
EQUIVALENCES OF DERIVED CATEGORIES AND K3 SURFACES

DMITRI ORLOV

Abstract. We consider derived categories of coherent sheaves on smooth projective vari-

eties. We prove that any equivalence between them can be represented by an object on the

product. Using this, we give a necessary and sufficient condition for equivalence of derived

categories of two K3 surfaces.

§0. Introduction

Let Db(X) be the bounded derived category of coherent sheaves on a smooth projective
variety X . The category Db(X) has the structure of a triangulated category (see [V],
[GM]). We shall consider Db(X) as a triangulated category.

In this paper we are concerned with the problem of description for varieties, which have
equivalent derived categories of coherent sheaves.

In the paper [Mu1], Mukai showed that for an abelian variety A and its dual Â the
derived categories Db(A) and Db(Â) are equivalent . Equivalences of another type
appeared in [BO1]. They are induced by certain birational transformations which are called
flops.

Further, it was proved in the paper [BO2] that if X is a smooth projective variety with
either ample canonical or ample anticanonical sheaf, then any other algebraic variety X ′

such that Db(X ′) ' Db(X) is biregularly isomorphic to X .
The aim of this paper is to give some description for equivalences between derived cate-

gories of coherent sheaves. The main result is Theorem 2.2. of §2 . It says that any full
and faithful exact functor F : Db(M) −→ Db(X) having left (or right) adjoint functor can

be represented by an object E ∈ Db(M ×X) , i.e. F ( q) ∼= R
q
π∗(E

L⊗ p∗( q)) , where π

and p are the projections on M and X respectively.
In §3 , basing on the Mukai’s results [Mu2], we show that two K3 surfaces S1 and

S2 over field C have equivalent derived categories of coherent sheaves iff the lattices of
transcendental cycles TS1 and TS2 are Hodge isometric.

I would like to thank A. Polishchuk for useful notices.

§1. Preliminaries

1.1. We collect here some facts relating to triangulated categories. Recall that a triangu-
lated category is an additive category with additional structures:

a) an additive autoequivalence T : D −→ D , which is called a translation functor (we
usually write X[n] instead of Tn(X) and f [n] instead of Tn(f) ),
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b) a class of distinguished triangles:

X
u→ Y

v→ Z
w→ X[1].

And these structures must satisfy the usual set of axioms (see [V]).
If X , Y are objects of a triangulated category D , then Homi

D(X , Y ) means
HomD(X , Y [i]) .

An additive functor F : D −→ D′ between two triangulated categories D and D′ is
called exact if

a) it commutes with the translation functor, i.e there is fixed an isomorphism of functors:

tF : F ◦ T
∼−→ T ′ ◦ F,

b) it takes every distinguished triangle to a distinguished triangle (using the isomorphism
tF , we replace F (X[1]) by F (X)[1] ).

The following lemma will be needed for the sequel.

1.2. Lemma [BK] If a functor G : D′ −→ D is a left (or right) adjoint to an exact
functor F : D −→ D′ then functor G is also exact .

Proof. Since G is the left adjoint functor to F , there exist canonical morphisms of
functors idD′ → F ◦G, G ◦ F −→ idD . Let us consider the following sequence of natural
morphisms:

G ◦ T ′ −→ G ◦ T ′ ◦ F ◦G
∼−→ G ◦ F ◦ T ◦G −→ T ◦G

We obtain the natural morphism G ◦ T ′ −→ T ◦ G . This morphism is an isomorphism.
Indeed, for any two objects A ∈ D and B ∈ D′ we have isomorphisms :

Hom(G(B[1]) , A) ∼= Hom(B[1] , F (A)) ∼= Hom(B , F (A)[−1]) ∼=

Hom(B , F (A[−1])) ∼= Hom(G(B) , A[−1]) ∼= Hom(G(B)[1] , A)

This implies that the natural morphism G ◦ T ′ −→ T ◦G is an isomorphism.
Let now A

α−→ B −→ C −→ A[1] be a distinguished triangle in D′ . We have to show
that G takes this triangle to a distinguished one.

Let us include the morphism G(α) : G(A) → G(B) into a distinguished triangle:

G(A) −→ G(B) −→ Z −→ G(A)[1].

Applying functor F to it, we obtain a distinguished triangle:

FG(A) −→ FG(B) −→ F (Z) −→ FG(A)[1]

(we use the commutation isomorphisms like T ′ ◦ F
∼→ F ◦ T with no mention).

Using morphism id → F ◦G , we get a commutative diagram:

A
α−→ B −→ C −→ A[1]y y y

FG(A)
FG(α)−→ FG(B) −→ F (Z) −→ FG(A)[1]
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By axioms of triangulated categories there exists a morphism µ : C → F (Z) that completes
this commutative diagram. Since G is left adjoint to F , the morphism µ defines
ν : G(C) → Z . It is clear that ν makes the following diagram commutative:

G(A) −→ G(B) −→ G(C) −→ G(A)[1]

oy oy yν o
y

G(A) −→ G(B) −→ Z −→ G(A)[1]

To prove the lemma, it suffices to show that ν is an isomorphism. For any object Y ∈ D
let us consider the diagram for Hom :

→ Hom(G(A)[1] , Y ) → Hom(Z , Y ) → Hom(G(B) , Y ) →yo yHY(ν)
yo

→ Hom(G(A)[1] , Y ) → Hom(G(C) , Y ) → Hom(G(B) , Y ) →yo yo yo
→ Hom(A[1] , F (Y )) → Hom(C , F (Y )) → Hom(B , F (Y )) →

Since the lower sequence is exact, the middle sequence is exact also. By the lemma about five
homomorphisms, for any Y the morphism H(ν) is an isomorphism . Thus ν : G(C) → Z

is an isomorphism too. This concludes the proof. 2

1.3. Let X
q
= {Xc dc→ Xc+1 dc+1→ · · · → X0} be a bounded complex over a triangulated

category D , i.e. all compositions di+1 ◦ di are equal to 0 ( c < 0 ).
A left Postnikov system, attached to X

q
, is, by definition, a diagram

A
A
A
A
A
AU ¢

¢
¢
¢
¢
¢̧ A

A
A
A
A
AU ¢

¢
¢
¢
¢
¢̧ A

A
A
A
A
AU ¢

¢
¢
¢
¢
¢̧ A

A
A
A
A
AU

- -

¾ ¾ ¾ ¾ ¾

Xc Xc+1 Xc+2

Y c = Xc Y c+1 Y c+2

X0

Y 0Y −1· · ·

ic = id
jc

ic+1

jc+1
ic+2

j−1
i0

dc dc+1

ª

?

ª

? ?

[1] [1] [1]

in which all triangles marked with ? are distinguished and triangles marked with ª are
commutative (i.e. jk ◦ik = dk ). An object E ∈ ObD is called a left convolution of X

q
,

if there exists a left Postnikov system, attached to X
q

such that E = Y 0 . The class of
all convolutions of X

q
will be denoted by Tot(X

q
) . Clearly the Postnikov systems and

convolutions are stable under exact functors between triangulated categories.
The class Tot(X

q
) may contain many non-isomorphic elements and may be empty.

Further we shall give a sufficient condition for Tot(X
q
) to be non-empty and for its objects

to be isomorphic. The following lemma is needed for the sequel(see [BBD]).
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1.4. Lemma Let g be a morphism between two objects Y and Y ′ , which are included
into two distinguished triangles:

X
u−→ Y

v−→ Z
w−→ X[1]

ppppp?f
yg

ppppp?h
ppppp?f [1]

X ′ u′−→ Y ′ v′−→ Z ′ w′−→ X ′[1]

If v′gu = 0 , then there exist morphisms f : X → X ′ and h : Z → Z ′ such that the
triple (f, g, h) is a morphism of triangles.

If, in addition, Hom(X[1] , Z ′) = 0 then this triple is uniquely determined by g .

Now we prove two lemmas which are generalizations of the previous one for Postnikov
diagrams.

1.5. Lemma Let X
q

= {Xc dc→ Xc+1 dc+1→ · · · → X0} be a bounded complex over a
triangulated category D . Suppose it satisfies the following condition:

Homi(Xa , Xb) = 0 for i < 0 and a < b. (1)

Then there exists a convolution for this complex and all convolutions are isomorphic (non-
canonically).

If, in addition,

Homi(Xa , Y 0) = 0 for i < 0 and for all a (2)

for some convolution Y 0 (and, consequently, for any one), then all convolutions are canon-
ically isomorphic.

1.6. Lemma Let X
q

1 and X
q

2 be bounded complexes that satisfy (1), and let (fc, ..., f0)
be a morphism of these complexes:

Xc
1

dc
1−→ Xc+1

1 −→ · · · −→ X0
1yfc

yfc+1

yf0

Xc
2

dc
2−→ Xc+1

2 −→ · · · −→ X0
2

Suppose that

Homi(Xa
1 , Xb

2) = 0 for i < 0 and a < b. (3)

Then for any convolution Y 0
1 of X

q
1 and for any convolution Y 0

2 of X
q

2 there exists
a morphism f : Y 0

1 → Y 0
2 that commutes with the morphism f0 . If, in addition,

Homi(Xa
1 , Y 0

2 ) = 0 for i < 0 and for all a (4)

then this morphism is unique.

