n and b_n are integral in this case we get the same result for integral motives, i.e. the integral motive M(X) is a direct summand of the motive M(Y) as well. Thus, we obtain

Theorem 1. Let X and Y be smooth projective varieties of dimension n, and let F: $\mathbf{D}^{b}(X) \to \mathbf{D}^{b}(Y)$ be a fully faithful functor such that the dimension of the support of an object \mathcal{A} on $X \times Y$, which represents F, is equal to n. Then the motive M(X) is a direct summand of the motive M(Y). If, in addition, the functor F is an equivalence, then the motives M(X) and M(Y) are isomorphic.

Examples of such functors are known, they come from birational geometry (see e.g. [6]). In these examples one of the connected components of $\operatorname{supp}(\mathcal{A})$ gives a birational map $X \dashrightarrow Y$. Blow ups and antiflips induce fully faithful functors, and flops induce equivalences. Note that an isomorphism of motives implies an isomomorphism of any realization (singular cohomologies, l-adic cohomologies, Hodge structures and so on).

For arbitrary equivalence $\Phi_{\mathcal{A}} : \mathbf{D}^{b}(X) \to \mathbf{D}^{b}(Y)$ the map of motives $\alpha_{n} : \mathbf{M}(X)_{\mathbb{Q}} \to \mathbf{M}(Y)_{\mathbb{Q}}$, induced by the cycle $a_{n} \in A^{n}(X \times Y, \mathbb{Q})$, is not necessary an isomorphism (e.g. Poincare line bundle \mathcal{P} on the product of abelian variety A and its dual \widehat{A}). However, the following conjecture, which specifies Conjecture 1, may be true.

Conjecture 3. Let \mathcal{A} be an object of $\mathbf{D}^{b}(X \times Y)$, for which $\Phi_{\mathcal{A}} : \mathbf{D}^{b}(X) \to \mathbf{D}^{b}(Y)$ is an equivalence. Then there exist line bundles L and M on X and on Y respectively such that the component a'_{n} of the object $\mathcal{A}' := p_{1}^{*}L \otimes \mathcal{A} \otimes p_{2}^{*}M$ gives an isomorphism between motives $M(X)_{\mathbb{Q}}$ and $M(Y)_{\mathbb{Q}}$.

I am grateful to Yu. I. Manin for very useful discussions.

References

- BLOCH, S. Lectures on mixed motives. Algebraic geometry—Santa Cruz 1995, 329–359, Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997.
- [2] BONDAL, A., AND VAN DEN BERGH, M. Generators and representability of functors in commutative and noncommutative geometry. *Mosc. Math. J. 3*, 1 (2003), 1–36.
- [3] MANIN, YU. Correspondences, motifs and monoidal transformations. Matem. Sb. 77, 119 (1968), 475-507.
- [4] MUKAI, S. Duality between D(X) and $D(\hat{X})$ with its application to Picard sheaves. Nagoya Math. J. 81 (1981), 153–175.
- [5] ORLOV, D. Equivalences of derived categories and K3 surfaces. Journal of Math. Sciences, Alg. geom.-7 84, 5 (1997), 1361–1381.
- [6] ORLOV, D. Derived categories of coherent sheaves and equivalences between them. Uspekhi Matem. Nauk 58, 3(351) (2003), 89–172.
- [7] VOEVODSKY, V. Triangulated categories of motives over a field. In Cycles, transfers, and motivic homology theories, vol. 143 of Ann. of Math.Stud, pp. 188–238.

STEKLOV MATHEMATICAL INSTITUTE RAN E-mail address: orlov@mi.ras.ru