Proof. We shall prove both lemmas together. Let Y c+1 be a cone of the morphism dc :

Xc dc−→ Xc+1 α−→ Y c+1 −→ Xc[1]

By assumption dc+1 ◦ dc = 0 and Hom(Xc[1] , Xc+2) = 0 , hence there exists a unique
morphism d̄c+1 : Y c+1 → Xc+2 such that d̄c+1 ◦ α = dc+1 .
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Let us consider a composition dc+2◦d̄c+1 : Y c+1 → Xc+3 . We know that dc+2◦d̄c+1◦α =
dc+2 ◦dc+1 = 0 , and at the same time we have Hom(Xc[1] , Xc+3) = 0 . This implies that
the composition dc+2 ◦ d̄c+1 is equal to 0 .

Moreover, consider the distinguished triangle for Y c+1 . It can easily be checked that
Homi(Y c+1 , Xb) = 0 for i < 0 and b > c+1 . Hence the complex Y c+1 −→ Xc+2 −→
· · · −→ X0 satisfies the condition (1). By induction, we can suppose that it has a convolu-
tion. This implies that the complex X

q
has a convolution too. Thus, the class Tot(X

q
)

is non-empty.
Now we shall show that under the conditions (3) any morphism of complexes can be

extended to a morphism of Postnikov systems.
Let us consider cones Y c+1

1 and Y c+1
2 of the morphisms dc

1 and dc
2 . There exists a

morphism gc+1 : Y c+1
1 → Y c+1

2 such that one has the morphism of distinguished triangles:

Xc
1

dc
1−→ Xc+1

1
α−→ Y c+1

1 −→ Xc
1[1]yfc

yfc+1

ygc+1

yfc[1]

Xc
2

dc
2−→ Xc+1

2
β−→ Y c+1

2 −→ Xc
2[1]

As above, there exist uniquely determined morphisms d̄c+1
i : Y c+1

i → Xc+2
i for i = 1, 2 .

Consider the following diagram:

Y c+1
1

d̄c+1
1−→ Xc+2

1ygc+1

yfc+2

Y c+1
2

d̄c+1
2−→ Xc+2

2

Let us show that this square is commutative. Denote by h the difference fc+2 ◦ d̄c+1
1 −

d̄c+1
2 ◦ gc+1 . We have h ◦ α = fc+2 ◦ dc+1

1 − dc+1
2 ◦ fc+1 = 0 and, by assumption,

Hom(Xc
1[1] , Xc+2

2 ) = 0 . It follows that h = 0 . Therefore, we obtain the morphism
of new complexes:

Y c+1
1

d̄c+1
1−→ Xc+2

1 −→ · · · −→ X0
1ygc+1

yfc+2

yf0

Y c+1
2

d̄c+1
2−→ Xc+2

2 −→ · · · −→ X0
2

It can easily be checked that these complexes satisfy the conditions (1) and (3) of the lemmas.
By the induction hypothesis, this morphism can be extended to a morphism of Postnikov
systems, attached to these complexes. Hence there exists a morphism of Postnikov systems,
attached to X

q
1 and X

q
2 .

Moreover, we see that if all morphisms fi are isomorphisms, then a morphism of Post-
nikov systems is an isomorphism too. Therefore, under the condition (1) all objects from the
class Tot(X

q
) are isomorphic.
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Now let us consider a morphism of the rightmost distinguished triangles of Postnikov
systems:

Y −1
1

j1,−1−→ X0
1

i1,0−→ Y 0
1 −→ Y −1

1 [1]yg−1

yf0

yg0

yg−1[1]

Y −1
2

j2,−1−→ X0
2

i2,0−→ Y 0
2 −→ Y −1

2 [1]

If the complexes X
q

i satisfy the condition (4) ( i.e. Homi(Xa
1 , Y 0

2 ) = 0 for i < 0 and
all a ), then we get Hom(Y −1

1 [1] , Y 0
2 ) = 0 . It follows from Lemma 1.4. that g0 is

uniquely determined. This concludes the proof of both lemmas. 2

§2. Equivalences of derived categories

2.1. Let X and M be smooth projective varieties over field k . Denote by Db(X)
and Db(M) the bounded derived categories of coherent sheaves on X and M respec-
tively. Recall that a derived category has the structure of a triangulated category.

For every object E ∈ Db(M ×X) we can define an exact functor ΦE from Db(M)
to Db(X) . Denote by p and π the projections of M ×X onto M and X re-
spectively:

M ×X
π−→ X

p
y
M

Then ΦE is defined by the following formula:

ΦE( q) := π∗(E ⊗ p∗( q)) (5)

(we always shall write shortly f∗, f∗,⊗ and etc. instead of R
q
f∗, L

q
f∗,

L⊗ , because we
consider only derived functors).

The functor ΦE has the left and the right adjoint functors Φ∗E and Φ!
E respectively,

defined by the following formulas:

Φ∗E( q) = p∗(E∨ ⊗ π∗(ωX [dimX]⊗ ( q))),

Φ!
E( q) = ωM [dimM ]⊗ p∗(E∨ ⊗ ( q)),

where ωX and ωM are the canonical sheaves on X and M , and E∨ :=
RRR

qHom(E,OM×X) .
Let F be an exact functor from the derived category Db(M) to the derived category

Db(X) . Denote by F ∗ and F ! the left and the right adjoint functors for F respec-
tively, when they exist. Note that if there exists the left adjoint functor F ∗ , then the right
adjoint functor F ! also exists and

F ! = SM ◦ F ∗ ◦ S−1
X ,

where SX and SM are Serre functors on Db(X) and Db(M) . They are equal to
( q)⊗ ωX [dimX] and ( q)⊗ ωM [dimM ] (see [BK]).
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What can we say about the category of all exact functors between Db(M) and Db(X) ?
It seems to be true that any functor can be represented by an object on the product M ×X

for smooth projective varieties M and X . But we are unable prove it. However, when
F is full and faithfull, it can be represented. The main result of this chapter is the following
theorem.

2.2. Theorem Let F be an exact functor from Db(M) to Db(X) , where M

and X are smooth projective varieties. Suppose F is full and faithful and has the right
(and,consequently, the left) adjoint functor.

Then there exists an object E ∈ Db(M ×X) such that F is isomorphic to the functor
ΦE defined by the rule (5), and this object is unique up to isomorphism.

2.3. Let F be an exact functor from a derived category Db(A) to a derived category
Db(B) . We say that F is bounded if there exist z ∈ Z, n ∈ N such that for any A ∈ A
the cohomology objects H i(F (A)) are equal to 0 for i 6∈ [z, z + n] .

2.4. Lemma Let M and X be smooth projective varieties. If an exact functor
F : Db(M) −→ Db(X) has a left adjoint functor then it is bounded.

Proof. Let G : Db(X) −→ Db(M) be a left adjoint functor to F . Take a very ample
invertible sheaf L on X . It gives the embedding i : X ↪→ PN . For any i < 0 we
have right resolution of the sheaf O(i) on PN in terms of the sheaves O(j) , where
j = 0, 1, .., N (see [Be]). It is easily seen that this resolution is of the form

O(i) ∼−→
{

V0 ⊗O −→ V1 ⊗O(1) −→ · · · −→ VN ⊗O(N) −→ 0
}

where all Vk are vector spaces. The restriction of this resolution to X gives us the
resolution of the sheaf Li in terms of the sheaves Lj , where j = 0, 1, ..., N . Since the
functor G is exact that there exist z′ and n′ such that Hk(G(Li)) are equal 0 for
k 6∈ [z′, z′ + n′] . This follows from the existence of the spectral sequence

Ep,q
1 = Vp ⊗Hq(G(Lp)) ⇒ Hp+q(G(Li)).

As all nonzero terms of this spectral sequence are concentrated in some rectangle, so it follows
that for all i cohomologies H

q
(G(Li)) are concentrated in some segment.

Now, notice that if Homj(Li , F (A)) = 0 for all i ¿ 0 , then Hj(F (A)) is equal to
0 . Further, by assumption, the functor G is left adjoint to F , hence

Homj(Li , F (A)) ∼= Homj(G(Li) , A).

If now A is a sheaf on M , then Homj(G(Li) , A) = 0 for all i < 0 and j 6∈
[−z′ − n′,−z′ + dimM ] , and thus Hj(F (A)) = 0 for the same j . 2

2.5. Remark We shall henceforth assume that for any sheaf F on M the cohomology
objects H i(F (F)) are nonzero only if i ∈ [−a, 0] .

2.6. Now we begin constructing an object E ∈ Db(M ×X) . Firstly, we shall consider
a closed embedding j : M ↪→ PN and shall construct an object E′ ∈ Db(PN ×X) .
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Secondly, we shall show that there exists an object E ∈ Db(M ×X) such that E′ =
(j × id)∗E . After that we shall prove that functors F and ΦE are isomorphic.

Let L be a very ample invertible sheaf on M such that Hi(Lk) = 0 for any k > 0 ,
when i 6= 0 . By j denote the closed embedding j : M ↪→ PN with respect to L .

Recall that there exists a resolution of the diagonal on the product PN × PN (see[Be]).
Let us consider the following complex of sheaves on the product:

0 → O(−N) £ ΩN (N)
d−N→ O(−N + 1) £ ΩN−1(N − 1) → · · · → O(−1) £ Ω1(1)

d−1→ O £O
(6)

This complex is a resolution of the structure sheaf O∆ of the diagonal ∆ .
Now by F ′ denote the functor from Db(PN ) to Db(X) , which is the composition

F ◦ j∗ . Consider the product

PN ×X
π
′

−→ X

q
y
PN

Denote by

d′−i ∈ HomPN×X(O(−i) £ F ′(Ωi(i)) , O(−i + 1) £ F ′(Ωi−1(i− 1)))

the image d−i under the following through map.

Hom(O(−i) £ Ωi(i) , O(−i + 1) £ Ωi−1(i− 1)) ∼−→

Hom(O £ Ωi(i) , O(1) £ Ωi−1(i− 1)) ∼−→

Hom(Ωi(i) , H0(O(1))⊗ Ωi−1(i− 1)) −→

Hom(F ′(Ωi(i)) , H0(O(1))⊗ F ′(Ωi−1(i− 1))) ∼−→

Hom(O £ F ′(Ωi(i)) , O(1) £ F ′(Ωi−1(i− 1))) ∼−→

Hom(O(−i) £ F ′(Ωi(i)) , O(−i + 1) £ F ′(Ωi−1(i− 1)))

It can easily be checked that the composition d−i+1 ◦ d−i is equal to 0 . We omit the
check.

Consider the following complex C
q

C
q
:= {O(−N) £ F ′(ΩN (N))

d′−N−→ · · · −→ O(−1) £ F ′(Ω1(1))
d′−1−→ O £ F ′(O)}

over the derived category Db(PN ×X) . For l < 0 we have

Homl(O(−i) £ F ′(Ωi(i)) , O(−k) £ F ′(Ωk(k))) ∼=

Homl(O £ F ′(Ωi(i)) , H0(O(i− k))⊗ F ′(Ωk(k))) ∼=

Homl(j∗(Ωi(i)) , H0(O(i− k))⊗ j∗(Ωk(k))) = 0
8



Hence, by Lemma 1.5. , there exists a convolution of the complex C
q

, and all convolutions
are isomorphic. By E′ denote some convolution of C

q
and by γ0 denote the morphism

O £ F ′(O)
γ0−→ E′ . (Further we shall see that all convolutions of C

q
are canonically

isomorphic). Now let ΦE′ be the functor from Db(PN ) to Db(X) , defined by (5).

2.7. Lemma There exist canonically defined isomorphisms fk : F ′(O(k)) ∼−→ ΦE′(O(k))
for all k ∈ Z , and these isomorphisms are functorial, i.e. for any α : O(k) → O(l) the
following diagram commutes

F ′(O(k))
F ′(α)−→ F ′(O(l))

fk

y yfl

ΦE′(O(k))
ΦE′ (α)−→ ΦE′(O(l))

Proof. At first, assume that k ≥ 0 .
Consider the resolution (6) of the diagonal ∆ ⊂ PN × PN and, after tensoring it with

O(k) £ O , push forward onto the second component. We get the following resolution of
O(k) on PN

{H0(O(k −N))⊗ ΩN (N)−→· · · −→ H0(O(k − 1))⊗ Ω1(1)−→H0(O(k))⊗O} δk−→ O(k)

Consequently F ′(O(k)) is a convolution of the complex D
q
k :

H0(O(k −N))⊗ F ′(ΩN (N))−→· · · −→ H0(O(k − 1))⊗ F ′(Ω1(1))−→H0(O(k))⊗ F ′(O)

over Db(X) .
On the other hand, let us consider the complex C

q
k := q∗O(k)⊗ C

q
on PN ×X with

the morphism γk : O(k) £ F ′(O) −→ q∗O(k) ⊗ E′ , and push it forward onto the second
component. It follows from the construction of the complex C

q
that π′∗(C

q
k) = D

q
k . So

we see that F ′(O(k)) and ΦE′(O(k)) both are convolutions of the same complex D
q
k .

By assumption the functor F is full and faithful, hence, if G and H are locally free
sheaves on PN then we have

Homi(F ′(G) , F ′(H)) = Homi(j∗(G) , j∗(H)) = 0

for i < 0 . Therefore the complex D
q
k satisfies the conditions (1) and (2) of Lemma

1.5. . Hence there exists a uniquely defined isomorphism fk : F ′(O(k)) ∼−→ ΦE′(O(k)) ,
completing the following commutative diagram

H0(O(k))⊗ F ′(O)
F ′(δk)−→ F ′(O(k))

id
y yfk

H0(O(k))⊗ F ′(O)
π′∗(γk)−→ ΦE′(O(k))

Now we have to show that these morphisms are functorial. For any α : O(k) → O(l) we
have the commutative squares

H0(O(k))⊗ F ′(O)
F ′(δk)−→ F ′(O(k))

H0(α)⊗ id
y yF ′(α)

H0(O(l))⊗ F ′(O)
F ′(δl)−→ F ′(O(l))
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and
H0(O(k))⊗ F ′(O)

π′∗(γk)−→ ΦE′(O(k))
H0(α)⊗ id

y yΦE′ (α)

H0(O(l))⊗ F ′(O)
π′∗(γl)−→ ΦE′(O(l))

Therefore we have the equalities:

fl ◦ F ′(α) ◦ F ′(δk) = fl ◦ F ′(δl) ◦ (H0(α)⊗ id) = π′∗(γl) ◦ (H0(α)⊗ id) = ΦE′(α) ◦ π′∗(γk) =
ΦE′(α) ◦ fk ◦ F ′(δk)

Since the complexes D
q
k and D

q
l satisfy the conditions of Lemma 1.6. there exists only

one morphism h : F ′(O(k)) → ΦE′(O(l)) such that

h ◦ F ′(δk) = π′∗(γl) ◦ (H0(α)⊗ id)

Hence fl ◦ F ′(α) coincides with ΦE′(α) ◦ fk .
Now, consider the case k < 0 .
Let us take the following right resolution for O(k) on PN .

O(k) ∼−→ {
V k

0 ⊗O −→ · · · −→ V k
N ⊗O(N)

}

By Lemma 1.6. , the morphism of the complexes over Db(X)

V k
0 ⊗ F ′(O) −→ · · · −→ V k

N ⊗ F ′(O(N))
id⊗ f0

yo id⊗ fN

yo
V k

0 ⊗ ΦE′(O) −→ · · · −→ V k
N ⊗ ΦE′(O(N))

gives us the uniquely determined morphism fk : F ′(O(k)) −→ ΦE′(O(k)) .
It is not hard to prove that these morphisms are functorial. The proof is left to the reader.

2

2.8. Now we must prove that there exists an object E ∈ Db(M ×X) such that j∗E ∼=
E′ .

Let L be a very ample invertible sheaf on M and let j : M ↪→ PN be an embedding

with respect to L . By A denote the graded algebra
∞⊕
i=0

H0(M,Li) .

Let B0 = k , and B1 = A1 . For m ≥ 2 , we define Bm as

Bm = Ker(Bm−1 ⊗A1 −→ Bm−2 ⊗A2) (7)

2.9. Definition A is said to be n -Koszul if the following sequence is exact

Bn ⊗k A −→ Bn−1 ⊗k A −→ · · · −→ B1 ⊗k A −→ A −→ k −→ 0

Assume that A is n-Koszul. Let R0 = OM . For m ≥ 1 , denote by Rm the kernel
of the morphism Bm ⊗OM −→ Bm−1 ⊗ L . Using (7), we obtain the canonical morphism
Rm −→ A1 ⊗Rm−1 . (actually, Hom(Rm , Rm−1) ∼= A∗1 ).

Since A is n -Koszul, we have the exact sequences

0 −→ Rm −→ Bm ⊗OM −→ Bm−1 ⊗ L −→ · · · −→ B1 ⊗ Lm−1 −→ Lm −→ 0
10



for m ≤ n .
We have the canonical morphisms fm : j∗Ωm(m) −→ Rm , because ΛiA1 ⊂ Bi and

there exist the exact sequences on PN

0 −→ Ωm(m) −→ ΛmA1 ⊗O −→ Λm−1A1 ⊗O(1) −→ · · · −→ O(m) −→ 0

It is known that for any n there exists l such that the Veronese algebra Al =
∞⊕
i=0

H0(M,Lil) is n -Koszul.( Moreover, it was proved in [Ba] that Al is Koszul for

l À 0 ).
Using the technique of [IM] and substituting L with Lj , when j is sufficiently large

, we can choose for any n a very ample L such that
1) algebra A is n -Koszul,
2) the complex

L−n £ Rn −→ · · · −→ L−1 £ R1 −→ OM £ R0 −→ O∆

on M ×M is exact,
3) the following sequences on M .

Ak−n ⊗Rn −→ Ak−n+1 ⊗Rn−1 −→ · · · −→ Ak−1 ⊗R1 −→ Ak ⊗R0 −→ Lk −→ 0

are exact for any k ≥ 0 . Here, by definition, if k − i < 0 , then Ak−i = 0 . (see
Appendix for proof).

Let us denote by Tk the kernel of the morphism Ak−n ⊗Rn −→ Ak−n+1 ⊗Rn−1 .
Consider the following complex over Db(M ×X)

L−n £ F (Rn) −→ · · · −→ L−1 £ F (R1) −→ OM £ F (R0) (8)

Here the morphism L−k £ F (Rk) −→ L−k+1 £ F (Rk−1) is induced by the canonical mor-
phism Rk −→ A1 ⊗Rk−1 with respect to the following sequence of isomorphisms

Hom(L−k £ F (Rk) , L−k+1 £ F (Rk−1)) ∼= Hom(F (Rk) , H0(L)⊗ F (Rk−1)) ∼=
∼= Hom(Rk , A1 ⊗Rk−1)

By Lemma 1.5. , there is a convolution of the complex (8) and all convolutions are
isomorphic. Let G ∈ Db(M ×X) be a convolution of this complex.

For any k ≥ 0 , object π∗(G⊗ p∗(Lk)) is a convolution of the complex

Ak−n ⊗ F (Rn) −→ Ak−n+1 ⊗ F (Rn−1) −→ · · · −→ Ak ⊗ F (R0).

On the other side, we know that Tk[n]⊕ Lk is a convolution of the complex

Ak−n ⊗Rn −→ Ak−n+1 ⊗Rn−1 −→ · · · −→ Ak ⊗R0,

because Extn+1(Lk , Tk) = 0 for n À 0 . Therefore, by Lemma 1.5. , we have π∗(G⊗
p∗(Lk)) ∼= F (Tk[n]⊕ Lk) .

It follows immediately from Remark 2.5. that the cohomology sheaves H i(π∗(G ⊗
p∗(Lk))) = H i(F (Tk)[n]) ⊕ H i(F (Lk)) concentrate on the union [−n − a,−n] ∪ [−a, 0]
for any k > 0 ( a was defined in 2.5. ). Therefore the cohomology sheaves H i(G) also
concentrate on [−n − a,−n] ∪ [−a, 0] . We can assume that n > dimM + dimX + a .

11



This implies that G ∼= C ⊕ E , where E, C are objects of Db(M ×X) such that
H i(E) = 0 for i 6∈ [−a, 0] and H i(C) = 0 for i 6∈ [−n − a,−n] . Moreover, we have
π∗(E ⊗ p∗(Lk)) ∼= F (Lk) .

Now we show that j∗(E) ∼= E′ . Let us consider the morphism of the complexes over
Db(PN ×X) .

O(−n) £ F ′(Ωn(n)) −→ · · · −→ O £ F ′(O)ycan £ F (fn)
ycan £ F (f0)

j∗(L−n) £ F (Rn) −→ · · · −→ j∗(OM ) £ F (R0)

By Lemma 1.6. , there exists a morphism of convolutions φ : K −→ j∗(G) . If N > n ,
then K is not isomorphic to E′ , but there is a distinguished triangle

S −→ K −→ E′ −→ S[1]

and the cohomology sheaves H i(S) 6= 0 only if i ∈ [−n − a,−n] . Now, since
Hom(S , j∗(E)) = 0 and Hom(S[1] , j∗(E)) = 0 , we have a uniquely determined mor-
phism ψ : E′ −→ j∗(E) such that the following diagram commutes

K
φ−→ j∗(G)y y

E′ ψ−→ j∗(E)

We know that π′∗(E′ ⊗ q∗(O(k))) ∼= F (Lk) ∼= π∗(E ⊗ p∗(Lk)) . Let ψk be the morphism
π′∗(E′⊗q∗(O(k))) −→ π∗(E⊗p∗(Lk)) induced by ψ . The morphism ψk can be included
in the following commutative diagram:

SkA1 ⊗ F (O) can−→ F (Lk) ∼−→ π′∗(E′ ⊗ q∗(O(k)))
can

y yψk

Ak ⊗ F (O) can−→ F (Lk) ∼−→ π∗(E ⊗ p∗(Lk))

Thus we see that ψk is an isomorphism for any k ≥ 0 . Hence ψ is an isomorphism
too. This proves the following:

2.10. Lemma There exists an object E ∈ Db(M ×X) such that j∗(E) ∼= E′ , where
E′ is the object from Db(PN ×X) , constructed in 2.6. .

2.11. Now, we prove some statements relating to abelian categories. they are needed for
the sequel.

Let A be a k -linear abelian category (henceforth we shall consider only k -linear
abelian categories). Let {Pi}i∈Z be a sequence of objects from A .

2.12. Definition We say that this sequence is ample if for every object X ∈ A there
exists N such that for all i < N the following conditions hold:

a) the canonical morphism Hom(Pi , X)⊗ Pi −→ X is surjective,
b) Extj(Pi , X) = 0 for any j 6= 0 ,
c) Hom(X , Pi) = 0 .

12



It is clear that if L is an ample invertible sheaf on a projective variety in usual sense,
then the sequence {Li}i∈Z in the abelian category of coherent sheaves is ample.

2.13. Lemma Let {Pi} be an ample sequence in an abelian category A . If X is
an object in Db(A) such that Hom

q
(Pi , X) = 0 for all i ¿ 0 , then X is the zero

object.

Proof. If i ¿ 0 then

Hom(Pi , Hk(X)) ∼= Homk(Pi , X) = 0

The morphism Hom(Pi , Hk(X)) ⊗ Pi −→ Hk(X) must be surjective for i ¿ 0 , hence
Hk(X) = 0 for all k . Thus X is the zero object. 2

2.14. Lemma Let {Pi} be an ample sequence in an abelian category A of finite
homological dimension. If X is an object in Db(A) such that Hom

q
(X , Pi) = 0 for

all i ¿ 0 . Then X is the zero object.

Proof. Assume that the cohomology objects of X are concentrated in a segment [a, 0] .
There exists the canonical morphism X −→ H0(X) . Consider a surjective morphism
P⊕k1

i1
−→ H0(X) . By Y1 denote the kernel of this morphism. Since Hom

q
(X , Pi1) = 0

we have Hom1(X , Y1) 6= 0 . Further take a surjective morphism P⊕k2
i2

−→ Y1 . By
Y2 denote the kernel of this morphism. Again, since Hom

q
(X , Pi2) = 0 , we obtain

Hom2(X , Y2) 6= 0 . Iterating this procedure as needed, we get contradiction with the
assumption that A is of finite homological dimension. 2

2.15. Lemma Let B be an abelian category, A an abelian category of finite homo-
logical dimension, and {Pi} an ample sequence in A . Suppose F is an exact functor
from Db(A) to Db(B) such that it has right and left adjoint functors F ! and F ∗

respectively. If the maps

Homk(Pi , Pj)
∼−→ Homk(F (Pi) , F (Pj))

are isomorphisms for i < j and all k . Then F is full and faithful.

Proof. Let us take the canonical morphism fi : Pi −→ F !F (Pi) and consider a distin-
guished triangle

Pi
fi−→ F !F (Pi) −→ Ci −→ Pi[1].

Since for j ¿ 0 we have isomorphisms:

Homk(Pj , Pi)
∼−→ Homk(F (Pj) , F (Pi)) ∼= Homk(Pj , F !F (Pi)).

We see that Hom
q
(Pj , Ci) = 0 for j ¿ 0 . It follows from Lemma 2.13. that Ci = 0 .

Hence fi is an isomorphism.
Now, take the canonical morphism gX : F ∗F (X) −→ X and consider a distinguished

triangle

F ∗F (X)
gX−→ X −→ CX −→ F ∗F (X)[1]

13



We have the following sequence of isomorphisms

Homk(X , Pi)
∼−→ Homk(X , F !F (Pi)) ∼= Homk(F ∗F (X) , Pi)

This implies that Hom
q
(CX , Pi) = 0 for all i . By Lemma 2.14. , we obtain CX = 0 .

Hence gX is an isomorphism. It follows that F is full and faithful. 2

Let A be an abelian category possessing an ample sequence {Pi} . Denote by Db(A)
the bounded derived category of A . Let us consider the full subcategory j : C ↪→ Db(A)
such that ObC := {Pi | i ∈ Z} . Now we would like to show that if there exists an
isomorphism of a functor F : Db(A) −→ Db(A) to identity functor on the subcategory
C , then it can be extended to the whole Db(A) .

2.16. Proposition Let F : Db(A) −→ Db(A) be an autoequivalence. Suppose there exists
an isomorphism f : j

∼−→ F |C ( where j : C ↪→ Db(A) is a natural embedding). Then it
can be extended to an isomorphism id

∼−→ F on the whole Db(A) .

Proof. First, we can extend the transformation f to all direct sums of objects C
componentwise , because F takes direct sums to direct sums.

Note that X ∈ Db(A) is isomorphic to an object in A iff Homj(Pi , X) = 0 for
j 6= 0 and i ¿ 0 . It follows that F (X) is isomorphic to an object in A , because

Homj(Pi , F (X)) ∼= Homj(F (Pi) , F (X)) ∼= Homj(Pi , X) = 0

for j 6= 0 and i ¿ 0 .

2.16.1 At first, let X be an object from A . Take a surjective morphism v : P⊕k
i −→

X . We have the morphism fi : P⊕k
i −→ F (P⊕k

i ) and two distinguished triangles:

Y
u−→ P⊕k

i
v−→ X −→ Y [1]yfi

F (Y )
F (u)−→ F (P⊕k

i )
F (v)−→ F (X) −→ F (Y )[1]

Now we show that F (v)◦fi◦u = 0 . Consider any surjective morphism w : P⊕l
j −→ Y .

It is sufficient to check that F (v)◦fi◦u◦w = 0 . Let fj : P⊕l
j −→ F (P⊕l

j ) be the canonical
morphism. Using the commutation relations for fi and fj , we obtain

F (v) ◦ fi ◦ u ◦ w = F (v) ◦ F (u ◦ w) ◦ fj = F (v ◦ u ◦ w) ◦ fj = 0

because v ◦ u = 0 .
Since Hom(Y [1] , F (X)) = 0 , by Lemma 1.4. , there exists a unique morphism fX :

X −→ F (X) that commutes with fi .

2.16.2 Let us show that fX does not depend from morphism v : P⊕k
i −→ X . Consider

two surjective morphisms v1 : P⊕k1
i1

−→ X and v2 : P⊕k2
i2

−→ X . We can take two
surjective morphisms w1 : P⊕l

j −→ P⊕k1
i1

and w2 : P⊕l
j −→ P⊕k2

i2
such that the following

diagram is commutative:
P⊕l

j
w2−→ P⊕k2

i2yw1

yv2

P⊕k1
i1

v1−→ X
14



Clearly, it is sufficient to check the coincidence of the morphisms, constructed by v1 and
v1 ◦ w1 . Now, let us consider the following commutative diagram:

P⊕l
j

w1−→ P⊕k1
i1

v1−→ Xyfj

yv2

yfX

F (P⊕l
j )

F (w1)−→ F (P⊕k1
i1

)
F (v1)−→ F (X)

Here the morphism fX is constructed by v1 . Both squares of this diagram are com-
mutative. Since there exists only one morphism from X to F (X) that commutes with
fj , we see that the fX , constructed by v1 , coincides with the morphism, constructed
by v1 ◦ w1 .

2.16.3 Now we must show that for any morphism X
φ−→ Y we have equality:

fY ◦ φ = F (φ) ◦ fX

Take a surjective morphism P⊕l
j

v−→ Y . Choose a surjective morphism P⊕k
i

u−→ X such
that the composition φ◦u lifts to a morphism ψ : P⊕k

i −→P⊕l
j . We can do it, because for

i ¿ 0 the map Hom(P⊕k
i , P⊕l

j ) → Hom(P⊕k
i , Y ) is surjective. We get the commutative

square:
P⊕k

i
u−→ Xyψ

yφ

P⊕l
j

v−→ Y

By h1 and h2 denote fY ◦ φ and F (φ) ◦ fX respectively. We have the following
sequence of equalities:

h1 ◦ u = fY ◦ φ ◦ u = fY ◦ v ◦ ψ = F (v) ◦ fj ◦ ψ = F (v) ◦ F (ψ) ◦ fi

and

h2 ◦ u = F (φ) ◦ fX ◦ u = F (φ) ◦ F (u) ◦ fi = F (φ ◦ u) ◦ fi = F (v ◦ ψ) ◦ fi = F (v) ◦ F (ψ) ◦ fi

Consequently, the following square is commutative for t = 1, 2 .

Z −→ P⊕k
i

u−→ X −→ Z[1]
F (ψ) ◦ fi

y yht

F (W ) −→ F (P⊕l
j )

F (v)−→ F (Y ) −→ F (W )[1]

By Lemma 1.4. , as Hom(Z[1] , F (Y )) = 0 , we obtain h1 = h2 . Thus, fY ◦ φ =
F (φ) ◦ fX .

Now take a cone CX of the morphism fX . Using the following isomorphisms

Hom(Pi , X) ∼= Hom(F (Pi) , F (X)) ∼= Hom(Pi , F (X)),

we obtain Homj(Pi , CX) = 0 for all j , when i ¿ 0 . Hence, by Lemma 2.13. ,
CX = 0 and fX is an isomorphism.

2.16.4 Let us define fX[n] : X[n] −→ F (X[n]) ∼= F (X)[n] for any X ∈ A by

fX[n] = fX [n].
15



It is easily shown that these transformations commute with any u ∈ Extk(X , Y ) .
Indeed, since any element u ∈ Extk(X , Y ) can be represented as a composition u =
u0u1 · · ·uk of some elements ui ∈ Ext1(Zi , Zi+1) and Z0 = X, Zk = Y , we have only
to check it for u ∈ Ext1(X , Y ) . Consider the following diagram:

Y −→ Z −→ X
u−→ Y [1]

fY

y yfZ

yfY [1]

F (Y ) −→ F (Z) −→ F (X)
F (u)−→ F (Y )[1]

By an axiom of triangulated categories there exists a morphism h : X → F (X) such that
(fY , fZ , h) is a morphism of triangles. On the other hand, since Hom(Y [1] , F (X)) = 0 ,
by Lemma 1.4. , h is a unique morphism that commutes with fZ . But fX also
commutes with fZ . Hence we have h = fX . This implies that

fY [1] ◦ u = F (u) ◦ fX

2.16.5 The rest of the proof is by induction over the length of a segment, in which the
cohomology objects of X are concentrated. Let X be an object from Db(A) and
suppose that its cohomology objects Hp(X) are concentrated in a segment [a, 0] . Take
v : P⊕k

i −→ X such that

a) Homj(Pi , Hp(X)) = 0 for all p and for j 6= 0,

b) u : P⊕k
i −→ H0(X) is the surjective morphism, (9)

c) Hom(H0(X) , Pi) = 0.

Here u is the composition v with the canonical morphism X −→ H0(X) . Consider a
distinguished triangle:

Y [−1] −→ P⊕k
i

v−→ X −→ Y

By the induction hypothesis, there exists the isomorphism fY and it commutes with fi .
So we have the commutative diagram:

Y [−1] −→ P⊕k
i

v−→ X −→ Y

fY [−1]
y yfi

yfY

F (Y )[−1] −→ F (P⊕k
i )

F (v)−→ F (X) −→ F (Y )

Moreover we have the following sequence of equalities

Hom(X , F (P⊕k
i )) ∼= Hom(X , P⊕k

i ) ∼= Hom(H0(X) , P⊕k
i ) = 0

Hence, by Lemma 1.4. , there exists a unique morphism fX : X −→ F (X) that commutes
with fY .

2.16.6 We must first show that fX is correctly defined. Suppose we have two morphisms
v1 : P⊕k1

i1
−→ X and v2 : P⊕k2

i2
−→ X . As above, we can find Pj and surjective
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morphisms w1, w2 such that the following diagram is commutative

P⊕l
j

w2−→ P⊕k2
i2yw1

yu2

P⊕k1
i1

u1−→ H0(X)

We can find a morphism φ : Yj −→ Yi1 such that the triple (w1, id, φ) is a morphism of
distinguished triangles.

P⊕l
j

v1◦w1−→ X −→ Yj −→ P⊕l
j [1]

w1

y yid
yφ

yw1[1]

P⊕k1
i1

v1−→ X −→ Yi1 −→ P⊕k1
i1

[1]

By the induction hypothesis, the following square is commutative.

Yj
φ−→ Yi1

fYj

y yfYi

F (Yj)
F (φ)−→ F (Yi1)

Hence, we see that the fX , constructed by v1 ◦ w1 , commutes with fYi1
and, con-

sequently, coincides with the fX , constructed by v1 ; because such morphism is unique
by Lemma 1.4. . Therefore morphism fX does not depend on a choice of morphism
v : P⊕k

i −→ X .

2.16.7 Finally, let us prove that for any morphism φ : X −→ Y the following diagram
commutes

X
φ−→ Y

fX

y yfY

F (X)
F (φ)−→ F (Y )

(10)

Suppose the cohomology objects of X are concentrated on a segment [a, 0] and the
cohomology objects of Y are concentrated on [b, c] .
Case 1. If c < 0 , we take a morphism v : P⊕k

i −→ X that satisfies conditions (9) and
Hom(P⊕k

i , Y ) = 0 . We have a distinguished triangle:

P⊕k
i

v1−→ X
α−→ Z −→ P⊕k

i [1]

Applying the functor Hom(− , Y ) to this triangle we found that there exists a morphism
ψ : Z −→ Y such that φ = ψ ◦ α . We know that fX , defined above, satisfy

F (α) ◦ fX = fZ ◦ α

If we assume that the diagram

Z
ψ−→ Y

fZ

y yfY

F (Z)
F (ψ)−→ F (Y )

commutes, then diagram (10) commutes too.
This means that for verifying the commutativity of (10) we can substitute X by an

object Z . And the cohomology objects of Z are concentrated on the segment [a,−1] .
17



Case 2. If c ≥ 0 , we take a surjective morphism v : P⊕k
i −→ Y [c] that satisfies conditions

(9) and Hom(Hc(X) , P⊕k
i ) = 0 . Consider a distinguished triangle

P⊕k
i [−c]

v[−c]−→ Y
β−→ W −→ P⊕k

i [−c + 1]

Note that the cohomology objects of W are concentrated on [b, c− 1] .
By ψ denote the composition β ◦ φ . If we assume that the following square

X
ψ−→ W

fX

y yfW

F (X)
F (ψ)−→ F (W )

commutes, then, since F (β) ◦ fY = fW ◦ β ,

F (β) ◦ (fY ◦ φ− F (φ) ◦ fX) = fW ◦ ψ − F (ψ) ◦ fX = 0.

We chose Pi such that Hom(X , P⊕k
i [−c]) = 0 . As F (P⊕k

i ) is isomorphic to P⊕k
i ,

then Hom(X , F (P⊕k
i [−c])) = 0 . Applying the functor Hom(X , F (−)) to the above

triangle we found that the composition with F (β) gives an inclusion of Hom(X , F (Y ))
into Hom(X , F (W )) . This follows that fY ◦ φ = F (φ) ◦ fX , i.e. our diagram (10)
commutes.

Combining case 1 and case 2, we can reduce the checking of commutativity of diagram
(10) to the case when X and Y are objects from the abelian category A . But for
those it has already been done. Thus the proposition is proved. 2

2.17. Proof of theorem. 1) Existence. Using Lemma 2.10. and Lemma 2.7. , we can
construct an object E ∈ Db(M ×X) such that there exists an isomorphism of the functors
f̄ : F

∣∣
C
∼−→ ΦE

∣∣
C on full subcategory C ⊂ Db(M) , where ObC = {Li | i ∈ Z} and L

is a very ample invertible sheaf on M such that for any k > 0 Hi(M,Lk) = 0 , when
i 6= 0 .

By Lemma 2.15. the functor ΦE is full and faithfull. Moreover, the functors F ! ◦ ΦE

and Φ∗E ◦ F are full and faithful too, because we have the isomorphisms:

F !(f̄) : F ! ◦ F
∣∣
C
∼= idC

∼−→ F ! ◦ ΦE

∣∣
C

Φ∗E(f̄) : Φ∗E ◦ F
∣∣
C
∼−→ Φ∗E ◦ ΦE

∣∣
C
∼= idC

and conditions of Lemma 2.15. is fulfilled.
Further, the functors F ! ◦ ΦE and Φ∗E ◦ F are equivalences, because they are adjoint

each other.
Consider the isomorphism F !(f̄) : F ! ◦F

∣∣
C
∼= idC

∼−→ F ! ◦ΦE

∣∣
C on the subcategory C .

By Proposition 2.16. we can extend it onto the whole Db(M) , so id
∼−→ F ! ◦ ΦE .

Since F ! is the right adjoint to F , we get the morphism of the functors f : F −→ ΦE

such that f |C = f̄ . It can easily be checked that f is an isomorphism. Indeed, let CZ

be a cone of the morphism fZ : F (Z) −→ ΦE(Z) . Since F !(fZ) is an isomorphism, we
18



obtain F !(Z) = 0 . Therefore, this implies that Hom(F (Y ) , CZ) = 0 for any object
Y . Further, there are isomorphisms F (Lk) ∼= ΦE(Lk) for any k . Hence, we have

Homi(Lk , Φ!
E(CZ)) = Homi(ΦE(Lk) , CZ)) = Homi(F (Lk) , CZ)) = 0

for all k and i .
Thus, we obtain Φ!

E(CZ) = 0 . This implies that Hom(ΦE(Z) , CZ) = 0 . Finally,
we get F (Z) = CZ [−1] ⊕ ΦE(Z) . But we know that Hom(F (Z)[1] , CZ) = 0 . Thus,
CZ = 0 and f is an isomorphism.

2) Uniqueness. Suppose there exist two objects E and E1 of Db(M × X) such
that ΦE1

∼= F ∼= ΦE2 . Let us consider the complex (8) over Db(M ×X) (see the proof
Lemma 2.10. ).

L−n £ F (Rn) −→ · · · −→ L−1 £ F (R1) −→ OM £ F (R0)

By Lemma 1.5. , there exists a convolution of this complex and all convolutions are
isomorphic. Let G ∈ Db(M ×X) be a convolution of the complex (8). Now consider the
following complexes

L−n £ F (Rn) −→ · · · −→ L−1 £ F (R1) −→ OM £ F (R0) −→ Ek

Again by Lemma 1.5. , there exists a unique up to isomorphism convolutions of these
complexes.

Hence we have the canonical morphisms G −→ E1 and G −→ E2 . Moreover, it has
been proved above (see the proof of Lemma 2.10. ) that C1 ⊕E1

∼= G ∼= C2 ⊕E2 for large
n , where Ek, Ck are objects of Db(M ×X) such that H i(Ek) = 0 for i 6∈ [−a, 0]
and H i(Ck) = 0 for i 6∈ [−n − a,−n] ( a was defined in 2.5. ). Thus E1 and E2

are isomorphic.
This completes the proof of Theorem 2.2. 2

2.18. Theorem Let M and X be smooth projective varieties. Suppose F :
Db(M) −→ Db(X) is an equivalence. Then there exists a unique up to isomorphism object
E ∈ Db(M ×X) such that the functors F and ΦE are isomorphic.

It follows immediately from Theorem 2.2.

§3. Derived categories of K3 surfaces

3.1. In this chapter we are trying to answer the following question: When are derived
categories of coherent sheaves on two different K3 surfaces over field C equivalent?

This question is interesting, because there exists a procedure for recovering a variety from
its derived category of coherent sheaves if the canonical (or anticanonical) sheaf is ample.
Besides, if Db(X) ' Db(Y ) and X is a smooth projective K3 surface, then Y is also
a smooth projective K3 surface. This is true, because the dimension of a variety and Serre
functor are invariants of a derived category.

The following theorem is proved in [BO2].
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3.2. Theorem (see [BO2]) Let X be smooth irreducible projective variety with either
ample canonical or ample anticanonical sheaf. If D = Db(X) is equivalent to Db(X ′)
for some other smooth algebraic variety, then X is isomorphic to X ′ .

However, there exist examples of varieties that have equivalent derived categories, if the
canonical sheaf is not ample. Here we give an explicit description for K3 surfaces with
equivalent derived categories.

3.3. Theorem Let S1 and S2 be smooth projective K3 surfaces over field C . Then
the derived categories Db(S1) and Db(S2) are equivalent as triangulated categories iff
there exists a Hodge isometry fτ : TS1

∼−→ TS2 between the lattices of transcendental cycles
of S1 and S2 .

Recall that the lattice of transcendental cycles TS is the orthogonal complement to
Neron-Severi lattice NS in H2(S,Z) . Hodge isometry means that the one-dimensional
subspace H2,0(S1) ⊂ TS1 ⊗ C goes to H2,0(S2) ⊂ TS2 ⊗ C .

Now we need some basic facts about K3 surfaces (see [Mu2]). If S is a K3 surface, then
the Todd class tdS of S is equal to 1 + 2w , where 1 ∈ H0(S,Z) is the unit element
of the cohomology ring H∗(S,Z) and w ∈ H4(S,Z) is the fundamental cocycle of S .
The positive square root

√
tdS = 1 + w lies in H∗(S,Z) too.

Let E be an object of Db(S) then the Chern character

ch(E) = r(E) + c1(E) +
1
2
(c2

1 − 2c2)

belongs to integral cohomology H∗(S,Z) .
For an object E , we put v(E) = ch(E)

√
tdS ∈ H∗(S,Z) and call it the vector associ-

ated to E (or Mukai vector).
We can define a symmetric integral bilinear form (, ) on H∗(S,Z) by the rule

(u, u′) = rs′ + sr′ − αα′ ∈ H4(S,Z) ∼= Z

for every pair u = (r, α, s), u′ = (r′, α′, s′) ∈ H0(S,Z)⊕H2(S,Z)⊕H4(S,Z) . By H̃(S,Z)
denote H∗(S,Z) with this inner product (, ) and call it Mukai lattice.

For any objects E and F , inner product (v(E), v(F )) is equal to the H4 compo-
nent of ch(E)∨ · ch(F ) · tdS . Hence, by Riemann-Roch- Grothendieck theorem, we have

(v(E), v(F )) = χ(E, F ) :=
∑

i

(−1)idimExti(E , F )

Let us suppose that Db(S1) and Db(S2) are equivalent. By Theorem 2.2. there exists
an object E ∈ Db(S1 × S2) such that the functor ΦE gives this equivalence.

Now consider the algebraic cycle Z := p∗
√

tdS1 · ch(E) · π∗√tdS2 on the product S1×
S2 , where p and π are the projections

S1 × S2
π−→ S2

p
y
S1
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It follows from the following lemma that the cycle Z belongs to integral cohomology
H∗(S1 × S2,Z) .

3.4. Lemma [Mu2] For any object E ∈ Db(S1 × S2) the Chern character ch(E) is
integral, which means that it belongs to H∗(S1 × S2,Z)

The cycle Z defines a homomorphism from integral cohomology of S1 to integral
cohomology of S2 :

f : H∗(S1,Z) −→ H∗(S2,Z)
∪ ∪
α 7→ π∗(Z · p∗(α))

The following proposition is similar to Theorem 4.9 from [Mu2].

3.5. Proposition If ΦE is full and faithful functor from Db(S1) to Db(S2) then:
1) f is an isometry between H̃(S1,Z) and H̃(S2,Z) ,
2) the inverse of f is equal to the homomorphism

f ′ : H∗(S2,Z) −→ H∗(S1,Z)
∪ ∪
β 7→ p∗(Z∨ · π∗(β))

defined by Z∨ = p∗
√

tdS1 · ch(E∨) · π∗√tdS2 , where E∨ := RRR
qHom(E,OS1×S2) .

Proof. The left and right adjoint functors to ΦE are:

Φ∗E = Φ!
E = p∗(E∨ ⊗ π∗( q))[2]

Since ΦE is full and faithful, the composition Φ∗E ◦ ΦE is isomorphic to idDb(S1) .
Functor idDb(S1) is given by the structure sheaf O∆ of the diagonal ∆ ⊂ S1 × S1 .
Using the projection formula and Grothendieck-Riemann-Roch theorem, it can easily be

shown that the composition f ′ ◦ f is given by the cycle p∗1
√

tdS1 · ch(O∆) · p∗2
√

tdS1 ,
where p1, p2 are the projections of S1 × S1 to the summands. But this cycle is equal to
∆ .

Therefore, f ′ ◦ f is the identity, and, hence, f is an isomorphism of the lattices,
because these lattices are free abelian groups of the same rank.

Let νS : S −→ SpecC be the structure morphism of S . Then our inner product
(α, α′) on H̃(S,Z) is equal to ν∗(α∨ · α′) . Hence, by the projection formula, we have

(α, f(β)) = νS2,∗(α∨ · π∗(π∗
√

tdS2 · ch(E) · p∗√tdS1 · p∗(β))) =
= νS2,∗π∗(π∗(α∨) · p∗(β) · ch(E) ·√tdS1×S2) =
= νS1×S2,∗(π∗(α∨) · p∗(β) · ch(E) ·√tdS1×S2)

for every α ∈ H∗(S2,Z), β ∈ H∗(S1,Z) . In a similar way, we have

(β, f ′(α)) = νS1×S2,∗(p∗(β∨) · π∗(α) · ch(E)∨ ·
√

tdS1×S2)

Therefore, (α, f(β)) = (f ′(α), β) . Since f ′ ◦ f is the identity, we obtain

(f(α), f(α′)) = (f ′f(α), α′) = (α, α′)
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Thus, f is an isometry. 2

3.6. Consider the isometry f . Since the cycle Z is algebraic, we obtain two isometries
falg : −NS1⊥U

∼−→ −NS2⊥U and fτ : TS1

∼−→ TS2 , where NS1 , NS2 are Neron-Severi
lattices, and TS1 , TS2 are the lattices of transcendental cycles. It is clear fτ is a Hodge
isometry.

Thus we have proved that if the derived categories of two K3 surfaces are equivalent, then
there exists a Hodge isometry between the lattices of transcendental cycles.

3.7. Let us begin to prove the converse. Suppose we have a Hodge isometry

fτ : TS2

∼−→ TS1

It implies from the following proposition that we can extend this isometry to Mukai lattices.

3.8. Proposition [Ni] Let φ1, φ2 : T −→ H be two primitive embedding of a lattice T

in an even unimodular lattice H . Assume that the orthogonal complement N := φ1(T )⊥

in H contains the hyperbolic lattice U =

(
0 1
1 0

)
as a sublattice.

Then φ1 and φ2 are equivalent, that means there exists an isometry γ of H such
that φ1 = γφ2 .

We know that the orthogonal complement of TS in Mukai lattice H̃(S,Z) is isomorphic
to NS ⊥ U . By Proposition 3.8. , there exists an isometry

f : H̃(S2,Z) ∼−→ H̃(S1,Z)

such that f
∣∣
TS2

= fτ .
Put v = f(0, 0, 1) = (r, l, s) and u = f(1, 0, 0) = (p, k, q) .
We may assume that r > 1 . One may do this, because there are two types of isometries

on Mukai lattice that are identity on the lattice of transcendental cycles. First type is
multiplication by Chern character em of a line bundle:

φm(r, l, s) = (r, l + rm, s + (m, l) +
r

2
m2)

Second type is the change r and s (see [Mu2]). So we can change f in such a way that
r > 1 and f

∣∣
TS2

= fτ .
First, note that vector v ∈ U ⊥ −NS1 is isotropic, i.e (v, v) = 0 . It was proved by

Mukai in his brilliant paper [Mu2] that there exists a polarization A on S1 such that the
moduli space MA(v) of stable bundles with respect to A , for which vector Mukai is equal
to v , is projective smooth K3 surface. Moreover, this moduli space is fine, because there
exists the vector u ∈ U ⊥ −NS1 such that (v, u) = 1 . Therefore we have a universal
vector bundle E on the product S1 ×MA(v) .

The universal bundle E gives the functor ΦE : Db(MA(v)) −→ Db(S1) .
Let us assume that ΦE is an equivalence of derived categories. In this case, the cycle

Z = π∗S1

√
tdS1 · ch(E) · p∗√tdM induces the Hodge isometry

g : H̃(MA(v),Z) −→ H̃(S1,Z),
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such that g(0, 0, 1) = v = (r, l, s) . Hence, f−1 ◦ g is an isometry too, and it sends
(0, 0, 1) to (0, 0, 1) . Therefore f−1 · g gives the Hodge isometry between the second
cohomologies, because for a K3 surface S

H2(S,Z) = (0, 0, 1)⊥
/
Z(0, 0, 1).

Consequently, by the strong Torelli theorem (see [LP]), the surfaces S2 and MA(v) are
isomorphic. Hence the derived categories of S1 and S2 are equivalent.

3.9. Thus, to conclude the proof of Theorem 3.3. , it remains to show that the functor
ΦE is an equivalence.

First, we show that the functor ΦE is full and faithful. This is a special case of the
following more general statement, proved in [BO1].

3.10. Theorem [BO1] Let M and X be smooth algebraic varieties and
E ∈ Db(M ×X) . Then ΦE is fully faithful functor, iff the following orthogonality condi-
tions are verified:

i) Homi
X(ΦE(Ot1) , ΦE(Ot2)) = 0 for every i and t1 6= t2.

ii) Hom0
X(ΦE(Ot) , ΦE(Ot)) = k,

Homi
X(ΦE(Ot) , ΦE(Ot)) = 0, for i /∈ [0, dimM ].

Here t , t1 , t2 are points of M , Oti are corresponding skyscraper sheaves.

In our case, ΦE(Ot) = Et , where Et is stable sheaf with respect to the polarization
A on S1 for which v(Et) = v . All these sheaves are simple and Exti(Et , Et) = 0 for
i 6∈ [0, 2] . This implies that condition 2) of Theorem 3.10. is fulfilled.

All Et are stable sheaves, hence Hom(Et1 , Et2) = 0 . Further, by Serre duality
Ext2(Et1 , Et2) = 0 . Finally, since the vector v is isotropic, we obtain Ext1(Et1 , Et2) =
0 .

This yields that ΦE is full and faithful. As our situation is not symmetric (a priori), it
is not clear whether the adjoint functor to ΦE is also full and faithful. Some additional
reasoning is needed.

3.11. Theorem In the above notations, the functor ΦE : Db(MA(v)) −→ Db(S1) is an
equivalence.

Proof. Assume the converse, i.e. ΦE is not an equivalence, then, since the functor
ΦE is full and faithful, there exists an object C ∈ Db(S1) such that Φ∗E(C) = 0 . By
Proposition 3.5. , the functor ΦE induces the isometry f on the Mukai lattices, hence
the Mukai vector v(C) is equal to 0 .

Object C satisfies the conditions Homi(C , Et) = 0 for every i and all t ∈MA(v) ,
where Et are stable bundles on S1 with the Mukai vector v .
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Denote by H i(C) the cohomology sheaves of the object C . There is a spectral sequence
which converges to Homi(C , Et)

Ep,q
2 = Extp(H−q(C) , Et) =⇒ Homp+q(C , Et) (11)

It is depicted in the following diagram

6

-

q

p

r
r

r
r

r
r
r
r

r
r
r
r

...

...

HHHHj

HHHHj

HHHHj

d2

d2

d2

We can see that Ext1(Hq(C) , Et) = 0 for every q and all t , and every morphism
d2 is an isomorphism.

To prove the theorem, we need the following lemma.

3.12. Lemma Let G be a sheaf on K3 surface S1 such that Ext1(G , Et) = 0 for
all t . Then there exists an exact sequence

0 −→ G1 −→ G −→ G2 −→ 0

that satisfies the following conditions:

1) Exti(G1 , Et) = 0 for every i 6= 2, and Ext2(G1 , Et) ∼= Ext2(G , Et)
2) Exti(G2 , Et) = 0 for every i 6= 0, and Hom(G2 , Et) ∼= Hom(G , Et)

and µA(G2) < µA(G) < µA(G1) .

Proof. Firstly, there is a short exact sequence

0 −→ T −→ G −→ G̃ −→ 0,

where T is a torsion sheaf, and G̃ is torsion free.
Secondly, there is a Harder-Narasimhan filtration 0 = I0 ⊂ ... ⊂ In = G̃ for G̃ such

that the successive quotients Ii/Ii−1 are A -semistable, and µA(Ii/Ii−1) > µA(Ij/Ij−1)
for i < j .

Now, combining T and the members of the filtration for which µA(Ii/Ii−1) > µA(Et)
(resp. = , < ) to one, we obtain the 3-member filtration on G

0 = J0 ⊂ J1 ⊂ J2 ⊂ J3 = G.

Let Ki be the quotients sheaves Ji/Ji−1 . We have

µA(K1) > µA(K2) = µA(Et) > µA(K3)

(we suppose, if needed, µA(T ) = +∞ ).
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Moreover, it follows from stability of Et that

Hom(K1 , Et) = 0 and Ext2(K3 , Et) = 0

Combining this with the assumption that Ext1(G , Et) = 0 , we get Ext1(K2 , Et) = 0 .
To prove the lemma it remains to show that K2 = 0 .
Note that K2 is A -semistable. Hence there is a Jordan-Hölder filtration for K2 such

that the successive quotients are A -stable. The number of the quotients is finite. Therefore
we can take t0 such that

Hom(K2 , Et0) = 0 and Ext2(K2 , Et0) = 0

Consequently, χ(v(K2), v(Et)) = 0 . Thus, as Ext1(K2 , Et) = 0 for all t , we obtain
Exti(K2 , Et) = 0 for every i and all t .

Further, let us consider Φ∗E(K2) . We have

Hom
q
(Φ∗E(K2) , Ot) ∼= Hom

q
(K2 , Et) = 0,

This implies Φ∗E(K2) = 0 . Hence v(K2) = 0 , because f is an isometry. And, finally,
K2 = 0 . The lemma is proved. 2

Let us return to the theorem. The object C possesses at least two non-zero consequent
cohomology sheaves Hp(C) and Hp+1(C) . They satisfy the condition of Lemma 3.12.
Hence there exist decompositions with conditions 1),2):

0 −→ Hp
1 −→ Hp(C) −→ Hp

2 −→ 0 and 0 −→ Hp+1
1 −→ Hp+1(C) −→ Hp+1

2 −→ 0

Now consider the canonical morphism Hp+1(C) −→ Hp(C)[2] . It induces the morphism
s : Hp+1

1 −→ Hp
2 [2] . By Z denote a cone of s .

Since d2 of the spectral sequence (11) is an isomorphism, we obtain

Hom
q
(Z , Et) = 0 for all t.

Consequently, we have Φ∗E(Z) = 0 . On the other hand, we know that µA(Hp+1
1 ) >

µA(Et) > µA(Hp
2 ) . Therefore v(Z) 6= 0 . This contradiction proves the theorem. 2

There exists the another version of Theorem 3.3.

3.13. Theorem Let S1 and S2 be smooth projective K3 surfaces over field C . Then
the derived categories Db(S1) and Db(S2) are equivalent as triangulated categories iff
there exists a Hodge isometry f : H̃(S1,Z) ∼−→ H̃(S2,Z) between the Mukai lattices of S1

and S2 .

Here the ‘Hodge isometry’ means that the one-dimensional subspace H2,0(S1) ⊂
H̃(S1,Z)⊗ C goes to H2,0(S2) ⊂ H̃(S2,Z)⊗ C .

Appendix.

The facts, collected in this appendix, are not new; they are known. However, not having
a good reference, we regard it necessary to give a proof for the statement, which is used in
the main text. We exploit the technique from [IM].
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Let X be a smooth projective variety and L be a very ample invertible sheaf on X

such that Hi(X, Lk) = 0 for any k > 0 , when i 6= 0 . Denote by A the coordinate

algebra for X with respect to L , i.e. A =
∞⊕

k=0

H0(X,Lk) .

Now consider the variety Xn . First, we introduce some notations. Define subvarieties
∆(n)

(i1,...,ik)(ik+1,...,im) ⊂ Xn by the following rule:

∆(n)
(i1,...,ik)(ik+1,...,im) := {(x1, ..., xn)|xi1 = · · · = xik ; xik+1

= · · · = xm}

By S
(n)
i denote ∆(n)

(n,...,i) . It is clear that S
(n)
i

∼= Xi .

Further, let T
(n)
i :=

i−1⋃
k=1

∆(n)
(n,...,i)(k,k−1) (note that T

(n)
1 and T

(n)
2 are empty) and

let Σ(n) :=
n⋃

k=1

∆(n)
(k,k−1) . We see that T

(n)
i ⊂ S

(n)
i . Denote by I(n)

i the kernel of the

restriction map O
S

(n)
i

−→ O
T

(n)
i

−→ 0 .
Using induction by n , it can easily be checked that the following complex on Xn

P
q

n : 0 −→ JΣ(n) −→ I(n)
n −→ I(n)

n−1 −→ · · · −→ I(n)
2 −→ I(n)

1 −→ 0

is exact. (Note that I(n)
1 = O

∆
(n)
n,...,1

and I(n)
2 = O

∆
(n)
n,...,2

). For example, for n = 2 this

complex is a short exact sequence on X ×X :

P
q

2 : 0 −→ J∆ −→ OX×X −→ O∆ −→ 0

Denote by π
(n)
i the projection of Xn onto ith component, and by π

(n)
ij denote the

projection of Xn onto the product of ith and jth components.
Let Bn := H0(Xn, JΣ(n)⊗(L£· · ·£L)) and let Rn−1 := R0π

(n)
1∗ (JΣ(n)⊗(O£L£· · ·£L)) .

Proposition A.1 Let L be a very ample invertible sheaf on X as above. Suppose that
for any m such that 1 < m ≤ n + dimX + 2 the following conditions hold:

a) Hi(Xm, JΣ(m) ⊗ (L £ · · ·£ L)) = 0 for i 6= 0
b) Riπ

(m)
1∗ (JΣ(m) ⊗ (O £ L £ · · ·£ L)) = 0 for i 6= 0

c) Riπ
(m)
1m∗(JΣ(m) ⊗ (O £ L £ · · ·£ L £O)) = 0 for i 6= 0

Then we have:
1) algebra A is n-Koszul, i.e the sequence

Bn ⊗k A −→ Bn−1 ⊗k A −→ · · · −→ B1 ⊗k A −→ A −→ k −→ 0

is exact;
2) the following complexes on X :

Ak−n ⊗Rn −→ Ak−n+1 ⊗Rn−1 −→ · · · −→ Ak−1 ⊗R1 −→ Ak ⊗R0 −→ Lk −→ 0

are exact for any k ≥ 0 (if k − i < 0 , then Ak−i = 0 by definition);
3) the complex

L−n £ Rn −→ · · · −→ L−1 £ R1 −→ OM £ R0 −→ O∆

gives n-resolution of the diagonal on X ×X , i.e. it is exact.
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Proof.
1) First, note that

Hi(Xm, I(m)
k ⊗ (L £ · · ·£ L)) = Hi(Xk−1, JΣ(k−1) ⊗ (L £ · · ·£ L))⊗Am−k+1

By condition a), they are trivial for i 6= 0 .
Consider the complexes P

q
m ⊗ (L £ · · · £ L) for m ≤ n + dimX + 1 . Applying the

functor H0 to these complexes and using condition a), we get the exact sequences:

0 −→ Bm −→ Bm−1 ⊗k A1 −→ · · · −→ B1 ⊗k Am−1 −→ Am −→ 0

for m ≤ n + dimX + 1 .
Now put m = n + dimX + 1 . Denote by W

q
m the complex

I(m)
m −→ I(m)

m−1 −→ · · · −→ I(m)
2 −→ I(m)

1 −→ 0

Take the complex W
q

m ⊗ (L £ · · ·£ L £ Li) and apply functor H0 to it. We obtain the
following sequence:

Bm−1 ⊗k Ai −→ Bm−2 ⊗k Ai+1 −→ · · · −→ B1 ⊗k Am−1 −→ Am −→ 0

The cohomologies of this sequence are Hj(Xm, JΣ(m) ⊗ (L £ · · ·£ L £ Li)) . It follows from
condition b) that

Hj(Xm, JΣ(m) ⊗ (L £ · · ·£ L £ Li)) = Hj(X, R0π
(m)
m∗ (JΣ(m) ⊗ (L £ · · ·£ L £O))⊗ Li)

Hence they are trivial for j > dimX . Consequently, we have the exact sequences:

Bn ⊗k Am−n+i−1 −→ Bn−1 ⊗k Am−n+i −→ · · · −→ B1 ⊗k Am+i−2 −→ Am+i−1

for i ≥ 1 . And for i ≤ 1 the exactness was proved above.
Thus, algebra A is n-Koszul.
2) The proof is the same as for 1). We have isomorphisms

Riπ
(m)
1∗ (I(m)

k ⊗ (O £ L £ · · ·£ L)) ∼= Riπ
(k−1)
1∗ (JΣ(k−1) ⊗ (O £ L £ · · ·£ L))⊗Am−k+1

Applying functor R0π
(m)
1∗ to the complexes P

q
m⊗(O£L£· · ·£L)) for m ≤ n+dimX+2 ,

we obtain the exact complexes on X

0 −→ Rm−1 −→ A1 ⊗Rm−2 −→ · · · −→ Am−2 ⊗R1 −→ Am−1 ⊗R0 −→ Lm−1 −→ 0

for m ≤ n + dimX + 2 .
Put m = n + dimX + 2 . Applying functor R0π

(m)
1∗ to the complex W

q
m ⊗ (O £ L £

· · ·£ L £ Li)) , we get the complex

Ai ⊗Rm−2 −→ · · · −→ Am+i−3 ⊗R1 −→ Am+i−2 ⊗R0 −→ Lm+i−2 −→ 0

The cohomologies of this complex are

Rjπ
(m)
1∗ (JΣ(m)⊗(O£L£· · ·£L£Li)) ∼= Rjp1∗(R0π

(m)
1m∗(JΣ(m)⊗(O£L£· · ·£L£O))⊗(O£Li))

They are trivial for j > dimX . Thus, the sequences

Ak−n ⊗Rn −→ Ak−n+1 ⊗Rn−1 −→ · · · −→ Ak−1 ⊗R1 −→ Ak ⊗R0 −→ Lk −→ 0
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are exact for all k ≥ 0 .
3) Consider the complex W

q
n+2⊗(O£L£· · ·£L£L−i) . Applying the functor R0π

(n+2)
1(n+2)∗

to it, we obtain the following complex on X ×X :

L−n £ Rn −→ · · · −→ L−1 £ R1 −→ OM £ R0 −→ O∆

By condition c), it is exact.
This finishes the proof.
Note that for any ample invertible sheaf L we can find j such that for the sheaf Lj

the conditions a),b),c) are fulfilled.
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